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Abstract
We revisited the problem of modeling a publicity campaign in a society of intelligent agents
that form their opinions by interchanging information with each other and with the society
as a whole. We use a Markov approximation to consider the effects of an interaction delay τ

in the system of perturbed differential equations that model the social dynamics. The stable
points of the dynamical system are the manifestation of the agent’s attitudes, either in favor
or against the social rule, as it was previously found, but the approach to the stable points is
greatly modified by the presence of the delay.

Keywords Opinion Dynamics · Sociophysics

1 Introduction

Opinions are mental representations of the individual’s beliefs, constructed by inference
processes mostly done with incomplete information. We are interested on the process of
opinion formation in a population of individuals, represented by a set of agents {a : 1 ≤ a ≤
M}, interacting within a society where there are some rules (also represented by an agent, B)
that determine whether a social issue (represented by S) is socially acceptable or not. We say
that the label B assigns to an issue S is σB(S) that is either 1 (acceptable, legal, fashionable)
or −1 (not acceptable, illegal, unfashionable). In similar way we state that the opinion of
individual a on issue S is σa(S), either 1 or −1. Modeling opinions with binary variables [1]
is consistent with the observation that most people opt for one out of two opposite positions
while answering questions with high social impact [2].

In the presented scenario we understand the opinion formation process in agent a as the
process where a learns how to classify issues S like B (otherwise a wouldn’t know how
to behave properly in the society ruled by B). If the agents are rational (i.e., Bayesian [3])
two noninteracting agents should, upon receiving the same complete information, reach the
same opinion, disregarding their priors (see Ref. [4], Theorem 1). Therefore, a model of
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the opinion formation process of rational agents in a society with rules must consider an
interaction mechanism between agents as a means for the emergence of different social
positions [5–14]. There is a body of evidence supporting the effect of social influence on
opinion formation process [15–21]; as a consequence, to model the agents’ interactions, we
follow social impact theory [22, 23] assuming that the interaction between an agent and
its neighbors has a strength proportional to the credibility, number and proximity of the
neighbors to the agent [24–26] (see Sect. 2 for details).

There are several studies on the effects of external influences on the opinion formation
process in voters models [27, 28] and the influence of adverts on the formation of opinions
[29]; in particular in Refs. [30, 31] it is concluded that, given a particular measure, periodic
advert campaigns are the most effective. Therefore, we increase the complexity of our model
by adding a (small) periodic term to the interaction of the agents with the society as a whole,
to emulate the effects of an advert campaign in favor of the position hold by B. Keeping
the magnitude of this term smaller than the magnitude of the typical inter-agent interaction
allows us to characterize the advert campaign as a perturbation.

In recent a works [32, 33] we introduced the above-mentioned concepts to explain the
opinion formation process in a society of interacting agents where there is a rule B that
indicates the social position. The social position, originally supposed to be fixed, was allowed
to evolve [34], and then reinforced by a perturbation (i.e. an added term, small in magnitude
when compared with the strength of other interactions) representing an official publicity
campaign [35]. In the present article we complete this effort by studying the effects of delay
of information in the interaction between agents.

Models for opinion formation process consider inter-agent interactions as means for the
emergence of different social positions. The model we present in this article differs from the
classical Deffuant model of opinion dynamics [36, 37], where the interaction between voters
takes place if the difference between the variables that indicate the opinions of the interacting
agents is bellow a given threshold (bounded confidence model). In our model the interaction
is between connected neighbors that learn to have an opinion; the stronger the connection
the larger the influence peers have in the local neighborhood, opening the possibility for the
emergence of local consensuses opposed to the social status quo. Our model differs also
from models that consider opinions as continuous variables [38, 39]; the evolution of the
connections between agents [40–42] has not been considered either.

Several opinion formation models consider a time delay in the macroscopic description of
the system [43–46] for instance as a means to describe a mechanism for observed instabilities
in the dynamics of democratic political systems [47–49]. In the present model, interactions
are based on the perception agents have on past positions of their neighbors, which motivates
the introduction of a time delay τ . We expect this approach to be also analytically tractable,
thus facilitating a more direct and thorough analysis.

The article is organized as follows. In Sect. 2 we discuss our model and we present
the differential equations that rule the time evolution of the parameters of the system. The
derivation of the set of differential equations can be found in Appendix A. By building on the
results presented in Appendix B, we solve the system of differential equations for constant
(zero frequency) and periodic (non-zero frequency) perturbations in Sect. 3. This enables us
to plot the phase diagram of the system, based on the amplitude of the perturbation and the
initial condition for the most conservative agent. We present our final discussions in Sect. 4.
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2 TheModel

Let us suppose we have a population of M agents {a}Ma=1, living in a society with a set of
rules B, also represented as an agent. We represent the topology of the society by a directed
graph G = {{a}, {ηa,b}}where {a} is a set of vertexes associated with the agents and {ηa,b} is
a set of strengths ηa,b that represent the influence of agent b on agent a. Self-influence effects
are neglected, i.e. ηa,a = 0. The neighborhood of a is defined as Na = {c ∈ [M] : ηa,c > 0}
[2].

B determines whether a social issue S ∈ {−1,+1}N is acceptable σB(S) = 1 or not
σB(S) = −1.1 With the end to give an internal structure to the opinion variables and to make
the mathematical description of the system tractable we provide the agents (a and B alike)
with a perceptron [50]. In this form we introduce an adaptive, cognitive mechanism for the
formation of opinions [51–54]. Each perceptron is characterized by an internal representation
vector (B ∈ R

N for the social rule Ja ∈ R
N for the agents) such that the labels become

σB(S) = sgn(B ·S) and the opinions become σa(S) = sgn(Ja ·S),whereV ·S ≡∑N
i=1 Vi Si

for all V ∈ R
N , and sgn(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0.2

In the current scenario we consider all internal representations, B and {Ja}, to evolve over
time. To make the evolution happen we consider the sampling S = {(σB,n, σNa ,n,Sn))}Tn=1,
where σB,n = sgn(B · Sn), σNa ,n = {σc(Sn−m) : c ∈ Na} is the information agent a receives
from its neighbors, with a delay m < n, Sn belongs to {−1,+1}N and it has been drawn
according to the probability P(S) =∏N

j=1 P(S j ) =∏N
j=1{ 12 δS j ,+1 + 1

2 δS j ,−1}. The symbol
δA,B = 1 if A = B and 0 otherwise, is the Kronecker delta. We are assuming that the entries
of the vectors S are independent and identically distributed (iid) variables with the same
probability to have the value +1 or −1. The length of the sampling S is typically assumed to
be T = αN where α ∈ R is independent of N .

In an online scenario, elements of the sampling S are taken one at a time, applied to the
internal-representation update algorithms, and then discarded. The update algorithms for the
internal representations of {a} and B are:

Ja,n+1 = Ja,n + ψa,n
σB,nSn√

N
+ fn

|Ja,n|√
N

√
1 + Ra,n

N (1 − Ra,n)
Pnbn (1)

Bn+1 = Bn + λo√
N

fnLn, (2)

where ψa,n is the learning amplitude, fn is the annealing factor, Ra,n is the parameter we
will use to describe the evolution of the system, and it is defined as:

Ra,n = Ja,n · Bn

|Ja,n||Bn | , (3)

Pn is a suitable periodic function, bn is a vector of length one in the direction of Bn , λo is the
rate of change of the rule B, and Ln is the average projection of the vectors {Ja,n} onto the
plane perpendicular to Bn . In order to facilitate the reading of this manuscript, we have left
the full details for the development of the equations of motion from these update algorithms

1 Any social issue can be written in a binary code. We are supposing the letters of such a code are 1 and −1
and that all issues codified in this form have a length N that is sufficiently large.
2 It appears that there are three possible labels in the classification of issues, +1, −1 and 0. The 0 label is
assigned to the issues S0 such that B · S0 = 0, which is the equation of the hyperplane perpendicular to the
vector B. Given that the fraction of vectors S0 living in this hyperplane is negligible small compared to the
total number of possible issues S, we will simply consider the events with label 0 to have a null probability.
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for Appendix A. Here, we will only make a mention about the learning amplitude ψa,n and
the periodic function Pn . The last term to the right-hand side of Eq. (1) corresponds to the
modeling of the publicity campaign, that favors the increment of the Ja,n in the direction of
Bn . The magnitude of this term is small when compared to the second term, and given that Pn
is periodic, this term is treated as a periodic perturbation (the perturbation character of this
term is explicitly used in Sect. 3). The construction of the learning amplitudeψa,n is inspired
from social impact theory [22, 23], and involves a corroboration mechanism [55, 56] done
with delayed information from the neighbors.

The relevant parameter of the system is Ra,n , defined in Eq. (3). This quantity is the
projection of the normalized vector Ja,n onto the direction of Bn , i.e. is the cosine of the
angle θa,n between Ja,n and Bn , Ra,n = cos(θa,n). It is also known as the overlap between
the Ja,n and Bn . Ra,n represents the level of agreement of agent a with the social rule B
at time n. Following the techniques presented in Appendix A and considering the large N
limit we finally obtain that, for a pair of interacting agents, the evolution of the agreement in
continuous time is:

Ṙa = −
∑

b∈Na
ηa,b − 2

2
(1 − R2

a) + λo

√
1 − R2

a

+
⎡

⎣1

2

∑

b∈Na

ηa,b
(Rb − Ra)

(√
1 − R2

a Rb −
√

1 − R
2
b Ra

)

+ P(t)

⎤

⎦
√
1 − R2

a .‘

(4)

In the case of only two interacting agents we have that

Ṙa = −ηa,b − 2

2
(1 − R2

a) + λo

√
1 − R2

a +

+
[

ηa,b

2

(Rb − Ra)

(√
1 − R2

a Rb −
√

1 − R
2
b Ra

)

+ P(t)

]√
1 − R2

a . (5)

with
dV (Ra)

dRa
= ηa,b − 2

2
(1 − R2

a) − λo

√
1 − R2

a, (6)

and P(t) is the continuous time version of the periodic perturbation representing the publicity
campaign in favor of B, and Rb = Rb(t − τ) where τ is the continuous-time delay. The
equation for Rb is obtained by switching indexes a and b on Eq. (5).

According to [34] and given the constant κo ≈ 1.12282, if the interaction ηa,b is chosen
to be:

ηa,b = 2(κoλo + 1), (7)

the system described by Eq. (5) becomes bi-stable, with stable points at Ra = 1 and Ra =
−
√

1 − κ−2
o , i.e.

dV

dRa

∣
∣
∣
∣
Ra=1

= dV

dRa

∣
∣
∣
∣
Ra=−

√
1−κ−2

o

= 0 (8)

V (1) = V

(

−
√

1 − κ−2
o

)

. (9)

Ra = 1 is the stable point at which the system converges if the agents, at the end of the opinion

formation process, classify strings in agreement with B, and Ra = −Ro = −
√

1 − κ−2
o is
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R
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R
1-1 -Ro Ro

conservative

non-conservative

Fig. 1 Phase space representation for the system with potential (6), in the by-stable regime determine by the
conditions (8) and (9)

the stable point at which the system converges if the agents classify strings mostly differently
to B.Due to these properties, we dubbed these points as the conservative stable point and the
non-conservative stable point respectively. In consequence the conservative basin is defined
as the interval (Ro, 1), and the non-conservative basin is the interval (−1, Ro). A sketch of
the phase space of this system is presented in Fig. 1.

Let us define |Na | as the cardinality of the set Na . By defining the population averages:

ν ≡ 1

M

M∑

a=1

|Na | (10)

η ≡ 1

M(M − 1)

M∑

a �=b=1

ηa,b, (11)

and assuming that the fluctuations


ν =
√
√
√
√ 1

M

M∑

a=1

|Na |2 − ν2 (12)


η =
√
√
√
√ 1

M(M − 1)

M∑

a �=b=1

η2a,b − η2, (13)

are sufficiently small, the evolution of the agreement Ra of agent a, in the neighborhood Na ,
and effective interaction νη = (κoλo + 1) is given by:

Ṙa = −νη − 2

2
(1 − R2

a) + λo

√
1 − R2

a

+
⎡

⎣η

2

∑

b∈Na


(Rb − Ra)

(√
1 − R2

a Rb −
√

1 − R
2
b Ra

)

+ P(t)

⎤

⎦
√
1 − R2

a . (14)

The objective of our investigation is to study the effects of a periodic perturbation on the
opinion formation process in a community of interacting agents, when the system is in a
bi-stable regime and the initial condition locates the agents in the basin of the stable non-
conservative point−Ro, and there is a time delay τ in the communication between agents. For
such a scenariowe can translate the equation in overlaps (14) into an equation in phases:where
θa(0) ∈ (φo, π), φo ≡ arccos(Ro) = 1.0987(1), and P(t) ≡ λo Ap(ωt) ≥ 0 is a periodic
perturbation with amplitude λo A and frequency ω. By re-scaling the time (1 + λoκo)t → t
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and the frequency (1 + λoκo)
−1ω → ω we obtain:

θ̇a = −1

ν

∑

c∈Na


(θa − θc) sin(θa − θc) + � [κo sin θa − 1 − Ap(ωt)] , (15)

where � ≡ (1 + λoκo)
−1λo. The first term of the right-hand-side of (15) is the average

interaction over the neighborhood of the agent, the second term is a perturbation mainly
proportional to the rate of change of B.

In the phase description given by Eq. (15) the conservative basin is defined by (0, φo) and
the non-conservative basin by (φo, π).

3 Solution of the System (15)

3.1 Solution for the Perturbed Systemwith Two Agents

The two-agent problem is the simplest case of interacting agents learning from the rule B.

It has been observed in [35] that the agent with the smallest phase dictates the behavior
of the system, in particular it is remarked that, when all the agents are initially in the non-
conservative basin, it is sufficient to convince themost conservative (the onewith the smallest
initial phase) to direct them all to the conservative basin. We analyze here the two-agent
problem in order to use the behavior of the agent with the smallest phase to explain the
expected behavior of larger societies.

Let us consider the problem of two agents perturbed with a constant perturbation (or zero-
frequency periodic perturbation) with initial conditions such that θ< = min{θa(0), θb(0)} ∈
(φo, π − φo) and θ> = max{θa(0), θb(0)} ∈ (θ<, π) . Without lose of generality we assume
that θ> = θa(0) and θ< = θb(0). Then, for all 0 < t < τ we have that the evolution of the
system is ruled by the equations:

θ̇a = �(κo sin θa − 1) − 
(θa − θb) sin[θa(t) − θb] − �A (16)

θ̇b = �(κo sin θb − 1) − 
(θb − θa) sin[θb(t) − θa] − �A, (17)

which can be simplified into

θ̇a = �(κo sin θa − 1) − sin[θa(t) − θ<] − �A (18)

θ̇b = �(κo sin θb − 1) − �A. (19)

Let us define κA ≡ (1 + A)−1κo, and φA ≡ arcsin(κ−1
A ). The numerical integration of

(16) and (17) for values of the amplitude A > κo − 1 and initial condition θ< ∈ (φo, π)

or for values of the amplitude A < κo − 1 and initial condition θ <∈ (φo, φA), produce
curves with a pattern similar to the one presented in Fig. 2. Observe that the integration of
Eqs. (16) and (17) is valid until the correspondent phase crosses over φo, entering the basin
correspondent to the stable point 0, where the correct equations to be used are obtained from
(14).

For values of the amplitude A < κo −1 and θ< ∈ (π −φA, π) the general behavior of the
numerical solution to (16) and (17) is represented in Fig. 3. In all cases the curves approach
asymptotically π − φA.
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0 tC
t

φo

θb(0)

θa(0)

0

Fig. 2 Typical behavior of the solution of the numerical integration of the Eqs. (16) and (17) either for values
of the amplitude A > κo − 1 and initial condition θ< ∈ (φo, π) or for values of the amplitude A < κo − 1
and initial condition θ <∈ (φo, φA) Both curves approach 0 asymptotically after crossing over φo. For the
definition of the time tC see Eqs. (23) and (25)

0 50 100 150 200
t

π − φA

θb(0)

θa(0)

Fig. 3 Typical behavior of the solution of the numerical integration of the Eqs. (16) and (17) for values of the
amplitude A < κo − 1 and initial condition θ< ∈ (π − φA, π) Both curves approach π − φA asymptotically
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The integration of θb, Eq. (19), is straightforward:

tan
θb

2
=

tan
π − φA

2

∣
∣
∣
∣tan

φA

2
− tan

θ<

2

∣
∣
∣
∣ e

�At

∣
∣
∣
∣tan

φA

2
− tan

θ<

2

∣
∣
∣
∣ e

�At −
∣
∣
∣
∣tan

π − φA

2
− tan

θ<

2

∣
∣
∣
∣

−
tan

φA

2

∣
∣
∣
∣tan

π − φA

2
− tan

θ<

2

∣
∣
∣
∣

∣
∣
∣
∣tan

φA

2
− tan

θ<

2

∣
∣
∣
∣ e

�At −
∣
∣
∣
∣tan

π − φA

2
− tan

θ<

2

∣
∣
∣
∣

(20)

if κA > 1, θ< /∈ (φA, π − φA),

tan
θb

2
= 1 +

tan
θ<

2
− 1

1 + �κo

2
t

(

tan
θ<

2
− 1

) (21)

if κA = 1, and

tan
θb

2
= κA +

√
1 − κ2

A tan

⎡

⎢
⎣arctan

⎛

⎜
⎝
tan

θ<

2
− κA

√
1 − κ2

A

⎞

⎟
⎠− �At

2

⎤

⎥
⎦ (22)

if κA < 1, where �A ≡ �

√∣
∣κ2

o − (1 + A)2
∣
∣. Observe that in (20), we have explicitly

avoided the discussion of the initial condition θ< ∈ (φA, π − φA). The results presented
correspond to an asymptotic decaying behavior. In particular, the phase θb would cross over
the conservative basin at time tC , i.e. θb(tC ) = φo, in the following cases:

�AtC = 2 ln

⎡

⎢
⎢
⎣

(

tan
φA

2
− tan

φo

2

)(

tan
π − φA

2
− tan

θ<

2

)

(

tan
φA

2
− tan

θ<

2

)(

tan
π − φA

2
− tan

φo

2

)

⎤

⎥
⎥
⎦ , (23)

if κA > 1 and φo < θ< < φA,

�κotC = 2

⎛

⎜
⎝

1

1 − tan
θ<

2

− 1

1 − tan
φo

2

⎞

⎟
⎠ , (24)

if κA = 1 and φo < θ< < π
2 , and

�AtC = 2

⎧
⎪⎨

⎪⎩
arctan

⎛

⎜
⎝
tan

θ<

2
− κA

√
1 − κ2

A

⎞

⎟
⎠− arctan

⎛

⎜
⎝
tan

φo

2
− κA

√
1 − κ2

A

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
, (25)

if κA < 1 and φo < θ< < π.

The cross-over time tC is finite and only present if the amplitude A and the initial condition
θ< are such that the agents, although initially in the non-conservative basin (φo, π) would
cross over the conservative basin (0, φo) at times t ≥ tC . If the amplitude A < κo − 1
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Fig. 4 The cross-over time tC , given by Eqs. (23,25), as a function of the initial condition θ< and the amplitude
A. The darker the color the shorter it takes for the agent with the lower phase to reach the cross-over point φo.
In the non-conservative region, defined for A < κo − 1 and θ< > φA , the cross-over time tC is not defined
(Color figure online)

0 10000 20000 30000 40000
t

θb(0)

θa(0)

π − φA

30000 30200 30400

Fig. 5 Oscillatory behavior of the solutions of Eqs. (16) and (17) for values of A < κo − 1 and φA < θ< <

π − φA . Both trajectories converge to π − φA . In the inset we have a detail for just a few oscillation cycles

and initial condition θ< > φA the agent remain in the non-conservative basin. We present a
density plot of tC as a function of A and θ< in Fig. 4.

The behavior of the phases that remain in the non-conservative basin is as follows: if
A < κo − 1 and π − φA < θ< the phases converge to π − φA asymptotically. If A < κo − 1
and φA < θ< < π − φA the phases converge to π − φA oscillatorily (see Fig. 5).
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0 200 400 600 800 1000
t

1.5

1.75

2

θa

τ = 0
τ = 30

2τ

Fig. 6 Integration of Eqs. (16) and (17) for a system without delay (dashed curve) and for a system with delay
τ = 30. Both systems are unperturbed (A = 0) and with � = 0.01. Only the curves for θa are presented

The behavior in the area determined by κA > 1 and φA < θ< < π − φA can be
approximated, following an argument similar to the one presented in Appendix B, by:

θa(τ t) ≈ xA(
t� ; θa,0) [1 − mod (
t� , 2)] + xA(
t� ; θb,0) mod (
t� , 2) (26)

θb(τ t) ≈ xA(
t� ; θa,0) mod (
t� , 2) + xA(
t� ; θb,0) [1 − mod (
t� , 2)] , (27)

where 
t� ∈ Z and 
t� ≤ t < 
t� + 1, and

tan
xA(t; x0)

2
=

tan
π − φA

2

(

tan
x0
2

− tan
φA

2

)

e�At

(

tan
x0
2

− tan
φA

2

)

e�At + tan
π − φA

2
− tan

x0
2

+
tan

φA

2

(

tan
π − φA

2
− tan

x0
2

)

(

tan
x0
2

− tan
φA

2

)

e�At + tan
π − φA

2
− tan

x0
2

. (28)

These solutions are similar to the ones presented in Fig. 9. Observe that for sufficiently long
times:

xA(t; x0) ≈ π − φA − 2
1 − tan

φA

2

1 +
(

tan
π − φA

2

)2

tan
π − φA

2
− tan

x0
2

tan
x0
2

− tan
φA

2

e−�At , (29)

which indicates that the envelope (28) converges towards π − φA.
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0 φo π/2 π−φo
π

Initial Condition θ(t = 0)

0

κo-1

(κo-1)/b0

A

High frequency limit
Zero frequency limit

Decays to

Oscillatory Decays to

Conservative

.noCoNot .noCoN

(a)

(b)

(c)

(d) (e)

0 φo π/2 π−φo
π

θ<

0

κo-1____
a0

A

Unstable
Stable

a) b)

Fig. 7 (a Phase diagram for the system described by Eqs. (35) and (36) in the plane (θ<, A). There are
three different behaviors in the system, depending on the values of the parameters θ< and A. The system
may decay towards the conservative fixed point (a), decay inside the non-conservative basin (e) and (c) or
present an oscillatory decay towards the non-conservative fixed point (b) and (d). Region (b) corresponds to
a perturbation p(ωt) = 1 (or zero frequency limit). Region (d) corresponds to a perturbation with a very high
frequency (ω → ∞). Observe that this region is obtain by scaling the vertical axis A → A/b0,where b0 is the
high-frequency limit of the average (33). Perturbations with finite values of ω would produce a phase diagram
with an oscillatory behavior region in between regions (b) and (d). The line separating regions (a) and (b) is
given by κo sin θ0 −1− A = 0, the one separating regions (b) and (c) is given by κo sin(π − θ<)−1− A = 0.
Equivalently, the line separating regions (a) and (d) is given by κo sin θ0 − 1 − Ab0 = 0, the one separating
regions (d) and (d) is given by κo sin(π −θ<)−1− Ab0 = 0. b) The fixed points of the system are represented
by the dark dashed lines (unstable points) and by the grey (orange on line) thick lines (stable points). The
arrows indicate the direction of flow, at constant A, for a given value of the initial condition θ<. The number
a0 ∈ [b0, 1] depends on the frequency of the perturbation (Color figure online)

It is important to note that, in the absence of delay and by applying the observation that the
order of the phases is preserved, i.e. if θ< = θb(0) < θa(0) = θ>, then θb(t) < θa(t) for all t,
the phases of the undelayed system satisfy the following expressions θa(b)(t) = xA(t; θ>(<)).

The fundamental difference between delayed and non-delayed systems for 0 ≤ A ≤ κo − 1
and φA < θ< < π − φA is that the relaxation time of the exponential decay in the delayed
system is equal to the relaxation time of the undelayed system times τ.

To illustrate this change of behavior we present the result of the integration of Eqs. (16)
and (17) in Fig. 6for unperturbed (A = 0) systems. The dashed curve corresponds to a system
without delay, the full curve corresponds to a system with a delay τ = 30, with � = 0.01 in
both cases.

3.2 General Periodic Perturbation

Consider the system of equations at t < τ :

θ̇a = �(κo sin θa − 1) − sin[θa(t) − θ<] − �Ap(ωt) (30)

θ̇b = �(κo sin θb − 1) − �Ap(ωt), (31)

with θa(0) = θ> ∈ (φo, π), θb(0) = θ< ∈ (φo, π − φo) and where p(ωt) is a periodic
function with period 2π/ω, satisfying that 0 ≤ p(ωt) ≤ 1 for all t . Let as suppose that we
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0 250 500 750 1000 1250
ω[π/τ]

A(ω=0)

A(ω=0)/b0

AC

Fig. 8 Critical amplitude AC as a function of the frequency ω (in units of π/τ ) for the perturbation p(ωt) =
1
2 − 1

2 cos(ωt)

can expand the perturbation in the following way:

p(ωt) =
∞∑

�=0

b� cos (�ωt) , (32)

therefore we can compute the average perturbation as:

p(ω) ≡ 1

τ

∫ τ

0
ds p(s) = b0 +

∞∑

�=1

b� sinc(�ωτ), (33)

where

sinc(x) ≡ sin(x)

x
. (34)

p(ω) approaches b0 for sufficiently large values of the frequencyω. Therefore, we can obtain
a crude estimate of the agent’s behavior by approximating the system formed by Eqs. (30)
and (31) by:

θ̇a = �(κo sin θa − 1) − sin[θa(t) − θ<] − �Ap(ω) (35)

θ̇b = �(κo sin θb − 1) − �Ap(ω). (36)

We observe that the phase diagram of the system in the plane (θ<, A), where θ< is the
initial condition of the initially smallest phase and A is the amplitude of the perturbation,
is presented in Fig. 7a). There are three different behaviors in the system, depending on the
values of the parameters θ< and A. The system may decay towards the conservative fixed
point θ = 0 (a), or decay to the non-conservative point θ = π −φA in a monotonous way, (e)
and (c), or oscillatory way, (b) and (d). Region (b) corresponds to a perturbation p(ωt) = 1
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(or zero frequency limit). Region (d) corresponds to a perturbationwith a very high frequency
(ω → ∞). Observe that this region is obtain by scaling the vertical axis A → A/b0, where
b0 is the high-frequency limit of the average (33). Perturbations with finite values of ω would
produce a phase diagram with an oscillatory behavior region in between regions (b) and (d).

The line separating regions (a) and (b) is given by κo sin θ0−1−A = 0, the one separating
regions (b) and (c) is given by κo sin(π − θ<) − 1− A = 0. Equivalently, the line separating
regions (a) and (d) is given by κo sin θ< − 1 − Ab0 = 0, the one separating regions (d) and
(e) is given by κo sin(π − θ0) − 1 − Ab0 = 0. In Fig. 7b) we present the distribution of
unstable fixed points (dashed lines) and stable points (full line) in a systemwith a perturbation
of frequency ω, that fixes the value of the parameter a0 ∈ (0, b0). The arrows indicate the
direction of evolution of the system at constant A, from θ(0) = θ< to θ(∞) = 0 or π − φA.

Observe that the previous analysis is based on the values of the effective amplitude of the
perturbation (Ap(ω)) and the initial position of the smallest phase θ<. Following [35] we
hypothesize that the phase space presented in Fig. 7 is also valid for a system with M > 2
interacting agents.

It is also important to note that, in the analysis presented in [35], the parameter consider is
the expected value of the smallest initial phase, which is a parameter drawn from a distribution
that depends on M . In that scenario, the larger the number of agents M the closer the initial
smallest phase to the instable point φo, and therefore the smallest the minimal amplitude
of the perturbation A to convince the most conservative agent to cross over the boundary
between basins. In the present scenario, the parameter considered is the smallest initial phase
θ< itself. In this manner, the analysis we present here corresponds to all possible values of
the parameters θ< and A, not the most likely ones. Finally, the approach presented in [35]
considers a smooth, periodic perturbation ν(t), with at least two continuous derivatives and
satisfying the constraints ν(0) = ν̇(0) = 0. In the present approach we cannot consider
such constraints because would render meaningless the analysis of the constant perturbation
(ω = 0).

3.3 Study of the Oscillatory Phase Under a General Periodic Perturbation

In this section we focus on the solution to the system of differential Eqs. (30) and (31) with
an initial condition such that φA < θ< < π − φA. In this case we have an oscillatory
decay towards an asymptotic non-conservative behavior. In particular we want to explore
the dependency of the critical amplitude (AC ) on the frequency of the perturbation ω. The
critical amplitude is the value of A over the line separating the regions (a) and (d) in Fig. 7.

With this end we propose a perturbative solution to (30) and (31) of the form θa(b)(t) =
θa(b)(t; A = 0) + Aδa,b(t), where the θa(b)(t; A = 0) are given by (26) and (27). The
equations for the δa(b) are

δ̇a(b) = − [1 − �κ0 cos θa(b)
]
δa(b) + δb(a) − �p(ωt), (37)

and their solution can be approximated by the expression:

δa(b)(t) ≈ −�(n + 1)
∞∑

�=0

b�

∣
∣
∣
∣
∣

sinc
[ n+1

2 (�ωτ + φ�)
]

sinc
[ 1
2 (�ωτ + φ�)

]

∣
∣
∣
∣
∣
cos
(
�ωt − ��,n

)
, (38)

��,n ≡ φ� + n

2
(�ωτ + φ�) (39)

where φ� ≡ arctan(�ω) and n ≡ 
t/τ� . Observe that δa(b) is identical for all agents (inde-
pendent of the index a(b)) and it presents a strong correlation with modes associated with
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t

π − φo

θ(t)

40000 42000 44000
t

π − φo

θ(t)

Numerically Integrated Solution
Approximated Solution

Fig. 9 Numerical solution to the Eq. (79) and approximation (91) against time, for initial conditions θa(0) =
π − φo − 0.1 and θb(0) = φo + 0.1, for t ∈ [0, 80000]. The parameters of the system were set to � = 0.1
and τ = 1000. In the inset we present a detail of the same curves for times t ∈ [40000, 40000 + 5τ ]

the natural frequency of the system (� = π/τ ). To illustrate this point we present a plot of
AC (ω) for the perturbation p(ωt) = 1

2 − 1
2 cos(ωt) in Fig. 8.

4 Discussion

We analyzed the effects of a perturbation on the opinion formation process in a population
of adaptive agents. The scenario considered is anisotropic since the agents interact with a
set of rules B that determine the socially acceptable position. It was also assumed that the
perception an agent had on a peer’s position about a social issue may not be up to date, hence
a time delay τ was considered. A periodic perturbation was added to the model to mimic the
action of a publicity campaign in pro of the official position represented by B.

In the microscopic model we chose to represent the internal state of the agents by a
perceptron that is trainedwith a Hebbian algorithm (40). The rule B was also represented by a
perceptron that learns from the average public opinion (44). By applying statisticalmechanics
techniques and the Markov approximation we obtained the large system-size limit of these
equations. The dynamical system ruled by the differential equations so obtained presents two
stable points, one that represents the conservative position agents express whenmostly follow
B, and other, dubbed non-conservative, that represents the attitude of agents following their
peers.

By setting the system parameters in such a way that the conservative and non-conservative
fixed points are equally likely (bi-stable regime), we studied the time evolution of the system
of delayed differential equations (15) representing the process of opinion formation, under
the action of a small periodic perturbation representing an official publicity campaign. The
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initial conditions set for most of this study locate the agents in the basin of attraction of the
non-conservative point.

We found out that the perturbed system presents three different behaviors, depending on
the values of the initial condition of the smallest phase θ<, and the value of the perturbation’s
amplitude A. For small values of θ< and sufficiently large A the system decays towards
the conservative fixed point, for sufficiently large θ< and sufficiently small A the system
decays towards the non-conservative fixed point, and for intermediate values of θ< and
sufficiently low values of A the system presents damped oscillations that decay towards the
non-conservative point. The time the system needs to cross-over to the conservative basin,
Eqs. (23–25) is presented in Fig. 4. The emergence of this oscillatory behavior for A < κo−1
and φA < θ< < π − φA is due to the presence of the delay in the exchange of information
between peers. The presence of this delay increases the relaxation time towards the fixed
point π − φA by a factor of τ.

The frequency of the perturbation produces quantitative changes in the phase diagram
of the system, without altering the qualitative distribution of the regions (see Fig. 7). We
also observe that the perturbations consider in this approach are different from the periodic
perturbation ν(t) considered in [35], which satisfy the constraints ν(0) = ν̇(0) = 0. Such
constraintswere imposed to permit the relaxation at short times in the low frequencies regime.
In our present approach we make use of the constant perturbation as the limit of a very low
frequency. Is the perturbation is initially zero, it should remain so in the limit of the frequency
going to zero, rendering our analysis meaningless.

The asymptotic behavior observed on the non-conservative phases can be represented by
a monotonous decay towards π −φA for κA > 1 and θ< > π −φA (region (c)-(e)) and by an
oscillatory decay towards π − φA for κA > 1 and φA < θ< < π − φA (region (b)-(d)), thus,
the transition from phase (b)-(d) to (c)-(e) can be characterized by the value of the imaginary
part of the exponent, responsible for the oscillations of period 2τ observed in region (b)-(d).
This is not a phase transition in the sense that there is a non-analyticity in the free energy
of the system (which has not been defined) but a change in the asymptotic behavior of the
system.

The role played by the parameter�, which has absorbed the parameter λo that controls the
update of the rule B through the wisdom-of-the-crowd effect, is to provide a suitable scale
to the relaxation and oscillation processes studied [Eqs. (23–25), (26) and (27)], without
changing the asymptotic values reached by the average agreement Ra . If no update rule on
B is considered (λo = 0), the four fixed points of the potential (6) get reduced to two (see
Ref. [32]) and the complexity of the dynamical processes analyzed is lost.

Interactions among spatially distributed agents are subjected to a time delay. Any physical
interaction propagates at a finite speed. The most salient effect of the time delay in the agent-
agent interaction is observed in the phase-space region where φA < θ< < π − φA. In this
region the system oscillatory decays towards the non-conservative point. As it is shown in
Fig. 6, the presence of the delay retards the decay towards the correspondent fixed point.
Similar effects have been observed in [46].

Our model, in its current form, is related to the scenario presented in [57], where an
analysis on an anti-drug campaign focussed on adolescents is presented. In our model B
represents the government, the agents are the school attending teenagers, and the issues
opinions are formed over is the use of drugs. It was found that exposure to social interaction
about campaignmessages can affect behavior, and such interactions are favored if the intensity
of the campaign is not perceived as oppressive (low A in our model).

Finally, we presented a short analysis of the perturbative solution to the system with a
perturbation p(ωt) = 1

2 [1 − cos(ωt)]. The value of the critical amplitude AC has been
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numerically computed as a function of ω an plot in Fig. 8. We observe that AC (ω) ≤
limω→∞ AC (ω) = AC (0)/b0, thus partially validating the phase diagram presented in Fig.
7.
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Appendix A: Update Equations for a dimer

Assuming that the population of interacting agents receives information taken from the set
S ≡ {(σB,n, σNa ,n−m,Sn)}Tn=1,where the string Sn is presented at time n and then discarded,
σB,n = sgn(Bn · Sn) and σNa ,n−m = {σc,n−m : c ∈ Na} is the set form by the classifications
given by agent a’s neighbors at time n−m, the update equation for the internal representation
of a is:

Ja,n+1 = Ja,n + ψa,n
σB,nSn√

N
, (40)

where σBS/
√
N is the (unit length) Hebb vector [58], that indicates the direction of the

socially acceptable position on Sn and ψa,n is the learning amplitude, that regulates how
the information is incorporated in the internal representation of a. The length of the opinion
formation process T is considered to be proportional to the number of issues presented to
the agents. We propose

ψa,n ≡ fn
|Ja,n|√

N
�a,n (41)

where fn is a decaying function of n that implements the annealing of the learning process

[59], |Ja |/
√
N =

√∑N
j=1 J

2
a, j/N is a factor that has no impact on the learning efficiency of

the algorithm [60] and it has been only considered for technical purposes, and:

�a,n,� ≡ 1 − 
(−σB,nσa,n)
∑

c∈Na

ηa,c
(σa,nσc,n−m), (42)

where 
(x) = 1 if x > 0 and 0 otherwise is the Heaviside step function, and m = n − �

is the delay in the information received by a from the neighbors c ∈ Na . This time delay
accounts for the lack of update on the knowledge a has on the opinion of its neighbor c about
current affairs.

The learning algorithm (42) works in the following way: In the absence of any inter-agent
interaction the agents {a} learn from the social rule B only, and their internal representations
{Ja} grow in the direction of B. This accounts for the first term of the right-hand-side of Eq.
(42). But disagreement between agent a and social rule B may arise, i.e.
(−σa(S)σB(S)) >

0. There is a cost for disagreement, as it is documented in Ref. [61], thus the agent a checks
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with their closest peers in Na (where close refers to a criterion extracted from social impact
theory [22, 23]), whether σa(S) = σc(S) or not. The corroboration [55, 56] is done with
delayed information, corresponding to the state of the neighbors inNa ,m timeunits in the past.
If the integrated contribution of agreeing neighbors is sufficiently large (second contribution
at the right-hand side of (42)), �a becomes negative and the internal representation vector
Ja grows opposite to B.

Let us define the unit vectors b ≡ |B|−1B in the direction of the internal representation
of B, ja ≡ |Ja |−1Ja in the direction of the internal representation of agent a and ja,⊥ =
[1− ( ja · b)2]−1/2[ ja − ( ja · b)b] in the direction of the component of Ja perpendicular to
B. Given that an agent’s classification is obtained through information processing using the
internal representation vector Ja, and that any modification to the vector B in the direction of
B does not produce any change on B’s classifications, we will construct the update algorithm
for B by considering the vector:

L ≡ 1

M

M∑

c=1

jc,⊥. (43)

which is the arithmetic average over all the components of the internal representations Jc
perpendicular to B. Observe that B · L = 0 and |L · L| ∼ O(M−1). Then:

Bn+1 = Bn + λo√
N

fnLn, (44)

where λo/
√
N is a suitable scale factor. Observe that if λo ∼ O(1) the updates of B at each

time step are very small, thus λo/
√
N is a measure of the inverse inertia (if the mass of

B is infinite we wouldn’t expect any change at all). Observe also that |Bn+1|2 = |Bn |2 +
O( f 2n N

−1), which implies that the length of the vector B does not change with the update.
To help describe the state of the system we define the variables:

φa,n,n−
n ≡ σB,n
Ja,n−
n · Sn
|Ja,n−
n| (45)

βn ≡ σBn
Bn · Sn
|Bn | (46)

and parameters:

Ra,n ≡ Ja,n · Bn

|Ja,n||Bn | (47)

Wa,n;b,n−
n ≡ Ja,n · Jb,n−
n

|Ja,n||Jb,n−
n| (48)

Ya,n;b,n−
n ≡ Ja,n,⊥ · Jb,n−
n,⊥
|Ja,n,⊥||Jb,n−
n,⊥| . (49)

The variables depend explicitly on the information {σB,n,Sn}whereas the parameters depend
on the internal representations {{Ja,n},Bn} only. The variable βn is non-negative and the
smaller the βn(S) the higher the likelihood of S to be in the classification boundary (given by
B · S = 0). The variable φa,n,n(S) indicates how much the vector Ja,n has to be modified to
agree with Bn . The parameter Ra represents the level of agreement of agent a with the social
rule B,Wa,n;b,� represents the level of agreement between agents a (in the current state) and
b (n − � time-steps in the past) and the parameter Ya,n;b,� represents the level of agreement
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between the current agent a and the past agent b on strings Sn laying on the current classifica-

tion boundary,Bn ·Sn = 0. Given thatWa,n;b,� = Ra,n Rb,�+Ya,n;b,�
√

(1 − R2
a,n)(1 − R2

b,�)

we only need to know {Ra,n} and {Ya,n;b,�} to know the state of the system.
The data accessible to the agent a is (σB,n, φa,n, φb,�,Sn). The length of the training

set is T = αmaxN , which implies that αmax = T /N . For a given number 1 ≤ n < N of
examples presented to the perceptrons there is a number 0 < α < αmax such that n = α(n)N .
Observe that, given that the minimum increment in the number of examples presented is 1,

α(n) ≡ α(n + 1) − α(n) = 1/N . By defining 
t ≡ fn
α = fn/N and by using the
update rules (40) and (44), we have that the equation for the evolution of the parameters are:


Ra,n


t
= ψa,n,�

(
βn − φa,n,n Ra,n

)+ λo

√
1 − R2

a,n
1 + Ya,n;b,�

2
+ O(
t) (50)

and


Ya,n;b,�

t

= ψa,n,�

⎡

⎣ φb,n,� − Rb,�βn
√

(1 − R2
a,n)(1 − R2

b,�)
− Ya,n;b,�

φa,n,n − Ra,nβn

1 − R2
a,n

⎤

⎦

− λoRa,n
√
1 − R2

a,n

(
1 − Y 2

a,n;b,�
2

)

+ψb,�,�−m

⎡

⎣ φa,�,n − Ra,nβ�
√

(1 − R2
a,n)(1 − R2

b,�)
− Ya,n;b,�

φb,�,� − Rb,�β�

1 − R2
b,�

⎤

⎦

− λoRb,�
√
1 − R2

b,�

(
1 − Y 2

a,n;b,�
2

)

+ O(
t). (51)

Following [62], these parameters can be prove to be self-averaging in the large N limit.
Averaging over the variables φa,n,�, φb,�,�−m and βn, we have the differential equations

Ṙa =
〈

ψa(t, t − τ) (β(t) − φa(t, t)Ra(t)) + λo

√
1 − R2

a(t)
1 + Ya,b(t, t − τ)

2

〉

(52)

Ẏa,b =
〈

ψa(t, t − τ)

⎡

⎣ φb(t, t − τ) − Rb(t − τ)β(t)
√

(1 − R2
a(t))(1 − R2

b(t − τ))

− Ya,b(t, t − τ)
φa(t, t) − Ra(t)β(t)

1 − R2
a(t)

]〉

+
〈

ψb(t − τ, t − 2τ)

⎡

⎣ φa(t − τ, t) − Ra(t)β(t − τ)
√

(1 − R2
a(t))(1 − R2

b(t − τ))

−Ya,b(t, t − τ)
φb(t − τ, t − τ) − Rb(t − τ)β(t − τ)

1 − R2
b(t − τ)

]〉

−λo

〈⎡

⎣ Ra(t)
√
1 − R2

a(t)
+ Rb(t − τ)
√
1 − R2

b(t − τ)

⎤

⎦

(
1 − Y 2

a,b(t, t − τ)

2

)〉

. (53)
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The averages in (52) and the first term of (53) are over β(t), φa(t, t) and φb(t, t − τ);
the averages on the remaining terms of (53) are over φa(t − τ, t), β(t − τ), φb(t − τ, t − τ)

and φa(t − τ, t − 2τ). For the variables φ(t1, t2), the first argument t1 corresponds to the
time at which information is presented, and t2 is the time of the last update of the internal
representation of the perceptron.By imposing aMarkov approximation [63] in the distribution
of probabilities, i.e.:

P (φa(t1, t2)| {β, φa, φb}(t)) ≈ P (φa(t1, t2) |φb(t1, t2 − τ), β(t1 − τ) ) (54)

P (β(t1) |{β, φa, φb}(t) ) ≈ P (β(t1) |φb(t1, t2), φa(t1, t2 − τ) ) , (55)

where {β, φa, φb}(t) represents the dependency on all the variables (β, φa , and φb evaluated
at times t ′ < max{t1, t2}), and by defining the quantities:

L(φc, φd) ≡ [Rc − Wc,d Rd ]φc + [Rd − Wc,d Rc]φd

�c,d

√

1 − W
2
c,d

(56)

�
2
c,d ≡ [1 − R2

c ][1 − R
2
d ][1 − Y

2
c,d ] (57)

�
2
c,d ≡ �

2
c,d

1 − W
2
c,d

, (58)

where the over-line indicates a quantity evaluated at t − τ, we propose (following the
results obtained for τ = 0 [32]) the following approximation for the probabilities

P
(
φa

∣
∣
∣β, φb, φa

)
≈ P (φa

∣
∣β, φb

) ≈ N (φa
∣
∣μ, σ 2

)
, with

μ ≡ [Ra − RbWa,b]β + [Wa,b − Ra Rb]φb

1 − R
2
b

(59)

σ 2 ≡ �
2
a,b

1 − R
2
b

(60)

and the rest of the probabilities are derived from the distribution of S, P(S) =
2−N ∏N

j=1

(
δS j ,1 + δS j ,−1

)
, i.e.

P (β
∣
∣φb, φa

) =
N
(
β

∣
∣
∣�b,aL(φb, φa);�

2
b,a

)

2H (−L(φb, φa)
) (61)

P (φb
∣
∣φa
) =

H (−L(φb, φa)
)N

(
φb

∣
∣
∣Wb,aφa; 1 − W

2
b,a

)

H
⎛

⎝− Raφa√

1 − R
2
a

⎞

⎠

, (62)

P(φa) = 2H
⎛

⎝− Raφa√

1 − R
2
a

⎞

⎠N (φa
)
, (63)

where (63) is the marginal probability once all other variables evaluated at times shorter
than t − τ have been integrated, and N (x |, μ, σ 2) = (2πσ 2)−1/2 exp

[−(x − μ)2/2σ 2
]
,
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H(x) = ∫∞
x dyN (y) and N (y) = N (y|, 0, 1). Thus, the conditional averages are:

〈
φa
∣
∣β, φb

〉 = [Ra − RbWa,b]β + [Wa,b − Ra Rb]φb

1 − R
2
b

(64)

〈
β
∣
∣φb, φa

〉 = �b,a
[F (L(φb, φa)

)+ L(φb, φa)
]
, (65)

where F(x) ≡ N (x)/H(−x), and the complete averages are:

〈φa〉 =
√

2

π
Ra ∀t (66)

〈φb〉 =
√

2

π
Rb ∀t (67)

〈β〉 =
√

2

π
∀t (68)

〈
(−φb)
(−φa)φa〉 =
√

2

π

(

Ra
arccos(−Yb,a)

2π
− 1 + Wb,a

2
ρb,a

)

(69)

〈
(−φb)
(−φa)φb〉 =
√

2

π

(

Rb
arccos(−Yb,a)

2π
− 1 + Wb,a

2
ρb,a

)

(70)

〈
(−φb)
(−φa)β〉 =
√

2

π

(
arccos(−Yb,a)

2π
− Ra + Rb

2
ρb,a

)

(71)

with

ρb,a ≡ 1

2
− 1

π
arctan

(
Rb − Wb,a Ra

�b,a

)

. (72)

If
√

π/2 is absorbed into dt we have that the differential equations become:

Ṙa = 2 − ηa,b

2
(1 − R2

a)

+ηa,b

2

[

[1 − R2
a]
arccos(Ya,b)

π
+ ρa,b [Rb − Wa,bRa]

]

+λo

√
1 − R2

a
1 + Ya,b

2
, (73)

Ẏ a,b = [1 − Y
2
a,b]

⎧
⎪⎨

⎪⎩
ηa,b

√
√
√
√1 − R

2
b

1 − R2
a

ρa,b

2
− λo

2

⎡

⎣ Ra
√
1 − R2

a

+ Rb
√

1 − R
2
b

⎤

⎦

⎫
⎪⎬

⎪⎭
,

(74)

where in (73) and (74) we have canceled all dependencies with parameters evaluated before
t −τ. By performing a stability analysis similar to the one presented in [34] we conclude that
the only stable solution has Ya,b = Yb,a = 1. This implies also that ρa,b → 
(Rb − Ra)

after short initial transient. By defining the phases θd = arccos(Rd) we can re-express Eq.
(73) in the form of:

Ṙa =
(
1 − ηa,b

2

)
sin2 θa +

[ηa,b

2

(θa − θb) sin(θa − θb) + λo

]
sin θa . (75)
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According to Definition (47) and Eq. (50) we can expect that, if the agent a learns from
the rule B, the overlap Ra = 1 − ra/N , where the constant 0 < ra ∼ O(1). Using this
hypothesis to model the action of a publicity campaign in favor of the rule B and following
the results reported in [31] we propose the following modification to the learning algorithm
(40):

Ja,n+1 = Ja,n + ψa,n
σB,nSn√

N
+ fn

|Ja,n|√
N

√
1 + Ra,n

N (1 − Ra,n)
Pnbn, (76)

where the first two factors of the last term in the right-hand side of (76) are the annealing
factor and the scaling factor (equivalent to (41)). The third factor is an increasing function
of the overlap Ra , that produces a positive feedback in favor of the growth of Ja towards B.
Observed that this factor has an upper bound given by:

√
1 + Ra

N (1 − Ra)
≤
√

2

ra
. (77)

0 ≤ Pn is a periodic function of the iteration index n. By considering this perturbation, Eq.
(50) becomes, disregarding terms of order 
t :


Ra,n


t
= ψa,n,�

(
βn − φa,n,n Ra,n

)+
√
1 − R2

a,n

(

λo
1 + Ya,n;b,�

2
+ Pn

)

. (78)

The correspondent differential equation obtained in the limit 
t → 0 is (5).

Appendix B: Two Agents and No Perturbation, Non-Conservative Initial
Conditions

Let us study first the system formed by only two agents and with initial conditions such that
θ< = min{θa(0), θb(0)} ∈ (φo, π − φo) and θ> = max{θa(0), θb(0)} ∈ (φo, π) . Without
lose of generality we assume that θ> = θa(0) and θ< = θb(0). Then, for all 0 < t < τ we
have that the evolution of the system is ruled by the equations:

θ̇a = �(κo sin θa − 1) − sin[θa(t) − θ<] (79)

θ̇b = �(κo sin θb − 1) . (80)

Observe that, by hypothesis, κo sin θb(0) − 1 > 0, thus θb is an increasing function of
time

tan
θb(t)

2
=

tan
π − φo

2

(

tan
θ<

2
− tan

φo

2

)

e�ot

(

tan
θ<

2
− tan

φo

2

)

e�ot + tan
π − φo

2
− tan

θ<

2

+
tan

φo

2

(

tan
π − φo

2
− tan

θ<

2

)

(

tan
θ<

2
− tan

φo

2

)

e�ot + tan
π − φo

2
− tan

θ<

2

(81)

which clearly indicates that θb(t) ∈ (φo, π − φo) for all t . We have also use that �o =
�
√

κ2
o − 1. Observe that if the initial condition of a θa(0) = θ> < π − φo then there is a
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finite time tb1 such that θb(tb1) = θ> :

tb1 = tan φo

�

⎧
⎪⎨

⎪⎩
ln

tan
π − φo

2
− tan

θ<

2

tan
θ<

2
− tan

φo

2

+ ln
tan

θ>

2
− tan

φo

2

tan
π − φo

2
− tan

θ>

2

⎫
⎪⎬

⎪⎭
, (82)

and we choose the parameters of the system in such a way that tb1 � τ. If θ> > π − φo

then θb → π − φo asymptotically. For τ > t > tb1 the equation for θb changes and it must
be treated as Eq. (79).

Before analyzing the equation for θb(t > tb1)wewill solve Eq. (79) through a perturbative
approach: Let as assume that the solution to (79), θa(t;�) admits an expansion in powers of
�, i.e. up to terms of O(�2),

θa(t) = θ< + 2 arctan
[
e−(t−t̃0)

]

+�

{

κo

[

sin θ<

(

1 − cosh(t̃0)

cosh(t − t̃0)

)

+ cos θ<

t

cosh(t − t̃0)

]

− sinh(t − t̃0) + sinh(t̃0)

cosh(t − t̃0)

}

+ O(�2) (83)

where

t̃0 ≡ ln

[

tan

(
θ> − θ<

2

)]

. (84)

If θ> < π − φo (and tb1 < ∞) the equation for θb(t > tb1) becomes:

θ̇b = � [κo sin θb − 1] − sin[θb − θ>], (85)

with a solution given by:

θb(t > tb1) = θ> + �(κo sin θ> − 1)(1 − e−t ) + O(�2). (86)

At a 0 � t ≤ τ we expect saturation levels to be almost achieved:

θa(t) → θ< + �(κo sin θ< − 1) + O(�2) (87)

θb(t) → π − φo tb1 → ∞
→ θ> + �(κo sin θ> − 1) + O(�2) tb1 < ∞. (88)

For future cycles of integration we assume that τ � 1, thus the activation time is shorter
than τ. Thus, subsequent saturation values (minimum and maximum), are controlled by the
same map:

xn+1 = xn + �(κo sin xn − 1), (89)

with x0 = θ>(θ<) for the maximum (minimum) value of the wave. If xo ∈ (φo, π) the only
stable fixed point of the map is π − φo.

It is straightforward that the envelope curve will satisfy the equation:

tan
x(t; x0)

2
=

tan
π − φo

2

(

tan
x0
2

− tan
φo

2

)

e�ot

(

tan
x0
2

− tan
φo

2

)

e�ot + tan
π − φo

2
− tan

x0
2
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+
tan

φo

2

(

tan
π − φo

2
− tan

x0
2

)

(

tan
x0
2

− tan
φo

2

)

e�ot + tan
π − φo

2
− tan

x0
2

(90)

The approximated solution then is a squarewavewith period 2τ withmaximumandminimum
values given by x(t, θ>) and x(t, θ<) respectively:

θa(τ t) ≈ x(
t� ; θa,0) [1 − mod (
t� , 2)] + x(
t� ; θb,0) mod (
t� , 2) (91)

θb(τ t) ≈ x(
t� ; θa,0) mod (
t� , 2) + x(
t� ; θb,0) [1 − mod (
t� , 2)] , (92)

where 
x� = n ∈ Z such that n ≤ x < n + 1.
In order to assess the quality of these approximated solutions we performed a numerical

integration of the Eqs. (79) and (80) (using a Runge–Kutta method of second order) and
plot the solution of (79) together with (91) in Fig. 9. The initial conditions were set to
θa(0) = π − φo − 0.1 and θb(0) = φo + 0.1. The parameters of the system were set to
� = 0.1 and τ = 1000.
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