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Abstract: Fault detection and diagnosis play a crucial role in ensuring the reliability and safety of
modern industrial systems. For safety and cost considerations, critical equipment and systems in
industrial operations are typically not allowed to operate in severe fault states. Moreover, obtaining
labeled samples for fault diagnosis often requires significant human effort. This results in limited
labeled data for many application scenarios. Thus, the focus of attention has shifted towards learning
from a small amount of data. Few-shot learning has emerged as a solution to this challenge, aiming
to develop models that can effectively solve problems with only a few samples. This approach has
gained significant traction in various fields, such as computer vision, natural language processing,
audio and speech, reinforcement learning, robotics, and data analysis. Surprisingly, despite its wide
applicability, there have been limited investigations or reviews on applying few-shot learning to the
field of mechanical fault diagnosis. In this paper, we provide a comprehensive review of the relevant
work on few-shot learning in mechanical fault diagnosis from 2018 to September 2023. By examining
the existing research, we aimed to shed light on the potential of few-shot learning in this domain and
offer valuable insights for future research directions.

Keywords: few-shot learning; meta-learning; metric-based meta-learning; vibration signal; fault diagnosis

1. Introduction

Rotating machinery, such as pumps, fans, generators, and compressors, is one of the
most commonly used types of equipment in industrial production. The faults in these
devices can lead to production downtime, losses, and safety accidents. Therefore, the timely
and accurate diagnosis of faults in rotating machinery and its critical components is crucial
for ensuring production safety and improving efficiency. Modern technology has advanced
to the point where faults can be diagnosed using various signals, such as vibration, sound,
temperature, and current. These techniques assist engineers in promptly detecting faults
and taking measures to prevent production accidents and losses.

In the field of fault diagnosis for rotating machinery, machine learning and deep
learning methods have been widely applied. For example, support vector machines
(SVM) [1]; decision trees [2]; random forests [3]; and various shallow or deep neural
networks, including convolutional neural networks (CNNs) [4], recurrent neural networks
(RNNs) [5], long short-term memory (LSTM) networks [6], and autoencoders (AEs) [7],
can automatically extract features from the signals of rotating machinery and perform
fault classification and prediction. Among these methods, deep learning, with its powerful
feature extraction and representation capabilities, is one of the important directions in
current fault diagnosis research. Despite the significant successes of deep learning in
many domains, it still has limitations. One of them is that deep learning models usually
require a large amount of training data to achieve high performance. In the industrial
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domain, the problem of a paucity of samples is common and challenging. In fields like fault
diagnosis for rotating machinery, it is difficult to obtain a large number of fault samples
due to the complexity of the equipment, the diversity of fault types, and the challenges
in data collection. In such cases, few-shot learning methods can learn useful knowledge
from limited data, thereby improving the model’s generalization ability and prediction
performance, reducing computational resource requirements, and better addressing real-
world problems to enhance equipment operational efficiency and safety.

Few-shot learning has already achieved notable results in areas such as natural lan-
guage processing and image classification. Several relevant review articles [8–12] can be
found. Lu et al. [8] introduced the applications and progress of few-shot learning in fields
such as image classification, object detection, semantic segmentation, and natural language
processing. They categorized the main methods of few-shot learning into two categories:
generative-model-based methods and discriminative-model-based methods. Wang et al. [9]
classified few-shot learning from the perspectives of data, models, and algorithms. From
the data perspective, it involves expanding the number of samples to increase the sample
size. From the model perspective, it involves modeling with limited data by restricting
model complexity and reducing the hypothesis space. From the algorithm perspective, it
involves improving the search methods for the optimal solution in the hypothesis space.
Regarding few-shot fault diagnosis, Pan et al. [10] reviewed 13 small-shot fault diagnosis
methods based on generative adversarial networks (GANs) and categorized them into
three types: deep GANs for data augmentation, adversarial training for transfer learning,
and other methods. However, this review only focused on GANs and did not cover other
generative models and few-shot fault diagnosis methods. Zhang et al. [11] classified fault
diagnosis methods for small and imbalanced datasets according to the fault diagnosis
process, dividing them into strategies based on data augmentation, feature extraction, and
classifier design. Bhuiyan et al. [12] evaluated the current state of vision inspection systems
by exploring various vision-based methods for defect detection and identification using
vibration acoustic sensor data, with a focus on image processing, deep learning, machine
learning, transfer learning, few-shot learning, and light-weight approaches. Continuing the
work of previous researchers, this paper focuses on a comprehensive analysis of few-shot
learning methods applied in the domain of mechanical fault diagnosis using vibration
signals. The study particularly concentrates on advancements made within the past five
years, spanning from 2018 to September 2023.

Our aim was to compile and synthesize the current state of knowledge on fault
diagnosis using vibration data under conditions of extremely limited samples. By providing
a comprehensive review of relevant work spanning from 2018 to September 2023, the article
highlights the potential of few-shot learning in this domain. It not only fills a notable gap in
the literature but also offers valuable insights for future research directions in mechanical
fault diagnosis.

2. The Systematic Review Process

This section presents an outline of the literature review procedure concerning the
implementation of few-shot learning in mechanical fault diagnosis. The search for relevant
literature predominantly occurred in two widely recognized academic databases, namely
Web of Science and Scopus. These databases encompass a substantial collection of interdis-
ciplinary research papers subjected to rigorous peer review, rendering them well-suited for
unearthing a significant volume of studies on the subject of few-shot learning.

To avoid overlapping papers that were double-counted, we employed a systematic
approach during our database search and subsequent paper selection process. Firstly,
we conducted a thorough search in both databases to identify relevant papers. In this
stage, there existed overlapping papers between these two databases. Upon identifying
potentially relevant papers, we used reference management software to carefully compare
the papers from both databases. In cases where we encountered the same paper in both Web
of Science and Scopus, we ensured that it was counted as a single reference rather than being
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double-counted. In addition, we checked the abstract, introduction, and conclusion of each
paper to make sure that all the papers we counted met our requirements. These processes
allowed us to maintain the accuracy of our reference list and eliminate any duplications.

Specifically, during the literature review process, the following keywords were first
used for the search: “Few-shot learning & fault diagnosis & vibration” and “Small sample
learning & fault diagnosis & vibration”, with a time span from 2018 to 30 September 2023.
However, we identified more than 200 reference papers from the two databases. To be
precise, using keywords “Small sample learning & fault diagnosis & vibration” and a time
span from 2018 to 30 September 2023, we identified 102 papers from Scopus and 183 papers
from Web of Science; using keywords “Few-shot learning & fault diagnosis & vibration”
and the same time span, we identified 24 papers from Scopus and 46 papers from Web
of Science.

Considering that few-shot learning refers to a machine learning paradigm in which a
model is trained to recognize and generalize from a very limited number of examples or
data points, for many papers, the number of examples used was one, five, or under twenty-
five [13,14]. On the other hand, small sample learning does not include a clear definition
regarding the sample size. Therefore, we ultimately applied the keywords “Few-shot
learning & fault diagnosis & vibration” with a time span from 2018 to 30 September 2023.

In the next step, inclusion and exclusion criteria were established to systematically
narrow down the scope and ensure high-quality evaluation. Work-in-progress papers,
preprints, and other non-peer-reviewed publications were excluded. Only peer-reviewed
journals and conference proceedings were considered, and works that did not align with
the target domain or went beyond the defined scope were filtered based on abstracts
and article browsing. The retrieved literature was manually filtered, and relevant target
articles were selected. Specifically, the focus was solely on the application of few-shot
learning in mechanical fault diagnosis, excluding its application in other fields, such as
medicine. Regarding the type of signals considered, only vibration signals or multimodal
signals containing vibrations were taken into account, while other signals such as images
or speech were disregarded. After the screening process, a total of 41 papers were retained
as references.

Conducting the literature search in the manner mentioned above, it was observed that
few-shot learning can be applied to various types of mechanical equipment in the field of
fault diagnosis. These mainly include bearings, gearboxes, engines, pumps, suspension
systems on trains, and pipelines. The distribution of few-shot learning applications in
different types of mechanical equipment is shown in Table 1.

Table 1. The distribution of few-shot learning applications in different types of mechanical equipment.

Application Num. of Papers

Bearings 26

Bearings and gears 2

Bearings for electric machines 2

Bearings on machine tools 1

Freight train bearings 1

Magnetic flux leakage in a pipeline and bearings 1

Wind turbines (bearings and gearboxes) 1

Electrohydrostatic actuators 1

Electromechanical actuators 1

Industrial rotating machinery 1

Suspension systems on trains 1

Aviation hydraulic pumps 1

Autonomous underwater vehicles 1

Industrial robots 1
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In addition to these classifications, a simple statistical analysis over time was per-
formed, the results of which are shown in Figure 1. The statistics of the applied few-shot
learning methods are show in Figure 2. From the figure, it can be observed that meta-
learning [15–17] is a prominent area of interest in few-shot learning methods, with over
50% of the articles focused on meta-learning. Within the domain of meta-learning, MAML
(model-agnostic meta-learning) and its variations, along with metric-based meta-learning
methods, collectively accounted for approximately 90% of the research contributions.
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The statistics regarding the different journals in which the reviewed papers were
published are presented in Table 2. It can be seen from the figure that, from 2019 to 2023,
the majority of research papers on few-shot fault diagnosis were published in Measurement
Science and Technology, followed by ISA Transactions, Neural Computing and Applica-
tions, Measurement, IEEE Transactions on Industrial Informatics, IEEE Transactions on
Instrumentation and Measurement, and Sensors. Other papers were also recognized by
peers in other high-quality manufacturing journals and conferences.

Table 2. Number of publications by journal for few-shot learning in machine fault diagnosis field
using vibration data from 2018 to 2023.

Journal Name Number of
Publications

Measurement Science and Technology 4
ISA Transactions 3

Neural Computing and Applications 2
Measurement 2

IEEE Transactions on Industrial Informatics 2
IEEE Transactions on Instrumentation and

Measurement 2

Sensors 2
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3. Methods for Few-Shot Fault Diagnosis in Mechanical Systems

This section provides a detailed overview of the methods used in few-shot learning
for machine fault diagnosis, specifically utilizing vibration data. We organized the content
of this section according to the results presented in Figure 2 of Section 2. The approaches to
few-shot learning are categorized into meta-learning, metric-based learning, data augmen-
tation, and other methods. Since researchers have predominantly employed meta-learning
algorithms in their studies, this section further subdivides meta-learning and primarily fo-
cuses on the application of metric-based meta-learning and learning initialization methods.

3.1. Meta-Learning

The idea of meta-learning was proposed as early as the 1990s [8,18]. Serving as
a primary approach in few-shot learning, meta-learning, or learning to learn, involves
acquiring knowledge from multiple tasks and adapting to new ones. It aims to learn task-
level knowledge instead of individual sample-level information, promoting task-agnostic
learning systems over task-specific models. Meta-learning consists of two stages: meta-
training and meta-testing. In the meta-training stage, the meta-learner learns from various
tasks to capture underlying patterns or knowledge. In the meta-testing stage, the meta-
learner adapts its parameters based on new tasks, leveraging the meta-knowledge to make
predictions swiftly using available labeled data. In our investigations, meta-learning was
classified into metric-based meta-learning, learning initialization methods, and others.

As shown in Figure 3a, machine learning can be summarized in three steps: The
first step involves defining a function with unknown parameters θ, where these unknown
parameters can represent weights and biases. The second step entails formulating a loss
function concerning the unknown parameters θ. The third step involves an optimization
process to find a θ that minimizes the loss. Gradient descent is one of the most commonly
used optimization methods.
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Figure 3. The differences between traditional learning and meta-learning: (a) the procedure of
traditional machine learning, (b) the procedure of meta-learning.

The process of meta-learning is shown in Figure 3b. Unlike traditional machine
learning, meta-learning involves learning how to learn. Learning itself can be viewed as a
function, represented as a learning algorithm denoted by F. This function takes a set of data
as the input and produces a trained learning model as the output. For example, in a fault
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diagnosis task, the output would be a classifier. When test data are fed into the previously
obtained classifier, it can classify the faults accordingly.

As depicted in the diagram, the first step in meta-learning is to define the learning
algorithm Fϕ, where the learnable components are denoted as ϕ. While traditional machine
learning often focuses on learning weights and biases, in meta-learning, these learnable
components can include network architectures, initial parameters, learning rates, and more.
Different meta-learning methods aim to learn different learnable components.

The second step involves defining the loss function for the learning algorithm Fϕ. In
traditional machine learning, the loss function is derived from the training data, whereas
in meta-learning, the loss function is derived from training tasks. This means that the
loss function encapsulates the learning algorithm’s ability to adapt and generalize across
different tasks.

The third step is to use an optimization method to minimize the loss function. The
choice of optimization algorithm depends on the nature of the learnable components ϕ.
If the gradient ∂L(ϕ)/∂ϕ is computable, gradient descent can be used. However, if the
gradient ∂L(ϕ)/∂ϕ is not computable, reinforcement learning algorithms or evolutionary
algorithms can be employed to find solutions [19,20].

In summary, meta-learning aims to enhance the efficiency and adaptability of learning
algorithms by enabling them to learn from multiple tasks and generalize better to new,
unseen tasks. The optimization of the learnable components plays a crucial role in achieving
this objective. According to Figure 2, meta-learning was further classified into metric-based
meta-learning, learning initialization methods, and others.

3.1.1. Metric-Based Meta-Learning

Metric-based meta-learning is a specific type of meta-learning approach that utilizes
metric learning to achieve rapid adaptation to new tasks. In metric-based meta-learning, it
is customary to employ a metric learning method, such as a prototypical network, to learn
an embedding space in which the similarity between tasks is associated with the distances
between samples in the embedding space. The term “metric” in this context refers to the
measurement of similarity between tasks, rather than the distance between data samples.

A typical metric-based meta-learning method for fault diagnosis is shown in Figure 4.
In the initial stage, supervised learning is conducted on source domain data to train a
classification model (upper branch). Subsequently, the feature extractor is kept fixed, and
episodic training is performed on the metric embedding module using a set of few-shot
tasks randomly sampled from the source domain. Finally, the trained feature extractor and
metric embedding are applied to perform testing on target tasks (lower branch). Metric-
based meta-learning enables models to adapt swiftly to new fault patterns, crucial for
few-shot scenarios. It performs well when the number of labeled examples is limited,
making it suitable for fault diagnosis with small datasets.

Well-known metric-based meta-learning networks include prototypical networks [21–25],
relation networks [26,27], and matching networks [14].

Prototypical networks

Prototypical networks learn prototypes for each class based on feature representations
of limited samples. Classification is performed by assigning a query sample to the class clos-
est to its prototype in the feature space, making it effective for few-shot classification tasks.

Many researchers have applied this method for few-shot tasks. Tang et al. [21] pre-
sented an enhanced prototypical network with L2 prototype correction for few-shot cross-
domain fault diagnosis. The method utilized L2 correction to refine prototype representa-
tions, enabling effective diagnosis across different domains with limited labeled data. Feng
et al. [22] employed prototypical networks in the proposed semi-supervised meta-learning
networks. The method learned class prototypes by averaging feature representations of lim-
ited labeled samples. Squeeze-and-excitation attention was integrated to enhance prototype
quality, while the model was trained in a semi-supervised meta-learning framework for
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improved performance. In [23], a wavelet-prototypical network was employed for few-shot
fault diagnosis. It fused time and frequency domain information using wavelet transforms.
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Matching networks

Matching networks use attention mechanisms to establish correspondences between
query and support samples. Attention weights are learned during training to classify query
samples based on the labeled information aggregated from support samples, accommodat-
ing variable-length inputs in few-shot learning scenarios. Xu et al. [28] proposed a deep
convolutional nearest-neighbor matching network (DC-NNMN) for cross-component few-
shot fault diagnosis. The approach utilized matching networks with attention mechanisms
to establish correspondences between query and support samples. DC-NNMN efficiently
diagnosed faults across different components with limited labeled data, achieving accurate
results. Wang et al. [14] proposed a feature space metric-based meta-learning model to
distinguish failure attribution accurately under conditions of very limited data. A matching
network and prototypical network were applied, respectively, in the proposed model to
match the metric features to the support features using a public dataset. A similar approach
was applied in [29] employing a matching network to match the metric features to the
support features using experimental datasets.

Relation networks

Relation networks recognize relationships between samples using an embedding net-
work to encode input samples into feature representations and a relation network to predict
relationships between pairs of feature vectors, capturing complex sample relationships.
Kang et al. [26] developed a few-shot rolling-bearing fault classification method using an
improved relation network by introducing a residual shrinkage module and a scaled expo-
nential linear unit activation function into the embedding module of the relation network.
The approach enhanced the relation network’s ability to capture complex relationships
between samples in few-shot scenarios. Wang et al. [27] applied a relation network for the
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few-shot multiscene fault diagnosis of rolling bearings under compound-variable working
conditions. Further studies using relation networks can be found in [30,31].

Other researchers have applied metric-based meta-learning methods comprising a
subspace network with shared representation learning [32] and a cross-level fusion neural
network [33].

Meta-learning, in general, focuses on training models to learn from different tasks
or datasets so that they can adapt quickly to new, unseen tasks or datasets. Metric-based
meta-learning, in particular, emphasizes the use of a metric or distance function to enable
this rapid adaptation. For classification purposes, metric-based meta-learning could be
placed in either Section 3.1 (Meta-Learning) or Section 3.2 (Metric Learning). However, our
examination of the relevant literature revealed that the papers addressing metric-based
meta-learning methods mainly considered task adaptation. Metric-based meta-learning
primarily focuses on the ability of a model to adapt quickly to new tasks or datasets. It
achieves this by learning a metric or similarity measure during meta-training, which helps
in task-specific adaptation. This aligns closely with the core objective of meta-learning,
which is to enable models to generalize effectively to new tasks. Additionally, metric-based
meta-learning is often applied in few-shot learning scenarios, where the model needs to
make predictions with a very limited number of labeled examples in the support set. This
is a typical use case within meta-learning, as one of its primary applications is to excel in
few-shot or low-data scenarios. Therefore, we included metric-based meta-learning in the
broader category of meta-learning.

3.1.2. Learning Initialization Methods

In meta-learning, learning initialization methods refer to a category of algorithms that
leverage pretrained models or knowledge obtained from previous tasks to facilitate faster
and more effective learning on new, unseen tasks. The core idea behind these methods is to
utilize the knowledge acquired from related tasks as a starting point for learning new tasks,
thus enabling the model to adapt and generalize quickly with limited data. As for learning
initialization meta-learning, the prevailing networks are model-agnostic meta-learning
(MAML) [34–39] and reptile [40] networks.

MAML

MAML [41], model-agnostic meta-learning, is a meta-learning algorithm that enables
fast adaptation to new tasks with limited data. It optimizes a model’s initial parameters
such that it can efficiently adapt to a new task using just a few gradient updates. MAML
learns a more general initialization that facilitates quick fine-tuning on unseen tasks. By
using gradient-based optimization to adapt models across tasks, MAML promotes better
generalization and transfer learning, making it a powerful and flexible approach for few-
shot learning scenarios.

Several papers have applied this method. Liu et al. [35] used MAML to train a meta-
baseline model capable of quickly diagnosing faults in wind turbines with limited labeled
data. MAML enabled the model to efficiently adapt to new turbine faults with just a
few gradient updates, improving few-shot fault diagnosis performance. Yang et al. [36]
applied MAML for few-shot fault diagnosis tasks in high-speed train suspension systems.
The approach improved fault diagnosis performance by efficiently leveraging knowledge
across different suspension system faults. Yu et al. [37] applied MAML to a learnable and
interpretable framework based on model-free DA methods, D3AFS, for industrial scenarios
with limited data. The good performance of the proposed model was verified using a
magnetic flux leakage dataset in a pipeline and bearing datasets. Further papers addressing
the MAML concept can be found in [34,38,39].

Reptile

Reptile [42] is a meta-learning algorithm that facilitates quick adaptation to new tasks
by fine-tuning a model’s parameters. It operates by repeatedly sampling tasks, training the
model on each task for a few gradient steps, and then updating the model’s parameters
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based on the changes accumulated across tasks. The algorithm encourages the model to
learn a more general initialization that can be easily fine-tuned for different tasks. Unlike
traditional meta-learning approaches, reptile does not maintain an explicit representation
of meta-parameters, making it more straightforward and efficient. Reptile has shown
promising results in few-shot learning scenarios, demonstrating improved generalization
across tasks. Pei et al. [40] employed reptile to enhance the few-shot Wasserstein auto-
encoder (WAE). Reptile was utilized to further enhance the mapping ability of WAE from
prior distribution to vibration signals when faced with a small dataset.

The abovementioned methods offer a flexible way to initialize models, enabling
them to adapt quickly to new tasks. However, training can be computationally intensive,
requiring substantial resources.

3.1.3. Other Methods

Other researchers have applied ensemble techniques in meta-learning. For example,
Li et al. [43] proposed a light gradient-boosting-machine-based multiscale weighted ensem-
ble model to perform effective few-shot fault diagnosis without requiring cross-domain
data. Chen et al. [44] designed a meta-self-attention multiscale convolution neural net-
work for the actuator fault diagnosis of autonomous underwater vehicles. Che et al. [45]
employed ensemble meta-learning, enabling the model to adapt quickly to new fault con-
ditions with few samples. By combining multiple models and leveraging meta-learning
techniques, the proposed method achieved enhanced diagnostic performance in variable
working conditions.

The future of meta-learning holds the potential for emphasizing fine-grained meta-
learning and crafting more robust meta-learning models with enhanced transferability
and generalization capabilities. In the realm of fine-grained meta-learning, forthcoming
research could concentrate on devising techniques that enable adaptability to even more
nuanced variations in fault patterns. This entails the development of models capable of
swiftly generalizing to hitherto unencountered fault types or levels of severity. In the
pursuit of crafting more robust meta-learning models possessing heightened transferability
and generalization capabilities, enhancing the transferability of meta-learned models across
different machinery types and operating conditions is crucial. Researchers could delve into
methodologies aimed at ensuring that insights garnered from one machinery category can
be effectively applied to others.

3.2. Metric Learning

Metric learning [46] is a machine learning task that focuses on learning a distance or
similarity metric between datapoints in a given feature space. A typical example of metric
learning can be found in Figure 5. The objective of metric learning is to ensure that the
learned metric reflects the actual similarity or dissimilarity between data samples, making it
possible to measure how similar or dissimilar they are to each other. Metric learning can be
used in traditional machine learning, deep learning, or meta-learning. In the current paper,
the application of metric learning in few-shot learning is called metric-based meta-learning
(Section 3.1.1).

The process of metric learning typically involves a set of training samples, each with
a corresponding label or similarity information. The learning algorithm (i.e., Siamese,
prototypical, or relation networks) then uses these labeled data to optimize the metric in a
way that brings similar samples closer together and dissimilar samples farther apart in the
feature space.

Lu et al. [47] applied multiple-kernel maximum mean discrepancy, which is an im-
proved version of maximum mean discrepancy, for distribution discrepancy measurement
and developed a multiview and multilevel network model for fault diagnosis. In another
paper by the lead author [48], the fault diagnosis problem was treated as a similarity metric
learning problem, with a transfer relation network (TRN) proposed to achieve this objective.
The TRN model incorporated a relation learning module that captured knowledge and
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patterns shared between the source and target domains. Further papers addressing metric
learning can be found in [49–52].
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Metric learning can lead to improved feature representations for fault diagnosis,
emphasizing relevant patterns. Metric-based methods heavily depend on the quality and
representativeness of the training data.

The future prospects for metric learning encompass two main directions: embedding
for interpretability and the development of hybrid approaches. Embedding for interpretabil-
ity involves the development of metric learning techniques that generate interpretable
embeddings. This direction holds promise for gaining insights into the contributions of
specific features to fault diagnosis, promoting transparency and actionable insights. The
development of hybrid approaches entails the fusion of metric learning with other machine
learning methods, such as deep learning and ensemble techniques, with the potential to
enhance model performance. Hybrid models can effectively capture both global and local
similarities in data, harnessing the strengths of diverse learning paradigms to improve
fault diagnosis accuracy and robustness. These future developments in metric learning
offer opportunities to enhance transparency and leverage complementary techniques for
more effective fault detection and diagnosis in mechanical systems.

3.3. Data Augmentation Method

The core issue in few-shot fault diagnosis lies in the limited number of samples, which
hinders the training of a reliable, highly generalizable diagnostic model. In the case of
limited data, a generative model can be used to enhance sample diversity. According to
the reviewed publications on the application of few-shot learning in the machine fault
diagnosis field using vibration data from 2018 to 2023, the data augmentation methods are
mainly GAN (generative adversarial network)-based methods [53,54].

3.3.1. GAN-Based Methods

A GAN is a type of unsupervised learning model that consists of two neural networks:
a generator network and a discriminator network. The main idea behind GANs is to
train the generator network to produce realistic data samples by learning from a training
dataset. The generator takes random noise as the input and generates synthetic samples.
The discriminator network, on the other hand, acts as a binary classifier that distinguishes
between real data samples from the training set and the synthetic samples generated by the
generator. During the training process, the generator and discriminator networks play a
game against each other. The generator tries to produce realistic samples that can fool the
discriminator, while the discriminator aims to correctly classify real and synthetic samples.
The two networks are trained simultaneously, and their performance improves iteratively
through an adversarial process.
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As training progresses, the generator becomes better at generating realistic samples,
and the discriminator becomes more skilled at distinguishing between real and synthetic
data. Eventually, the generator network learns to generate samples that are difficult for the
discriminator to differentiate from real data. It is worth mentioning that GANs face several
challenges, including mode collapse (when the generator produces a limited set of similar
samples) and instability during training [10]. However, they continue to be an active area
of research, and many advancements and variations have been developed to address these
issues and push the boundaries of generative modeling.

In the field of machine fault diagnosis, researchers usually use one-dimensional (1D) or
2D samples. One-dimensional samples include time-domain data, frequency-domain data,
and some extracted data features. Li et al. [53] explored two few-shot learning techniques
involving parameter fine-tuning and a conditional Wasserstein generative adversarial
network (C-WGAN) for diagnosing faults in freight train rolling bearings. They applied
data segmentation and transformed the signals into the frequency domain, resulting in
1D frequency signals. To automatically extract features from the bearing vibration signals
and classify fault types, they developed a one-dimensional convolutional neural network
(1D-CNN). Gao et al. [55] developed a data augmentation model based on an integrated
convolutional transformer GAN to improve diagnostic performance under limited-data
conditions by generating high-quality signals. Wan et al. [56] proposed an unsupervised
fault diagnosis method based on a quick self-attention convolutional generative adversarial
network. Chen et al. [54] utilized a Wasserstein deep convolutional generative adversarial
network (WDCGAN) to improve the performance of few-shot fault diagnosis in electrohy-
drostatic actuators. They achieved this by transforming multidimensional experimental
data into 2D grayscale data and extracting local features, effectively emphasizing the
time-series characteristics and correlations among different signals.

3.3.2. Other Data Augmentation Models

Xia et al. [57] proposed an augmentation-based discriminative meta-learning method
to address the issue of the few-shot cross-machine domain shift problem. During the meta-
training process, signal transformation was introduced to enhance meta-task diversity
for robust feature learning, and multi-scale learning was integrated for adaptive feature
embedding; meanwhile, in the meta-testing phase, sparse labeled fault data boosted model
generalization using quasi-meta-training via data augmentation, and a new hyperbolic pro-
totypical loss was designed to ensure more distinct feature representation with a hyperbolic
decision boundary for separable category prototypes.

Zhao et al. [58] introduced a data augmentation technique called randomized wavelet
expansion to create a collection of synthetic samples that possessed comparable charac-
teristics to the original samples. Subsequently, the synthesized samples were utilized as
the training dataset for a deep CNN to achieve the few-shot fault diagnosis of aviation
hydraulic pumps.

Wang et al. [59] proposed an extended convolutional adversarial autoencoder (ECAAE)
as an end-to-end fault diagnosis approach for electromechanical actuators (EMAs) based
merely on vibration signals. The ECAAE combined a set of CNNs for feature extraction
with the data generation capabilities of adversarial autoencoders, allowing the model to
utilize both unlabeled and unbalanced labeled samples. Through an adversarial training
process and hyperparameter-free signal conversion method, the ECAAE achieved robust
and precise fault diagnosis for EMAs even with varying working conditions, unbalanced
samples, and few-shot situations.

Hu et al. [60] introduced a self-supervised learning framework that combined both
inter-instance learning and intra-temporal learning. This innovative approach aimed to
improve the model’s ability to generalize from limited labeled data by leveraging the
inherent structure and temporal information in the data.

In the field of few-shot fault diagnosis, the quantity and quality of data play a crucial
role in the performance of models. However, in practical applications, acquiring a substan-
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tial amount of high-quality annotated data can be prohibitively expensive and challenging.
In such scenarios, generative models can serve as an effective solution. By leveraging gener-
ative models, it becomes possible to generate a large number of new samples based on the
distribution of existing data. Although these samples are synthesized, they retain certain
characteristics and the distribution of the original data to an extent. It is important to note
that while generative models can enhance the diversity of samples, the generated samples
may not fully represent the true distribution of real data. Therefore, caution is required
when utilizing generated samples. Additionally, the quality and efficacy of generative
models are influenced by the design and training process of the model. Consequently, when
employing generative models for data augmentation, the careful adjustment of the model
parameters is necessary to ensure that the generated samples are statistically similar to the
real data, thereby guaranteeing the effectiveness of data augmentation. Data augmentation
enhances the diversity of training samples, potentially reducing overfitting. It helps models
generalize better to unseen fault patterns. It is worth noting that the effectiveness of data
augmentation is limited by the quality and quantity of original data.

The future outlook for data augmentation methods encompasses two main aspects:
cross-modal data augmentation and self-supervised learning. Cross-modal data augmenta-
tion involves the exploration of techniques facilitating the integration of data from diverse
modalities, such as vibration signals, acoustic signals, and temperature data. This integra-
tion holds the potential to yield more comprehensive and informative representations for
fault diagnosis, allowing for a richer understanding of system behavior. In the context of
self-supervised learning, the amalgamation of self-supervised learning methods with data
augmentation stands as a promising approach. This synergy could significantly reduce
the dependence on labeled data, enabling models to acquire valuable representations from
unlabeled or weakly labeled data, thereby advancing the efficiency and versatility of fault
diagnosis processes. These future directions for data augmentation methods offer the
prospect of enhancing the depth and breadth of insights available for fault detection and
diagnosis in mechanical systems.

3.4. Other Few-Shot Learning Methods

Taking into account the impact of noise on vibration signals, Ma et al. [61] introduced
a multi-order graph embedding model. They presented an enhanced sine cosine algorithm
strategy to optimize the feature extraction capability of a stacked denoising autoencoder.
This method was then employed to address the few-shot diagnosis issue. Chen et al. [62]
introduce a multi-channel calibrated transformer (MCSwin-T) model with shifted windows
to tackle few-shot fault diagnosis in scenarios with sharp speed variation. The model
employed multi-channel calibration to align feature representations across speeds, enabling
effective fault pattern recognition with limited labeled data. Ma et al. [31] developed a
feature extractor named MiniNet that struck an optimal balance between channel count and
network depth during fault feature extraction. Leveraging MiniNet, the authors introduced
a fault diagnosis model for few-shot samples that effectively enhanced both transferability
and discriminability. Wang et al. [63] proposed a method based on two-dimensional (2D)
images and cross-domain few-shot learning for bearing fault diagnosis. In the paper, the
authors did not mention meta-learning or metric-based methods, although a distance-based
classifier was employed to improve the classification capacity of the few samples. Therefore,
we included this paper in the category of other few-shot learning methods.

4. Discussion

The analysis of the literature revealed that meta-learning holds a central position in the
realm of few-shot learning approaches, constituting more than 50% of the studied articles.
Among the various meta-learning techniques, MAML (model-agnostic meta-learning) and
its modifications, alongside metric-based meta-learning methods, collectively contributed
to approximately 90% of the research endeavors in this field. In addition, through the
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review, we found that transformers are increasingly popular for applications in few-shot
learning; related applications can be found in [55,62,64].

Looking ahead, few-shot learning holds promising prospects in mechanical fault diagnosis.
Robustness and Generalization: Improving the robustness and generalization capabili-

ties of few-shot learning models is an ongoing pursuit. Research will continue to address
issues related to noisy data, domain shifts, and class imbalances to make few-shot learning
more reliable in practical settings.

Unsupervised Few-shot Learning: Exploring unsupervised few-shot learning, where
models can learn from unlabeled data in a few-shot scenario, is an exciting and challenging
direction. This area has the potential to further reduce the reliance on labeled data.

Combining Few-shot Learning with Other Techniques: Integrating few-shot learning
with other machine learning paradigms, such as transfer learning, semi-supervised learning,
and reinforcement learning, could lead to more powerful and versatile models.

Few-shot Learning in Real-world Applications: Few-shot learning is valuable in real-
world applications due to its data efficiency, rapid adaptation to new tasks, flexibility
across domains, reduced annotation effort, and effective generalization to unseen data.
These advantages make it a promising solution for addressing data scarcity and dynamic
environments while minimizing manual labeling and achieving better performance.

5. Conclusions

Continuing the work of previous researchers, this paper focused on a comprehensive
analysis of few-shot learning methods applied in the domain of mechanical fault diagnosis
using vibration signals. The study particularly concentrated on advancements made
within the past five years, spanning from 2018 to September 2023. We found that meta-
learning is a prominent area of interest in few-shot learning methods, with over 50% of the
articles focused on meta-learning. Within the domain of meta-learning, MAML (model-
agnostic meta-learning) and its variations, along with metric-based meta-learning methods,
collectively accounted for approximately 90% of the research contributions. In summary,
the use of few-shot learning in real-world applications is motivated by its ability to handle
data scarcity, adapt rapidly to new tasks, demonstrate flexibility across domains, reduce
annotation effort, facilitate transfer learning, and effectively generalize to unseen data.
These advantages make few-shot learning a promising approach for addressing various
challenges in practical applications and pushing the boundaries of machine learning in
real-world settings.
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