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Abstract: In this study, silver (Ag) and silver–diamond (Ag-D) composites with varying diamond
(D) content are fabricated using laser powder bed fusion (L-PBF) additive manufacturing (AM). The
L-PBF process parameters and inert gas flow rate are optimised to control the build environment
and the laser energy density at the powder bed to enable the manufacture of Ag-D composites
with 0.1%, 0.2% and 0.3% D content. The Ag and D powder morphology are characterised using
scanning electron microscopy (SEM). Ag, Ag-D0.1%, Ag-D0.2% and Ag-D0.3% tensile samples are
manufactured to assess the resultant density and tensile strength. In-process EOSTATE melt pool
monitoring technology is utilised as a comparative tool to assess the density variations. This technique
uses in-process melt pool detection to identify variations in the melt pool characteristics and potential
defects and/or density deviations. The resultant morphology and associated defect distribution for
each of the samples are characterised and reported using X-ray computed tomography (xCT) and
3D visualisation techniques. Young’s modulus, the failure strain and the ultimate tensile strength
of the L-PBF Ag and Ag-D are reported. The melt pool monitoring results revealed in-process
variations in the build direction, which was confirmed through xCT 3D visualisations. Additionally,
the xCT analysis displayed density variations for all the Ag-D composites manufactured. The tensile
results revealed that increasing the diamond content reduced Young’s modulus and the ultimate
tensile strength.

Keywords: laser powder bed fusion; additive manufacturing; silver; diamond; computed tomography;
melt pool monitoring; X-ray computed tomography

1. Introduction

Silver (Ag) is a desirable material for many applications due to its antimicrobial and
high thermal and electrical conductive properties [1–6]. Therefore, Ag is receiving increas-
ing academic and industry interest as a base and alloying element for thermal, biomedical
and electronics applications [1–3,7,8]. Diamond (D) also has unique and desirable prop-
erties, including high hardness, excellent thermal conductivity, high electrical resistivity
and high wear resistance [9–12]. Ag and D have excellent thermal conductivity properties
of 430 W/(m·K) and 2200 W/(m·K), with a density of 10.49 g/cm3 and 3.52 g/cm3 and
electrical resistivity of 1.6 × 10−8 Ω·m and 1.0 × 10−18 Ω·m, respectively. Hence, the
combination of silver and diamond for numerous applications would be highly beneficial
as the material could simultaneously meet the requirements of many industries for high
thermal conductivity and electrified transport applications due to the thermal performance
and lower density. However, due to diamond’s high melting point and strong covalent
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bonds, it is notoriously difficult to process using conventional manufacturing methods,
and silver’s high reflectivity at infrared laser wavelengths makes it challenging to laser
weld or manufacture using laser powder bed fusion (L-PBF) additive manufacturing (AM).

Additionally, the scarcity and relatively high cost of both materials limit their use in
most applications. The variability in and cost of natural D restricted its use in engineer-
ing applications until material manufacturing breakthroughs enabled the fabrication of
consistent synthetic diamond in the 1950s and 1980s [13]. The use of precious metal Ag
pre-dates 1000 B.C. [14], and due to its ductile nature, it can be manufactured using forging,
lost-wax casting, rolling, hand fabrication and machining techniques. However, Ag is
also relatively expensive when compared with other engineering metallic materials. For
example, while 1 kg of atomised aluminium (Al) can cost GBP44, 1 kg of atomised Ag can
cost more than GBP933. In order to mitigate this high cost of Ag, a customised small build
chamber (120 mm × 120 mm × 120 mm) is utilised in this study in comparison to most
studies, which utilise a large (250 mm × 250 mm × 325 mm) build chamber. As such, a
small batch of materials are required to prepare the build parts. A small geometry tensile
bar is also considered to prepare to mitigate the limitation. While copper–diamond (Cu-D)
metal-matrix composites (MMC) have seen investigation [15,16] and L-PBF Cu-D has been
reported [17], the fabrication of Ag-D MMCs has seen limited investigation [18–20], with
the L-PBF of Ag-D yet to be reported.

For example, Nakagawa et al. investigated the thermal diffusivity of sintered pure
silver and potential for the improved low-temperature cooling of heat exchangers for
quantum computing and nanoelectric applications [21]. Using laser flash thermal diffusivity
techniques, the results reported that the thermal diffusivity of sintered pure Ag was 52%,
50% and 38% depending on the particle size, which could be attributed to the sintered pure
Ag surface area, bond strength (between powder particles) and pore volume effects on
the thermal transfer [21]. However, the bonding strength between the particles for some
investigated materials was equivalent to the material that is currently most widely used
for ultra low temperature cooling [21]. Bonilla-Gameros et al. investigated healthcare-
associated infections and antibiotic-resistant pathogens and the developments in the design
and manufacture of Ag-based antibacterial surfaces utilising Ag compounds for pathogen
biofilm prevention [5].

Plasma processes (magnetron, sputtering and atmospheric pressure) alongside 3D
printing are highlighted as promising technologies for the controlled release of Ag ions;
however, the lack of regulation related to Ag-based components is still a challenge [5].
Due to the biocompatibility and chemical inertness of D, Yang et al. investigated D in
relation to protective coating for neural interface devices and they stated that the D interface
potential for various medical conditions included spinal cord injury, hearing loss and visual
impairment, among many others. However, in vivo research and investigation is still
required [9]. Mashali et al. conducted a literature review of the thermal–physical properties
of diamond nanofluids for potential enhanced thermal performance for automotive and
electronic cooling applications and reported that the most critical parameter for improved
fluid thermal performance was diamond nanoparticle content [10].

Moreover, the creation of Ag-D composites using in situ reduction/deposition, cold-
pressing and vacuum-sintering techniques for antibacterial and thermal management
applications has also been investigated in the research [19,22–24]. Xu et al. prepared a
Ag-D composite in solution and investigated the antibacterial ability against Escherichia
coli (E. coli) bacteria. The Ag-D composite displayed a broad spectrum and efficient an-
tibacterial properties. At a relatively low Ag-D solution content, E. coli growth was almost
inhibited, showing potential as a biomedical implant coating [19]. Lee et al. prepared Ag-D
composites through plating and hot-pressing techniques and investigated the resultant
thermal conductivity and coefficient of the thermal expansion properties for potential mi-
croelectronic thermal management applications. At 20% D vol.%, the composite displayed
the maximum thermal conductivity at 420 W/m·K, with the thermal conductivity decreas-
ing with D content above 20 vol.%. Below 40 vol.% of D, the density of the composites
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was reported as 96% [24]. More recent research has investigated combining D MMCs
and advanced manufacturing AM techniques. The layer-by-layer AM processes enable
the fabrication of complex metal parts that are not feasible with more traditional machin-
ing, forming and casting technologies, and therefore, due to traditional manufacturing
limitations, AM is seeing increasing investigations.

Constantin et al. utilised direct energy deposition AM to process a copper–diamond
(Cu-D) composite with a titanium (Ti)-based coating. With a Cu 25 vol.%, a thermal
conductivity of 330 W/m·K and density of 96% were reported. High energy density was
required to create dense composites and, as such, 900 W laser power and 12.7 mm/s
were required; however, no D graphitisation was displayed [16]. Gan et al. studied the
L-PBF fabrication of Cu-Sn-Ti-D composites for potential abrasive tooling applications with
comparative hot-pressed sintered samples. The optimum L-PBF process parameters were
reported as a 260 W laser power, 300 mm/s scan speed and 90 µm layer thickness, resulting
in the highest density of 91.95%.

L-PBF improved the D bonding relative to the sintered samples without D carboni-
sation [25]. Ma et al. fabricated an Al-D composite utilising L-PBF and Al12Si-D 10 vol.%
powder mixes, and they reported that a 300 W laser power with 30 µm layer thickness
and a hatch distance of 105 µm were utilised while the scan speeds were varied between
600 mm/s to 1600 mm/s. A higher energy density increased the composite density with a
maximum density of 90%. D 10 vol.% was reported, with the thermal conductivity being
negatively affected by a low composite density [26]. The examples discussed confirm the
clear benefits of Ag-D composites and the demand for various applications with significant
potential implications for the thermal management and biomedical industries. However,
the studies also highlight the future challenges related to further research and regulations
related to Ag and D and densification challenges for AM metal-matrix composites (MMCs).

L-PBF AM is the most mature and commercially adopted metal 3D printing tech-
nology [27], which utilises laser energy to selectively melt material in a layer-by-layer
process. However, the development of an L-PBF-processable Ag-D MMC that possesses
unparalleled thermal conductivity performance and desirable mechanical properties, with
a significantly lighter weight (than the base metal), is yet to materialise and would permit a
step change in efficiency for many industries, enabling the development of the next gen-
eration of technologies; the feasibility of L-PBF AM of a Ag-D MMC is yet to be reported,
leaving a gap in the knowledge. Accordingly, this study investigates the direct fabrication
of Ag-D MMCs utilising L-PBF techniques with Ag samples manufactured as a base sample.
The diamond content is then increased from 0.1 to 0.3 wt.% and the process parameters
such as the turbine pressure and scan speed are optimised to ensure feasible L-PBF Ag-D
fabrication. The Ag and D powder morphology and composition are investigated using a
scanning electron microscopy (SEM) analysis and the pore morphology and distribution are
investigated and compared using in-process melt pool monitoring (MPM), X-ray computed
tomography (xCT) and 3D visualisation techniques.

2. Material and Methods

The AM investigations reported in this study were carried out using a standard sterling
silver (Ag alloy), Ag-D0.1, Ag-D0.2 and Ag-D0.3 wt.% powders comprising Ag alloy with
a composition of 92.53% Ag, 5.26% Cu, 1.77% Ge and the remainder ((Mg) and germanium
(Ge) balance) and chemical vapour deposition (CVD) synthetic diamond powder supplied
by Cookson Gold and Element 6.

2.1. Laser Powder Bed Fusion (L-PBF)

All builds were performed using an EOS M290 (ESO GmbH, Tettnang, Germany)
industrial L-PBF system in an argon environment with a 0.1% oxygen concentration in the
process chamber, which featured a 400 W laser with a 100 µm spot size. The procedure
was performed on substrates that were heated, and the L-PBF process was carried out
using varied laser scan speeds ranging between 200 mm/s and 400 mm/s, a layer thickness
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(t) of 30 µm and a laser power (P) of 370 W as shown in Tables 1 and 2. The gas flow
across the scanning region was altered by changing the turbine pressure settings (defined
in the EOS Print control software) within the standard operating range (0.6 to 1 mbar).
Once manufacture and thermal conditioning was complete, non-contact Wire Electrical
Discharge Machining (W-EDM) was employed to remove the built samples from the build
plate. Zwick Roell 1474 material test equipment (Zwick Roell, Ulm, Germany) with a
100 kN maximum load capability used for mechanical testing.

Table 1. Initial L-PBF process parameters used for Ag.

Laser Power
(W)

Scan Speed
(mm/s)

Hatch Distance
(mm)

Layer
Thickness

(µm)

Turbine
(mbar)

370 400 0.14 30 0.60

Table 2. Initial L-PBF process parameters used for Ag and Ag-D composite fabrication.

Sample Diamond Content
(wt.%) Scan Speed (mm/s) Turbine (mbar)

1 0.1 400 0.60
2 0.1 400 0.80
3 0.1 400 1.0
4 0.1 200 1.0
5 0.2 200 1.0
6 0.3 200 1.0

2.2. Melt Pool Monitoring

Melt pool monitoring systems generally comprise two photodiodes placed to the right
and left of the scanner on the build chamber’s exterior. The photodiodes are in a fixed
position in relation to the machine, capturing all spatially and temporally integrated light
generated at any given time over the entire process but not moving with the melt. Both the
melt temperature and the size of the melt pool have an influence on the MPM’s reaction, or
the number of photons that are captured by the photodiodes. A 50 kHz sampling rate is
used for both photodiodes. The EOS State in-process melt pool monitoring technology was
utilised to comparatively evaluate the process build variations, with the sample density
analysed using a Bruker Skyscan 2211 X-ray nanotomograph (Bruker, Billerica, MA, USA).

2.3. Density and Pore Defect Analysis

Electrical and mechanical performance can be significantly impeded where the porosity
and pore morphology are not controlled [28]. The optimisation of L-PBF parameters, the
particle distribution and the powder feedstock composition are paramount to mitigating the
undesired porosity content [28]. Topographical and surface inspection techniques including
digital microscopy and SEM analysis are well-deployed density and porosity evaluation
methods. However, such approaches are limited to the outer surface of the specimen,
providing only extremity-related density and pore characteristics. Nondestructive yet
invasive techniques including X-ray computed tomography (xCT) present the capability to
interrogate the internal pore distribution; as such, xCT was conducted to construct a 3D
visualisation of the porosity morphology and distribution and investigate any resultant pore
defect variations with an increased diamond addition, scan speed and turbine pressure.

X-ray Computed Tomography (xCT)

xCT is a nondestructive analysis technique that is increasingly deployed for the pur-
poses of additive manufacture pore defect analysis [29,30]. Non-uniform powder-layer
delivery and porosity defects are directly attributable to inadequate powder feedstock
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properties, including particle volume distribution (PVD) and restrictive flowability. Fur-
thermore, scanning strategy parameters and a material–laser interaction can also contribute
to the occurrence of pore defects [30]. An xCT analysis was performed in this study
through a Bruker Skyscan 2211 X-ray nanotomograph. It is important to keep in mind that
although an xCT sample analysis is a useful, nondestructive tool for pore defect research,
the operator-led scanning and threshold settings are independent, and as a result, xCT tech-
niques should be used for a relative rather than absolutive analysis. Any changes in density
and porosity flaws may be ascribed to AM feedstock materials, manufacturing process
parameters or postprocessing methods like annealing by making sure the xCT scanning
and threshold settings are kept constant across the examined samples. For this reason, all
the Ag and Ag-D MMCs were interrogated with the same xCT scanning threshold and
reconstruction parameters, thus ensuring the revealed porosity differences were the result
of Ag-D variations in the AM material feedstock.

2.4. Powder Characterisation

The atomised Ag alloy and D powders morphology and elemental content were
analysed using SEM-EDX. The silver powder was found to be nearly spherical with the
presence of some satellite particles attached to the surface, while the diamond particles
revealed an irregular morphology as shown in Figure 1. An EDX analysis was performed
to identify the actual composition of the Ag alloy samples as presented in Figure 2.
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Figure 2. Sterling silver (Ag) energy dispersive X-ray (EDX) element analysis.

A Retsch Technology Camsizer X2 was employed to evaluate the particle size dis-
tribution. The Ag-D powder was mixed at different percentages by sieving for the dry
measurement and the sample was conveyed into the equipment by using a powder dis-
penser and brush blade recoating technique. The L-PBF Ag-D powder feedstock volume
fractions were analysed at D10, D50 and D90 to reveal the variation in the particle size
distribution, which might hinder the processability of the powder, Figure 3 and Table 3.
The Ag-D0.1% powder was shown to have a PVD of D10 of 3.7 µm, D50 of 4.8 µm and
D90 of 5.2 µm, while Ag-D0.3% featured a PVD of D10 of 4.6 µm, D50 of 5.9 µm and D90
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of 7.6 µm. It was found that the D10, D50 and D90 values heightened with an increasing
diamond content, Table 3. Overall, the values showed that 90% of the Ag-D particles were
below 8 µm. Positively, the Ag-D particles dominantly displayed that a powder with a
spherical shape is preferred for the L-PBF process to increase the packing density, provide
homogenous powder deposition as well as improve the flowability of the powder [31].
However, it needs to be mentioned that the presence of small satellite particles on the
surface may hinder the maximum packing density.

Machines 2023, 11, x FOR PEER REVIEW 6 of 17 
 

 

Figure 2. Sterling silver (Ag) energy dispersive X-ray (EDX) element analysis. 

A Retsch Technology Camsizer X2 was employed to evaluate the particle size distri-
bution. The Ag-D powder was mixed at different percentages by sieving for the dry meas-
urement and the sample was conveyed into the equipment by using a powder dispenser 
and brush blade recoating technique. The L-PBF Ag-D powder feedstock volume fractions 
were analysed at D10, D50 and D90 to reveal the variation in the particle size distribution, 
which might hinder the processability of the powder, Figure 3 and Table 3. The Ag-D0.1% 
powder was shown to have a PVD of D10 of 3.7 µm, D50 of 4.8 µm and D90 of 5.2 µm, while 
Ag-D0.3% featured a PVD of D10 of 4.6 µm, D50 of 5.9 µm and D90 of 7.6 µm. It was found 
that the D10, D50 and D90 values heightened with an increasing diamond content, Table 
3. Overall, the values showed that 90% of the Ag-D particles were below 8 µm. Positively, 
the Ag-D particles dominantly displayed that a powder with a spherical shape is preferred 
for the L-PBF process to increase the packing density, provide homogenous powder dep-
osition as well as improve the flowability of the powder [31]. However, it needs to be 
mentioned that the presence of small satellite particles on the surface may hinder the max-
imum packing density. 

 
Figure 3. Particle volume distribution (PVD) for Ag-Dia0.1, Ag-Dia0.2 and Ag-Dia0.3 powders. 

Table 3. Percentile size distribution D10, D50 and D90 for Ag-D0.1%, Ag-D0.2% and Ag-D0.3% pow-
der. 

Sample Name D10 (µm) D50 (µm) D90 (µm) 
Ag-D0.1% 3.7 4.8 5.2 
Ag-D0.2% 4.3 5.1 6.7 
Ag-D0.3% 4.6 5.9 7.6 

3. Results and Discussion 
3.1. L-PBF Sample Fabrication  

The L-PBF process parameters were previously reported by authors [27,32,33] (listed 
in Table 1) and were used for the preliminary sample preparation. It was observed that 
the Ag sample was prepared successfully with a smooth surface finish as presented in 
Figure 4. 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

(%
)

Particle size (µm)

AgD0.1%

AgD0.2%

AgD0.3%

Figure 3. Particle volume distribution (PVD) for Ag-Dia0.1, Ag-Dia0.2 and Ag-Dia0.3 powders.

Table 3. Percentile size distribution D10, D50 and D90 for Ag-D0.1%, Ag-D0.2% and Ag-D0.3%
powder.

Sample Name D10 (µm) D50 (µm) D90 (µm)

Ag-D0.1% 3.7 4.8 5.2
Ag-D0.2% 4.3 5.1 6.7
Ag-D0.3% 4.6 5.9 7.6

3. Results and Discussion
3.1. L-PBF Sample Fabrication

The L-PBF process parameters were previously reported by authors [27,32,33] (listed
in Table 1) and were used for the preliminary sample preparation. It was observed that the
Ag sample was prepared successfully with a smooth surface finish as presented in Figure 4.
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It is well known that changing the L-PBF process parameter can significantly influence
the final material performance [34]. To prepare the silver–diamond build successfully at
various diamond percentages, the laser power, hatch distance and layer thickness were
kept constant whilst the turbine pressure and scan speed parameters were adjusted to
ascertain the effects of the diamond addition and to aid in successful sample fabrication.
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3.1.1. L-PBF Turbine Pressure Optimisation

Although not considered a standard L-PBF parameter, the optimisation of the turbine
pressure settings was considered in this study due to the potential carbonisation of the
diamond powder during the L-PBF, affecting the laser process. Additionally, the relatively
low particle size distribution under investigation could be affected by the flow of inert
gas across the powder bed during L-PBF processing. Incorrect powder motion in L-PBF
caused by turbine pressure could be a contributor to defects and print variability. Laser
processing can cause powder particles and melt pool contamination to be drawn into
the laser-illuminated zone (LIZ), affecting the subsequent layer processing. As such, the
as-built Ag-D samples containing 0.1%Diamond with an increasing turbine pressure are
shown in Figure 5. Despite the identical fabrication parameters being used for all the Ag-D
samples, clear variation was observed on the surface throughout with an increasing turbine
pressure from 0.6 mbar to 1 mbar, particularly with the higher turbine pressure (1.0 mbar).
It was found that the sample provided a dark and uneven surface at low pressure such
as 0.60 mbar and 0.8 mbar compared to the higher pressure. The rough surface at low
pressure indicates a less dense structure, while the higher-pressure effect on Ag-D0.1%
revealed an increase in the specimen density. Additionally, increasing the turbine pressure
can accelerate building while lowering the stability of the molten pool and the surface
roughness as seen in Figure 5c.
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Figure 5. As built on build platform Ag-D0.1% composite samples showing effects of D addition and
turbine parameter for (a) Ag-D0.1 turbine 0.60 mbar, (b) Ag-D0.1 turbine 0.80 mbar and (c) Ag-D0.1
turbine 1.0 mbar. Dimension of the sample is 12 mm × 61.5 mm × 4 mm.

3.1.2. L-PBF Scan Speed Optimisation

The Ag-D0.1, Ag-D0.2 and Ag-D0.3 samples at different scan speeds and turbine pres-
sures are shown in Figure 6. L-PBF process parameters require optimisation to successfully
fabricate fully dense samples. One of the ways to improve surface quality and density
is to modulate the turbine pressure, which in this case is between 0.6 and 1 mbar. The
results show that a higher turbine pressure of 1 mbar significantly improved the surface
quality and density as shown in Figure 6a–c. Consequently, the turbine pressure at 1 mbar
is considered suitable for further analysis.

In addition to the turbine pressure, scan speeds play a key role in the laser powder bed
fusion of metallic alloys. To further optimise the L-PBF processing of Ag-D, the scan speed
was decreased from 400 to 200 mm/s; this technique can improve the surface wetting and
promote uniform liquid solidification without inducing the balling effect. This is one of the
primary defects when it comes to L-PBF that results in porosity defects reducing the part’s
density. Here, the resulting sample revealed a smooth surface finish (Figure 6d), indicating
that the balling effect is significantly reduced. As a result, the combination of the turbine



Machines 2023, 11, 1037 8 of 16

pressure at 1 mbar and the 200 mm/s scan speed can be considered optimum for the L-PBF
of Ag-D [35]. The rough surface at a high scan speed is due to an irregular and unstable
molten pool and the occurrence of irregular scan tracks, which in turn increases the surface
roughness and porosity of the printed sample.
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Figure 6. Ag-D in situ composite samples showing effects of D addition and turbine and scan speed
parameter adjustments: (a) Ag-D0.1, turbine 0.60 mbar and 400 mm/s scan speed, (b) Ag-D0.1 turbine
0.80 mbar and 400 mm/s scan speed, (c) Ag-D0.1 turbine 1.0 mbar and 400 mm/s scan speed, (d) D0.1
turbine 1.0 mbar and 200 mm/s scan speed, (e) D0.2 turbine 1.0 mbar and 200 mm/s scan speed and
(f) D0.3 turbine 1.0 mbar and 200 mm/s scan speed.

In addition, irregular surfaces at a high scan speed could also be explained by the
presence of balling on the top surface of the samples. A high scan speed also promotes cap-
illary instability in the molten-metal pool leading to the splashing of small liquid droplets
on the surface and hence improper deposition of the following layer and inhomogeneity
in the layer. These optimal parameters informed the further processing of the Ag-D0.2%
and Ag-D0.3%. Nevertheless, it can be seen from Figure 6d–f that the surface of the printed
samples worsened as the diamond content in the Ag matrix increased.

Apart from the scan speed and turbine pressure, other critical process parameters
include the hatch spacing, laser power and layer thickness. These process parameters
inform the building rate and fabrication efficiency when it comes to L-PBF. The top surface
of the polished samples revealed gaps between adjacent scan tracks at a higher hatch
spacing (140 µm). The intralayer overlap decreases at 140 µm hatch spacing, and the
interlayer bonding mostly holds the component together. Although building with high
hatch spacings can increase the rate of fabrication, a smaller layer thickness is needed to
achieve both inter- and intralayer overlap [36]. Consequently, a smaller layer thickness of
30 µm was employed throughout this study. The layer thickness influences the heat and
mass transfer, affecting the cooling rate within the melt pool. On the contrary, adopting
a higher layer thickness can lead to insufficient energy density at the powder bed to
sufficiently melt the feedstock, resulting in balling phenomena. This in turn will lead
to inadequate bonding between powders, leading to a partially sintered material on the
subsequent layers [37,38]. A higher porosity for L-PBF parts usually indicates a lower laser
power and a faster scan speed. The energy input into the material is reduced as the result
of both a reduction in the laser power and an increase in the scan speed. This results in a
reduction in the laser energy density at the melt pool leading to porosity due to incomplete
consolidation and ultimately causing the L-PBF process to fail [39].
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3.2. In-Process Melt Pool Monitoring

In AM processes, a wide range of parameters influence the melt pool behaviour. The
impact of processing parameters on the melt pool form of different samples at various build
heights are presented in Figure 7a–d. The melt pool dimension increased when decreasing
the scan speed from 400 mm/s to 200 mm/s for sample 3 and sample 4 as presented in
Figure 7a,b, respectively. This change in the melt pool dimension could be ascribed to the
reduction in the energy density. Dilip et al. investigated the influence of process parameters
on Ti6Al4V via melt pool monitoring and they reported that the depth of the melted region
decreased with an increasing scan speed and eventually resulted in a balling phenomenon
occurrence due to the reduction in energy density [40]. However, the melt pool dimension
decreased with an increasing diamond content for sample 5 and sample 6 at 200 mm/s,
indicating non-linear behaviour.
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and (d) sample 6 Ag-D in situ composite sample showing light radiation throughout the build, where
build height was 0.12 mm, 1 mm, 2 mm and 3 mm as shown.

For sample 4, both the melt pool width and length increased with increasing the build
height and revealed a dense and darker surface built in comparison to the other samples
(see Figure 7b). The dense structure could be attributed to the thermal accumulation within
the previous layers, thus increasing the overall temperature of the melt pool during multi-
layer printing. It was also found that the sample morphology changed significantly with
increasing the build height, which suggested discontinuity temperatures [41]. It is clear
that the influence of the building height on the discontinuity temperature was significant.

The resulting temperature fluctuation may be occurring due to variations in the relative
angle between the thermal imager and the moving melt pool. As observed in Figure 7c,d,
melt pool monitoring did not reveal any significant change with the increase in the vertical
build position. The surface roughness of the preceding layer may also account for small
variations in the melt pool dataset at various build height positions, thereby limiting the
impact of the Z-axis increment. It is well known that during L-PBF, the top surface’s height
varies at various areas due to the final layer’s rough surface [42]. As a result, the effect of
altering the building height on melt pool dimensions may be negated by a non-uniform
powder recoating method for succeeding layers that may be bigger than the nominal layer
thickness. Increasing the diamond content showed a decrease in the melt pool width
as observed in Figure 7c,d. This change might be attributed to the increased volume of
diamond impeding the interaction between the laser and the Ag powder, which in turn led
to decreased powder absorption in the melt pool and a decrease in the melt pool width.
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3.3. X-ray Computed Tomography and 3D Visualisation

All the samples had varying X-ray absorption rates; hence, 3D visuals were produced
for several manufactured Ag-D samples at various turbine pressures and scan speeds
(see Figure 8a–f). Distinct regions of porosity and increased material density were visu-
alised through the algorithmic interpretation of the X-ray absorption rates, with porous
(low absorption rates) and dense (high absorption) represented by 0 (black) and 1 (blue),
respectively. In order to evaluate the form and distribution of the pore defects, internal
closed pore porosity voids for the as-built samples were studied and highlighted in red,
as seen in the following figures. As-built samples containing lower diamond content, a
lower scan speed and a higher turbine pressure (sample 4) were shown to correspond with
significantly lower pore defects as seen in Figure 8d,e, while the other as-built samples
revealed higher pore defects.
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(e) sample 5 and (f) sample 6 showing reconstructed data coded for internal visualisation, highlighting
overall porosity distributed as open and closed pores. Each sample features different print parameters
and Ag concentration as highlighted in Table 2.

As the diamond concentration rises, there is a noticeable fluctuation in the number of
open and closed pores observed, as presented by the xCT data and 3D visualisations in
Figure 8d–f. For all the Ag-D compositions, a lower scan speed decreased the pore content
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and pore size, but the addition of D considerably increased the average pore size and pore
content. Pore defects have been found to have a detrimental influence on a material’s
mechanical performance [32,43]; thus, it seems that the Ag-D0.1% (sample 4, see Figure 8d)
showed less pore defects that would provide stronger mechanical stability, which correlated
well with the mechanical properties in Section 3.5. The reduced porosity revealed by xCT
for sample 4 could be attributed to the consequence of a better packing density and layer
delivery from reduced powder PVD in the Ag-D alloy system.

3.4. xCT Porosity Defect Analysis

The xCT porosity data for the L-PBF Ag-D in situ alloys at different turbine pressures
are displayed in Figure 9a–c. As the turbine pressure increased, the sample volume rose
from 91% to 96%. The closed pore volume increased up to a turbine pressure of 0.8 mbar
before dropping to 0.15% for a turbine pressure of 1 mbar. The open pore volume showed
the reverse pattern of the closed pore volume; initially, the open pore volume decreased
from 0.6 to 0.8 mbar and then increased to 3.8% for the 1 mbar produced. This result
suggested that the 1 mbar turbine pressure provides the optimum turbine pressure to build
dense built materials.
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Figure 9. xCT pore defect data for L-PBF D0.1% sample showing (a) sample volume, (b) closed pore
volume and (c) open pore volume.

The xCT porosity data for the SLM Ag-D in situ alloys at D 0.1%, 0.2% and 0.3% are
shown in Figure 10a–c. The sample volume decreased from 99% to 89% with increasing the
diamond content. The closed pore volume increased up to 0.2% of the diamond content and
then decreased to 0.05% for the 0.3% containing diamond. The open pore volume showed
the opposite trend of the closed pore volume, where it decreased initially from 0.1% to 0.2%
and then increased to 11% for the Ag-D0.3% built. Overall, the xCT revealed that both the
open and closed pore volumes were to be minimal for the 0.1% diamond content, which
indicates increased structure density values in comparison to the other diamond contents
investigated. These results correlated well with the melt pool monitoring data as well as
the X-ray computed tomography and 3D visualisation.
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Figure 10. xCT pore defect data for SLM Ag-D 0.1, 0.2 and 0.3% samples showing (a) sample volume,
(b) closed pore volume and (c) open pore volume.

3.5. Mechanical Performance

The addition of D to Ag is a promising composition; coupled with the design freedoms
of additive manufacturing positions this MMC as one of the most desirable for thermal,
mechanical and biomedical applications. No literature studies investigated the interaction
between Ag and D for L-PBF. Accordingly, Figure 11 presents the true stress–strain (σ − ε)
curve for the additive manufacture of Ag-D with increasing D content between 0.1 and
0.3% with varying turbine pressures and scanning speeds. The corresponding performance
parameters of Young’s modulus (E), the failure strain (ε f ) and the ultimate tensile strength
(UTS) are shown in Figure 12.
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Figure 12. Mechanical performance of L-PBF Ag and Ag-D composite samples for (a,d) Young’s
modulus (E), (b,e) ultimate tensile strength (UTS) and (c,f) failure strain (ε f ) at varying turbine
pressures and increasing diamond content percentage, respectively.

The σ − ε graph clearly indicates that the addition of diamond considerably reduces
the elastic and plastic capacity of the MMC. The base Ag sample exhibited heightened
ductility as presented graphically, Figure 12a–f. The specimens comprising 0.1% diamond
content, processed using a constant scanning speed of 400 mm/s and an increase in the
turbine pressure from 0.6 mbar to 1.0 mbar, resulted in a significantly heightened E, UTS
and ε f , increasing by 63%, 145% and 129%, respectively, and hence indicating the strong
influence of increasing the turbine pressure to 1.0 mbar. It was revealed that each E, UTS
and ε f did heighten with an increased turbine pressure and was approximately linear,
Figure 12a–c. It is evident that the increase in the turbine pressure towards a Young’s
modulus of 0.1% diamond content in samples manufactured using a 400 mm/s scan speed
is not insignificant and, depending on the desired material ductility, can induce improved
failure strain and UTS capacity. It can be observed however that the increase in the turbine
pressure between 0.8 mbar and 1.0 mbar has influence towards the E, UTS and ε f values,
hence the motivation to pursue a turbine pressure of 1.0 mbar.

The mechanical testing of the specimens with increasing diamond content of the
MMC revealed a decreased E and UTS with an increased ε f of −52%, −33% and +21%,
respectively. As previously determined using xCT, as the diamond concentration rises,
as does the occurrence and average size of the open and closed pores. The mechanical
testing broadly supports this with the observed E and UTS reduction; however, between
0.1% and 0.2% diamond content does not appear to considerably influence the mechanical
performance of the metal-matrix composite, Figure 12d–f. A substantial difference in the E
and UTS values in the Ag-D MMCs was observed in terms of the turbine pressure and the
diamond content. However, similar trends were observed in both cases. Several factors
such as the preparation of the specimen, molecular structure, intermolecular bonding forces
and compositions influence these behaviours. More detailed investigations are required to
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explore the underlying mechanism and to understand the behaviour of different materials
in terms of the mechanical properties.

4. Conclusions

In this study, Ag-D in situ structures with varying diamond content at different
turbine pressures and scan speeds were fabricated using L-PBF additive manufacturing
(AM). The tensile specimens were made using varying turbine pressures and scan speeds,
and their effects on the melt pool morphology were studied. The resultant pore defect
distribution and mechanical performance were reported for as-built Ag-D samples through
X-ray computed tomography (xCT) and quasi-static mechanical testing with the resulting
stress–strain curve. The samples made with Ag-D0.1% and a 0.6 mbar to 1 mbar turbine
pressure showed unsuccessful smooth surface development. In order to further optimise
the process parameters, the scan speed was reduced from 400 mm/s to 200 mm/s for
Ag-D0.1%. The sample was successfully manufactured with a smooth surface finish, which
is regarded as the ideal process parameter for construct fabrication.

Sample 4 containing 0.1%Diamond with a 200 mm/s scan speed and 1 mbar turbine
pressure showed a smooth, dense and dark surface morphology compared to the other
samples.

An xCT analysis revealed heightening porosity (open pores and closed pores) with
increasing D content. Increasing the Ag content from 0.1% to 0.2% showed the open pore
volume decreased by 1% and then increased by 10% for 0.3% diamond content. However,
the closed pore volume revealed the opposite trend for the as-built samples. These results
also indicated that the Ag-D0.1% composite shows a low number of open and closed pores,
which indicated increased density. Similar closed pore volume behaviour was observed at
different turbine pressures for the Ag-D metal-matrix composite as-built samples.

The as-built 0.1% diamond samples exhibited an increase in the E, UTS and εf of 63%,
145% and 129%, respectively, for the specimens manufactured featuring a constant scanning
speed of 400 mm/s and an increasing turbine pressure between 0.6 mbar and 1.0 mbar.
Interestingly, increasing the diamond content from 0.1% to 0.3% significantly reduced the
E and UTS of the tensile specimen by 52% and 33%, respectively, whilst exhibiting an εf
increased by 21%.

Therefore, the sets of parameters such as 200 mm/s and 1.0 mbar turbine pressure
could be recommended to produce denser parts in the Ag-D0.1% MMC using laser powder
bed fusion. However, further optimisation is necessary in order to manufacture Ag-D0.2%
and Ag-D0.3% successfully. In addition, more detailed analyses are required in order to
investigate the grain size and distribution of D particles on Ag-D MMCs, which would
provide more in-depth knowledge of the properties and performance of Ag-D MMCs.
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