
Synthesizing Traffic Datasets using Graph Neural Networks

Daniel Rodriguez-Criado1, Maria Chli1, Luis J. Manso1, and George Vogiatzis2

Abstract— Traffic congestion in urban areas presents signif-
icant challenges, and Intelligent Transportation Systems (ITS)
have sought to address these via automated and adaptive
controls. However, these systems often struggle to transfer
simulated experiences to real-world scenarios. This paper intro-
duces a novel methodology for bridging this ‘sim-real’ gap by
creating photorealistic images from 2D traffic simulations and
recorded junction footage. We propose a novel image generation
approach, integrating a Conditional Generative Adversarial
Network with a Graph Neural Network (GNN) to facilitate the
creation of realistic urban traffic images. We harness GNNs’
ability to process information at different levels of abstraction
alongside segmented images for preserving locality data. The
presented architecture leverages the power of SPADE and
Graph ATtention (GAT) network models to create images based
on simulated traffic scenarios. These images are conditioned
by factors such as entity positions, colors, and time of day.
The uniqueness of our approach lies in its ability to effectively
translate structured and human-readable conditions, encoded
as graphs, into realistic images. This advancement contributes
to applications requiring rich traffic image datasets, from data
augmentation to urban traffic solutions. We further provide an
application to test the model’s capabilities, including generating
images with manually defined positions for various entities.

I. INTRODUCTION

Traffic congestion remains a pressing issue, particularly in
major cities worldwide. This problem is exacerbated by the
increasing number of vehicles, while navigable urban space
remains limited. In this context, efficient traffic management
is essential in minimising travel delays, road accidents, and
environmental pollution. Intelligent Transportation Systems
(ITS) incorporate sensing and communication technologies,
along with automatic control methods to enhance the safety
and efficiency of transportation infrastructure [1].

Junctions are critical points in traffic management as they
serve as shared physical spaces accessed by multiple vehi-
cles. Efficient traffic light control at intersections contributes
to improved traffic flow. The effectiveness of traditional
traffic lights diminishes when they fail to adapt to changing
traffic patterns [1]. Machine learning advancements offer a
solution by utilizing algorithms that learn optimal policies
from raw sensory data. Deep Reinforcement Learning (DRL)
enables learning end-to-end models that directly control
traffic light signals from CCTV footage. Such models rely
on simulated data for training due to the cost and hazards of
gathering real-world traffic experience. Consequently, they

1 Daniel Rodriguez-Criado, Maria Chli and Luis J. Manso are with the
Computer Science Dept., Aston University, Aston Triangle, Birmingham,
B4 7ET, UK. drodr19,m.chli,l.manso@aston.ac.uk

2 George Vogiatzis is with the Computer Science Dept.
Loughborough University, Epinal Way, Loughborough LE11 3TU
cogv@lboro.ac.uk

Fig. 1: The Transformation Process from SUMO-
Generated to Realistic Images. This triptych illustrates the
consecutive stages involved in creating a realistic image from
the SUMO simulator. The top image provides a bird’s-eye
view of a junction simulation in SUMO. The bottom-left
image presents the corresponding bounding boxes of vehicles
in SUMO, adjusted to the viewpoint of the CCTV camera.
The image on the bottom right culminates the process by
displaying the image generated by our model using the
specified bounding boxes.

often struggle to generalize from simulation-based training
to decision-making in the real world. This paper focuses
on bridging the ‘sim-real’ gap by developing a tool that
automatically generates photorealistic images from 2D traf-
fic simulations (e.g., SUMO [2]) and recorded junction
footage. Garg et al. [3] recently proposed a DRL traffic
light agent trained on simulated crossroads in a graphics
game-like environment, addressing generalization through
domain randomization [4]. Their technique creates diverse
simulated scenarios with varying illumination, perspective,
and textures, enhancing model robustness and facilitating
adaptation to real-world conditions. However, training on
photographic footage eliminates the need for domain ran-
domization, requiring less training data for the same or better
performance, as the model is trained and evaluated on similar
data distribution.

This paper presents the generation of realistic urban im-
ages from simulations, focusing primarily on their applica-
tion in traffic light control. However, the scope of this tech-
nology extends well beyond traffic management, offering a
range of compelling applications. Consider Adaimi et al. [5],
who utilize a drone swarm to capture aerial images of traffic
for training object detection models. By augmenting their
dataset with realistic image generation, significant improve-



ments can be achieved in the performance and accuracy of
models, as demonstrated in [6]. Such an advancement holds
immense potential for enhancing the detection and analysis
of traffic patterns, thereby enabling more informed decision-
making and effective urban planning. Traffic surveillance is
another domain that stands to benefit from the generation of
realistic urban images. Models focused on vehicle counting
or tracking, utilizing camera-based systems [7], can increase
precision and reliability through the incorporation of synthet-
ically generated footage that encompasses diverse parameters
and conditions. Finally, synthetically generated footage of
traffic scenes under various parameters and conditions, will
unlock the creation of immersive and responsive training
tools for human professionals in traffic control, empowering
trainees with an enhanced understanding of the cause-and-
effect relationship between their decisions and the resulting
traffic dynamics, surpassing the limitations of studying his-
torical footage alone.

The persuasive impact of this technology lies in its po-
tential to revolutionize training methodologies and decision-
making processes across various domains. By generating
realistic urban images from simulations, we can unlock
unprecedented insights, refine existing models, and empower
professionals in their pursuit of efficient and effective solu-
tions.

II. BACKGROUND

The ability to synthesize high-quality, realistic images
has been a long-standing goal in computer vision. One of
the most popular applications of image generation is data
augmentation [8], [9], crucial for preventing overfitting in
large deep learning models. Others include image generation,
encompassing image completion, style transfer, and resolu-
tion enhancement, among others [10]–[12].

Three principal research directions prevail in the literature
for generating realistic images: Generative Adversarial Net-
works (GANs) [13], Variational AutoEncoders (VAEs) [14],
and diffusion/denoising models [15]. They are machine
learning paradigms trained on real image datasets to syn-
thesize novel images unseen in the training data. GANs
have gained considerable popularity for image generation
due to their capability to produce high-resolution, diverse,
and aesthetically pleasing images, as compared to the blurry
images often generated by VAEs. While denoising models
also achieve high-resolution image generation, they typically
demand more computational time compared to GANs and
remain relatively nascent due to their recent emergence.
For these reasons, a GAN has been selected as the image
generation method for this paper.

Certain GAN-based models, termed conditional GANs
(cGANs), can synthesize novel images based on training data
and a condition given as an image or label. For instance,
SPADE [16] can utilize segmentation maps as labels to
generate images that appear realistic. SPADE extends the
pix2pix model [17], outperforming it by better preserving se-
mantic information in the face of typical normalisation layers
(refer to Section III-B.1 for more details). Nonetheless, these

segmentation maps only offer conditions in terms of location
and object class. On the other hand, text-to-image synthesis
models [18], [19] offer more semantic information to the
generation model. However, this comes with the trade-off
of locality information, and these models are often larger as
they integrate a natural language processing unit. To mitigate
these limitations, the model proposed in this paper can be
conditioned with a combination of graphs and segmented
images. Segmented images retain locality information, while
graphs, when processed by a Graph Neural Network (GNN),
can introduce more abstract information.

GNNs are a relatively novel learning paradigm able to
process and generate graphs. They come in numerous vari-
ants, Graph ATtention networks (GAT) [20] being one of
the most effective. Graphs are of special interest because
the input to many problems can intuitively be represented
using them, including metric and semantic data, as well as
relationships. In urban scenarios, these data can include the
time of day, weather conditions, vehicle colors, and more.
GNNs have also been proven to work well in combination
with other models, such as Convolutional Neural Networks
(CNNs), for image generation from graphs, as seen in the
creation of cost maps for autonomous robots [21].

Our method generates realistic traffic intersection images
based on an input graph containing the positions and colors
of various entities, such as cars, trucks, buses, and pedes-
trians, as well as the time of day. It is crucial to utilize a
method such as GNNs for synthesizing urban scenes, as they
can effectively handle a variable number of entities. Graphs
can encode more intricate semantic information than seg-
mented images, while segmented images convey positional
information of entities. Once the model is trained, a traffic
simulator such as SUMO [2] can generate new scenarios that
are subsequently easily translatable into realistic images by
the proposed model.

The primary contribution of this paper is a novel ap-
proach to image generation that integrates a cGAN model
(SPADE) with a GNN to generate realistic traffic images
using graphs, allowing for structured and human-readable
conditioning. To our knowledge, this is the first architecture
of its kind. This model can transform simulated traffic cross-
road scenarios into realistic images, enabling the generation
of rich datasets with relative ease and minimal cost. The re-
sulting datasets can then serve to train various machine learn-
ing algorithms for a plethora of urban traffic applications.
Additionally, we have developed an application to generate
images with vehicles and pedestrians in manually defined
positions and to test the model. More details about this tool
can be found in Section IV-E. For comprehensive information
about the entire project, please follow the URL: https://
vangiel.github.io/projects/traffic.html.

III. METHOD

This section outlines the stages involved in our method.
The first stage consists of collecting data and using such
data to train a generative model (Section III-B). Section
III-A, provides a comprehensive explanation of the three



components comprising the model’s input: the graph, the
real image, and a segmented map. After completing the
training process, the next step involves the conversion of the
outputs from the SUMO simulator into graphs, as detailed
in Section III-C. These graphs are then input to our image
generator model, enabling the direct generation of realistic
images based on simulated inputs.

Our proposed approach represents a significant advance-
ment in the generation of realistic images by effec-
tively leveraging the information encoded in graphs de-
rived from simulations. The rest of this section delves
deeper into each stage of the pipeline. The associated
code is publicly accessible at https://github.com/
gvogiatzis/trafficgen.

A. Dataset Creation

The proposed model for image generation takes a three-
element tuple as input, consisting of the segmentation map,
the graph, and the real image. Fig. 2 illustrates a datapoint
containing these elements, providing a visual representation
of the data used in this study. This section explains the
process of extracting segmentation maps and graphs from
real images. The real images utilized for model training in
this paper are sourced from two open-access real-time traffic
surveillance cameras for two different traffic junctions. Both
are situated in the city of Krasnoyarsk, Russia. The crossroad
depicted in Fig. 2c will be referred to as CR11, while the
one presented in Fig. 1 will be CR22. Note that generating
images for a different junction requires the collection of new
data, specific to that particular setting, followed by retraining
the model to accommodate the new input. In total, 10,952
images were collected from CR1 videos and 11,173 images
from CR2 videos, in a period of 24 hours.

1) Segmentation map generation: A segmentation map
in this context is a type of image that represents different
segments or regions of the original image, with each segment
corresponding to a specific class present in the image. Each
pixel in a segmentation map is assigned a label that identifies
the category of its corresponding pixel in the original image.
In a visual representation of a segmentation map, each unique
label is represented by a unique color, making it easy to
visually distinguish between different segments or regions
of the image.

Generating the segmentation map is a straightforward
process. We apply an object detection model, namely
YOLOv7 [22], to the actual image, yielding bounding boxes
for several classes: cars, buses, trucks, and pedestrians. It
should be noted that any other object detection model could
serve the same purpose. Importantly, the number of classes
can be effortlessly extended within the range of classes
detectable by YOLOv7, if required.

Utilising the normalized coordinates and dimensions of the
bounding boxes for each detected object, a segmented map

1Video streaming URL of the CCTV used: http://krkvideo14.
orionnet.online/cam1560/embed.html?autoplay=true

2Video streaming URL of the CCTV used: http://krkvideo5.
orionnet.online/cam1487/embed.html?autoplay=true

(a) Illustration of an Input Graph. Nodes in light gray represent
grid nodes, while those in dark blue signify cars. Green nodes
correspond to buses, light blue nodes denote trucks, and small black
nodes represent pedestrians. The grid in this image has a resolution
of 20×20 nodes.

(b) Labelled Segmented Image.
This illustration depicts the po-
sitions and sizes of the classes
identified by YOLOv7 in the real
image, distinguished by varying
colors.

(c) Real Image. This image was
captured from a CCTV camera
positioned at a crossroad in Kras-
noyarsk, Russia.

Fig. 2: Illustration of a Dataset Data Point from CR1,
Comprising Three Elements. This figure incorporates the
three constituent elements of the dataset: the input graph,
segmented image and real image.

can be created in which each pixel value corresponds to an
integer representing the class as a one-hot encoding. If the
detection of two objects overlaps, the class from the latest
detection is allocated to the pixels within the intersection—a
design choice that may be modified in future work. As the
example model generates five distinct classes (including the
image background), the pixel values are om the range [0,4].
Fig. 2b shows an example of a segmented image drawing
the classes with different colors.

TABLE I: Representation of the feature vector structure for
each node in the graph.

Node feature vector h (dimension 31 or 19)
Boxes Classes Time Color encoding

x y w h bus truck car person grid sin cos clusters-colors (dimension =20)/
dircrete-colors (dimension=8)



Fig. 3: Model for Creating Condition Volumes via a Combination of GNN and CNN Layers. This illustration shows
the process of generating the condition volume ωωω , which is used to condition the image generation of SPADE. The graph
is processed by 3 GAT layers, and then the lattice of nodes is filtered from the output graph forming a hidden state image.
This image is subsequently fed into an array of upsampling and convolutional layers to fabricate the final condition volume.
Each volume depicted in the image has its dimensions written at the top, where the first number denotes the channels, and
the succeeding pair specifies the height and width.

Fig. 4: Complete Model Pipeline. The schematic depicted
herein illustrates the integration of the condition model
within the SPADE architecture. The condition model accepts
the graph as input, producing the condition volume utilized
by the generator. Moreover, the hidden state image stemming
from the condition model is concatenated in the channel
dimension to the discriminator’s input.

2) Graph generation: Conversely, the creation of graphs
is a critical and intricate step that offers extensive customi-
sation flexibility to the designer. Due to the wide range of
potential graphs that can be employed for this application,
numerous variants have been explored. For brevity this
section will only discuss the two design strategies yielding
the most favourable results, which only differ in how objects’
colors are represented. The first design, referred to as the
clustering-colors graph, produces the best outcomes in terms
of quality of the generated image. On the other hand, the
second design, named discrete-colors graph, while resulting
in slightly inferior performance, enables the user to condition
the vehicle colors using a discrete color palette. This will be
examined in greater detail in Section IV. Both graphs are
identical, except for a minor variation in the nodes’ features,
as explained subsequently.

The creation of the topology of the two aforementioned
graph types is identical. First, a graph is created in which

each node represents an entity detected by the object detector,
YOLOv7. A lattice of nodes is generated, with each node
representing a spatial position within the image. This grid is
crucial for conditioning SPADE, as explained in Section III-
B.2. In the final step, both graphs are merged by connecting
the closest entity-representing nodes to the nearest nodes in
the grid within a specified radius, using the image coordi-
nates. Both the grid density and the connectivity radius are
adjustable hyperparameters. Various values were assessed to
achieve the optimal balance between accuracy and efficiency.
Fig. 2a provides an example of the final graph’s topology,
employing a grid resolution of 20× 20 and a connectivity
radius of 1 grid hop.

As mentioned, the vectors of characteristics of the nodes
differ for the two types of graphs. The feature vector is
classified into four sections, as delineated in Table I. The
first three sections, which are shared across both graph
types, encompass: the coordinates and dimensions of the
object bounding box; a one-hot encoding vector of length
5 indicating the node class (bus, truck, car, person or gird);
and the encoding of the time of day using the sine and cosine.

The final section of the vector, which we refer to as “visual
features”, diverges between the two graph types:

• For the clustering-colors graph: This includes a 20-
element vector indicative of the object’s primary color.
This vector comprises clusters of the top 5 most pre-
dominant colors within the bounding box, encoded
in RGB. Along with the three RGB numbers, each
cluster includes an additional number with the counts
normalized using a softmax function. This configuration
results in a total feature vector length of 31.

• For the discrete-colors graph: Here we employ a one-hot
encoding of length 8, representing the detected vehicle’s
color. The color palette includes black, white, red, lime,
blue, yellow, magenta, and gray. Color detection con-
sists in averaging the top 3 most predominant colors in
the bounding box and calculating the Euclidean distance
to each palette color based on their RGB coordinates.
The color with the shortest distance is chosen. Given
that averaging shifts the color closer to gray, the mean



value must exceed a certain distance threshold for the
specific case of selecting the gray color. With this option
the total length of the feature vector is 19.

By integrating these features into the graph nodes, we
enrich the SPADE generator with information about the
entities’ colors and the time of day. The clustering-color
graphs provide more detailed color information leading to
better results, while the discrete-colors graph enables a
straightforward indication of the entity color during inference
time. The benefits of employing the discrete-colors graph be-
come evident when utilising the demonstration tool presented
in Section IV-E.

B. Model

This section details the combination of architectures for
generating the images. The final model consists of a modifi-
cation of SPADE architecture including a GNN to condition
the generator with a graph. The graph can provide richer
information to the generation model allowing the creation
of more complex conditions which are reflected in the
final image. First, we show the vanilla structure of SPADE
alongside which we introduce our modifications. The next
subsection explains the architecture embedded in SPADE that
takes graphs as inputs. Finally, we provide a global version of
the final model pipeline for generating images from graphs.

1) GAN model, SPADE: To generate images from seman-
tic masks, SPADE layers transform segmentation masks into
feature maps γ and β by first projecting the mask onto an
embedding space that we called condition volume ωωω . Then,
this volume is fed through two convolutional layers to get the
feature maps. The generated parameters γ and β , which are
tensors with spatial dimensions, are multiplied and added to
the normalized activation from the previous layer h, element-
wise. Thus, the activation features hn,c,h,w are normalized and
transformed as follows:

h′n,c,h,w = γc,h,w(ωωω)
hn,c,h,w −µc

σc
+βc,h,w(ωωω), (1)

where the indexes (n,c,h,w) refer to the batch size, the
number of channels, the height and the input width. The
parameters µc and σc denote the channel-wise mean and
standard deviation of the input feature map h.

The generator incorporates multiple ResNet blocks [23]
with upsampling layers. The semantic map is downsam-
pled to align with the resolution required for learning the
modularization parameters γ and β , as each residual block
operates at a distinct scale. In contrast, the discriminator
does not employ SPADE and follows the pix2pixHD [24]
discriminator approach, based on PatchGAN [17], which
inputs the concatenated segmentation map and the input
image.

The main modification introduced in this paper for the
generator consists of generating the condition volume ωωω

using a combination of a GNN and transpose convolutional
layers as explained in Section III-B.2. Now, instead of
downsampling the semantic map, it is ωωω that is rescaled to
match the needed resolution in each layer. With regards to the

Fig. 5: The Lane Editor Application. This illustration ex-
hibits the interface of the lane designer application, juxtapos-
ing the SUMO lane selector (left) with the cubic spline lane
editor (right). It facilitates the definition of corresponding
waypoints between the SUMO environment and real-world
images for each lane spline.

discriminator, the only change is the additional concatenation
in the channels’ dimension of information coming from the
GNN to make the GAN symmetric (see Section III-B.3).

2) Condition model: As already mentioned, the input data
(i.e., vehicles, pedestrians and other contextual information
such as the time) are combined with a 2-dimensional lattice
to form an input graph (Fig. 2a). As with most GNN layers,
GAT layers output graphs with the same structure as their
input graph but different node embeddings [20]. The input
graph is processed by 3 GAT layers, producing a graph with
the same structure but adequate to condition SPADE after
being filtered and processed. This is done by training the
GAT layers to embed the entities’ information into the lattice
sub-graph so that the lattice can be converted into an image-
like format creating a latent image. This is done by creating
a pixel for each of the nodes in the lattice and using the
features of the nodes as the channels of the image. Finally,
this latent image is the input of 4 transpose convolutional
layers that generate the desired condition volume ωωω . This
pipeline is depicted in Fig. 3.

3) Final model: The final model adds the condition mod-
ule to the SPADE blocks of the generator and also includes
some modifications to the discriminator of SPADE to make
the network symmetric.

Fig. 4 is a diagram of the final model pipeline with the
generator and the discriminator of SPADE. The data flow
starts with the segmentation mask as input of the generator,
then the condition module uses the graphs to yield the
volumes that are also fed to the generator. The generator
produces a fake image that is concatenated in the channel
dimension with the corresponding mask and the latent image
of the condition module. Finally, the real image is also
concatenated with the mask and the latent image in the
channel dimension, and then both the real and fake images
are combined in the height dimension. This generated fake-
and-real volume is the final input of the discriminator. Note
that one fake image is generated for every two real images
fed to the discriminator.

C. From SUMO to graphs

One of the main aims of this work is to drive image syn-
thesis from traffic simulations. One can then apply various
actions to the traffic system (e.g. traffic control decisions)



Fig. 6: Visual Results Across All Models. This illustration presents the results for three distinctive frames from the test
dataset, each in separate rows. The leftmost column constitutes the ground truth images, succeeded by images generated
by the cluster-colors, discrete-colors, and SPADE models respectively. As observable, the cluster-colors model is the most
proficient at preserving vehicle colors, whereas the SPADE-generated images exhibit the poorest quality.

and observe their effect through visual footage generated
in response. This closes the loop between trial and error
and enables the training of decision-making agents (AI as
well as humans) from footage that is generated in response
to decisions taken. Here, we show an instance of this loop
closure using SUMO [2] as the driving simulator.

The first step is to create a topologically faithful repre-
sentation of the traffic junction network within SUMO. This
is readily achieved using scripts that can import geometry
and network structure from OpenStreetMap (OSM) data. The
second step involves defining the correspondence between
2D points on the SUMO simulation to points on the real-
world junction. If the OSM data was geometrically faithful,
the mapping would be a simple 2D homography (8 degrees
of freedom). In practice, there are significant discrepancies
between the simulation geometry and the real-world junction.
The solution we adopt in this paper is to define individual
traffic lanes in the junction as cubic splines. This is achieved
in a few minutes of clicking through points in the junction
images and works well in practice. Fig. 5 shows the lane
designer GUI with the sumo lane selector (left) and the cubic
spline lane editor (right). Within each lane spline, we can
define corresponding way-points between SUMO and the
real world, (e.g. the point where cars stop for the red light
and other well-defined landmarks). At the end of this process,
we have a reliable mapping between points on each SUMO
lane and the corresponding points on the real junction.

The final stage of this process involves determining vehicle
bounding boxes for each location within the junction. These
bounding boxes subsequently facilitate the generation of the
graphs, as described in Section III-A, which serve as inputs to
our image generation model. To obtain these bounding boxes,

we fit a spatial bounding box distribution using histograms.
Fig. 1 illustrates the pipeline from a SUMO frame (left) to
a set of bounding boxes defined on the real junction image
(middle) and the synthesized CCTV frame (right) containing
the road background and vehicles in the right locations.

IV. EXPERIMENTATION AND RESULTS

A. Implementation details

All experiments were carried out utilizing an NVIDIA
RTX A6000 GPU that has a memory capacity of 48GB.
All the models were trained with image resolutions set
at 640x640 pixels, whereas YOLOv7 was used to detect
bounding boxes from images with a resolution of 1280x1280
pixels. A batch size of 12 was employed for the training
phase, and this was increased to 24 during testing.

B. Dataset and metrics

We trained three different models with the CR1 dataset:
the standard SPADE version, and the combination of the
GNN and SPADE for the two types of graphs. These models
were trained using an identical training set consisting of
10,322 images, graphs, and segmentation maps. Each model
was evaluated using three distinct metrics on a test set com-
prising 630 data points, following the same metric system
utilized by SPADE [16]. To quantify segmentation accuracy,
we used mean Intersection-over-Union (mIoU) and pixel
accuracy (Accu.). The Frèchet Inception Distance (FID) [25],
on the other hand, was utilized to evaluate the discrepancy
between the distributions of synthetic and real images.

We calculated the mIoU and pixel accuracy metrics for
each class, excluding the ‘background’ due to its dispropor-
tionate size relative to other classes. The ‘buses’ category



TABLE II: Results for the three different models evaluated in the proposed metrics.

Models FID mIoU Accu.
Cars People Trucks Cars People Trucks

SPADE 176.32835 0.63349355 0.3243129 0.099982 0.70595584 0.59278189 0.13323193
cluster-colors 149.88987 0.53274998 0.21035392 0.27845053 0.69294361 0.24580686 0.34741428
discrete-colors 154.56592 0.50205496 0.16974847 0.01920121 0.66411157 0.20146478 0.02427287

was also omitted due to a lack of sufficient images within
the training dataset to facilitate a decent generation of these
vehicles. The performance against these metrics is summa-
rized in Table II.

Our analysis of the results reveals that our models demon-
strate a significant enhancement in the FID score compared
to SPADE, with the cluster-colors model producing superior
outcomes for this metric. Although the mIoU and pixel
accuracy of our models are generally slightly lower than
SPADE results, they remain competitive, with the cluster-
colors model producing superior results for trucks. Bear
in mind that the FID is the most critical measure for this
study, as it evaluates the realism of the generated images,
whereas the other two metrics pertain more directly to image
segmentation models. Nevertheless, we have included the
mIoU and pixel accuracy as these metrics were employed
in the original SPADE paper.

It is also worth highlighting that the additional com-
putational burden of the cluster-colors and discrete-colors
models over the basic SPADE model is marginal, adding
only 10.42% and 10.28% more parameters, respectively.
Consequently, the computational speed and memory usage
remain comparable. The training for our models and SPADE
for the specified batch size and number of images took
approximately 3.5 days. The generation of images for the
test set takes approximately 2 minutes for all the models
excluding the time needed to load the data.

C. Visual results

In order to interpret the above metrics more tangibly, we
present several frames generated by each model in Fig. 6.
Each row in this figure represents a different frame from the
dataset, where the first image corresponds to the ground truth
derived from the test set, and the subsequent images are the
outputs generated by the cluster-colors, discrete-colors, and
vanilla SPADE models, in sequence.

A close inspection of the results reveals that the cluster-
colors model is proficient at effectively reconstructing the
colors of the majority of vehicles present in the original
images. However, the discrete-colors model tends to struggle
in generating vibrant colors, although it performs adequately
with white, black, and gray vehicles. This issue could po-
tentially be attributed to the method employed to discretize
the color palette, a point that could be optimized in future
work. In contrast, images synthesized by the vanilla SPADE
model display vehicles with arbitrary colors, and they often
introduce artefacts into the majority of frames, rendering
them less visually appealing and realistic.

D. Time conditioning

As previously discussed, the proposed model in this study
is also capable of generating images conditioned at different
times of the day. Fig. 7 demonstrates this capability, featuring
two images generated by the discrete-colors model corre-
sponding to daytime (Fig. 7 left) and nighttime conditions
(Fig. 7 right).

Fig. 7: Two Examples for Images Generated in Different
Times of the Day. These images were generated using
the demo tool in Section IV-E. It is readily apparent that
the daytime-generated image (left) possesses more illumi-
nation, whereas the nocturnal counterpart (right) exhibits a
darker ambience, authentically simulating the respective time
frames.

E. Interactive tool

To evaluate the image generation model under various
conditions, a tool with a visual interface was designed, as
illustrated in Fig. 8. The graphical user interface (GUI)
displays two distinct frames. On the left frame, the user can
draw various bounding boxes, each denoting the placement
of entities to be generated.

Fig. 8: Graphical User Interface of the Interactive Tool.
The application’s interface is divided into two principal
frames: the left frame facilitates the entry of user input data,
while the right frame displays the generated image. The
toolbox for choosing vehicle types, colors, and time of day
– parameters to condition the image generation – is located
in the lower-left corner.

The entity type, its color, and the time of day can be
specified using the tools button, situated at the lower-left



corner of the GUI. The right frame exhibits the image
produced by the model, reflecting the entities and conditions
specified within the left frame. A new image is generated
every time a modification is done in the left frame.

V. CONCLUSIONS

The synthesis of realistic images from simulated ones
is highly beneficial and presents a myriad of applications,
where data augmentation stands out. In the present paper, we
have accomplished the development of a tool that is capable
of generating traffic images with a realistic appearance from
a simulator by merging a GAN-based model, SPADE, with
a GNN for conditioning.

This developed tool enables the production of large
datasets with relatively less effort, vital for training com-
putationally demanding deep learning models that comprize
numerous parameters (among other applications), thereby
preventing the overfitting of the training data. This results
in enhanced generalisation to new scenarios. Section IV
illustrates the effectiveness of our model in comparison to the
unmodified version of SPADE, with only a minor increase
in computational complexity.

Our model is not only capable of generating realistic
images but also conditioning features of the generated images
using semantic information, namely the colors of the vehicles
in the image and the time of the day. Section IV-E shows a
tool with a GUI that enables the user to produce images
by manually setting the stated conditions along with the
positions of the entities to be created.

Looking towards future research, we plan to train the
model with additional data and utilize more than one con-
secutive frame as input for the model. These improvements
are likely to enhance the quality of the generated images. We
also aim to expand our experimentation by including more
classes for the model to generate and adding more conditions
such as the weather. An intriguing prospect for subsequent
research involves substituting the current cGAN with a diffu-
sion model. Given the noteworthy results achieved by these
models in recent years, this approach could yield valuable
insights.

REFERENCES

[1] A. Agrawal and R. Paulus, “Intelligent traffic light design and control
in smart cities: A survey on techniques and methodologies,” Interna-
tional Journal of Vehicle Information and Communication Systems,
vol. 5, no. 4, pp. 436–481, 2020.

[2] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility: an overview,” in Proceedings of SIMUL
2011, The Third International Conference on Advances in System
Simulation. ThinkMind, 2011.

[3] D. Garg, M. Chli, and G. Vogiatzis, “Fully-Autonomous, Vision-based
Traffic Signal Control: from Simulation to Reality,” Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, vol. 1, pp. 454–462, 2022.

[4] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017, pp. 23–30.

[5] G. Adaimi, S. Kreiss, and A. Alahi, “Perceiving traffic from aerial
images,” ArXiv, vol. abs/2009.07611, 2020.

[6] E. Barmpounakis, G. M. Sauvin, and N. Geroliminis, “Lane Detection
and Lane-Changing Identification with High-Resolution Data from a
Swarm of Drones,” Transportation Research Record, vol. 2674, no. 7,
pp. 1–15, 2020.

[7] J. Fernández, J. M. Cañas, V. Fernández, and S. Paniego, “Robust
Real-Time Traffic Surveillance with Deep Learning,” Computational
Intelligence and Neuroscience, vol. 2021, 2021.

[8] R. B. Arantes, G. Vogiatzis, and D. R. Faria, “Csc-gan: Cycle and
semantic consistency for dataset augmentation,” in Advances in Visual
Computing: 15th International Symposium, ISVC 2020, San Diego,
CA, USA, October 5–7, 2020, Proceedings, Part I 15. Springer,
2020, pp. 170–181.

[9] K. D. B. Mudavathu, M. C. S. Rao, and K. Ramana, “Auxiliary con-
ditional generative adversarial networks for image data set augmenta-
tion,” in 2018 3rd International Conference on Inventive Computation
Technologies (ICICT). IEEE, 2018, pp. 263–269.

[10] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and
L. Van Gool, “Repaint: Inpainting using denoising diffusion prob-
abilistic models,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 11 461–11 471.

[11] R. Nakano, “A discussion of ’adversarial examples are not bugs, they
are features’: Adversarially robust neural style transfer,” Distill, 2019,
https://distill.pub/2019/advex-bugs-discussion/response-4.

[12] R. Maini and H. Aggarwal, “A comprehensive review of image
enhancement techniques,” CoRR, vol. abs/1003.4053, 2010. [Online].
Available: http://arxiv.org/abs/1003.4053

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial net-
works,” Communications of the ACM, vol. 63, no. 11, pp. 139–144,
2020.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2022.

[15] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 6840–6851, 2020.

[16] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic image
synthesis with spatially-adaptive normalization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017, pp. 1125–1134.

[18] J. Oppenlaender, “The creativity of text-to-image generation,” in
Proceedings of the 25th International Academic Mindtrek Conference,
2022, pp. 192–202.

[19] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” in
International Conference on Machine Learning. PMLR, 2021, pp.
8821–8831.

[20] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[21] D. Rodriguez-Criado, P. Bachiller, and L. J. Manso, “Generation
of human-aware navigation maps using graph neural networks,” in
Artificial Intelligence XXXVIII: 41st SGAI International Conference
on Artificial Intelligence, AI 2021, Cambridge, UK, December 14–16,
2021, Proceedings 41. Springer, 2021, pp. 19–32.

[22] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-
30, 2016, 2016, pp. 770–778.

[24] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with
conditional gans,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8798–8807.

[25] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” Advances in neural information processing systems,
vol. 30, 2017.


