

1. Introduction to edge detection

Mach Edges: A critical test of the nonlinear 3rd derivative model for edge detection Stuart Wallis and Mark Georgeson School of Life & Health Sciences, Aston University, Birmingham, UK

Email:wallissa@aston.ac.uk

3. Experiment 1: Yes-No paradigm

- Images were presented once for 0.3s.
- Task: indicate whether 1 or 2 edges were seen at the centre of the image. • Interval between presentations was at least 1s.
- 1 session had 10 repetitions of the 18 conditions at one blur width, in random order, and took about 5 minutes.
- 4 subjects each performed 6 sessions for blur width 8 pixels followed by 6 sessions for blur width 2 pixels.

- Data broadly similar for all 4 subjects & both phases; averages shown here. • Error bars calculated from the standard deviation in binomial sampling:
 - where p is the probability of response and 1 - p
 - *n* is the number of trials (480 here).
- Results were almost identical for the two blur widths.
- Two edges were seen reliably with added gradients up to ±0.5. This matched model predictions closely (solid line). • With steeper added ramps, reports of two edges fell away as the model predicts, but more gradually than predicted.

4. Experiment 2: Feature-marking paradigm

- Images were flashed repeatedly (0.3s on, 0.6s off).
- Task: mark the position and polarity of all edges and bars seen
- The marker comprised two black dots, each 1 x 3 pixels, vertically arranged,
- each 32 pixels (0.6 deg) from image midline • Subjects were instructed to fixate midway between the dots
- 1 blur width (8 pixels) x 9 ramp gradients x 2 phases = 18 conditions.
- 1 session consisted of 6 repetitions of each of the 18 conditions, in
- randomised order, and took about 30 minutes.
- 4 subjects each performed 4 sessions.

Main Results

- Data were broadly similar for all 4 subjects; averages are shown here. • The task was reliable - Error bars are ±1se and are plotted behind symbols. • All subjects marked a central bar flanked by 2 edges for gradients up to ±0.5 For gradients beyond ±0.5, bars and one edge were marked less frequently smaller symbols here.
- Position and polarity of marked edges was well predicted by the 3rd derivative model. Absolute position was better for phase 180 than phase 0.

5.Conclusions and model refinement

Two Mach edges were reliably seen in a trianglewave, but one disappeared when a steep linear ramp was added. This pattern of results was nicely predicted by the nonlinear 3rd derivative model. But the transition from 2 to 1 edge was less rapid than the model predicted (Box 3). We suggest that mild, bandpass filtering (e.g. by the retina) can explain this.

Filtered waveform

Before filter After filter

140

Spatial position (pixels)

120

Model refinement - Add a retina

An additional pre-filter was added to the model. It has a Difference-of-Gaussians receptive field profile, based on P cells in central vision [6]. RF shape and spatial frequency response are shown above.

Its effect is to accentuate edges as shown here (left). The filter modifies this waveform so that it now has a small central negative gradient, which allows both 3rd derivative edges to pass through the rectifiers in the model.

The revised predictions, which also assume a noisy decision process, match the data well (right).

480 reps

70

60

50

40

30-

0

Data (symbols) and model predictions (lines)

• The light bars appeared wider than the dark bars. This may be an example of the Helmholtz irradiation effect [5].

- 3. Marr, 1980, Vision. San Francisco: Freeman and Co.
- 4. Wallis & Georgeson, 2007, Perception 36 (2), 314-315.
- 5. Mather & Morgan, 1985, Vision Research, 26 (6), 1107-1015.
- 6. Croner & Kaplan, 1995, Vision Research, 35, 7-24.