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Abstract. Cone Beam Computed Tomography (CBCT) is an indis-
pensable imaging modality in oral radiology, offering comprehensive den-
tal anatomical information. Accurate detection of the mandibular canal 
(MC), a crucial anatomical structure in the lower jaw, within CBCT 
volumes is essential to support clinical dentistry workflows, including 
diagnosis, preoperative treatment planning, and postoperative evalua-
tion. In this study, we present a deep learning-based (DL) approach 
for MC segmentation using 3D U-Net and 3D Attention U-Net net-
works. We collected a unique dataset of CBCT scans from 20 anonymous 
hemisected mandibular bones, which were further processed for analy-
sis. The samples were scanned using a CBCT scanner after inserting a 
wire through the whole length of the MC to identify its location in space 
(as a gold standard). Our experimental results demonstrate that the 3D 
Attention U-Net outperforms the standard 3D U-Net in detecting the 
MC’s location, with Dice similarity score, Precision, and Recall values 
of 0.65, 0.75, and 0.60, respectively. Unlike current DL-enabled methods 
for MC segmentation, which face deployment and trust challenges due 
to their “black-box” nature, our approach incorporates a post-hoc visual 
explainability feature through the Grad-CAM++ (Gradient-weighted 
Class Activation Mapping) algorithm. This tool highlights important 
regions within the CBCT volumes that influence the model’s predictions, 
providing valuable insights into the segmentation process, and bridging 
the gap between cutting-edge DL technology and clinical practice. 
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1 Introduction and Background 

The mandible is the largest and strongest bone in the human orofacial region, 
giving hard tissue to the lower jaw and part of the mouth. From an anatom-
ical perspective, the mandibular canal (MC) runs along part of the mandible, 
containing the inferior alveolar nerve and blood vessels. In dental surgery, the 
accurate detection of MC is crucial to a wide range of dental procedures includ-
ing dental extractions, implant placement, thirds molar surgeries and jaw align-
ment surgery to avoid damage to the inferior alveolar nerve and vessels [ 2]. 
Advancements in imaging technologies, like Cone Beam Computed Tomogra-
phy (CBCT), have enhanced the ability to precisely identify the MC. CBCT 
is a three-dimensional (3D) imaging modality that captures images from vari-
ous angles with a cone-shaped beam to reconstruct volumetric information as a 
series of axial images. MC segmentation of volumetric CBCT images is a chal-
lenging task due to the complexity of dental anatomical structures that feature 
variability in shape and p osition. Segmenting the MC in CBCT images manu-
ally is a time-intensive process and susceptible to both intra- and inter-observer 
variability. Earlier segmentation approaches have used traditional segmentation 
methods, such as image thresholding, mathematical morphology and statistical 
approaches [ 1,11]. However, those methods suffered often resulted in low seg-
mentation accuracy, long p rocessing time and poor reliability. 

More recently, Deep Learning-based (DL) (a subset of machine learning) 
has shown remarkable performance in segmenting MC from CBCT volumes. 
In the context of image segmentation, machine learning-based algorithms aim 
at labelling each image pixel with a specific category [ 7, 8]. Many attempts to 
perform MC segmentation in CBCT using DL have primarily employed 3D con-
volutional neural networks (CNN). For example, Jaskari et al. [ 9] demonstrated 
that 3D CNN models produced better MC segmentation quality than statistical 
shape models, but the segmentation results were able to achive a Dice similarity 
score of just 0.57. Kwak et al. [ 12] used 2D U-Net network [ 6], 2D SegNet and 
3D U-Net [ 5], to automatically localise the MC in 2D and 3D CBCT images. A 
thresholding-based tooth segmentation technique was applied initially to remove 
non-mandibular bone areas from the scans. 3D U-Net outperformed the 2D app-
roach, however, it was unable to detect the c anal when the surrounding cortical 
bone layers were not clearly defined and the pre-processing thresholding step 
was difficult to initialise. Lahoud et al. [ 13] proposed a two step segmentation 
framework using 3D CNN networks to firstly preform voxel-wise segmentations 
to adjust for variations in MC shape and width and then train another 3D 
CNN model to pro duce a full-resolution segmentation output. They achieved a 
Dice similarity score of 0.77 using a dataset of 235 CBCT scans. Jeoun et al. 
[ 10] introduced the Canal-Net approach, based on the 3D U-Net architecture, 
enhanced with bidirectional convolutional long short-term memory units within 
a multi-task learning framework. This approach outperformed 2D U-Net, SegNet 
and 3D U-Net, but has large memory requirements. Recently, a two-stage 3D 
U-Net method for MC segmentation was proposed in [ 14] which yielded a Dice
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similarity score of 0.95 on a different dataset that is significantly larger than our 
studied images. 

Despite remarkable results achieved by DL-methods in MC segmentation 
tasks, these methods suffer from the “black-box” nature, i.e. while they can pro-
duce accurate results, it is often challenging to understand and interpret why 
the model arrived to a particular decision. This lack of transparency can be 
problematic in clinical settings where trust and interpretability are paramount. 
This lack of explainability, common in DL-based segmentation tools, hinders the 
their adoption and use in critical clinical settings. Additionally, the “black-box” 
nature of DL-based models can easily pose challenges in meeting the require-
ments of regulatory bodies. Recently, the concept of Explainable AI (XAI) has 
emerged, introducing a range of techniques that aim to strike a balance between 
explainability and robust detection and prediction performance [ 18]. Post-hoc 
visual XAI in medical image segmentation provides visual explanations for the 
decisions made by DL models after they have performed the image segmentation. 
This is achieved by highlighting image regions that exert the most significant 
influence on the model’s decision. This is a crucial step for understanding and 
validating the segmentation results and ensuring that its trustworthy and accu-
rate. Various post-hoc visual XAI methods have been proposed in the literature, 
however, the application of XAI has not been well explored in the context of MC 
segmentation in 3D CBCT. 

To close this gap, we propose an explainable DL framework for MC seg-
mentation from CBCT volumes using U-Net a rchitectures and Grad-CAM++ 
(Gradient-weighted Class Activation Mapping) algorithms [ 4]. In particular, we 
study the performance of 3D U-Net [ 5] and 3D Attention U-Net [ 15] networks (a 
modified version of the U-Net). 3D U-Net has shown remarka ble results in seg-
menting volumetric biomedical images [ 10,12,14], however, 3D Attention U-Net 
has not been fully explored in the context of detecting MC in 3D CBCT images. 
The ‘attention’ mechanism seems particularly effective when handling medical 
images characterized by high levels of noise or when the region of interest occu-
pies only a s mall portion of the complete image, which applies to our CBCT 
images. Furthermore, the proposed framework addresses explainability by incor-
porating Grad-CAM++ [ 4] (an extended version of the original Grad-Cam [ 17]) 
into the segmentation pipeline, thereby providing clinicians with an additional 
and deeper understanding of the decision-making process. 

2 Dataset Description and Preprocessing 

The sample set consisted of 20 anonymous dry hemisected mandibular bones, 
obtained from the Anatomy Museum collection at the Faculty of Dentistry, Uni-
versidad de la República, Uruguay. The ethical approvals for collecting and using 
the data were obtained prior to conducting the study. To create gold standard 
images, each half mandible was scanned with a wire inside the MC to precisely 
locate it. The wire was then removed without moving the sample, and the half 
mandibles were scanned using the same field of view and the same exposure
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time, but at varying tube voltages and currents, using a combination of kilovolt-
age (kV) and milliamperage (mA) values. The bones were scanned, submerged 
in water to simulate soft tissue absorption and positioned so that the MC was 
parallel to the axial plane. Data volumes captured with and without the inserted 
wire were spatially registered (see Fig. 1). Digital files were exported in the dig-
ital imaging and communication in medicine (DICOM) format for further anal-
ysis with Python software. Notably, the dimensions of the CBCT voxels varied 
within the range of (543, 543, 80) and (543, 543, 190) across the X, Y , and  Z 
axes respectively, with the associated Hounsfield units spanning from −1000 to 
2000. 

The ground truth segmentation masks of the MC were hand traced guided 
by the inserted wire (see Fig. 1) using Slicer imaging software (version 5.2.2). 
Volumes were cropped to a resolution of (120, 240, 512), denoting the designated 
Region of Interest (ROI). Thereafter, a 3D spherical paint brush instrument with 
a diameter o f 2% of the ROI was used to mark the location of the wire and thus 
create the binary mask (ground truth). 

Fig. 1. (a) mandibular canal without wire inserted, and (b) with wire. (c) original 
image after applying m aximum projection, and (d) binary mask image 

Data augmentation is a key data pre-processing technique that is commonly 
used to improve the robustness and generalization of DL models, particularly 
where annotated training data is small in size, which applies to this study. It 
involves applying various geometric transformations to the original image to 
create additional training data, including random rotation, scaling, and flipping. 
The addition of Gaussian noise to the original images also helps the model to 
become more robust to real-life image artifacts. In the context of rotational trans-
formations, an initial large angle was selected, followed by gradual reductions 
until the model exhibited convergence, which was assessed by monitoring the 
decline of the Dice loss over increasing training epochs. The model was trained 
for a total of 100 epochs and where divergence was noted, the angle of rotation 
was decreased incrementally, specifically by 5% with each divergence occurrence. 
Subsequently, once convergence was achieved, a further reduction of the angle by 
30% was implemented to establish the final range for that particular parameter. 
This strategy was also applied for the range of the added random Gaussian noise. 
After experimentation, the values of mean and standard deviation of Gaussian 
noise are 0 and 0.1, respectively. While the angle range for the rotational trans-
formation is 0.2 radians in x, y, and  z coordinates. The data augmentation was 
performed by the MONAI library transforms [ 3].
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3 The Segmentation Model 

In this study, we propose a DL-based approach for MC segmentation. We in ves-
tigated the performance of 3D U-Net [ 5] and 3D Attention U-Net [ 15] networks. 
Both methods have demonstrated exceptional performance in similar semantic 
segmentation tasks [ 10,12,14]. 

3.1 3D U-Net Arc hitecture 

3D U-Net [ 5] is an adapted version of the conventional 2D U-Net [ 16] configured 
to process 3D images. It preserves the core structure of the initial 2D U-Net 
model, but it substitutes all 2D operations with their 3D counterparts, such 
as 3D convolutions, 3D max pooling, and 3D up-con volutions, resulting in a 
segmented image in three dimensions. A graphical illustration of the applied 3D 
U-Net model is presented in Fig. 2. 

Fig. 2. 3D U-Net (left) and 3D Attention U-Net architectures (right) 

The 3D U-Net architecture contains two paths, the contracting path (or 
encoder) captures the high-level semantic features of the image, while the 
expanding path (or decoder) restores the high-level semantic feature map back to 
the original image resolution. The layers in the encoder part are skip connected 
and concatenated with layers in the decoder part (highlighted in Fig. 2). This 
enables 3D U-Nets to utilize the finely-detailed information acquired during the 
encoder phase to generate an image within the decoder phase. 

In the contracting path, the network starts with a 3D convolutional layer 
featuring 32 filters, followed by instance normalization and dropout layers and a 
ReLU activation function to introduce non-linearity. This phase follows a consis-
tent pattern of convolution layers, doubling the number of filters at each subse-
quent stage, ultimately reaching 256 filters. This incremental approach enhances 
feature representation while progressively reducing the output spatial dimen-
sions, resulting in a systematic down-sampling. In the expanding path, the net-
work uses up-convolution layers to gradually increase the spatial dimensions of 
the feature maps. It starts with a layer containing 128 filters and incorporates 
skip connections from corresponding layers in the contracting phase. Feature
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channels are halved at each step, aiming to reduce feature channels during up-
sampling. This process includes two 3D convolutions followed by a ReLU acti-
vation function to refine features. Finally, a single-filter layer is used to convert 
feature vectors into the segmented output. 

3.2 3D Attention U-Net Arc hitecture 

Skip connection in original 3D U-Net combines spatial information from the con-
tracting path with the expanding path to retain good spatial information. But 
this process brings along some irrelevant features from the initial layers. Atten-
tion in U-Net is a recent extension of the basic U-Net method, and it aims at 
highlighting only important/relevant parts of the image while ignoring unneces-
sary areas during training. The 3D Attention U-Net architecture, illustrated in 
Fig. 2, utilises an attention mechanism by adding attention gates at each level 
of the expansive path. These gates re-calibrate the feature channels by taking 
input feature maps from both the contracting and expanding path and merges 
them to generate a set of attention coefficients which are then used to adjust 
the feature maps from the contracting path before they are concatenated with 
the corresponding feature maps in the expanding path. The resultant attention-
gated feature maps are subsequently passed t hrough up-convolution layers and 
other successive layers in the expanding path, mirroring the original 3D U-Net 
structure. 3D Attention U-Net also adopts the ReLU activation function, and 
it maintains the use of instance normalization and dropout layers to reduce 
over-fitting and ensuring a stable training process. 

4 Post-hoc Visual Explainability - Grad-CAM++ 

Post-hoc visual explainability refers to the process of providing visual explana-
tion and interpretation of the decisions made by the DL models [ 18]. It helps 
DL users understand why a model has generated a specific result, which seems 
particularly important in medical imaging applications, where trust and inter-
pretability are crucial. 

Gradient-weighted Class Activation Mapping (Grad-CAM) [ 17] is a XAI tech-
nique for generating visual explanations of decisions made by CNNs. It generates 
a ‘heatmap’ that highlights the regions of the input image most responsible for a 
particular output. The heatmap is constructed by leveraging the gradient infor-
mation from the last convolutional layer in the network, which is activated for 
different channels with respect to the class. Specifically, for each feature map Ak 

ij 
at this convolutional layer, an importance weight αc 

k is computed with respect 
to the kth feature map and class c. This is done through global-average-pooling 
over pixel location (i, j) for the gradient ∂yc 

∂Ak 
ij 

of respective classification score 
yc of class c. Mathematically, the weights can be estimated as: 

αc 
k = 1 

Z

∑

i

∑

j 

∂yc 

∂Ak 
ij
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where Z is the number of pixels in the activation map. Once these impor-
tance weights are obtained for each feature map, the next step is to calculate 
the heatmap, denoted here as Lc. This is done by taking a weighted sum of the 
feature maps and applying a ReLU function to keep only the positive contri-
butions: Lc = ReLU

(∑
k α

c 
kAk

)
. The resulting heatmap Lc therefore shows the 

areas of the input image that were most influential in producing the class c, thus  
providing a visualization of the model’s focus and decision-making process. 

Grad-CAM++ [ 4] is an extension of the original Grad-CAM technique, which 
uses second order gradients. It offers a more fine-grained explanation of model 
decisions by accounting for the importance of individual pixels within the feature 
maps. On the other hand, the pixel gradients that have no impact on the pre-
diction will be scaled down. In particular, while Grad-CAM computes a global 
importance weight αc 

k for each feature map Ak through average-pooling, Grad-
CAM++ goes a step further and calculates the following weight 

αkc 
ij = 

∂2yc 

∂(Ak 
ij )

2 

2 ∂2yc 

∂(Ak 
ij )

2 +
∑

a

∑
b A

k 
ab 

∂3yc 

∂(Ak 
ij )

3 

where αkc 
ij is the value of α at pixel location (i, j) for the k-th feature map corre-

sponding to the output class c. Here, (a, b) are iterators over the same activation 
map Ak and are used to avoid confusion. The heatmap Lc can be expressed 
as follows: Lc =

∑
i

∑
i α

ck 
ij .ReLU( ∂yc 

∂Ak 
i,j 

). The equation considers both the pos-
itive and negative contributions of each pixel in determining the final output. 
This allows Grad-CAM++ to produce more nuanced heatmaps compared to its 
predecessor Grad-CAM. 

5 Model Training and Hyperparameters Fine-Tuning 

The dataset was partitioned into training, validation, and testing subsets, adher-
ing to a ratio of 60:20:20, respectively. The Hyperparameters of the U-Net model 
were fine-tuned utilizing the three parameters, 
(a) Dice Loss. and it is estimated as, 2×∑N 

i=1 pigi∑N 
i=1 p

2 
i +g2 

i 
. Where pi and gi represent 

pairs of corresponding pixel values of predicted binary segmentation volume P 
and ground truth binary volume G, 
(b) Mean Intersection over Union (mIoU), and it is estimated as, 
1 
C

∑
c IoUc, where C is the number of classes, IoUc = T  Pc 

T  Pc+F  Pc+F  Nc 
,  and  T  Pc, 

F  Pc,  and  F  Nc denotes true positives, false positives, and false negatives for class 
c, respectively. 
(c) Generalized Dice Focal Loss (GDFL), and it is estimated as 
−

∑N 
i=1 2·TPi·(1−pi)

γ

∑N 
i=1 TPi+

∑N 
i=1(1−pi)

γ ·(TPi+FNi)+ε
, where N is the number of classes, pi is the 

predicted probability for class i, TPi, is the True Positives, FNi is the False Neg-
atives, γ is the Focal Loss hyperparameter that modulates the focusing effect, 
and ε is a constant value.



8 K. Barzas et al.

As shown in Table 1, a range of Hyperparameters have been adjusted to 
optimize both the computational efficiency and the predictive performance of 
the two studied models. A random search was conducted with these parameters; 
the search was run for 60 iterations for 3D U-Net and 20 for 3D Attention U-Net. 
Both models were trained with patches from randomly rotated and translated 
CBCT volumes using the loss objectives. 

Table 1. Hyperparameters to be tuned 

Hyperparameters Model 
3D U-Net 3D Attention U-Net 

Loss function Dice Loss, GDFL, Mean IoU Dice Loss, GDFL 
Batch Size 1, 2, 3, 4 1, 2 
Channels [8, 16, 32, 64], [16, 32, 64, 128], 

[32, 64, 128, 256], [64, 128, 256, 
512] 

[8, 16, 32, 64], [ 16, 32, 64, 128] 

Dropout 0, 0.2, 0.3, 0.4, 0.6 0, 0.1, 0.2 
Learning Rate 3e-3, 5e-4, 5e-5 3e-3, 5e-4, 2e-5 
Early Stopping 25 25 
Max Epochs 150 150 
Val Interval 5 5 

6 Results 

6.1 Optimization R esults 

Figure 3 reports the hyperparameter optimization results from the random search 
for the 3D U-Net and 3D Attention U-Net models. For the 3D U-Net model, the 
optimal values for dropout rate, channel sequence and batch size were identified 
as 0,[32, 64, 128, 256], and 1, respectively. However, further investigation of 
the learning rates along with loss functions, revealed that the learning rates of 
2 × 10−4, along with GDFL as loss functions, yielded the best results on the 
validation set. For the 3D Attention U-Net model, the optimal settings for the 
loss function, learning rate, dropout rate, and batch size, were GDFL, 0.003, 
0.1, and 1, respectively. Further investigation to determine the optimal values 
for the channel sequence (between [8,16,32,64] and [16,32,64,128]) revealed that 
the lower number channel sequence converged faster, whereas the higher channel 
sequence converged slower but provided slightly more accurate results on the 
evaluation set. Eventually, the lower sequence, [8,16,32,64], was selected as the 
optimal value as it required less number of trainable parameters, making the 
model more accessible for practical use.
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6.2 Evaluation Metrics 

To evaluate the optimal models generated through the random search the fol-
lowing metrics were used: 
(a) Dice similarity score, measures the similarity between two image samples, 
and it is calculated as: 2×T  P  

2×T  P  +F  P  +F  N  , 
(b) Precision, measures the proportion of true positive predictions among all 
the positive predictions, and it is calculated as: T  P  

T  P  +F  P  
(c) Recall, measures the model’s ability to identify all relevant instances, and 
it is calculated as: T  P  

T  P  +F  N  
(d) Hausdorff Distance, measures the maximum perpendicular distance 
between the automatic and manual segmentation, and it is defined as: 
max (maxa∈A (minb∈B d(a, b)) , maxb∈B (mina∈A d(a, b))), where d(.,.) represents 
Euclidean distance between two sets of points denoted as a and b. 

Fig. 3. Hyperparameter results from the random search of 3D U-Net (a) and 3D Atten-
tion U-Net (b). Each box contains the first and third quartile of data, and medians are 
indicated as lines inside each box. 

6.3 Segmentation Results Obtained from t he Optimised Models 

Segmentation quantitative results obtained from the optimised models a re shown 
in Table 2 and qualitative results are presented in Fig. 4. The 3D Attention U-
Net outperformed the standard 3D U-Net, specially in handling high-noise scans 
and in detecting the central portion of the canal. On the other hand, the 3D U-
Net demonstrated better performance in identifying the extremes of the canal, 
as denoted by a more pronounced presence of red markers at the canal ends.
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Table 2. Segmentation results obtained from the optimised U-net and Attention U-Net 
models. 

Dataset Model Name Dice similarity score Hausdorff Precision Recall 
Train 3D U-Net 0.76 15.52 0.81 0.72 

3D Attention U-Net 0.79 6.06 0.82 0.76 

Validation 3D U-Net 0.72 16.67 0.77 0.67 

3D Attention U-Net 0.72 15.81 0.79 0.66 
Test 3D U-Net 0.62 47.54 0.74 0.57 

3D Attention U-Net 0.65 35.04 0.75 0.60 

Fig. 4. The segmentation results on Coronal, Axial and Sagittal view of three example 
CBCT test scans. Green: manual segmentation, red: automatic segmentation, yello w: 
overlap between automatic and manual segmentation. (Color figure online) 

6.4 Post-hoc Visual Explanation Results via Grad-CAM++ 

After the segmentation output of 3D U-Net and 3D Attention U-Net, was 
obtained, the Grad-CAM++ method was applied. The M3d-CAM library was 
used to streamline the process of visualizing attention maps utilizing the Grad-
CAM++. The library provides a simple method for incorporating the required 
components into the pre-existing PyTorch model. Contrary to the common 
practice of focusing on the last convolutional layer for attention visualization, 
exploratory analyses revealed that the first convolutional layer provided more 
insightful attention maps for both 3D Attention U-Net and 3D U-Net. This 
notable divergence from standard practices offers an insight into the networks’ 
focus during the image segmentation process. The M3d-CAM library stream-
lined this exploratory process, enabling to load the best-performing models post-
training and swiftly visualize attention at various layers. Based on this, the first 
convolutional layer was ultimately selected for in-depth attention map analyses. 
Features in this layer contained some high-level semantics and simultaneously 
should preserve some spatial information. 

The output of the Grad-CAM++ for 3D U-Net and 3D Attention U-Net is 
shown in Fig.  5. The 3D Attention U-Net heatmap showed better region localiz-
ing ability when compared to the 3D U-Net model, which was acting as indicator 
of the model’s confidence rather than providing a coherent heatmap representa-
tion. The Grad-CAM++ heatmap highlights the features (ROI) that the model 
considered before making the segmentation decision, enhancing the transparency
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Fig. 5. Grad-CAM++ output/heatmap on Coronal, Axial and Sagittal view of t hree 
example CBCT test scans. 

and trustworthiness of the segmentation model. This could help clinicians to ver-
ify and validate the model’s decisions, ultimately improving trust and deploy-
ment of DL-based techniques in dental surgical procedures. 

7 Conclusion 

Mandibular canal (MC) segmentation is a challenging task in maxillofacial 
radiology. This study introduces an explainable framework for segmentation of 
CBCT volumes using 3D U-Net and 3D Attention U-Net models, complemented 
by Grad-CAM++ visualization. We analysed a set of 20 CBCT scans, followed 
by a series of data preprocessing steps and optimization procedures to identify 
the optimal training parameters for MC segmentation. The results revealed that 
the 3D Attention U-Net system outperformed the standard 3D U-Net in terms of 
both segmentation quality and post-hoc visualization. The segmentation results 
were relatively lower than those of some previously DL-based methods, possi-
bly due to the limited number of training scans available. However, the primary 
focus here centred in improving the explainability of MC automatic segmenta-
tion over the perceived “black box” approach of other DL segmentations. The 
post-hoc heatmaps using Grad-CAM++ highlighted significant regions in the 
images that contributed to the model’s decision therefore enhancing explainabil-
ity and trust, thereby facilitating the deployment of DL-enabled segmentation 
tools within clinical imaging workflows. 
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