Fabrication of Optical Stretchable Curvature Sensors with High Linearity

Bing Sun, Fei Li, Fanbo Feng, Kai Wan, Kaiming Zhou, and Zuxing Zhang

Abstract—This paper presents an optical approach for fabricating stretchable curvature sensors that possess a high degree of reproducibility, can detect diverse curvatures, and can accommodate large strain ranges, while also being cost-effective and straightforward. The method involves the removal of the cladding and core of a single-mode fiber via a side-polishing technique, followed by encapsulation in a PDMS film with hundreds of micros. The resulting structure permits multimode interference effects that enable the sensor to exhibit high linearity and minimal hysteresis in its sensitive and reversible detection of bending deformations. Additionally, the unique mechanical and sensing properties of the sensor make it well-suited for integration into clothing or placement on skin surfaces to monitor a range of human activities, from subtle physiological signals such as wrist pulses to extensive motions involving joint bending and hand gestures.

Index Terms—Curvature, multimode interference, PDMS film, side-polishing.

I. INTRODUCTION

The development of flexible and stretchable sensors that can fit to the contour and motion of the object has generated widespread interest in several fields, including geological survey [1-4], soft robotics [5-9], and biomedical science [10-11]. While electronic sensors rely primarily on changes in resistivity, conductivity, capacitive, and inductivity, these properties make them unsuitable for use in harsh environments and magnetic resonance imaging. Fiber-optic sensors, on the other hand, offer a promising alternative, as demonstrated by Wang et al., who successfully integrated an electrochemical SPR fiber-optic sensor into batteries for in situ chemical and electrochemical event detection without interfering with battery operation [12]. Flexibility and stretchability are crucial characteristics of sensors designed to measure curvature and strain through remote optical power spectrum measurements of light. While several strain measurement configurations exist, including FBG [13], LPFG [14], photonic crystal fiber [15], microfiber [16], Fabry-Perot microcavities [17], and others, their sensitivity is often limited by the range of measurement. For example, Liu et al. reported a high-sensitivity strain sensor based on an in-fiber rectangular air bubble, with a strain sensitivity of up to 43 pm/με but a measurement range limited to less than 500 με [18]. The limited deformability of optical fibers due to their stiff silica material constrains their use in stretchable sensors. However, the need for flexible and stretchable sensors with improved measurement range remains a pressing issue.

One potential strategy to address the challenges associated with pressure, strain, and bending sensing is to develop a stretchable waveguide, which can be fabricated by doping gold nanoparticles into a polydimethylsiloxane (PDMS) matrix [19]. The optical power loss in the waveguide can be measured to detect variations in these physical quantities. In addition, dye-doped PDMS optical fibers have been utilized for quantitative detection of tensile strains, which can be inferred from the corresponding absorption changes of light. Building on these ideas, a recent study by Li et al. introduced a soft and stretchable fiber optic sensor composed of a FBG inscribed onto a conventional glass optical fiber and a silicone film [20]. The FBG was embedded as a sinusoidal structure inside the silicone film, allowing for a 30% elongation in sensor length. Notably, this sinusoidal configuration confers stretchability to the sensor. Moreover, Yu et al. reported a highly sensitive and fast response optical strain sensor, which consisted of two evanescently coupled optical micro/nanofibers embedded in a PDMS film. This strain sensor demonstrated a gauge factor as high as 64.5 for strain values up to 0.5% and a strain resolution of 0.0012% [21].

Among various fiber structure schemes, D-shaped fibers have received widespread attention in the field of photonic sensing due to their simple structure, ease of manufacture, and cost-effectiveness. Of great significance, D-shaped fibers exhibit a propensity for facilitating multimode interference through the excitation of strong evanescent fields, thereby providing a versatile platform for the integration of various materials, including two-dimensional materials, photosensitive
materials, and specific biomaterials. In 2015, Zhao et al. reported the fabrication of a low-cost side-polished fiber with a rough polished surface, demonstrating strain and temperature sensitivities of up to -2.00 pm/με and 29.37 pm/°C, respectively [22]. In 2022, Sun et al. proposed a temperature-insensitive fiber refractometer based on a D-shaped no core fiber with a thin layer of PDMS film, exhibiting refractive index sensitivities of 140.1 nm/RIU in the range of 1.32 to 1.37, and 1147 nm/RIU over a RI range from 1.38 to 1.44 [23].

The present study aims to utilize a coreless D-shaped single-mode fiber arrangement, which has been integrated into a polydimethylsiloxane (PDMS) film with varying thicknesses in the hundreds of microns, for the purpose of developing a curvature sensor. This sensor exhibits high sensitivity in detecting the direction of curvature and a broad dynamic range. The main interference guiding region, which comprises the ~5-mm-length core, is entirely eliminated. The proposed sensor demonstrates a measurement range of up to 6×10^5 με and high sensitivity of 2.66 dB/m με with respect to curvature, thus enabling real-time monitoring of respiration, arm motion, and body temperature. The outstanding sensing performance, coupled with mechanical flexibility, highlights the potential of the proposed sensor for numerous photonic sensing applications.

II. PRINCIPLE AND FABRICATION

This study delineates the design of a novel fiber optic sensor that demonstrates stretchable attributes through the utilization of a polydimethylsiloxane (PDMS) film and a D-shaped fiber, where the PDMS film, measuring 0.6 mm×40 mm in size, houses a D-shaped fiber that is approximately 10 mm in length, as shown in Fig. 1. The fabrication process of the stretchable sensor entails the utilization of a dip coating method, wherein the PDMS solution is prepared through the mixture of two precursors of silicone elastomer and curing agent with a 10:1 ratio, followed by vacuum treatment for 40 minutes to remove bubbles. The dipping time and speed are optimized to encapsulate the D-shaped fiber within the well-designed PDMS film. Thus, the D-shaped fiber is centrally located within the PDMS film, as depicted in the inset, with a thickness of approximately hundreds of microns. Note that the PDMS panel enables flexibility in curvature and strain measurements.

The removal of portions of the fiber cladding enables access to evanescent wave fields, and this can be achieved by employing a customized fiber side polishing technique. The efficacy of this method is largely determined by the degree of cladding removal, as illustrated by the inset diagram in Fig. 1. This diagram depicts the transitional (l_t) and residual areas (l_r), which exhibits similarities to a configuration described in a previous reference [24-25].

![Fig. 2. (a) Measured transmission spectrum of the sample within/without the PDMS panel. (b) Beam propagation simulation.](image)

The proposed sensing scheme operates based on modal interference theory, resulting in output light intensity exhibiting spectral maxima and minima. A beam propagation module is used to simulate the transmission spectra and field evolution of the D-shaped fiber, with the geometrical parameters including the length of the flat section (l_f ~ 5 mm), the lengths of the two transitional sections (l_t ~ 2.5 mm), the core refractive index of 1.4681, and the cladding RI of 1.4628. The core diameter was 9.0 μm, and the cladding diameter was 125 μm. Fig.2 (b) shows the simulated transmission light field along the optical fiber wrapped within/without the PDMS panel at the maxima wavelength, with an enlarged view of the curved polished surfaces of the transitional section providing deep insight into the multimode interference. The role of the employed PDMS film does prove to be of utmost significance in the conducted experiment. The exceptional optical properties stem from the refractive index characteristics of PDMS materials, which exhibit a low refractive index than that of silica, coupled with their compact dimensions, typically in the order of several hundred micrometers.

III. EXPERIMENT AND RESULTS

A sample with a residual thickness of τ_w ~50 μm was fabricated. A broadband light source with a low polarization spectral range of 1250 to 1650 nm, with a degree of polarization smaller than 10%, was launched, while the transmission spectrum was recorded using an optical spectrum analyzer with a resolution of 0.02 nm.

![Fig. 1 Schematic diagram of the three-dimensional configuration of the curvature sensor.](image)
The bidirectional curvature sensing capability of a PDMS film integrated D-shaped fiber sensor was investigated, where the sensor was subjected to step-increased bending curvatures in both positive and negative directions. The output signals of the sensor showed opposite trends against the bending curvature. Note that the bent fiber was approximated as an arc of a circle, and the radius was used to calculate the sensor’s curvature. During positive bending, the interference intensity increased with the rising curvature, while the opposite was observed during negative bending. The experimental results demonstrated the high sensitivity and linear response of the sensor. Specifically, the intensities of the dip increased with the curvature in the positive direction, and a high sensitivity of -2.04 dB/m was obtained. The wavelength of the dip exhibited a slight change with the bending of the sensing section. Transmission spectra versus the negative curvatures were also analyzed, showing a corresponding sensitivity of 2.66 dB/m. Such large dynamic range (more than 3 m) for curvature sensing might be more useful in large infrastructures [26]. Moreover, these findings highlight the potential of the PDMS film integrated D-shaped fiber sensor for bidirectional curvature sensing applications.

Based on the aforementioned static measurement experiments, a scheme was applied to detect dynamic bending by connecting one end of the sensor to a light source and the other end to a light detector. The bending state and the extent of bending were determined by measuring the change in optical power at the output. An external circuit controlled the stage, which moved at a uniform speed and changed curvature.

The experimental results of dynamic positive and negative bending were obtained and illustrated in Fig. 4 (a) and (c). The electric table paused for roughly 10 seconds each time it moved 2 mm, then returned to the initial state following an 8-mm-distance movement. The optical power decreased during positive bending, while it increased during negative bending, consistent with the static findings. Fig. 4 (b) and (d) respectively demonstrated the changes in different movement distances and different speed time power of the movement during positive and negative bending. Since the range of movement was identical for both states, the optical power variation was roughly the same. Furthermore, the movement time of state II was half that of state I, as the speed of State II was twice that of State I. When the movement speed remains constant, State 3 was found to elicit a comparatively reduced output owing to a greater degree of curvature resulting from a larger movement distance. This observation indicated a strong correlation between movement distance, curvature, and output level in State III. The utilization of the sensor in soft sensing applications is facilitated by its low cross-talk (strain and temperature) under curvature test conditions. These results suggest that this scheme can be used as a new solution for displacement sensing or speed sensing.

To evaluate the consistency and constancy of the curvature sensor, we executed a program to set the motorized stage's motion distance to 8 mm, followed by a return to the original position at an identical pace. This process was repeated for 45 minutes, subjecting the curvature sensor to 150 bending cycles. We used the experimental findings to illustrate the performance of the curvature sensor. The optical power curve for 150 repeated bending cycles in the dynamic positive bending state was presented in Fig. 5 (a), while Fig. 5 (b) displays the optical power curve for 150 repeated bending cycles in the dynamic negative bending state. The PDMS material's high flexibility and resilience provided effective protection for the D-shaped fiber, resulting in high stability and repeatability of the curvature sensor in both dynamic positive and negative bending states. Every coin has two sides. The utilization of a PDMS film-enveloped sensor induces hysteresis, thereby engendering a diminution in temporal response, a critical aspect in optical intensity detection, which necessitates rapidity.
Furthermore, the temperature response of a curvature sensor by placing it into a column oven (LCO 102 DOUBLE) with a temperature range of room temperature to 80 °C is investigated. The temperature measurement is conducted using a differential thermocouple (UNI-TUT320) with an accuracy of 0.1 °C. The temperature in the oven is increased gradually from 25 to 80 °C with a step of 10 °C, and then maintained for approximately 20 min during each temperature rise. The results demonstrate that the dip intensity induced by temperature is approximately 1.375 dB from 25 to 80 °C, indicating a low sensitivity of 0.025 dB/˚C, when compared with the response under curvature measurement [27]. This finding presents a novel approach for high-sensitive detection of curvature change while mitigating temperature cross-interference issues.

IV. Conclusion

In summary, we propose a curvature sensor that utilizes a D-shaped optical fiber wrapped with PDMS film for dual-parameter sensing of curvature and strain, achieved through intensity modulation. The proposed sensor effectively addresses the issue of cross-sensitivity between temperature and curvature, while enabling positive and negative differentiation of curvature, and a broad range of strain detection. Furthermore, we demonstrate the application of this sensor for real-time human movement detection and dynamic bending. The presented findings suggest promising potential for this sensor in diverse applications.

REFERENCES


