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Abstract: Minimizing a company’s operational risk by optimizing the performance of the manufac-
turing and distribution supply chain is a complex task that involves multiple elements, each with
their own supply line constraints. Traditional approaches to optimization often assume determinism
as the underlying principle. However, this paper, adopting an entropy approach, emphasizes the
significance of subjective and objective uncertainty in achieving optimized decisions by incorporat-
ing stochastic fluctuations into the supply chain structure. Stochasticity, representing randomness,
quantifies the level of uncertainty or risk involved. In this study, we focus on a processing production
plant as a model for a chain of operations and supply chain actions. We consider the stochastically
varying production and transportation costs from the site to the plant, as well as from the plant
to the customer base. Through stochastic optimization, we demonstrate that the plant producer
can benefit from improved financial outcomes by setting higher sale prices while simultaneously
lowering optimized production costs. This can be accomplished by selectively choosing producers
whose production cost probability density function follows a Pareto distribution. Notably, a lower
Pareto exponent yields better supply chain cost optimization predictions. Alternatively, a Gaussian
stochastic fluctuation may be proposed as a more suitable choice when trading off optimization and
simplicity. Although this may result in slightly less optimal performance, it offers advantages in
terms of ease of implementation and computational efficiency.

Keywords: green supply chain management; supply chain risk model; stochastic models; noise

1. Introduction

Operational risk is the risk of loss because of ineffective or failed internal processes,
people, systems, or external events, which can disrupt the flow of business operations. An
inviolable aspect of a business organization is the distribution of supply lines, both on the
input side of the business as well as in relation to its output deliverables, together with the
supply chain management (SCM) of its overall throughput. Due to rapid economic global-
ization, the majority of operations, ranging from manufacturing to transportation sectors
and from warehousing to the customer base, are conducted by supply chain contractors or
third-party logistics (3PL) companies. Recent research in logistics developments predicts
that, in the foreseeable future, approximately 80% of economic transactions will be based
on services. Thus, the better the design of supply chain operations, the better the service
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level the customers will experience. Currently, for the majority of products transported and
sold throughout the world, customers rarely subscribe to brand loyalty; thus, any stock
clearance may result in a reduction in sales and future loss of income for firms [1–3].

Furthermore, entering the 21st century, the business environment is becoming more
and more challenging because of the worldwide effort to meet the SDGs’ challenges [4].
Green supply chain management (GSCM) integrates environmental thinking into supply
chain management, creating a sustainable supply chain [5]. As noted in the relevant liter-
ature (see, e.g., [6–14]) companies are under immense pressure to adopt GSCM practices
that are driven towards the environment by a combination of external factors (government
rules and legislation; environmental concerns and regulation; social and environmental re-
sponsibility; customer awareness, pressure, and support; supplier pressure and willingness;
global climate pressure) and internal factors (green image; global marketing; competi-
tiveness; economic beliefs or cost reduction benefits; investor and shareholder pressure;
employee motivation; health and safety issues; waste management issues) towards meeting
SDGs, as they directly affect customer choice [15]. Furthermore, many studies are currently
focusing on discussing the implementation of GSCM in different sectors of the economy
and/or specific countries (see, e.g., [16–26]).

While value chain management has hugely benefitted from paradigmatic studies in
the realm of supply chain theories, involving deterministic variation of associated variables
and parameters (see, e.g., [27–33]), very little has been done in connection with the impact
of stochastic perturbations in probabilistically predicting the qualitative and quantitative
assessment from the supply chain model (see, e.g., [34,35]). For a comprehensive and up-
to-date review on the subject we refer the interested reader to [36] Optimizing the design
of a supply chain provides an “ideal” image of the real situation that, by construction,
is not amenable to conventional mathematical modeling [29,37]. The issue here is the
randomized nature of the data produced from the supply chain performance profile, which
are mathematically categorized as stochastic in design. Although stochastic programming
models have been proposed where each unique scenario is associated with a corresponding
probability of occurrence, such models have not essentially incorporated the full range
of stochastic effects, e.g., market uncertainty, decision making uncertainty, etc., in their
formulation, which is undertaken in our model. Real-world situations entail mismatches in
the operations conducted among the nodes of the supply chain, in a way that affects the
levels of upstream and downstream decisions [38].

Identifying stochasticity in the operations is not enough, though, to provide real and
stochastic decisions [39,40]. The majority of the works proposed in the supply chain litera-
ture incorporate modeling uncertainty as a token of sensitivity analysis involving changes
in the parameters of the models, e.g., through case scenarios (bounds, demand, supply,
etc.) (see e.g., [35,41,42]). However, such approaches do not adequately represent the mis-
alignments of the conducted operations in the supply chain. For instance, [41] proposed to
address uncertainty in production demand though a scenario planning approach wherein
parameters varied with changing scenarios, whereas [40] extended previous attempts by
proposing algorithms that could handle a larger number of alternative scenarios for the
model’s parameters. Other approaches (e.g., [43]) included assigning a single distribution
to demand uncertainty, followed by a scenario-based analysis. See also [44,45] for similar
approaches. However, the scenario-based approaches inherently cannot identify all po-
tential outcomes of uncertainty parameters of interest, as their structure is not inherently
defined through a probabilistic Bayesian approach, much like a stochastic adaptation of the
same could be. The information mismatch is another phenomenon that is not addressed
adequately within the frameworks of the aforementioned types of stochastic models. Such
inadequate information routing is expected to have a knock-on effect on the supply chain
network design due to the stochastic nature of the information flow pattern. This work
adopting an entropy approach addresses this key knowledge gap, focusing on the variable
nature of the stochastic fluctuations involved and how it could affect the probabilistic
prediction from this type of (stochastic) supply chain kernel.
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In this work, the problem of designing an optimal supply chain network design is
tackled by incorporating different types of noise into the variables of the study. Hence,
the present work sets the foundation for a new optimization routine in which the noise
representations are taken from a variety of well-known statistical distributions. Our pro-
posed model extends previous works on multi-echelon supply chain design, using [46]
mixed-integer non-linear programming (MINLP) by introducing stochastic fluctuations in
the supply chain structure to account for the degree of demand uncertainty more effectively.
Our proposed method adds an additional stochastic model to [46] single deterministic
MINLP model, hence extending the former to a sequential deterministic-stochastic model.

Cost optimization, based on a cost function, is then performed by optimizing with
respect to the stochastic variables. We should note that some of the parameters themselves
could be stochastic, in addition to the variables. Thus, the primary objective of this paper
is to develop a mathematical model of a supply chain that accounts for all of the inherent
stochastic fluctuations of the system and its parameters.

This will be under the auspices of a two-state modular structure that has the special
feature of stochastic noise being embedded into the design of the supply chain network.
Assuming different types of noise representations in terms of their respective probability
density functions (specifically, we assume the Gaussian, Lognormal, and Pareto distri-
butions), the supply chain model is analyzed to quantify which of these PDFs ensure
cost minimization through an optimization rationale perpetrated across the entire supply
chain network. Fluctuations are not formulated through different parameter distribution
representations but are directly introduced through the variables. Model two represents
a stochastic ensemble of a generalized sampling procedure, in the spirit of Sample Aver-
age Approximation [47–49]. This drives target-specific research questions, such as what
the nature of the distribution function conforming to the “ideal” situation is, and which
distribution function could precipitate an increasing cost.

The rest of the paper is structured as follows. Section 2 outlines prior literature
on modeling of the supply chain network and the optimal supply chain network design
problem. Section 3 explains the proposed methodology. This is followed by the presentation
of findings (Section 4). Section 5 discusses the range of empirical findings in line with
earlier studies and concludes with a few suggestions.

2. Literature Review

The optimal supply chain network design (SCND) problem has been extensively exam-
ined in the literature. The majority of the proposed models are drawn from mathematical
programming disciplines and are roughly divided into two categories: (a) steady state
models and (b) multi-period models [50].

More specifically, [51] proposed a nonlinear programming (NLP) model providing an
integrating framework for the facility location and inventory allocation problem with cost
discounts. A two-phase approximation approach was deployed as a solution to provide
numerical results that could demonstrate the impact of different simulated data to the
supply chain decisions and cost. [33] propose a multi-echelon supply chain model that
includes suppliers, plants, and distribution centers and aims at minimizing the total cost of
the supply chain. The proposed methodology involves sensitivity analysis to show that the
customer demand parameter has the greatest impact on the optimal solution. [31] propose a
deterministic model for the supply chain uncertainty in the demand. The suggested model
assumes that returned items from the customers can be remanufactured at a fixed rate.

Choi et al. [27] study the supply chain scheduling and co-ordination problem compris-
ing multiple suppliers, a single warehouse operator, a single manufacturer, and multiple
retailers. Fattahi et al. [30] investigate the supply chain network design and planning for a
multi-commodity and multi-layer network over a planning horizon with multiple periods,
in which the demands of customer zones are considered price dependent through the
development of a mixed-integer linear programming (MILP) model.
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Similarly, in another development directed towards fluctuation incorporation, ref. [41]
used a mixed-integer linear programming model wherein both binary and continuous
variables are considered with the objective of assigning uncertainty in the structure of
the hierarchical variables, e.g., demand as deterministic uncertainty in their respective
numbers, without explicit incorporation of statistical stochastic terms. The first are used for
network representation, while the latter for facility capacity and flows of goods throughout
the channels of the supply chain network [32]. Similar models have been proposed, con-
sidering the demand uncertainty and measuring the customers’ service level through the
calculation of lead time and normally distributed demand (see, e.g., [46,52]). The formula-
tion of an agile or flexible supply chain network with the use of a heuristic algorithm as
a solution procedure has been also proposed by [53] as a means of incorporating certain
non-deterministic fluctuations perpetrating changed functionalities in the supply chain.

Closed-loop supply chains (CLSC) are generally used to model the reusability and
recycling of products (ICT, food, etc.) In a more recent work, ref. [54] proposed a fuzzy
MILP model to capture the uncertainty in demand, cost, and other parameters. Similar mod-
eling approaches have been proposed in the literature using mathematical programming
techniques for the optimal closed-loop supply chain network design (CLSCND) [55,56].

Recent works focus mostly on biomass-based supply chain networks due to a global
turn towards bioenergy production. In their work, ref. [57] proposed a data envelopment
analysis (DEA) based algorithm for optimal biomass supply chain network design. An
optimal design of a forest supply chain network has been proposed by [58]. In this work,
the authors employed a Lagrangian relaxation algorithm [59] to design the fuel–wood
supply chain, considering demand uncertainty. The optimal design of a biofuel supply
chain network has been also examined using a Monte Carlo simulation approach to provide
a sensitivity analysis for various parameters [35].

In another setting, the use of multiple objective functions may be seen as providing
a more realistic approach to real-world problems. In such domains, multi-objective pro-
gramming (MOP) models have been traditionally employed, including the optimal design
of chemical supply chains [60], biofuel/biomass supply chains [28,61], in forest supply
chains [62], and considering green supply chains with environmental factors [63].

The introduction of noise realization has been examined in many production–allocation
systems (including the supply chain network design problem). The main modeling method
for noise representation is optimal control. In these lines, [64] have proposed a multi-
echelon control model to describe a production–allocation supply chain network. In their
work, the authors assumed that noise corrupted demand and system delays. A popular
approach is based on the value of stochastic solution (VSS) [65] to compare relative con-
tributions between deterministic and stochastic amplitudes within the remit of the same
model. Our sequential model, too, is inspired by this VSS approach.

A game theoretical model is proposed by [66], where through a collaborative approach,
a noise (read fluctuation) reduction scheme was propounded. Noise, in terms of uncer-
tainty, has also been modeled through different demand and supply scenarios identifying
disruptions to the production process [67]. A decision support system is proposed by [68],
where the performance of service level or customer satisfaction was examined through a
simulation study. Uncertainty has been modeled by adding noise to the demand parameter
or by sampling from statistical distributions.

One recent article titled “Stochastic Inventory Control in a Multi-Echelon Supply
Chain: A Review” [69] examines the existing literature on stochastic inventory control in
multi-echelon supply chains. It delves into various mathematical models, optimization
techniques, and decision-making approaches employed to manage uncertainty in inventory
levels across different stages of the supply chain. The review emphasizes the need for robust
inventory policies and coordination mechanisms to mitigate the impact of stochasticity.

Johnson et al. [70] provide a comprehensive analysis of supply chain risk management,
encompassing stochastic events. It discusses the identification, assessment, and mitigation
of risks associated with stochasticity, such as demand volatility, supplier disruptions, and
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natural disasters. The article emphasizes the importance of building resilient supply chains
through effective risk management strategies.

Liu et al. [71] focus on managing disruptions caused by stochastic events in supply
chains. They explore strategies such as redundancy, flexibility, and collaboration that can
help to mitigate the impact of disruptions and improve supply chain robustness. The article
also discusses the role of technology, such as real-time monitoring and predictive analytics,
in enhancing supply chain resilience.

In the realm of supply chain management, various studies have been conducted to
explore different aspects and challenges. Ref. [72] conducted a study to analyze the impact
of financial risk on the manufacturer–supplier relationship in a two-echelon supply chain.
They developed a multi-objective decision model for supplier selection and order allocation,
aiming to maximize the manufacturer’s total profit while minimizing the financial risk
faced by selected suppliers. The study considered foreign exchange risk, default risk,
market risk, and price fluctuation risk, and explored three case scenarios to understand
the behavior of suppliers in response to different financial risks, both in the short and
long term.

Building on the concept of risk aversion in supply chains, ref. [73] examine a two-
echelon supply chain with two competing manufacturers and one retailer. One manufac-
turer adopted sustainable technology to reduce carbon emissions under cap-and-trade
regulations, while the other followed traditional business practices. The study considered
two configurations involving risk-neutral and risk-averse agents and analyzed operational
decisions using a retailer–leader game optimization approach under the mean variance
framework. The results showed that risk-averse agents benefited from low-scale risk aver-
sion, and low carbon emissions were attainable when the underlying manufacturer had
small or moderate risk aversion.

In a different approach, ref. [74] explore the application of thermodynamics in de-
scribing the behavior of economic and financial systems. They discuss the first and second
laws of thermodynamics and construct a mathematical model for a constant price process.
The focus is on examining the dynamics of economic processes using thermodynamics
principles. However, more specific findings and conclusions from the research were not
provided in the summary.

Additionally, ref. [75] conduct a literature review on risk and disruption management
in production–inventory and supply chain systems. They reviewed works that considered
real-life risk factors, such as imperfect production processes, disruptions in production,
supply, demand, and transportation. The review emphasized the mathematical models and
solution approaches used to address these problems, both in hypothetical and real-world
scenarios. The review concluded by discussing future research directions in this area.

Furthermore, ref. [76] proposed a nonlinear programming (NLP) model, providing an
integrating framework for the facility location and inventory allocation problems with cost
discounts. They deployed a two-phase approximation approach as a solution to provide
numerical results that demonstrate the impact of different simulated data on supply chain
decisions and cost.

More realistic, explicit incorporations of multiplicative noise routines have rarely come
across in the relevant literature. This is partly due to computational difficulty, and to the
minimalistic nature of most problems considered.

3. Methods
3.1. Model Concepts

This section outlines our entropy modeling approach. We consider two models:
deterministic and stochastic. In the first case, the model is solved in the deterministic way
without any additional noise in the variables, while in the second stochastic approach,
different uncertainty representations are modeled with varying noise distributions (i.e.,
normal, lognormal, and Pareto). In the following, the general supply chain network
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framework hypothesized for the application of our modeling is presented, followed by a
detailed illustration of the deterministic and stochastic supply chain models.

3.1.1. Supply Chain Network Framework

In this paper, a multi-stage multi-echelon model is presented that hierarchically incor-
porates functional interactions between plants, warehouses, customer zones, and thereby
multiple echelons in turn. The initial and final links of the supply chain are considered
fixed and only the quantities of products produced (for plants) and products transported
(for customers) are provided. A graphical representation of the hypothesized supply chain
network is provided in Figure 1 below.
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Figure 1. Multi-stage, multi-echelon supply chain network.

In the framework outlined above (Figure 1), the warehouses are assumed uninstalled.
Thus, based on the intermediate link, the supply chain network is constructed. The
mathematical structure is a sequential solution involving two models. In the first model,
the optimal design of the supply chain network is calculated based on stochastic demand,
assuming that it is is normally distributed [46]. This first model generates decision outputs
that serve as inputs for the second model that we now describe. Using decision inputs
from the first model, the second model computes possible shortfalls in demand. The
expected lead time is then computed to estimate quantities providing knowledge on stock
out situations.

The stock out instances, which are defined as the absolute difference between demand
and the quantities of products delivered to customer, are divided into two categories based
on a threshold decided by the decision maker (DM). In many cases, a stock out instance
may not just affect the service level, and therefore the perception of the customers towards
a specific product but may lead to penalty costs due to a contract clause (this is especially
applicable in the food supply chain industry). In addition to holding inventory, since
warehouses are assumed to serve as production facilities as well, the inventory can serve
as raw materials to cover the deficits in demand. The magnitude of production quantities
is assigned to a corresponding production cost that is added to the total cost function of
the 1st stage. Due to stock out instances, the expected lead time (ELD) keeps increasing.
The fact that warehouses are used as production facilities in the supply chain reduces the
expected lead time but may increase the overall cost significantly, leading to a trade-off
between cost and service quality. The aforementioned procedure is graphically represented
in Figure 2 below.
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3.1.2. Deterministic Model

The optimization model presented here provides levels of decisions for the quantities
of a single product, even though extensions can also be considered. The model presented
here is an extension of the mixed-integer nonlinear programming (MINLP) model proposed
by [46]. The Petridis model is a deterministic structure resembling our model one. As
mentioned, the output of model one serves as the input of model two, thereby making it a
sequential deterministic→ stochastic model that allows for a more realistic and generalized
market perspective.

For the mathematical representation of the optimization model, each node (stage) is
assigned an index. The first stage (plants) is denoted by i, the second (warehouses) by j,
and the third (customer zone) by k. In the following context, the constraints of the problem
are presented. As each plant has a limited capability (i.e., given its resources, raw material,
etc.), the production capability of each plant i is upper and lower bounded as given below.

Pi ≤ PU
i , ∀i (1)

Pi ≥ PL
i , ∀i (2)

In Equations (1) and (2), PU
i and PL

i define the upper and lower bounds of production,
which are assumed to be known a priori (see Appendix A for a detailed description of all
models’ variables and parameters along with abbreviations).

Next, as the produced quantities are transported downstream (from the production
to the end customer), the following mass balance constraint is considered, modeling the
fact that the produced quantities by plant i should equal to the quantities transported to
warehouse j:

Pi = ∑
j

Qij, ∀i (3)
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Moreover, the quantities entering the warehouse node should be equal to those that
exit that node (from warehouse j to customer zone k):

∑
j

Qij + Ij = ∑
k

Qjk, ∀k (4)

Finally, the quantities transported throughout the supply chain end to the customers’
end should be greater than or equal to the demand of each customer. The demand (Dk) is
assumed to follow a statistical distribution that is already known.

∑
k

Qjk ≥ Dk, ∀k (5)

As mentioned previously, the warehouse facilities are not known a priori and are
decided after setting up the optimization model. Generally, decisions of “yes” or “no” type
are introduced with binary variables. The connection between the plant i and warehouse
j, as well as between customer k and warehouse j, is assumed to exist only if warehouse
j exists.

Xij ≤ Yj, ∀i, j (6)

Xjk ≤ Yj, ∀j, k (7)

In (6) and (7) constraints, the binary variables Yj are used for modeling whether
warehouse j will be installed in position j or not and Xij to model the connection between
nodes i and j.

The quantities (Q) are transported from one node to another only if the corresponding
connection exists.

Qij ≤ QU
ij ·Xij, ∀i, j (8)

Qjk ≤ QU
jk·Xjk, ∀j, k (9)

Finally, the warehouse quantities (W) can be computed through the following con-
straints (a Lagrange multiplier type approach):

Wj ≥ aj·∑
i

(
Qij + Ij

)
, ∀j (10)

Wj ≤WU
j ·Yj, ∀j (11)

We seek to minimize the overall cost, through the following objective function (TC):

TC = ∑
i

cP
i ·Pi + ∑

i
∑
j

cVTR
ij ·Qij + ∑

i
∑
j

cFTR
ij ·Xij + ∑

j
∑
k

cVTR
jk ·Qjk

+∑
j

∑
k

cFTR
jk ·Xjk + ∑

j
cIN

j ·Yj
(12)

In the objective function (12), the first term represents the production cost, the second
and fourth terms represent variable transportation costs, while the third and fifth terms
account for the fixed variable costs, and the final term represents the installation (or
capital) cost.

As there may be shortfalls in demand (unsatisfied demand) due to misinformation
or scheduling, natural disasters that may disrupt this chain, etc., the following parameter
is introduced:

∆k =

∣∣∣∣∣Dk −∑
j

Q∗jk

∣∣∣∣∣, ∀k (13)

Parameter ∆k serves as a critical threshold to define the level of unforeseen expenses
to be expected in emergent conditions. This threshold is divided into the following
two ranges:
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[∆L, ∆M ] and (∆M, ∆U ]; the threshold is divided into a low valued range of supply
insufficiency as indicated by the first range, and in a high values of supply insufficiency,
corresponding to very large shortfalls in providing the demanded quantity. The examined
ranges are defined as: ∆L = mink{∆k}, ∆U = maxk{∆k} while ∆M = ∆L+∆U

2 .
In Equation (13), the absolute difference between the demand representation of each

customer k and the transported quantities computed from the previous stage (stage 1)
is shown. In order to model the magnitude of the failure in customer satisfaction, the
following constraints are additionally introduced:

∆L·λk ≤ QU
k ≤ ∆M·λk, ∀k (14)

∆M·ζk ≤ QO
k ≤ ∆M·ζk, ∀k (15)

λk + ζk = 1, ∀k (16)

Constraints (14) and (15) are introduced to model the deficit in demand under or
over a pre-specified threshold. Binary variables λk and ζk are mutually exclusive, as any
shortfall in demand can be characterized as over or under a specific threshold but cannot
fall in both categories, as indicated in (16).

Finally, in stock out instances, several corrective actions should be undertaken to
improve the service level without significantly increasing the cost. After the introduction
of these corrections, the new objective function is as follows (see Appendix B for a detailed
description of the associated corrections to the original objective function):

TC1 = TC + ∑
j

∑
k

cPO
jk ·Ejk + ∑

j
∑
k

cPU
jk ·Rjk + ∑

k
σ·
√

ELDk (17)

where the Expected Lead Time (ELD) is computed based on the following equality:

ELDk = Tu·Pk

(
QO
)
·ζk + Tl ·Pk

(
QU
)
·λk (18)

In the objective function presented in (17), σ is the standard deviation of unsatisfied

demand for customer k such that: σ =

√
∑k(∆κ−∆k)

2

n−1 and ∆k is the mean unsatisfied demand.
From the above analysis, the following levels of decision are derived from each stage:

• 1st stage:

# Produced and transported quantities;
# Selected warehouses and capacity;
# Supply chain network;
# Demand deficit.

• 2nd stage:

# Stock out and overstocking probabilities;
# Expected lead time (ELD);
# Quantities that should be produced to cover unsatisfied demand.

3.1.3. Stochastic Model

To introduce inherent uncertainty into the model, we draw from the well-established
fluid mechanics theories [76,77], wherein flows along the lines of symmetry (e.g., on the
axis of a cylinder) are known to be perfectly deterministic while the ones closer to the edges,
e.g., boundary layer Taylor-Couette flows, show statistical fluctuations due to boundary
layer stress. For such systems, the complete solutions of the model are taken as the linear
superposition of the deterministic flow together with a stochastic noise term, where the
noise distribution will characterize the actual system concerned. From the perspective of
our two-tiered model structure, model 1 will serve the role of the deterministic (MINLP)
solution that then will be noise mixed to define model 2. The solution of the entire system
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is then the sum of the MINLP deterministic solution together with an additive stochastic
noise, as detailed below:

P̃i = Pi + η, ∀i (19)

Q̃ij = Qij + η, ∀i, j (20)

Q̃jk = Qjk + η, ∀j, k (21)

f or e = 1, . . . n

f or e′ = 1, . . . , n

X̃ee′ = Xee′ + ηee′

end

end

(22)

Equations (19)–(21) represent a De Dominicis-Martin [77] representation, where the
deterministic variables have been replaced by their stochastic equivalents (η). As discussed
before, the total solution is then a linear sum of the deterministic component (MINLP)
together with a noise term (η). This replacement procedure is mathematically described
in (22).

The optimization kernel was executed over multiple time loops within a Matlab-
based architecture.

3.2. Implementation of Deterministic and Stochastic Models

In the current section, a graphical representation of the implementation steps of the
deterministic and stochastic models is presented in Figures 3 and 4, respectively. In the first
case, the model is solved deterministically. As seen in Figure 3, initially the mixed-integer
programming (MIP) problem is solved, while the shortfalls in the demand are computed
for each customer. To measure the magnitude of stock out instances, it is assumed that if
∆κ is more than the average stock out quantities, there is a large deficit in meeting demand
and thus the expected lead time for demand satisfaction will be larger than in the case
in which this deficit is of less magnitude. The final step, as seen in Figure 3 below, is the
calculation of the MINLP model, wherein the expected lead time, the probabilities of over-
and understocking instances, and the levels of variables are provided.
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On the contrary, in the stochastic case proposed and developed in the current study,
the MINLP model is solved for different noise representations for the basic variables that
concern the production and transportation of flows as described in Equations (19)–(21).
The introduction of noise into the variables is implemented using procedure (22). For each
new variable, the MINLP may yield a feasible solution (optimal, local optimal of integer)
or an infeasible solution. Unfeasible solutions might represent a significant loss for the
supply chain. This needs to be carefully and independently addressed in a separate work.
A counter is introduced to model each choice where the MINLP model yields a feasible
solution, as presented in Figure 4 below.

Risk Assessment

In this sub-section, the different noise functions utilized to model the stochastic part of
our proposed supply chain network model are presented. The representations of different
distributions of noise used are presented and graphically illustrated in Figure 5 below:

• Gaussian noise;
• Lognormal noise;
• Pareto noise for various alpha levels (α = 0.01; α = 0.5; α = 0.99).
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4. Results

In the current section, we focus on the comparative results between the supply chain
models including noise (stochastic model) and the typical model without noise (deter-
ministic model). The quantities Qij and Qjk denote the transported quantities from plant
i to warehouse j and from warehouse j to customer k, respectively. Pi is the production
capacity for plant i. We want to see which stochastic model is closest to the deterministic
fixed-point model. To provide the most suitable representation of differences between
estimated quantities for the various models, and due to the reasonably large number of
nodes considered at each echelon, heatmap plots are presented. In our estimation, we have
assumed this nodal number to be 20 |I| = |J| = |K| = 20. In Figure 6 below, the results of Pi
estimations for the different noise realizations are shown. Our stochastic modeling shows
that the optimized cost under the assumption of a Pareto noise distribution (for Pareto
exponent a→0) comes closest to the deterministic prediction, while Pareto distributions
with larger exponent values as well as the other distributions (i.e., lognormal and Gaussian)
lead to poor cost optimization schemes.
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Next, in Figure 7 below, the results comprising of the differences between the deter-
ministic variable (Qdet

ij ) and stochastic ones (Qnoise
ij ), which correspond to the results of

transported quantities from plant i to warehouse j, are presented. If these values are closer to
0, then it can be concluded that the addition of the specific noise does not have a significant
impact on the overall supply chain network design. In Figure 7a, in presence of Pareto
noise with a = 0.01, most of the area lies in the range of [−100, 100] (green and purple color).
This means that the fluctuations from the deterministic values of variable Qij can range
from −100 to 100. Figure 7b demonstrates that the fluctuations are increasing to the range
[−400, 200] when considering Pareto noise with a = 0.5. Figure 7c depicts the differences
between a deterministic model and stochastic model with Pareto noise (a = 0.99). Although
most of the area lies in the range of [−500, 500], the “bumps” reduce when compared to the
Pareto (a = 0.5). Figure 7d (Gaussian case) clearly shows fluctuations, most of which lie in
the range of [−100, 100]. Finally, in Figure 7e there is approximately the same image as in
Figure 7d, but nevertheless most of the area lies in the range of [−100, 0].

To provide an overall measure of the comparison results presented above, the standard
deviation (σ) of the differences derived after the introduction of each noise representation
with the deterministic ones is presented in the following Table 1.

Table 1. Standard deviation (σ) of the differences between the deterministic value of variables and
noise representation.

Noise Representation Qdet
ij −Qnoise

ij Standard Deviation (σ)

Pareto Noise (a = 0.01) 27.92
Pareto Noise (a = 0.5) 70.16
Pareto Noise (a = 0.99) 97.65

Gaussian Noise 29.39
Lognormal Noise 98.97
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Best performance, based on the overall measure of σ, is shown by the Pareto (a = 0.01)
model (σ = 27.92), followed closely by the Gaussian stochastic specification (σ = 29.36). The
worst fit, on the other hand, is shown for the lognormal noise stochastic model (σ = 98.97).
Note that depending on the value of the Pareto exponent, the distribution will have a sharp
or a long-tailed decay. On the other hand, a Gaussian system is finitely correlated and also
symmetric, which is easier to analyze but the cost is accuracy.
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5. Discussion and Conclusions

Effective supply chain management is a key concern for companies, especially in the
realm of the environmental concerns of green supply chain management promoting Agenda
2030. The optimal design of a supply chain network may be oriented from the customer’s
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perspective (namely “pull” systems) or from production’s perspective (namely “push”
systems) [78]. In “pull” systems, demand drives production while, in the second case,
production is fixed based on demand estimation. Such deductions are likely to be modified
once the time evolution of a supply chain is considered [79]. However, in most cases
the optimal design of the supply chain network is constructed around parameter values
that approximate the upper and lower bounds of the transported quantities. In several
studies, stochasticity has been introduced either as different scenarios or by integrating a
statistical distribution into the parameter (expected value), to capture the characteristic of
uncertainty [40].

None of these approaches, though, reflect the absolute real situation as the uncertainty
is measured based on the parameter and not based on the variable space, aside from
the fact that such subroutines can only lead to implicit uncertainty measures at best and
inaccurate predictions at worst. The previous statement can be easily understood with the
following example. If the well-known ‘bullwhip’ effect occurs [80], then the variable that
corresponds to the quantities that are transported from the final node of the supply chain to
the customer’s site has to report this malfunction in the supply chain operation. Assuming
further that stochastic fluctuations are driving the demand line, the production is adjusted
based on the new value of demand; however, the information mismatch is not taken into
account. The integration of noise into the variables instead of the parameters resets the
problem at its fundamental base and remodels the information mismatch.

The probabilistic nature of this study on generic non-equilibrium systems, where the
inputs are essentially stochastic, can only be assessed on a statistical manifold. The principle
of maximum entropy stipulates that an equilibrium system that is largely unperturbed
by ambient perturbations is characterized by a state of maximum entropy. That is the
underlying thematic of this study, which is to arrive at stable equilibrium fixed points from
a study of dynamically evolving non-equilibrium processes. This has been done using a
two-echelon model, which is the most minimalist description conceivable. Such a state of
maximized entropy incorporates all inherent stochastic fluctuations, inclusive of (business
and risk) uncertainties that a real business model needs to accommodate. To achieve this,
we have considered a two-stage supply chain modeling approach where, in the first stage, a
MILP model is solved to provide the solutions for the second model; the levels of solutions
that are derived from the first model concern the construction of the supply network and
solutions that correspond to quantities transported throughout the supply chain. In the
second model, the expected lead time is measured based on the amount of unsatisfied
demand (∆). Imposing thresholds on “small” or “large” ∆, the network is reconstructed
providing additional information regarding the capacity of the facilities and the magnitude
of products that need to be constructed, as it is assumed that warehouses serve as small
production plants to minimize the expected lead time and therefore increase service level.
Specifically, we propose a mechanism involving stochastically varying production and
transportation costs in the supply chain network. In doing this, three types of stochastic
noise are examined: normal (Gaussian), lognormal, and Pareto. The obtained results
indicated large differences between the fitted models, with the lognormal noise model
producing a larger fluctuation from the actual situation (deterministic), while a smaller
fluctuation is observed for the Pareto noise, and especially the one with the smallest
exponent (α = 0.01), followed by the Gaussian model.

Generally, we see that a very low Pareto noise (α ≈ 0.01) is very well risk managed,
since this is very close to a deterministic model. Moreover, note that as a general stochastic
disturbance, a Gaussian fluctuation shows σ very close to that of Pareto for α = 0.01. This
establishes that most real models will on average be risk averse if the stochasticity follows a
normal distribution. Another interesting finding from the results is that Pareto models have
a large fluctuation depending on the choice of α parameter. From a managerial perspective,
this structure offers numerous advantages. First, this clearly tells us that real uncertainty
measures are likely to be non-Gaussian rather than Gaussian, which probabilistically
optimizes the risk percentage. Second, very low Pareto exponents effectively enumerate a
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correlation-independent uncertainty. In other words, a lower Pareto exponent points to the
limit of uniform distribution, whereas a large Pareto exponent will point to an improbable
event. Since the target of this analysis is to identify the impact of factors that dominate
the degree of departure of a supply chain network from an idealized Gaussian model, the
Pareto exponent value works as a statistical descriptor providing this information. This
means we now have an enumerator that clearly separates the risk associated with one
measure from that of the other. For example, uncertainty in worker numbers due to civil
or political unrest is known to affect the product line delivery rate. Using our model, we
will now be able to establish by how much. Finally, a practical manager needs to rank
uncertainties in order of their merit. Progressively lower values of the Pareto exponent
offer a statistical measure of ranking.

The derived cost function showcases how to incorporate such stochasticity in a supply
chain model and what eventual benefits one may derive out of it. As a tailored example,
we show that a producer may benefit from a better return only through a suitable selective
choice of producers whose production cost probability density function has a Pareto
distribution. Such a study can have a significant impact on any overall supply chain cost
due to the linearly increasing objective function. While such stochastic optimization is not
unknown in the realm of statistical mechanics (Spall, 2003), the mapping is an altogether
new concept in supply chain literature; an approach that has the prospect of coming up
with rich dividends in the future.
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Appendix A. Index and Variable Explanation

Index
i Plant

j Warehouse

k Customer

Continuous Variables
TC Total supply chain cost

Pi Produced quantities in plant i
Qij Transported quantities from plant i to warehouse j
Qjk Transported quantities from warehouse j to customer k
Ejk Transported quantities from warehouse j to customer k that exceed a certain level (high)

P̃i Produced quantities in plant i with noise representation

Q̃ij Transported quantities from plant i warehouse j with noise representation

Q̃jk Transported quantities from warehouse j to customer k with noise representation

Rjk Transported quantities from warehouse j to customer k that exceed a certain level (low)

Wj Capacity of warehouse j
ELDk Expected lead time of customer k
Pk
(
QO) Stock out probability of customer k

Pk
(
QL) Overstocking probability of customer k

∆k Deficit in demand satisfaction for customer k
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Binary Variables
Xij 1 if the corresponding connection between plant i to warehouse j exists, 0 otherwise

Xjk 1 if the corresponding connection between warehouse j to customer k exists, 0 otherwise

Yj 1 if warehouse j is selected, 0 otherwise

Kjk 1 if small quantities will be delivered from warehouse j to customer k due to large demand deficit, 0 otherwise

Ωjk 1 if large quantities will be delivered from warehouse j to customer k due to large demand deficit, 0 otherwise

λk 1 if the deficit in demand satisfaction lies in the interval
[
∆L, ∆U

]
, 0 otherwise

ζk 1 if the deficit in demand satisfaction lies in the interval
[
∆U , ∆

]
, 0 otherwise

Parameters
PU

i Upper bounded production of plant i
PL

i Lower bounded production of plant i
QU

ij Maximum capacity of transported quantities from plant i to warehouse j

QL
ij Minimum capacity of transported quantities from plant i to warehouse j

QU
jk Maximum capacity of transported quantities from warehouse j to customer k

QL
jk Minimum capacity of transported quantities from warehouse j to customer k

Ij Inventory held at warehouse j
Dk Demand of customer k
∆k Stock out quantity in customer k
Tu Maximum time for product delivery

Tl Minimum time for product delivery

αj Coefficient relating quantity at capacity at warehouse j

β jκ
Production rate for quantities stored at warehouse j that will be delivered to customer k in order to cover the high
deficit in demand satisfaction.

γjκ
Production rate for quantities stored at warehouse j that will be delivered to customer k in order to cover the low
deficit in demand satisfaction.

Cost Parameters
cP

i Production cost of plant i
cVTR

ij Variable transportation cost of plant i to warehouse j

cFTR
ij Fixed transportation cost of plant i to warehouse j

cVTR
jk Variable transportation cost of warehouse j to customer k

cFTR
jk Fixed transportation cost of warehouse j to customer k

cIN
j Installation cost of warehouse j

cPO
jk Production cost of small quantities that will be manufactured in warehouse j and will be delivered to customer k

cPU
jk Production cost of large quantities that will be manufactured in warehouse j and will be delivered to customer k

Appendix B. Implementation of Stock Out Instances in the Deterministic Model

In stock out instances, several corrective actions should be undertaken to improve
the service level without significantly increasing the cost. In the case wherein the deficit
in demand belongs to an interval above the predetermined threshold, new quantities are
produced from the fixed inventory kept in warehouse j (Ij), along with the corresponding
deficit of demand for this particular customer k.

If the quantity that corresponds to low values of supply insufficiency and binary
variable that corresponds to the low range become 1 for some indices of customers of k
(k1), then λκ1 = 1 and, based on the predetermined range in (14), warehouses that are also
assumed to be production plants holding inventory used for manufacturing purposes will
have to produce additional quantity equal to Rjk as seen in (A2). Constraint (A2) provides
a value that corresponds to the quantity to be produced based on constraint (A1), as binary
variable Kjκ takes a value of 1 if λκ equals 1. In that case, the quantity that will eventually
be produced by warehouse j in order to facilitate a medium stock out occurring at customer
k should be more than γjκ ·Hjκ ; γjκ stands for the production coefficient of warehouse j for
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each customer k, and Hjκ is a minimum level of inventory stored for the production of the
necessary quantity in warehouse j in order to facilitate a medium stock out occurring at
customer k Constraint (A3) models the occurrence of a large stock out instance, while the
production quantity that is needed to be sent to customer k from warehouse j is defined
as Ejκ , and should be more than the warehouse’s j production rate (β jκ) multiplied by the
sum of the overall inventory held at warehouse j and stock out occurred in customer k as
in (A4).

Kjk ≤ λk, ∀k (A1)

Rjk ≥ γjk·Hjk·Kjk, ∀j, k (A2)

Ωjk ≤ ζk, ∀j, k (A3)

Ejk ≥ β jk·
(

Ij + ∆k
)
·Ωjk, ∀j, k (A4)

Constraint (5) is now reformulated as follows:

∑
j

Qjk + QU
k + QO

k = Dk, ∀k (A5)

Based on (A5), the probability of stock out or overstock can be computed. If demand
is normally distributed Dk ∼ N

(
0, σ2), then ∆k is assumed to be normally distributed as

well (as the difference of two random variables that are normally distributed. Thus, stock
out and overstocking probabilities are introduced with the following constraints:

Pk

(
QU
)
=

1
2

[
1 + er f

(
QU − ∆k

σ
√

2

)]
, ∀k (A6)

Pk

(
QO
)
= 1− Pk

(
QU
)

, ∀k (A7)

The service level in the supply chain can be easily quantified with the expected lead
time, namely, the amount of time needed for a product to be delivered to the customer after
order placement.

The expected lead time (ELD) is computed based on the following equality:

ELDk = Tu·Pk

(
QO
)
·ζk + Tl ·Pk

(
QU
)
·λk (A8)

This leads to the new objective function as follows:

TC1 = TC + ∑
j

∑
k

cPO
jk ·Ejk + ∑

j
∑
k

cPU
jk ·Rjk + ∑

k
σ·
√

ELDk (A9)
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