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Abstract
The authors devised a protocol that allows two parties, who may malfunction or inten-
tionally convey incorrect information in communication through a quantum channel, to
verify each other's measurements and agree on each other's results. This has particular
relevance in a modified version of the quantum coin flipping game. The key innovation of
the authors’ work includes the new design of a quantum coin that excludes any advantage
of cheating, by which the long‐standing problem of the fair design of the game is,
affirmatively, solved. Furthermore, the analysis is extended to N‐parties communicating
with each other, where multiple solutions for the verification of each player's measure-
ment is proposed. The results in the N‐party scenario could have particular relevance for
the implementation of future quantum networks, where verification of quantum infor-
mation is a necessity.
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1 | INTRODUCTION

1.1 | General background

Quantum communication using quantum channels is
becoming practical, but there are many issues that need to
be addressed in order to actually operate them in business.
In the usual setting of multiparty secure computation, many
protocols assume secure communication channels between
all two parties [1, 2]. For example, the conventional
quantum key distribution [3] realises secure keys for secret
channels under the assumption that the sender and the
receiver are trusted. However, it is non‐trivial for a player
to achieve a reliable communication channel without
trusting other parties. It is worth noting that the BB84
work [3], the foundation of modern quantum communica-
tions, was intended to create a secure coin‐flipping game
using quantum theory, as seen in its subtitle “Public key
distribution and coin tossing”.

Besides, regardless of whether one can trust the other party
or not, even if secure communication channels are realised, all
kinds of problems can occur in real human communication,
including political and business problems. While it is important
to pursue quantum channel technology that allows for secure
and accurate quantum communication, it is equally important
to pursue the design of software and systems that will operate
correctly and desirably on the quantum channel.

In this regard, proper design of the game setting and rules
is crucial to both creating and playing any type of quantum
game via a quantum channel. In fact, studying a suitable design
of games is an increasingly important task in game theory. The
study of desirable systems and software for people on a
network/market is called mechanism design (or market design)
and is widely studied in economics in terms of auctions,
optimal matching, and allocation of public goods [4–8]. (The
Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel 2007 was awarded to Hurwicz, Maskin and
Myerson “for having laid the foundations of mechanism design
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theory” [9].) Within a few decades, a global quantum network
will be established in which communication will be at least as
active as in the current classical network. In this era of quan-
tum networking, it is clear that there is a need to question the
problem setting of conventional mechanism design and market
design.

In this study, we consider the quantum coin flipping game [3]
from a perspective ofmechanismdesign. This work assumes that
quantum channels are in practical use. We discuss the problems
that players who play the quantum coin flipping game may face,
and redesign the game. When looking at the quantum coin
flipping game from this viewpoint, it is not so much a matter of
cryptography, but rather a matter of consensus building, which
refers to the process essential for building consensus among the
parties involved in the same assignment, project, or business
meeting with a customer. Consensus building is essential for
sharing objectives and facilitating business.

Extending a two‐person quantum coin flipping game to an
N‐person game is indeed the General Byzantine Problem,
which asks whether a group of communicating objects as a
whole can form a correct consensus when communication or
individual objects may convey incorrect information due to
malfunction or intentionality. This issue has been studied in a
wide range of fields [10, 11], including blockchain [12–15] and
its quantum extensions [16, 17]. The N‐party coin flipping
game that we presented is a simple case of a generic Byzantine
Generals Problem or the N‐party decision making problem.
Our quantum coin flipping problem for N people is exactly the
quantum Byzantine General Problem when each quantum
general has a single qubit. For recent work on quantum deci-
sion making, please see Ref. [18–20].

To design a quantum game that can work properly as a
game, let us consider the conditions that a game must meet. In
designing a game, the minimum requirements to be met would
include the following:

(A) There is no room for cheating.
(B) Each player is correctly aware of the other's results.
(C) Each player can agree on the outcome of the game.

Condition (A) is necessary to achieve consistency in the
rules of a game. If there is a loophole in the rules, an attack that
exploits a vulnerability in the rules is possible. There is no
reason to believe that the remote players who are about to play
against each other will not cheat. The use of device‐
independent quantum key delivery, which is effective even
when the sender and receiver are not trusted, could solve this
problem [21–24]. However, that is not the only problem. It is
even more difficult to achieve a system where everyone can
agree on the outcome, even if the game is played correctly.

Condition (B) is necessary for each player to confirm the
progress of the game. This allows one to verify the validity of
one's past strategies and to plan for future strategies. Clearly,
having the correct information about the other players is
important when building consensus.

Condition (C) is necessary for the game to converge. At the
end of the game, the outcome is determined and all players

accept the result. Players would lose incentive to participate in
a game where the outcome of the game is controversial. Be-
sides, even if the players temporarily agree on the outcome,
they may later reverse their agreement. In such cases, it is
necessary in practice to make it provable to a third party that
an agreement has been reached in order to avoid a situation of
incomplete contracts [25–29].

The link between game theory and quantum mechanics
was discovered 20 years ago, and the development in the field
since its initial discovery has been rapid [30–34]. Alongside
this, there has been research into quantum information with
specific focus on quantum networks and its potential imple-
mentation in quantum computing [35–40]. In recent years,
these two fields have started to work in unison where the
advantages gained from quantum game theory can be utilised
for the benefit of quantum networks.

Quantum games have been developed for repeated games
[41, 42], extensive form games [43], contract theory [44] and
markets in quantum networks [45]. This has a natural crossover
with quantum mechanics due to uncertainty being prevalent in
both fields. From this, it is clear that the potential advantage
that can be gained from using quantum correlations in network
systems could have significant practical implications in quan-
tum technologies.

There are a wide range of quantum games that have been
investigated where quantum correlations have been found to
yield quantum advantage compared to the respective classical
counterpart. A common example for this is the CHSH game,
which allows a practical implementation for the benefit of non‐
locality. Interestingly, it was found that there is an inherent link
between Bell's inequalities and Bayesian game theory [46].

The game which we focus on is the quantum coin flipping
game [3], where the essence of the game is based on a two‐
player, two‐outcome game.

1.2 | Statement of results

In this work we formulated the quantum coin flipping game
with two parties and extended it to a game with N parties. Our
original contributions include the design of a quantum coin
that excludes any advantage of cheating and the design of
quantum circuits to play the game for two parties (Section 3)
and N‐parties (Section 4). We also designed the game to be
playable in both a centralised and decentralised manner.

We have ensured that any possibility of cheating or attack is
eliminated, under the assumption that each player only flips a
coin and does not operate arbitrarily on their own quantum
state. These are explained in Secs. B and C. As a result, we
solve the long‐standing problem of the design of the coin
flipping game.

It is important to recall that in the conventional quantum
coin flipping game, even with these natural assumptions
imposed, there was still plenty of room for remote players to
cheat (Problems (♥,♣, ♠) defined later). In the conventional
game, regardless of the outcome of the coin flip, the player
who announces the result last always can cheat and, therefore,
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always can win, and this can be regarded as an ultimatum game.
To avoid the quantum coin flipping game becoming an ulti-
matum game, we re‐designed the game using an entangled state
(1) between the players (Figure 2). As we described in the main
text, we solved those three problems (♥,♣, ♠).

2 | QUANTUM COIN FLIPPING

2.1 | Preliminaries

The quantum coin flipping game originates from the classical
coin flipping game where there are two parties, which will be
denoted by Alice (A) and Bob (B). Consider the scenario where
Alice and Bob are a recently divorced couple who decide to
play a game to determine who gets the car they previously
shared [47, 48]. Since they do not like each other, they are
living far away from each other, so decide to play this game
over the telephone. The game is set up as follows: both players
have a fair two‐sided coin which can either land on heads or
tails. They, then each flip their respective coins. If one player
lands on heads, and the other lands on tails, the player who
landed on heads wins. If they both land on heads, they flip
again, and if they both land on tails, they flip again, until there
is a winner. Therefore, this implies that landing on heads is the
winning scenario, and if both players land on heads, then the
game is repeated. However, it is clear that each player cannot
verify the other players result as neither player can see the
other player's coin. Therefore when communicating over the
telephone, if Alice claims to have landed on tails, then Bob can
win the game by claiming to have landed on heads, even if this
were not the case. This game can be implemented as shown in
Figure 1. As can be easily seen from the figures, when such a
game is played without sharing information with each other,
the last person to claim the outcome can always become the
winner. Such games are called ultimatum games [49]. It is
worth emphasising that there are many situations in every‐day
life which model the coin flipping game, as regularly two
parties communicate along a classical channel and the only
technique to verify the other party's information is by trusting
the information that is received. This obviously allows each
party to exploit this type of interaction and incorrectly
communicate their information for personal gain. This type of
scenario often occurs in phishing, where a party will deliber-
ately give the other party misinformation in order to extort
them, usually for financial gain. Subsequently, is it possible to
utilise quantum correlations in order to avoid such attacks?
This is one of the motivations for the quantum coin flipping
game.

The quantum version of this game is similar and has been
discussed in many works [50–53]. Now let us consider a sce-
nario Alice prepares a quantum state in addition to their coin.
Whether Alice lands on heads or tails determines what basis
Alice measures their quantum state in, and from this, Alice
sends Bob this prepared quantum state. Bob then performs
measurements on this quantum state, and attempts to deduce
what basis Alice measured in. Bob then sends this state back to

Alice in addition to communicating to Alice what basis Bob
believes the state was prepared in, and from this, Alice can
confirm whether Bob deduced the measurement basis
correctly, and, thus, whether the coin landed heads or tails.
This can work in the opposite direction, where Bob prepares
the quantum state and measures in a particular basis and sends
this quantum state to Alice. Due to the quantum correlations,
this form of the coin flipping game does allow Alice and Bob
to increase their chances of winning. However, this game still
allows the possibility of cheating, as ultimately Alice and Bob
still have to perform classical communication along the
channel.

2.2 | What were the problems?

In this section we present our solution for two‐party quantum
coin flipping game. To describe our contribution accurately, let
us elaborate on what the challenges were and how they were
solved. The remaining challenges of the previous research on
both classical and quantum coin‐flipping game have been to
establish a way to fairly and rigorously recognise each other's
independent results between two remote parties. From the
perspective of a mechanism design, this game setting has the
following problems:

(♥) The two people can chose arbitrary coins independently.
(♣) The result of one cannot be recognized by the other.

F I GURE 2 Quantum circuit for quantum coin flipping game.

F I GURE 1 Quantum circuit implementation of the conventional coin‐
flipping game. Both players flip their respective coins, and based on their
measurements, they then communicate their results to each other and
decide on the winner of the game. Both players must trust each other to
apply the correct gate H to prepare coins and to report their results
correctly, otherwise the game could be unfairly manipulated.
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(♠) There is a time lag between when one player flips a coin
and when the other player learns the result.

Under these circumstances, it is obvious that they could
cheat in any way they want. Despite the simplicity of the
problem set‐up, the second and the third reasons make this
problem difficult and fairness between players is lost.

The first point (♥) concerns fairness before the game is
played. The presence or absence of prior information about
the tools used in the game can lead to information asymmetry,
which is an important factor in the progression of the game.
When information about the game is asymmetric, the benefits
of changing the rules of the game vary from player to player. A
game in which rule changes are impossible is not a good game
because it lacks flexibility and development. For each player to
be allowed to independently select any coin, knowledge of
which coin is selected must be disclosed to all players. How-
ever, this is not possible in a setting where each player is
remote and there is no neutral third party to verify this.

In the quantum coin flipping game, the second problem
(♣) is even more serious than the first. This problem occurs
immediately after the game begins and before communication
with others begins. In the conventional setting of quantum
coin flipping, it is possible to lie to the other player since only
the player can observe their own result. This makes the game
no longer work because each player can arbitrarily change the
outcome, eliminating the need for a coin toss in the first place.
In other words, it is no longer even a “coin‐flipping game”, as
there is no need to even prepare coins in the first place.

The third problem (♠) exacerbates the second. In the real
physical environment, the speed at which information is
transmitted to the other party is finite, so it takes a finite
amount of time to convey the result of a coin to a remote party.
The presence of this time difference would be enough to cause
hesitation and frustration to the players. Even if players decide
to play fair at the start of the game, they may decide to take
advantage of the time difference to change their results after
their own results are observed. Moreover, even if all players
were honest about the results, the existence of the time dif-
ference is sufficient to lead one to believe that changes were
made to the results. Mail‐in ballots in presidential elections, for
example, contribute to creating this kind of distrust among
some people.

3 | SOLUTION FOR TWO‐PARTY
QUANTUM COIN FLIPPING

3.1 | How we solved the problems

As we have discussed, the conventional quantum coin flipping
game is fundamentally flawed in its setup, which not only
prevents the game from being executed properly but also
makes it unworkable from the start.

Therefore, we first need to redesign the game so that it can
be played correctly. To this end, let us first look back at the
fundamental concept of the game:

1. Each of the two remote players flips a coin.
2. A winner is determined based on the results of the coins

observed by each player.

Now let us design the quantum coin flipping game as
follows. In order to remove the possibility of cheating,
consider now that Alice and Bob perform their measurements
on a shared entangled state given by the following:

jψ〉Coin ¼
X

ij

cij ji〉A
|{z}
A0s coin

⊗ jj〉B
|{z}
B0s coin

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
Flipping

⊗ jj〉A
|{z}

B0s result

⊗ ji〉B
|{z}

A0s result

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
Confirmation

; ð1Þ

where ∑ij|cij|2 = 1 and cij ≠ 0. The first two qubits |i〉A ⊗|
j〉B correspond to coins of Alice and Bob. For example, Player
A can flip a coin by observing their own qubit |i〉A. The
remaining two qubits |j〉A ⊗|i〉B record the results of Alice
and Bob, respectively. For example, Alice can confirm Bob's
result by observing her own qubit |j〉A. To emphasise, the
shared state considered in Equation (1) utilises entanglement,
therefore, it is inherently non‐separable, whereas the classical
coins are separable as shown in Figure 1.

At this point, the probability that Alice observes |i〉A is as
follows:

ProbAðiÞ ¼
X

j

jcijj2: ð2Þ

Similarly the probability that Bob observes |i〉B is as
follows:

ProbBðiÞ ¼
X

j

jcjij2: ð3Þ

The game consists of 4 stages and proceeds as follows:

1. Preparation of an entangled state: Prepare an initial entan-
gled state |ψ〉Coin Equation (1).

2. Coin flipping stage: Each player independently makes a
measurement on their own coin qubit |i〉A ⊗|j〉B.

3. Confirmation stage: Each player independently confirms
the opponent's state by measuring their own second
(ancilla) qubit |j〉A ⊗|i〉B.

4. Decision making stage: Each player compares the results of
their own coins with those of their opponents to recognise
and agree on the winners and losers.

Here we explain how this protocol works. Let us first make
sure that this game does not depend on the order in which the
players play. Of course, they can play simultaneously. Suppose
Alice flips a coin and gets |i〉A. Then the state of the coin in
Equation (1) changes into the following:

jψ〉Coin →
X

ij
cij jj〉B
|{z}
B0s coin

zfflffl}|fflffl{
Flipping

⊗ jj〉A
|{z}

B0s result

⊗ ji〉B
|{z}

A0s result

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
Confirmation

: ð4Þ
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Now let Bob flip a coin. It is easy to see that Alice's result
does not affect the probability distribution Equation (3) of
Bob. If Bob's coin is |j〉B, the state of the game changes in
Equation (4) into the following:

jψ〉Coin ↠ jj〉A
|{z}

B0s result

⊗ ji〉B
|{z}

A0s result

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
Confirmation

: ð5Þ

In Confirmation stage, each player can confirm the state
of their opponent by measuring the corresponding ancilla state.
For example, Alice finds |j〉A for the result of Bob with
probability 1 and vice versa.

For simplicity, let us play the classical setting. Then the
state Equation (1), which we use for the game is generated by
the circuit shown in Figure 2, in which coins are prepared by
the following procedure:

j0000〉→
1
2
j00〉Að j00〉B þ j00〉Aj11〉B

þ j11〉Aj00〉B þ j11〉A 11〉Bj Þ

→
1
2
j00〉Að j00〉B þ j01〉Aj10〉B

þ j10〉Aj01〉B þ j11〉A 11〉Bj Þ;

ð6Þ

where we replaced |0〉 ↔|↑〉 and |1〉 ↔|↓〉.
Alice's first qubit is a coin of Alice, who can use the second

qubit to confirm Bob's result.

3.2 | Validity of the protocol

Here we show the validity of our protocol and confirm that the
problems (♥), (♣) and (♠) raised in the previous section are
completely solved in principle.

Regarding the problem (♥), they both use the same state
Equation (1) to play the game. The probability distribution is
completely determined by the matrix

c¼ c↑↑ c↑↓
c↓↑ c↓↓

� �

; ð7Þ

where ∑ij|cij|2 = 1. A coin such that two players A and B have
exactly the same probability of getting heads and tails can be
defined as |c↑↓| = |c↓↑|. Using Equations (2) and (3),

ProbAð↑Þ ¼ jc↑↑j2 þ jc↑↓j2 ¼ jc↑↑j2 þ jc↓↑j2

¼ ProbBð↑Þ

ProbAð↓Þ ¼ jc↓↑j2 þ jc↓↓j2 ¼ jc↑↓j2 þ jc↓↓j2

¼ ProbBð↓Þ

ð8Þ

In addition to |c↑↓| = |c↓↑|, they can play a fair coin by
adding |c↑↑| = |c↓↓|:

ProbAð↑Þ ¼ jc↑↑j2 þ jc↑↓j2 ¼ jc↓↓j2 þ jc↓↑j2

¼ ProbAð↓Þ

ProbBð↑Þ ¼ jc↓↑j2 þ jc↑↑j2 ¼ jc↑↓j2 þ jc↓↓j2

¼ ProbBð↓Þ

ð9Þ

Hence, the most general form of a fair coin Equation (7) is
given as follows:

c ¼

ffiffiffi
a
2

r

eiθ↑↑
ffiffiffiffiffiffiffiffiffiffi
1 − a
2

r

eiθ↑↓

ffiffiffiffiffiffiffiffiffiffi
1 − a
2

r

eiθ↓↑
ffiffiffi
a
2

r

eiθ↓↓

0

B
B
B
B
@

1

C
C
C
C
A
; 0 ≤ a ≤ 1: ð10Þ

The classical setting can be recovered by putting θij = 0 for all
i, j and a¼ 1

2. The non‐trivial phases play important roles in a
quantumextensive formgame [43, 44]. Both parties shouldmake
as many coin states as possible before starting the game to check
the probability distribution before playing.

The problem (♣) has already been solved for the following
reasons: each player can confirm their opponent's result by
measuring their own second qubit at the end of the game as
shown in Figure 2. In this game, only measuring one's own
qubits is allowed, but one of the possible attacks from one
player to the other is as follows: it is natural to ask what would
happen if the second qubit was measured first. Suppose Bob
measures their second qubit before Alice tosses the coin, thus
finalising Alice's result. However, it turns out that this attack is
meaningless, as we will see below. The probability that Bob
observes |i〉B is ∑j|cij|2, which is equal to the probability (2)
that Alice tosses a coin by herself and observes |i〉A. There-
fore, there is no incentive for Bob to measure the second qubit
first; the observation of Bob's second qubit does not give
either Bob or Alice any advantage or disadvantage.

The problem (♠) no longer exists in our protocol. Due to
entanglement in game state Equation (1), as soon as the state |
i〉 of one player's coin is determined, the other player's qubit |
i〉 used for confirmation is instantly determined. As is well
known, this does not mean that information is being trans-
mitted beyond the speed of light [54].

3.3 | Solutions to other possible attacks

In this game, the quantum state given initially is never broken
and is played to the end. Each player can only observe their
own state, and the results of their observations do not affect
others. In situations where only flipping (measuring) a coin is
allowed for each player, there is no room for discussing the
outcome of the game. Moreover, as both players are aware of
the outcome on both sides, they have to accept the result.
Thus, the game is perfectly fair and works well.

In the original setting of the quantum coin flipping game,
only measuring one's own qubits is allowed; however, as a
general extension of the game, we can also consider the case
where players can manipulate their own qubits. In this case, it is
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possible for a player to claim that they have obtained a value
different from their opponent's result |j〉B:

jj〉Aji〉B → UAjj〉Aji〉B ¼ jj0〉Aji〉B: ð11Þ

This issue is easily prevented by adding a third party
(Witness) to the network. We assume that the third party is
independent and credibility is ensured. For this, we modify the
initial state of the coin Equation (1) as follows:

jψ〉Coin ¼
X

ij
cij ji〉Ajj〉B
zfflfflffl}|fflfflffl{
Flipping

⊗ jj〉Aji〉B
zfflfflffl}|fflfflffl{
Confirmation

⊗ jij〉Witness

zfflfflfflffl}|fflfflfflffl{
Witness

: ð12Þ

The Witness can be used by both players to verify and
confirm each other's results in tandem with their confirmation
qubits. This allows a further extension by which the protocol
offers enhanced security across the network. Figure 3 shows a
quantum circuit to play quantum coin flipping game with a
Witness for the case of constant cij ¼ 1

2.
The first and second qubits of the Witness corresponds to

the states of Alice and Bob, respectively. After all players flip
their respective coins, the state of the game changes into

jψ〉Coin ↠ jj〉Aji〉B
zfflfflffl}|fflfflffl{
Confirmation

⊗ jij〉Witness

zfflfflfflffl}|fflfflfflffl{
Witness

: ð13Þ

Witness can confirm that Alice's result is i and Bob's result
is j, respectively. Even if Alice performs the same operation UA
on their state as before, it does not change the record of the
game held by Witness:

jj〉Aji〉B ⊗ jij〉Witness→
UA
jj0〉Aji〉B ⊗ jij〉Witness: ð14Þ

Ultimately, Player A might try to change the state of the
Witness as well, but this is a completely different game and is
not in the scope of a quantum coin flipping game.

Thus, as long as the game is played via a proper
quantum channel, there is no room for cheating on both
sides (Condition (A)). Each player is correctly aware of the
other's results (Condition (B)) and can agree on the winner
of the game (Condition (C)). Therefore the problems with
the conventional quantum coin flipping game have been
completely solved by redesigning the game and utilising a
shared entangled state.

4 | N‐PARTY QUANTUM COIN
FLIPPING GAME

4.1 | Motivation & general remark

Here we extend our previous design of a quantum flipping
game for two‐persons. Before we present some explicit ar-
chitectures, let us explain our motivations to consider N‐per-
son games. The problem in designing a two‐person quantum
coin flipping game was how to create a system in which two
remote players could correctly share (B) and agree on their true
results (C) without cheating (A). As we described in the
Introduction, this is a non‐trivial task.

Generalising a two‐person game to an N‐person game,
while seemingly natural as an idea, would significantly change
the nature of the game and have significant consequences in
terms of the game's design. The essence of a coin flipping
game is to accept and come to an agreement on the outcome
of all players in an environment where they cannot directly
observe each other's opponents. This is an age‐old problem,
known as the Byzantine General Problem, which has been
applied in blockchain as mentioned in the Introduction. Our
solution is to first share the entanglement with everyone so
that everyone can independently verify the coin's information.
This is similar to the two‐person scenario. However, in the case
of the N‐person coin flipping game, many options exist for
how to reach a single consensus. It is essentially the same
problem when determining transactions in the blockchain and
a relevant interesting problem of mechanism design [55, 56].

In the case of the N‐player quantum flipping game, we
present three solutions: central review, peer‐to‐peer review and
hybrid peer‐to‐peer review. The first is the simplest method,
but the most accurate and universal. As we did in the previous
section, we invite an authorised third party (Witness) into the
network. To eliminate unnecessary concerns, we assume that
the state of the Witness is not accessible from the outside. All
participants must agree before the game begins that the result
of the authorised Witness will be the final decision of the game.
This is a classic and widely used method to delegate verifica-
tion to an authorised third party. However, a large amount of
information is processed by the third party at once, which
places a heavy burden on the third party when N is very large.
A further concern is that the validity of the results depends on
the reliability of the third party. Possible solutions to these
problems include decentralised, or peer review methods and
hybrid methods that combine third‐party verification and peer
review.

F I GURE 3 Quantum circuit for quantum coin flipping game with a
Witness. Here |0〉W is a qubit of the Witness.
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In short, our contribution in this field can be summarised
as providing the first quantum communication system that
allows people to reach a consensus without any room for
fraud.

4.2 | Design & solution 1: central review

As an initial state of the game, all the players and the Witness
share the following entangled state:

jψ〉coin ¼
X

ci1⋯iN ji1⋯iN〉
zfflfflfflffl}|fflfflfflffl{
Flipping

⊗ ji1⋯iN〉Witness

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
Witness

; ð15Þ

where as before we use blue text for coin qubits of the players.
Figure 4 shows a quantum circuit to play a quantum coin
flipping game with a Witness for the case of constant cij ¼ 1

2N=2.
Below is an example of a game in progress for the case

N = 3. When Player 1 first tosses the coin and observes |i1〉1,
the corresponding qubit |i1〉 of the Witness is decided
uniquely. The same is true for Player 2 and 3 who get |i2〉2 and
|i3〉3, respectively:

jψ〉Coin �������!
Player 1 P

j2j3
ci1j2j3jj2j3〉 ⊗ ji1j2j3〉

�������!
Player 2 P

j3
ci1i2j3jj3〉 ⊗ ji1i2j3〉

�������!
Player 3

ji1i2i3〉

ð16Þ

As in the N = 2 case, Witness can check the results for all
participants by measuring their own qubits one by one. This
can be further extended for the N − party scenario as follows.
After n(≤N) players flipped their coins and they observed {i1,
i2, …, in}, the state of game changes into the following:

jψ〉Coin ���������!
n players P

jnþ1⋯jN
ci1⋯injnþ1⋯jN ⊗

N

m¼nþ1
jjm〉

⊗
n

m¼1
jin〉 ⊗

N

m¼nþ1
jjm〉;

ð17Þ

where ci1⋯injnþ1⋯jN gives the coefficient for the rest of N − n
players after n players flipped their coins. This is a general-
isation of the previous examples, however this is only correct
for N − 1 players, therefore to complete the N‐party game, the
result for n = N must be considered. This is given as follows:

jψ〉Coin�����������!
All players

ji1⋯iN〉: ð18Þ

By combining Equations (17) and (18), this gives the full
solution for the central review protocol where N‐players can
confirm each other’s measurements through the Witness. This
is dependent on the assumption that in the Decision making
stage, by prior agreement, the players agree on the Witness
observation as the final outcome of the game.

The advantage of this method is the results are determined
immediately after the game is over, since the Witness status is
uniquely determined as soon as everyone flips a coin. More-
over this is the simplest system, requiring only 2N qubits and 2
depth of gates to prepare the state before the game starts.
However, if there is any doubt about the reliability of Witness
or if there is an error in Witness' quantum measurement, an
untrue result could be the final outcome of the game.

4.3 | Design & solution 2: peer‐to‐peer
review

Here we provide a solution to N‐player quantum coin flipping
game without an authorised third party (Figure 5). In this
system, all participants review the results of other participants.
Again we use blue text for coin qubits and red text for
confirmation qubits.

The simplest way to extend the state in Equation (1) used
for the two‐player game is to use the following:

jψ〉1coin ¼
X

ci1⋯iN ji1⋯iN〉
zfflfflfflffl}|fflfflfflffl{
Flipping

⊗ ji2i3⋯iN i1〉
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
Confirmation

: ð19Þ

For i = 1, …, N − 1, Player i confirms a result of Player
(i þ 1) and Player N confirms a result of Player 1. However,
this leaves the verification of Player i's results entirely up to
Player (i þ 1). This state can be prepared as illustrated in
Figure 5.

In order to achieve a peer‐to‐peer solution, we prepare the
following state:

jψ〉coin ¼
X

ci1⋯iN ji1⋯iN〉
zfflfflfflffl}|fflfflfflffl{
Flipping

⊗
N

n¼1
ji1⋯in−1inþ1⋯iN〉

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
P2P Review

;
ð20Þ

where at n = 1 and n = N the states should be understood as |
i2⋯iN〉 and |i1⋯iN−1〉, respectively. This state can be prepared
by operating SWAP operators between two different qubits for
all combinations of Players.

Each player can know the results of everyone else by
observing their own confirmation qubit N − 1 times. For

F I GURE 4 Central review quantum circuit for quantum coin flipping
game with N‐person.
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example, Player 1 obtains the set {i2, i3, …, iN} of results of all
others. The result of Player i is reviewed by the other players.
Let in be a result of Player n and let inj the data of Player n
confirmed by Player j observing their own qubit. A dataset
{in1, …, inN} for N − 1 players regarding the results of Player
n is obtained. Let rn be the ratio that the result of Player n
agrees with the review results of other players,

rn ¼
# j : in ¼ inj
� �

N − 1
; ð21Þ

where # denotes the number of elements in the set. Let Rn be
the ratio that the result of Player n does not agree with the
review results of other players,

Rn ¼
# j : in ≠ inj
� �

N − 1
: ð22Þ

All participants decide before the game starts a constant
criteria r, R, which do not depend on a particular n, for rn and
Rn to approve each player's result. For example, in will be
accepted if rn ≥ r, otherwise it will be rejected.

One advantage of employing this method is that the
outcome of the game is not dependent on a particular third
party. If it is desirable for players to decide the outcome in a
democratic manner, this method can be used. One undesirable
aspect of this method is that it takes a long time to get results,
and multiple players can collude to get an incorrect result.

Another problem is that in such cases, there is no place to
complain about fraud. Moreover, as shown in Figure 5, this
system requires N2 qubits and (2N − 1)‐depth of gates to
prepare a state to play the game. Given that in the case of the
central review system, the required gate depth is constant (= 2)
regardless of the number of participants, and the number of
required qubits is 2N, the peer‐to‐peer review system is much
more expensive to implement.

4.4 | Design & solution 3: hybrid peer‐to‐
peer review

Here we consider a hybrid peer‐to‐peer review system as a
complementary mechanism to the central review system and
the peer‐to‐peer review system. This is beneficial for networks
that require a central server with peer‐to‐peer capabilities. If
necessary, it is possible to operate only a central server or only
a peer‐to‐peer network. In this system the players use states
(20) with a state of a Witness:

jψ〉coin¼
X

ci1⋯iN ji1⋯iN〉
zfflfflfflffl}|fflfflfflffl{
Flipping

⊗
N

n¼1
ji1⋯in−1inþ1⋯iN〉

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P2P Review

ji1⋯iN〉
|fflfflfflffl{zfflfflfflffl}

Central Review

ð23Þ

This system is easily implementable by combing quantum
circuits shown in Figures 4 and 5. The N = 2 case is illustrated
in Figure 3.

There are two main ways to build consensus:

1. Players will primarily follow the Witness's results, but will
appeal using peer‐to‐peer review results.

2. Players will primarily follow peer‐to‐peer review results, but
will appeal using the Witness's results.

The Witness's states are determined as soon as all players
have flipped their coins, but the result of the peer‐to‐peer re-
view is not available until all players have completed all mea-
surements. Players can choose the first method if efficiency is a
priority, or the second method if democracy is a priority.

5 | DISCUSSION & FUTURE
DIRECTIONS

The results presented in this work will open up a wide range of
avenues to pursue in the future. To the best of the authors'
knowledge, this is the first study of quantum coin‐flipping
games motivated by mechanism design and incomplete con-
tracts. While there has been much technical and theoretical
research on quantum cryptography, there has been little dis-
cussion on what kind of systems/software are user‐friendly.
However, in order to promote and develop quantum com-
puters and quantum communications in general society,

F I GURE 5 Peer‐to‐Peer Quantum circuit to prepare a state for N‐
player quantum coin flipping game. For example, player 1 reviews results
{i2, i3} of player 2 and player 3.
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research from this perspective is essential. Subsequently, the
quantum game theory will become increasingly important.

It is important to stress that this work solves the traditional
problem by sharing an entangled state before playing the game.
The solution presented in this work is extremely easy to
implement and is practically feasible in actual quantum
communication. Therefore, the quantum protocol presented
offers a tangible practical quantum advantage over classical
systems.

So far we investigated the quantum coin‐flipping game with
pure states, but it will be interesting to extend the game to mixed
states. For example, in this work we focused on using entan-
glement to prevent cheating in quantum games; however, it
would be interesting to see if quantum discord could be utilised
[57, 58]. It has already been shown that quantum discord could
be measured in a bipartite system [59], therefore it opens up the
possibility of using quantum discord for quantum advantage.
Furthermore, it would be particularly interesting if we were able
to develop a protocol that could verify each player's measure-
ments, without each player having to specifically reveal their
measurement. This could be done using a quantum zero‐
knowledge proof [60, 61]. This would be in the form of peer‐
to peer‐review, however the players would be allowed to keep
their measurements secret. This could be a realistic scenario if
the player's measurements reveal sensitive information. From
this perspective, creating a generic (hybrid) peer‐to‐peer quan-
tum system is also an interesting open question.

The game could also be developed into a repeated game
where the players play multiple times [41–43]. This type of
game could be used to reveal the distribution of the shared
state between the players. Such a scenario may occur if the
players are unaware of what shared state they are performing
their measurements on and they would like to deduce the
distribution of the shared state.
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