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Abstract. In Evolutionary Robotics, Lexicase selection has proven effective when a single task is

broken down into many individual parameterisations. Evolved individuals have generalized across

unique configurations of an overarching task. Here, we investigate the ability of Lexicase selec-

tion to generalize across multiple tasks, with each task again broken down into many instances.

There are three objectives: to determine the feasibility of introducing additional tasks to the exist-

ing platform; to investigate any consequential effects of introducing these additional tasks during

evolutionary adaptation; and to explore whether the schedule of presentation of the additional

tasks over evolutionary time affects the final outcome. To address these aims we use a quadruped

animat controlled by a feed-forward neural network with joint-angle, bearing-to-target and sponta-

neous sinusoidal inputs. Weights in this network are trained using evolution with Lexicase-based

parent selection. Simultaneous adaptation in a wall crossing task (labelled wall-cross) is explored

when one of two different alternative tasks is also present: turn-and-seek or cargo-carry. Each

task is parameterised into 100 distinct variants, and these variants are used as environments

for evaluation and selection with Lexicase. We use performance in a single-task wall-cross envi-

ronment as a baseline against which to examine the multi-task configurations. In addition, the

objective sampling strategy (the manner in which tasks are presented over evolutionary time) is

varied, and so data for treatments implementing uniform sampling, even sampling, or degrees

of generational sampling are also presented. The Lexicase mechanism successfully integrates

evolution of both turn-and-seek and cargo-carry with wall-cross, though there is a performance

penalty compared to single task evolution. The size of the penalty depends on the similarity of the

tasks. Complementary tasks (wall-cross/turn-and-seek) show better performance than antago-

nistic tasks (wall-cross/cargo-carry). In complementary tasks performance is not affected by the

sampling strategy. Where tasks are antagonistic, uniform and even sampling strategies yield sig-

nificantly better performance than generational sampling. In all cases the generational sampling

requires more evaluations and consequently more computational resources. The results indicate

that Lexicase is a viable mechanism for multi-task evolution of animat neurocontrollers, though

the degree of interference between tasks is a key consideration. The results also support the

conclusion that the naive, uniform random sampling strategy is the best choice when considering

final task performance, simplicity of implementation, and computational efficiency.

Keywords: multi-objective, many-objective, evolutionary robotics, lexicase selec-
tion, transfer learning
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1 Introduction1

1.1 Motivation2

Evolutionary Robotics (ER) uses principles of evolutionary computation to discover behaviours in artificial3

autonomous systems through continual adaptation of morphologies and controllers (Floreano et al., 2008).4

The ambitions of ER are aligned with autonomous robotics more generally, aiming to find control architec-5

tures for robots that embody a general capability to deal with problems in their worlds (Vargas et al., 2014).6

In the present work, we consider this general capability to mean two things: that a controller can perform7

well across variations of a single task (“semi-generalised control”), and that the controller is competent in8

multiple task domains which do not necessarily overlap. Current progress in ER means that finding con-9

trollers with competency both where multiple tasks exist and also where each task entails a multiplicity of10

individual parameterisations, is a desirable and feasible research objective.11

1.2 Lexicase Selection12

Alongside fitness metrics, genetic encodings, and other crucial components of evolutionary algorithms, the13

method of choosing parents for new generations, the “selection operator”, is a key consideration. Early14

research in evolutionary computing used a single measure of fitness to select parents and the limitations15

of this approach ultimately highlighted the need to use selection operators that simultaneously consider16

a number of different dimensions of performance (Mitchell, 1998). Various evolutionary techniques exist17

to map and explore effective solutions in a multi-objective optimisation problem. Basic normalisation and18

averaging of a fitness vector producing a single scalar quantity can be applied, though this technique does19

not generally scale well, tending to discard high-performing solutions where they are weak in another di-20

mension. More advanced algorithms like NSGA-II (Deb et al., 2002) explicitly acknowledge the Pareto front21

and archive and sort Pareto-dominant solutions. These algorithms select from the optimal front at each22

iteration, though they do not perform well in many-objective problems (Seada & Deb, 2015), colloquially de-23

fined as problems with more than three objectives. Lexicase selection is a novel many-objective selection24

operator that often selects specialists (Helmuth et al., 2020), i.e. individuals that are effective in a subset25

of the objective space but not necessarily the best in every objective, and is capable of scaling to at least26

200 individual objectives (Moore & Stanton, 2021).27

1.3 Our ER problem domain28

In previous work (Moore & Stanton, 2017) we explored Lexicase selection in ER where feed-forward neural29

controllers are optimised to discover quadrupedal walking gaits. Animats must move towards a target while30

climbing over a wall of varying height. The wall is positioned half way between the animat’s starting point31
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and its target location. We call this task wall-cross. Variation in this obstacle constitutes the task param-32

eterisation (i.e. the semi-generalised control problem). The obstacle can be one of 100 different heights33

when presented to animats, resulting in a many-objective optimization problem. Desirable gaits are those34

that successfully negotiate many different heights1. We observed that Lexicase evolved populations towards35

high fitness, exploring difficult areas of the solution space whilst maintaining competency on parts of the36

problem that had already been solved. We compared Lexicase to algorithms that were designed specifically37

for this problem–those presented in Stanton and Channon (2013)–and found that Lexicase, even without38

specific parameter tuning, outperformed those algorithms in all cases.39

1.4 Expanding the domain to multiple tasks40

Species in the natural world have evolved over millions of years to perform well on a variety of arbitrary prob-41

lems posed by their environments: natural organisms do not evolve in response to a single, clear adaptive42

pressure in isolation. It is likely that these overlapping pressures are an important driver of the impressive43

general competences present in nature. Environmental challenges can reinforce each other and have the44

potential to select strongly for common adaptations that form the basic building blocks for more advanced45

adaptive responses. Combinations of these adaptations confer specific capabilities and ultimately respond46

to particular existential struggles encountered by evolving species.47

With this in mind, the motivation of the present paper is to explore the performance of Lexicase selection48

in the ER environment outlined above while expanding the range of objectives to include a second task.49

Alongside the wall crossing task we introduce and explore two new problems: turn-and-seek, and cargo-50

carry.51

In turn-and-seek, the wall is removed and the target position is parameterised into one of 100 configurations.52

Each configuration translates to a placement of the target on a 180 degree arc centered in front of the animat53

with performance again measured by the proximity to this target.54

Figure 1 depicts an animat in each of the three task environments. In the cargo-carry task, animats are55

instantiated with a weighted box on their torso. Successful animats in this task have gaits that maintain a56

relatively stable torso and thus are able to carry the cargo without it falling to the ground. Here, performance57

is measured by time. Animats accrue fitness until the box falls from the torso to the floor, at which point the58

simulation is terminated. The task is parameterised by cargo mass: each of the 100 environments of this59

task simulates a different weight for the animat to carry.60

1It is important to note that in this configuration, animats do not have information about the wall height. Their gaits are blind
and driven only by proprioceptive, directional, vestibular and spontaneous cyclical input signals.
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Figure 1: Examples of animat evaluation in the three task environments: wall-cross (left); turn-and-seek
(centre); cargo-carry (right). Wall-cross and turn-and-seek both have a target that the animat is navigating
toward. This can be seen in the turn-and-seek task as the cube in the foreground.

1.5 Objectives61

In the present study there are three main research objectives. First, we wish to determine the feasibility of62

introducing the additional tasks outlined above to the existing platform. This is in terms of the practicality63

of integrating them into the algorithm and also to highlight any problems that can occur with the approach.64

The second aim is to investigate any consequential effects of introducing these tasks during evolutionary65

adaptation. These consequences could include reduced performance in one or more tasks or, conceivably,66

positive synergistic effects if species discover broad, underlying competencies supporting multiple tasks67

which are threshold discoveries that open domains of even higher fitness.68

Third, we aim to explore whether the schedule of presentation of the additional tasks over evolutionary time69

affects the final outcome. We consider whether a) structuring the presentation of tasks on a generation-70

by-generation basis, or b) enforcing a certain amount of time spent on each task, has effects on the final71

outcome of the algorithm in terms of performance of evolved species in specific tasks as well as to the72

overall performance across the complete problem space.73

Broadly, we aim to present a first attempt to show the utility of Lexicase selection in multi-task ER problems.74

We provide a comparative analysis, contrasting the outcomes of evolution in the multi-task environments75

with those of single-task populations, a discussion of these results in terms of the interactions between the76

tasks and subtasks involved, and suggestions for future research directions and expansion of these ideas.77

2 Background and Related Work78

Evolved robot controllers have proven effective in legged locomotion (Baydin, 2012; Clune et al., 2009; Nolfi79

& Floreano, 2000) including transferring evolved controllers to physical systems (Koos et al., 2010; Ruud et80

al., 2016) with fitness often based on the distance traveled in a fixed amount of time. Increasingly, secondary81
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considerations like damage mitigation, and generalizability of behaviours (Pinville et al., 2011) encourage82

the use of multi-objective algorithms considering multiple performance metrics. Biological observations83

further enhance systems by bringing in objectives related to efficiency of locomotion (Moore & McKinley,84

2016). Subsumption architectures (Brooks, 1986; Koza, 1994; Lessin et al., 2013), behavioural diversity ap-85

proaches (Doncieux & Mouret, 2013) and the combinatorial multi-objective evolutionary algorithm (Huizinga86

& Clune, 2021) have demonstrated controllers capable of multiple behaviours in one platform. Generalizing87

controllers spans learning and reacting to environmental contexts across many environments (Lehman et al.,88

2013), adapting and reconfiguring morphology in response to damage (Kriegman et al., 2019), and exhibiting89

multiple gaits for one morphology (Cully et al., 2015). Evolving distinct behaviours in one controller remains90

a long-standing goal in ER.91

Adding generalizability to evolved controllers typically involves moving towards multiple fitness metrics.92

Multi-objective and many-objective algorithms like Lexicase selection enable scaling fitness objectives into93

the tens or hundreds of individual objectives. In this study, we expand on earlier investigations (Moore &94

Stanton, 2017, 2018, 2019, 2020, 2021) by adding new meta-tasks in addition to wall crossing, evaluating95

the performance of evolved individuals and investigating the performance of Lexicase selection. Adding a96

second task could lead the evolutionary process to new areas in the search space resulting in higher per-97

formance (Wagner et al., 2020). Switching between environments can also lead to more effective overall98

performance across tasks (Canino-Koning et al., 2019; Nahum et al., 2017). Understanding the underly-99

ing mechanisms that drive Lexicase’s performance, and especially different parameterizations (Hernandez100

et al., 2022; La Cava et al., 2016) is critical to applying Lexicase effectively. The large search space of101

many-objective problems can create a computational challenge. Downsampling the number of objectives102

for consideration during Lexicase selection (Helmuth & Spector, 2020; Hernandez et al., 2019) reduces103

computational overhead by limiting a selection event to a subset of the objective space. We downsample to104

10 objectives from a possible 200, consistent with previous wall crossing experiments.105

3 Methods106

Parameters for the animat, controller, two of three environments, and evolutionary algorithm have been107

maintained from earlier work (Moore & Stanton, 2021). The software used for these experiments is publicly108

available and linked at the end of this paper.109

Animat Morphology The quadrupedal animat, shown in Figure 1, has a cube-shaped torso with legs placed110

at the four lower corners. Each leg has a 2-degree of freedom (DOF) hip and 1-DOF knee. Hips move laterally111

and vertically allowing the leg to go from straight out from the torso to completely vertical. Knees allow the112

legs to curl under and towards the torso. Animats get feedback on their position relative to a target through113
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two sensors placed on either side of the torso.114

Animat Controller A feed-forward artificial neural network (ANN) provides control signals for the joints115

consistent with prior investigations (Moore & Stanton, 2020, 2021). 16 inputs comprising 2 periodic oscil-116

lating signals, 2 position sensor signals, and 12 for feedback from the joints provide information about the117

current state of the animat within the simulation. ANNs have one 12 node hidden layer and 12 outputs to118

control each joint. Genomes are encoded as 336 evolvable weights.119

Task Overview Three primary tasks comprise the objectives in this paper: wall-cross, turn-and-seek, and120

cargo-carry. Each of the primary tasks is subdivided into 100 unique instances resulting in a total of 300121

possible objectives. In wall-cross, animats are evaluated on their ability to navigate to a target placed in122

front of the animat beyond a wall. Wall height ranges over 100 values from almost non-existent to the height123

of the animat’s hip, see Figure 2 (left). Figure 2 shows turn-and-seek, individuals navigate to a target placed124

on an arc from the animat’s left to right depending on the specific instance. cargo-carry places a box of125

varying density on top of the animat where the box must be carried for as long as possible. Due to the nature126

of the other two tasks, animats will still attempt to walk toward a target but fitness is not scored based on127

distance. Rather, fitness is the total time the box is kept aloft, with a possible maximum value of 20 as128

simulations are conducted for 20 seconds.129

Figure 2: (Left) The maximum wall height in wall-cross is set at the animat’s hip height if the leg is per-
pendicular to the ground. Initial position of the animat, wall, and target are shown from a top-down view.
(Right) turn-and-seek is divided into 100 sub-objectives with the target placed on a semi-circle at 1.8◦ gra-
dations. Fitness is how close the animat is to the target at a fixed timepoint. (Not to scale.) Radial lines
indicate how fitness increases as the animat moves toward the target. Fitness is ultimately a straightline
distance to target depending on the specific turn-and-seek environment being evaluated. Figures originally
presented in (left) Moore and Stanton, 2020 and (right) Moore and Stanton, 2021.

The three tasks together are likely to facilitate some transfer of behaviors as each requires locomotion to130

be effective. wall-cross and turn-and-seek are complimentary as effective locomotion and the ability to131

navigate to a target are behaviors that lead to high performance. However, cargo-carry has the potential to132

be antagonistic to the other two tasks as stable locomotion is favored to elicit high performance in keeping133

the cargo on top of the animat. This is in opposition to wall-cross and turn-and-seek which have an emphasis134
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on fast locomotion to reach the target within the simulation time. Prior investigation by Dolson et al., 2018135

suggests that Lexicase selection may be sensitive to antagonistic objectives.136

Evolutionary Algorithm Downsampled ϵ-Lexicase Selection (Helmuth & Spector, 2020; La Cava et al.,137

2016) is the evolutionary algorithm used in this study. Individual treatments comprise 20 replicate runs,138

each with a unique starting seed. 5,000 generations of evolution are run on populations of 50 individuals.139

A selection event consists of a subsample of five individuals compared on up to 10 objectives from the140

treatment’s objective space. An ϵ- of 10% is applied to comparisons between individuals. As long as an141

individual is above 90% of the performance of the best individual in the sample for the objective under142

consideration, it is considered to be tied with the best individual and will move on to performance evaluation143

on the next objective. If two or more individuals still remain under consideration after all 10 downsampled144

objectives have been evaluated, a random selection of the remaining individuals in the subsample occurs145

and a tie event is recorded.146

Objective Sampling Strategies In this paper, we are interested in how multiple tasks, and the interaction147

between them on evolved controllers, impact performance of Lexicase selection. Treatments are structured148

based on the tasks they include and how they sample specific task instances in the objective space to best149

elicit generalized controllers. Three sampling strategies alter how objectives are selected during Lexicase.150

Note that numbers in the sampling strategy indicate how many tasks are included. The sampling strategies151

are as follows:152

1. naive_2t is the baseline, sampling 10 objectives uniformly per generation across the tasks included in153

a treatment. Objectives are randomly shuffled so that tasks do not always appear in the same order154

during Lexicase which would bias the process. Naive sampling is the default behaviour in Lexicase155

selection.156

2. even-shuf_2t samples 5 objectives from each of two tasks per generation. Objectives are then shuffled157

randomizing ordering during selection preventing one task always appearing first.158

3. flipN_2t sample 10 objectives per generation from only one of the two tasks. Once N generations have159

been selected from this task, a “flip” occurs after which objectives are sampled from the second task160

resulting in a changing evaluation environment during evolution. For example, with N = 50, objec-161

tives from the first task are selected for 50 generations before the next 50 generations are sampled162

from the second task. Flipping at every generation (flip1_2t) and every 50 generations (flip50_2t) are163

investigated in this study.164

Table 1 summarises the treatments explored in this study which are variations of the objective sampling165

strategies discussed above.166
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Label Sampling Strategy Task 1 Task 2
naive_1t Naive wall-cross NA
naive_2t_wt Naive wall-cross turn-and-seek
naive_2t_wt-10000 Naive, 10k gens wall-cross turn-and-seek
naive_2t_wc Naive wall-cross cargo-carry
even-shuf_2t_wt Even Shuffle wall-cross turn-and-seek
even-shuf_2t_wc Even Shuffle wall-cross cargo-carry
flip1_2t_wt Flip every generation wall-cross turn-and-seek
flip1_2t_wc Flip every generation wall-cross cargo-carry
flip50_2t_wt Flip every 50 gens wall-cross turn-and-seek
flip50_2t_wc Flip every 50 gens wall-cross cargo-carry

Table 1: Summary of treatments in this study. 20 replicates are undertaken for each treatment. wt indicates
wall-turn environments while wc indicates wall-cargo environments.

4 Results167

4.1 Wall Crossing Performance One Task vs Two Task168

In (Moore & Stanton, 2018, 2019, 2020) we investigated characteristics of Lexicase selection in quadrupedal169

animats evolved for the single task of wall crossing, across 100 unique wall heights (objectives). naive_1t170

provides a baseline of performance replicating results from earlier investigations. Effective wall crossing in171

these individuals involves both crossing an obstacle of varying height while navigating to the target placed172

on the opposite side of the wall. Evolved individuals thus have some ability to navigate and locomote which173

is presumably beneficial in the turning task and also likely detrimental in the cargo task since movement174

can cause the cargo to fall to the ground. To establish benchmarks of how individuals only evolved for wall175

crossing versus those evolved to perform wall crossing and a second task, we investigate combinations of176

two environments as follows.177

Figure 3 plots the performance of the best individual per replicate for naive_1t and naive_2t_wt treatments in178

wall crossing. (The “1t” in naive_1t indicates evolution with only one task while “2t” signifies two tasks; “wt”179

in naive_2t_wt represents wall crossing and turn-and-seek as the two evolutionary tasks.) Blue and red dots180

indicate outliers from the respective treatment’s boxplot distribution both positive or negative. Each box181

represents the distribution of the best mean performance individual per replicate on the specific objective.182

Performance for the lower wall heights is nearly identical with most replicates able to reach the target. As183

wall height increases towards middle heights, individuals evolved only for wall crossing evolve higher per-184

formance than those evolved for both wall crossing and turning. Wall crossing ability tapers off in both as185

wall height reaches the upper limits, wherein very specific gaits must evolve to cross these challenging ob-186

stacles. naive_1t does significantly outperform naive_2t_wt in the wall crossing task. Statistical significance187

is determined by a Wilcoxon rank-sum test with Bonferroni correction throughout this paper.188

Figure 4 plots the performance of the best individual per replicate in the turning task for naive_1t and189
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Figure 3: naive_1t (blue) and naive_2t_wt (red) best individual by mean performance per replicate in wall
crossing task. Fitnesses below −0.4 indicate individuals that are unable to cross the wall. Figure adapted
from Moore and Stanton, 2021.

naive_2t_wt. Although not exposed to the turning task during evolution, many of the individuals evolved190

only for wall crossing in naive_1t are able to navigate to the target when it is placed nearly in front of the191

animat (objectives 40-60). As the target is placed further to the left or right, performance tapers off as these192

target locations are quite different than those encountered during evolution in wall crossing. naive_2t_wt193

significantly outperforms naive_1t with performance reaching nearly optimal by generation 500. Still, the194

ability to navigate to targets placed near the center for individuals in naive_1t suggest that the tasks of wall195

crossing and turn-and-seek may be complementary. That is, behaviours evolved for one task may assist in196

solving the other.197

Figure 4: naive_1t (blue) and naive_2t_wt (red) best individual by mean performance per replicate in turn-
ing task. naive_2t_wt evolves near perfect turning performance with only a few outliers not evolving full
generalization on this task. Figure adapted from Moore and Stanton, 2021.

naive_1t and naive_2t_wt are both evolved for 5,000 generations even though naive_2t_wt has 200 objectives198

across two tasks. The increase in the number of unique objectives might mean performance differences in199

wall crossing are due to fewer selection events occurring for the wall crossing task. We conduct a second two200

task naive treatment, naive_2t_wt-10000, to see if evolving for 10,000 generations allows for similar per-201
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formance in wall crossing. Figure 5 plots wall crossing performance for the best individual per replicate. No202

significant difference in wall crossing performance arises between naive_1t and naive_2t_wt-10000. Per-203

formance between naive_2t_wt and naive_2t_wt-10000 is also not significantly different. Naive selection204

strategies are able to evolve similar wall crossing performance, while also incorporating a second task when205

allowed to evolve for similar generations relative to the number of tasks. However, our goal with the other206

sampling strategies is to assess whether it is possible to evolve generalized two task performance in the207

same number of generations as one task performance. Thus, we only evolve for 5,000 generations in the208

remaining treatments.209

Figure 5: naive_1t (blue) and naive_2t_wt-10000 (red) best mean performance individual per replicate in
wall crossing. No significant difference in performance between treatments. Figure originally presented
in Moore and Stanton, 2021.

Cargo carrying provides another task to evolve individuals alongside wall crossing. Figure 6 plots the wall210

crossing performance for individuals evolved only for wall crossing in naive_1t and those evolved for wall211

crossing and cargo in naive_2t_wc (“wc” in naive_2t_wc represents wall crossing and cargo carrying as the212

two tasks against which agents are evaluated.) Performance in wall crossing of the best individuals evolved213

for wall crossing and cargo is significantly lower than that of individuals evolved only for wall crossing after214

5,000 generations. Furthermore, Figure 7 plots the cargo carrying performance for the best individuals in215

naive_1t and naive_2t_wc. Performance between the two treatments is significantly different with naive_2t_wc216

evolving near perfect performance in the cargo carrying task while naive_1t individuals have no ability to carry217

the cargo no matter the specific cargo density. It takes some time for the box to reach the ground resulting218

in fitnesses near 3 for naive_1t.219

For cargo carrying, individuals are not evaluated based on their distance from a target as in wall crossing220

and turning. Instead, individuals are measured on their ability to prevent the cargo from falling to the221

ground in terms of how many seconds they keep it aloft. The difference in selective pressure results in222

there being an antagonistic relationship between wall crossing and cargo carrying. This push-pull between223

the tasks invites the hypothesis that, compared to a naive mixing of tasks and objectives, a structured224
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Figure 6: naive_1t (blue) and naive_2t_wc (red) best mean performance individual per replicate in wall cross-
ing. Performance between the two treatments is significantly different.

Figure 7: naive_1t (blue) and naive_2t_wc (red) best mean performance individual per replicate in cargo task.
Performance between the two treatments is significantly different. Note the red bars are almost all at 20,
which is maximum performance in the cargo carrying task.

presentation of objectives over evolutionary time might improve generalised performance on both tasks.225

The rationale is that adaptation collapses to one of the two opposing problems when tasks and objectives226

are well mixed; by forcing longer adaptive periods on the other task it is possible that sufficient progress is227

made to steer populations towards areas of the solution space with potential to achieve high performance228

on both problems. This could be due to a differential in the (a posteriori) difficulty of the tasks, or simply a229

consequence of the complex dynamics of the adaptive landscape and evolutionary process.230

4.2 Two Task Complementary Treatments231

Figure 8 plots the best performing individual per replicate determined by mean performance in wall crossing,232

turning, and mean performance for all wt treatments. naive_1t is also provided as a baseline for comparison.233

All two task treatments evolve turning with no significant difference in performance. Wall crossing perfor-234

mance is consistent for all two task treatments as well. All wt treatments significantly outperform naive_1t235

in the turning task.236
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Figure 8: Best individual by mean performance across the two tasks per replicate across treatments run for
5,000 generations. Figure originally presented in Moore and Stanton, 2021.

Figure 9 plots the performance per individual objective for the best individual per replicate across the wt237

treatments. Although performance slightly lags naive_1t in all wt treatments for wall crossing, generalized238

behaviors are evident across wt treatments. All wt treatments evolve individuals capable of traversing low239

wall heights with performance tapering near themiddle wall heights. This is consistent with naive_1t although240

it does have more effective performance on the upper-middle wall heights. Tall walls are difficult to traverse241

due to the morphology of the animat and performance tapers off accordingly for all treatments.242

4.2.1 Lexicase Dynamics243

Examining the dynamics of Lexicase selection across objective sampling strategies can help elicit differ-244

ences that are not apparent from examining performance of evolved individuals. Figure 10 plots the total245

number of environments considered during selection per replicate over evolutionary time. A higher num-246

ber of selection environments indicates that a sampling strategy had to go farther into the downsampled247

objectives to separate individuals during the Lexicase process.248

Figure 11 plots the number of simulations conducted per replicate. As individuals are filtered out during249

selection, the total number of simulations declines. Treatments with fewer individual evaluations might250

be good at reducing the subsample of individuals in a selection to one or two performant individuals that251

are then tied during the remainder of a Lexicase selection event. Whereas, a high number of selection252

environments and subsequently high number of evaluations might mean a treatment is poor at filtering out253

individuals throughout selection. Both metrics can indicate the computational efficiency of a treatment.254

Although performance among the wall and turn sampling strategies are not significantly different, both255

flip treatments exhibit considerable disparity in both number of environments considered and individual256

evaluations between turn and wall environments while naive_2t_wt and even-shuf_2t_wt do not. Considering257

that the flip treatments sample objectives from only one task per generation it appears that turning is not258

as effective as wall crossing at separating individuals out during the selection process.259
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Figure 9: Performance per objective of the best individual by mean performance per replicate across wt
treatments run for 5,000 generations.

naive_2t_wt and even-shuf_2t_wt do not exhibit a similar difference between the two environments. Both260

treatments result in a uniform sampling between environments based on the two figures even though261

naive_2t_wt does not actively enforce even sampling. Given the differences in Figures 10 and 11 for flip262

versus non-flip treatments, we hypothesize that the turning task is not as effective in filtering individuals as263

12



Figure 10: Count of environments considered per replicate. all is the sum of wall and turn. Higher numbers
suggest more environments were needed per selection event during Lexicase. Figure originally presented
in Moore and Stanton, 2021.

Figure 11: Count of simulations per replicate. all is the sum of wall and turn. Simulations represent the
significant computational cost. Figure originally presented in Moore and Stanton, 2021.

the wall crossing task. Explicitly requiring that only objectives from turning be used for a generation as-in264

the flip treatments significantly increases computation time for an evolutionary run without a significant265

increase in performance in evolved individuals.266

Figure 12 plots the number of tiebreak events across replicates. Tiebreaks represent a situation where no267

individual is determined as better than the others in the sampled selection subset. There is no significant268

difference in the number of tiebreaks between naive_2t_wt and even-shuf_2t_wt, or between flip1_2t_wt and269

flip50_2t_wt. Adding the turning task significantly raises the number of tiebreaks between naive_1t and270

the two-task treatments while the flip strategy further increases tiebreaks. This additional dynamic further271

suggests that flipping is not an efficient Lexicase selection strategy for these two tasks. Specifically, a high272

number of tiebreaks suggests an inability to effectively filter less performant individuals if there is not a273

corresponding increase in performance relative to other treatments.274

Figure 13 plots the percentage of individuals filtered out in a selection event per objective on the left hand275

side with the number of times the objective occurs in a replicate on the right hand side. Wall crossing276

objectives are numbered 0-99 while turning is 100-199. The figure shows that across treatments, middle277
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Figure 12: Count of tiebreaks across replicates. Tiebreaks arise when selection cannot isolate one individual
during the Lexicase operation. Figure originally presented in Moore and Stanton, 2021.

wall heights are the most effective at reducing the number of individuals under consideration by Lexicase278

selection. We hypothesize that short walls are relatively easy to cross, assuming an effective locomotion279

strategy has evolved, while higher wall heights are also weak selectors as most individuals are incapable of280

crossing them. Middle wall heights reach a balance with only the most effective individuals able to cross.281

Turning suggests that the far left and far right objectives are the most effective filters while targets placed282

in front of the quadrupeds are less effective. Targets placed in front of the quadrupeds share similar sensor283

feedback as those of all wall crossing environments likely resulting in some behavioural transfer between the284

two tasks. These front facing targets are similar to low wall height objectives in wall crossing which primarily285

require an effective locomotion strategy and support the low filtering effectiveness of short wall heights.286

4.3 Two Task Antagonistic Treatments287

Figure 14 plots the best performing individual per replicate determined by mean performance in wall cross-288

ing, cargo carrying, and mean performance for all wc treatments. naive_1t is again provided as a base-289

line for comparison. All two task treatments evolve cargo carrying ability with no significant difference in290

performance, significantly outperforming naive_1t. Unlike the turning task, the best evolved wall crossing291

individuals from naive_1t are not effective at carrying cargo. This suggests that transfer of evolved be-292

haviours is reduced between wc when compared to results for wt in Figure 8. Individuals in naive_2t_wc,293

even-shuf_2t_wc, flip1_2t_wc, and flip50_2t_wc fail to evolve effective generalized wall crossing behaviour294

when compared to their associated treatments in wt.295

Figure 15 plots the performance per individual objective for the best individual per replicate across the wc296

treatments. In contrast to wt treatments, performance is noticeably lower in most wall heights. naive_2t_wc297

and even-shuf_2t_wc are able to evolve some competency on low wall heights while the flip treatments show298

lower performance. flip50_2t_wc is unable to cross any walls while evolving high performance in turning.299
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Figure 13: (Left) Filtering percentage during selection distribution across replicates. (Right) Each environ-
ment’s occurrence count in selection across replicates. Figure originally presented in Moore and Stanton,
2021.

4.3.1 Lexicase Dynamics300

Figures 16 and 17 plot the total number of selection environments and number of individual evaluations per301

replicate across treatment for the wall and cargo tasks. Although the relationship between the two tasks302

is different for wc, Lexicase dynamics are similar to wt. Figure 18 plots the number of tiebreak events per303

replicate across treatments. As in the wt experiment, the flip strategy has significantly higher number of304
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Figure 14: Best individual by mean performance across the two antagonistic tasks per replicate across
treatments run for 5,000 generations. Note y-axis for wall crossing is extended to -2 to include flip50_2t_wc
range.

tiebreaks than naive_2t_wc and even-shuf_2t_wc for two environment treatments.305

Figure 19 plots (left) the percentage of individuals filtered in a selection event per objective with the (right)306

number of times the objective occurs in a replicate. Here, dynamics are different than the wt experiments307

as the curve of filtering effectiveness for wall crossing objectives shifts towards lower wall heights. This is308

especially apparent in the flip1_2t_wc and flip50_2t_wc treatments. Cargo carrying filtering effectiveness309

is also quite low. The high occurrence count of cargo environments in flip treatments shown on the right310

column of Figure 19, the significantly higher count of tiebreaks versus naive and even shuffling, and the high311

performance in the cargo task together indicate that the general solution to the cargo-carry task across312

unique box densities is relatively easy to find without behavioural transfer from wall-cross.313

5 Discussion314

Generalized behaviour is a long-standing goal in robotics. Here, we evaluate Lexicase selection on evolving315

quadrupedal animats in two two-task generalization problems. Four objective sampling strategies exhibit316

moderate losses in performance in wall crossing compared to the baseline for the wt problem with a larger317

decrease in the wc problem for flipping strategies. The small performance differences between the sam-318

pling strategies, increases in computational effort for flip treatments, and no need to configure additional319

parameters suggests that a naive objective sampling strategy is effective across both two task problems320

examined in this study.321

Our first objective in this study is to assess the feasibility of integrating multiple environments into the322

evolutionary process with Lexicase selection. Notably, individuals in wt environments demonstrate both323

effective wall crossing on the majority of objectives and the ability to turn and seek a target across objectives.324

There are synergies between the two tasks that have likely been exploited in evolved individuals as we see325

some ability to execute turn-and-seek behaviours in naive_1t which does not encounter this task during326
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Figure 15: Performance per objective of the best individual by mean performance per replicate across wc
treatments run for 5,000 generations.

evolution. Since both tasks have a target, evolved individuals have their ability to navigate reinforced across327

tasks, leading to high performance in both. Individuals evolved in the wc environments evolve effective328

wall crossing behaviours in lower wall heights only, while they are effective broadly at the cargo carrying329

task. Observing evolved individuals in wc, carrying a box tends toward small leg movements kept under the330
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Figure 16: Count of environments considered per replicate. all is the sum of wall and cargo. Higher numbers
suggest more environments were needed per selection event during Lexicase.

Figure 17: Count of simulations per replicate. all is the sum of wall and cargo. Simulations represent the
significant computational cost.

Figure 18: Count of tiebreaks across replicates for antagonistic two tasks.

torso maintaining a stable body posture whereas higher wall heights in wall crossing require sweeping leg331

movements that reach upwards to step over the obstacle. These conflicting evolutionary pressures likely lead332

to the low performance in wall crossing for wc treatments and the reduced generalization of individuals in wc333
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Figure 19: (Left) Filtering percentage during selection distribution across replicates. (Right) Each environ-
ment’s occurrence count in selection across replicates.

versus wt. Still, Lexicase selection is able to integrate multiple general tasks effectively in the evolutionary334

process. We do observe a decrease in wall crossing performance when adding a second task in both wt and335

wc while keeping the number of generations of evolution stable across the one task baseline and two task336

treatments.337
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The second objective in this study is to examine any consequences of introducing the additional tasks,338

while the third objective explores the schedule of presentation of objectives over evolutionary time. flipping339

strategies are intended to allow the population to specialize on an environment for a specified number of340

generations. In flip1_2t_wt and flip1_2t_wc, objectives were sampled from one task per generation with the341

task flipping every generation. This was intended to prevent one task from dominating selection resulting in342

poor performance in one task. flip50_2t_wt and flip50_2t_wc reduced the flipping rate to alternating tasks343

every 50 generations. Here, individuals would be given a substantial amount of time to specialize on an344

objective, hypothetically increasing their competency on a task before swapping to the other task. flipping345

strategies appear to be broadly poorer than naive or even shuffling as their performance is either level346

with, see Figure 8, or substantially reduced across all environments, see Figure 14, considered in this study.347

Moreover, when tasks are antagonistic as in the case of wc, it appears that flip50_2t_wc overspecializes348

on the cargo task, resulting in a failure to generalize to the wall crossing task. Whereas, flip1_2t_wc is able349

to maintain slightly lower performance than naive_2t_wc and even-shuf_2t_wc in wall crossing. Against of350

our intuition that allowing replicates to evolve in one environment for an extended number of generations351

would improve competency on the tasks, the extra time given to specialize may in fact be detrimental to352

generalization. This result could be due to either catastrophic forgetting of the second task or evolution of353

a specialized behaviour for one task that preventing effective behaviours in the second task. In addition,354

there is a significantly higher number of evaluations and tiebreaks in both two environment combinations355

when compared to naive or even-shuffling strategies.356

6 Future Work357

In future work, we plan to expand the number of tasks while exploring how to better integrate tasks that358

introduce conflicting selective pressures. Of specific interest will be any changes in performance or charac-359

teristics of Lexicase selection that might arise in those broader search spaces. We also plan to leverage the360

filtering efficacy of objectives to explore whether an adaptive strategy favoring individual objectives might361

enhance performance of the algorithm in large search spaces.362
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