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Network pruning and growth: Probabilistic optimization
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Being the backbone of many human-made systems, networks require both pruning and growth to adapt to
changing demand. We develop a message passing-based framework for analyzing and addressing the two-level
optimization problem of edge removal/addition for indirectly dependent objectives. As exemplar problem we
use routing in optical communication networks to minimize capability loss (removal) or maximize capacity
(addition). The methods developed result in lower path lengths and higher capacity topologies with respect to
existing ones and are suitable for a broad range of network design tasks.
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I. INTRODUCTION

Networks are prevalent in both natural and human-made
structures, from electricity grids, road and human contact
networks to wireless and optical communication networks.
Network topology impacts directly and fundamentally on
their performance, utilization, and functionality [1–4]. For
instance, in the exemplar network, we focus on here, of optical
communication, that underpins both access networks and the
backbone of the Internet, network topology crucially impacts
on transmission capacity, latency, resource requirements and
cost [5–8]. Optimizing network topology is essential for better
use of resource. One may consider adding or pruning edges
for improving throughput or save resources with maximal or
minimal impact on performance, respectively. The challenge
is in the two-level optimization problem [9], where edge re-
moval or addition hinges on an objective function which is
optimized in parallel to the modified topology.

Network design clearly relies on the specific objective
measure used that may be nontrivial to evaluate, since it re-
quires a parallel optimization process. For instance, deletion
or introduction of network edges in optical communication
networks changes the network topology, and is evaluated
by its impact on success measures that result from routing
optimization given the modified topology, such as aver-
age path length, capacity or robustness. The joint-routing
task of multiple communication requests is in itself gener-
ally NP-hard [10] (nondeterministic polynomial, where the
computing time needed for obtaining solutions grows expo-
nentially with the system size) and so is practical routing
on wavelength-division-multiplexed optical networks that re-
quires for paths to be node or edge disjoint, so that paths using
similar wavelengths would not share nodes or edges [11–14].
Heuristics used for optical communication design focus on
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vertex localities or distances between vertices [7,15,16], or
on the introduction of other indirect objects that are easier
to evaluate [8]. Most pruning/growth methods are greedy,
considering one edge at a time, making the process scalable
but result in suboptimal configurations.

The method we advocate using for network pruning and
growth is belief propagation (BP), also known as message
passing, which relates to the cavity method of statistical
physics [17]. It has featured successfully in many net-
work applications including both localized and nonlocalized
interactions, e.g., multiwavelength node or edge-disjoint rout-
ing [14,18–20]. In the current task, two types of variables
are introduced, one for routing optimization and one for
edge removal/addition. Routing variables adhere to the path
contiguity and node/edge-disjoint restrictions. BP can accom-
modate various constraints and objective functions, resulting
in a closed set of equations, the solution of which is scalable
and practical. In general BP and population dynamics also
allows one to analyze generic properties of the system investi-
gated. While the focus of this paper is optical communication
networks, demonstrating the efficacy of the method to a par-
ticular application, a similar framework can be constructed for
other network applications.

A practical way of designing a network is by making
adjustments to an existing one, through pruning, adding or
replacing edges. The framework we develop here revolves
around edge removal since also the cases of edge addition and
replacement make use of the deletion process of surplus added
edges. The paper is organized as follows: to demonstrate the
concept we first consider a simple routing scenario, where
path length is the objective to be minimized and edges are re-
moved using a BP-based approach; the framework is also used
to evaluate the impact of judicious edge removal on network
performance. This is followed by edge removal in a more
realistic scenario of multiwavelength edge-disjoint routing,
where different routes cannot share a common wavelength
on the same edge (node disjoint, where routes cannot share
a common wavelength on the same node is described in the
Appendixes), and edge addition in the US optical backbone
network CONUS60 [21].
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FIG. 1. Factor graph of the edge removal problem, where circle
and rectangle nodes represent vertices and edges of the original
network, respectively, and gray squares represent the edge removal
factors.

II. EDGE REMOVAL AND AVERAGE PATH LENGTH

Consider a network G of single connected component with
N vertices/nodes labeled i, j, k, . . . and E edges denoted as
(i, j), the task is to remove K edges such that the residual
network will have the lowest objective function, average path
length in the current case, for M arbitrary communication
requests between uniformly and randomly chosen source-
destination node pairs. The variable σ

μ
i, j on edge (i, j) for

request μ, takes the value σ
μ
i, j = 1 if the path for communica-

tion μ contains the directed edge from i to j, σ
μ
i, j = −1 if it is

from j to i, and σ
μ
i, j = 0 otherwise [14]. Another variable ci, j

represents the removal or retainment of edge (i, j) (ci, j = 0
and ci, j = 1, respectively). Note the interplay between the
topology modification and optimization of the nonlocalized
routing task, which is defined in this case by the Hamiltonian

H (σ, �c) =
∑

μ

∑
(i, j)

∣∣σμ
i, j

∣∣ + λ
∑
(i, j)

ci, j, (1)

where σ ≡ [. . . , �σμ, . . . ] ≡ [. . . , (. . . , σμ
i, j, . . . ), . . . ] is the

complete routing configuration for all requests, �c the edge
removal configuration, and the external field λ is adjusted
to enforce the edge removal constraint [22,23]

∑
(i, j) ci, j =

E − K . Routing variables σ
μ
i, j in Eq. (1) are restricted by the

routing continuity constraint, i.e., if neither vertex i nor j
are the source/destination of request μ, there exists one and
only one neighboring vertex k of i, denoted as k ∈ ∂i where
∂i ≡ { j|(i, j) ∈ G} is the nearest neighbors vertex set of i,
such that σ

μ

k,i = σ
μ
i, j where σ

μ
i, j �= 0, i.e., any incoming route

exits exactly once. For source/destination node i only one
neighboring variable k ∈ ∂i admits σ

μ

k,i = ±1 [14,19,24,25].

Belief propagation

Under the mean-field framework, the minimizing configu-
ration of Eq. (1) is determined by the thermodynamic ground
state as the temperature T = 1/β → 0, where the probabili-
ties of different configurations are described by the Boltzmann
factor e−βH (σ,�c) [18]. To derive the BP equations we construct
the factor graph shown in Fig. 1 where the state of edge (i, j)
for request μ is directly influenced by the neighboring vertices
i and j and removal factor node ri, j .

While the factor graph exhibits short loops as interactions
between different communications appear on every edge, the
cross-request interaction is relatively weak with respect to

those along the entire path and contiguity constraint, and BP
therefore results in good approximate solutions. More details
are provided in the Appendixes. From the Bethe-Peierls ap-
proximation used in a broad range of applications [18,26–29],
we obtain the BP equations

pμ
i→ j (0) ∝

∏
k∈∂i\ j

qμ

k→i(0)

+
∑

m,n∈∂i\ j

qμ
m→i(1)qμ

n→i(−1)
∏

k∈∂i\ j,m,n

qμ

k→i(0),

pμ
i→ j (±1) ∝

∑
k∈∂i\ j

qμ

k→i(±1)
∏

l∈∂i\ j,k

qμ

l→i(0),

qμ
i→ j (σ ) ∝ e−β|σ |rμ

i, j (σ )pμ
i→ j (σ ),

rμ
i, j (0) ∝

∏
ν �=μ

r̃ν
i, j (0) + e−βλ, rμ

i, j (±1) ∝ e−βλ, (2)

where normalization terms are omitted for brevity, ∂i \ j is the
nearest neighbors vertex set of i except j, pμ

i→ j (σ ) is the cavity
probability of edge (i, j) being in state σ with vertex i sup-
porting request μ, and qμ

i→ j (σ ) is the probability of edge (i, j)
being in state σ without the influence of vertex j for request μ;
finally, the factor message rμ

i, j (σ ) is the probability of σ
μ
i, j = σ

due to the corresponding removal factor, after marginalization
over ci j , linking routing and edge removal. The first term in
the first line of Eq. (2) represents the case where communica-
tion μ does not pass through vertex i, and the second is where
request μ uses two other edges for this transmission (m, i) (in)
and (i, n) (out); in the second equation, communication μ uses
(i, j) for entering/leaving vertex i, and another edge (k, i) for
leaving/entering, respectively; the last equation includes the
penalty e−β for using edge (i, j) by communication request μ.
The message r̃μ

i, j (σ ) ∝ e−β|σ | pμ
i→ j (σ )pμ

j→i(−σ ) corresponds
to the cavity probability of edge (i, j) being in state σ for
request μ without the influence of the edge removal vari-
able ci, j ; the marginal probability of each edge per request
qμ

i, j (σ ) = r̃μ
i, j (σ ), in the absence of edge removal [λ = 0 in

Eq. (1)].
In many problems of this type, Eqs. (2) can be used,

jointly with population dynamics, to obtain generic results
for networks of given degree distribution and requests pro-
file. However, the nonlocalized nature of the routing problem
and the removal of specific edges that impacts on complete
trajectories make this approach inappropriate for the current
case. Instead, we average the results of Eq. (2) on instances
with similar macroscopic properties to obtain generic results,
alongside its use as the basis of an algorithm for specific cases.

After solving Eq. (2) numerically a number of times, we
can calculate related quantities, such as the marginal probabil-
ity qμ

i, j (σ ), edge removal probabilities ri, j (c) and the system
entropy. The ground state average path length L/M (the BP
curve in Fig. 4) is estimated from the entropy density s(L/M ),
by averaging over inferred solutions of 20 samples per point
as reported in the Appendixes. Using BP messages, we also
developed a decimation algorithm, for removing one edge
at a time, to obtain close-to-optimal removal configurations.
Results shown in Fig. 2 demonstrate the performance of the
algorithm in finding solutions close to the ground state, ob-
tained by averaging 20 graph and request instances of similar
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FIG. 2. BP predictions of ground state average path lengths,
based on averaging different instances of similar characteristics,
compared to results obtained by the decimation algorithm on random
regular graph instances of degree 3, N = 100 vertices and M = 100
communications requests, where K edges are removed. Each point is
based on 20 samples. (Inset) Scaling properties of average length due
to edge removal in random regular graphs of degree 3, for networks
of sizes N = 50, 100, 150, 200 and M = N requests. The scaling
parameter is α ≈ 1.506; each point is based on 20 samples. The
logarithm in the figure is of base e.

characteristics. The inset of Fig. 2 shows the scaling properties
of the method using results obtained for networks of sizes
N = 50, 100, 150, and 200. The average path length scales
as [ln(E − K )]−α for different network sizes, which are all
random-regular of degree 3, where the same fraction of edges
are removed.

III. EDGE REMOVAL IN MULTIWAVELENGTH
EDGE-DISJOINT ROUTING

Realistic optical communication networks utilize a high
number of wavelengths simultaneously, where each wave-
length on an edge cannot be used by two or more communica-
tion requests, but there is no interaction between transmissions
using different wavelengths. The resulting marginal probabil-
ity equation for edges is

qa,μ
i, j (σ ) ∝ ra,μ

i, j (σ )t a,μ
i, j (|σ |)pa,μ

i→ j (σ )pa,μ
j→i(−σ ), (3)

where ra,μ
i, j (σ ) is the probability of assuming state σ due to

the removal factor, as before; t a,μ
i, j (|σ |) is the probability of

assuming state σ due to the edge-disjoint constraint from
using wavelength a on edge (i, j) to request μ.

To select the edges to be removed for both node and
edge-disjoint routing, we use a reinforcement algorithm
employing BP information, where a reinforcement factor
ηi, j is introduced, modifying the probabilities qa,μ

i, j (σ ) ←
qa,μ

i, j (σ )ηi, j (|σ |) [20,23,30]. The reinforcement factor is up-
dated as

ηi, j (ĉ) ← εηi, j (ĉ), where ĉ = arg max
c=0,1

ri, j (c), (4)

where ε is a growing variable, initialized with a value bigger
than 1, and ri, j (0) is the edge removal probability.

The steps of the algorithm are as follows: (a) randomly
initialize variables; (b) carry out BP iterations for a cer-
tain number of steps; (c) calculate the marginal probabilities
ri, j (c); (d) construct the edge configuration �c where ci, j =
arg maxc=0,1 ri, j (c), where |�c| = E − K ; (e) if routing on the
residual network allocates all given requests, output the edges
of ci, j = 0 and stop; and (f) otherwise, carry out more BP
iterations and check the configuration. The multiwavelength
node and edge-disjoint routing algorithms of [14] are used
for routing allocation on the residual networks after edge
removal.

Numerical results obtained for random regular networks of
different sizes and removed edges are presented in Figs. 3(a)–
3(c), 6, and Table I of the Appendixes, where BP guided
reinforcement algorithms are compared with random edge
removal (data used in the experiments can be found in
Ref. [31]). To scale the number of requests to be allocated
for systems of different sizes, we use the capacity (Mmax) of
successfully allocated requests obtained by the correspond-
ing algorithms [14] using Q = 10 wavelengths as shown
in Figs. 3(a), 3(b), 6 and Table I. Using the scaled num-
ber of requests one obtains the average scaled path length
for the various network sizes as a function of the removed
edges as shown in Figs. 6 and 3(a). The reinforcement algo-
rithm exhibits significantly shorter average scaled path length
compared to random edge removal, and removal follow-
ing the edge betweenness centrality order and reverse order
[32], which have similar performance as random removal,
as demonstrated in Fig. 7. In addition, the reinforcement al-
gorithm can delete many more edges than random removal
before they break down, under the same conditions, as shown
in Fig. 3(b). Interestingly, our results show that edge removal
does not influence the capacity (Mmax) significantly as shown
in Fig. 3(c), where 10% of the edges are removed but the
residual networks have capacities of 95% and 85% with re-
spect to the node and edge-disjoint routing capacity prior to
edge removal, respectively. The higher capacity drop when the
same number of edges is removed in edge disjoint compared
to node-disjoint routing, is due to the fact that capacity is
originally higher in the former due to more intricate route
choices and is therefore more sensitive to edge removal.

IV. NETWORK GROWTH IN MULTIWAVELENGTH
EDGE-DISJOINT ROUTING

Another common scenario is adding new network edges to
meet increasing demand. The methodology used for growth
relies on a similar approach as that of network pruning. We
focus on edge-disjoint routing since it is a more realistic
scenario, although the same approach can also be used for
node-disjoint routing. The method is based on adding a set
S′ of edges, and selecting K � |S′| of them to be added to the
original network.

The method hinges on the choice of the edge set S′ from
all available edges outside the original edge set of size E [ex-
amining the finite size edge set S′ is computationally tractable
compared to considering O(N2) potential edges], by exam-
ining the impact of individual additions on reducing routing
costs (e.g., average path length). Once the set S′ has been
selected, K edges are chosen from it to be added in one of
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FIG. 3. (a) Performance of reinforcement-based and random edge removal algorithms under edge-disjoint routing for networks of size N .
The scaling coefficient for random removal is α = 1.4539 and for the reinforcement-based algorithm α = 1.4514. Each point is based on at
least 15 samples. The logarithm in the figure is of base e. (b) Maximal number of edges that can be removed by the reinforcement (Reinf) and
random (Rand) algorithms under node-disjoint (ND) and edge-disjoint (ED) routing on random regular networks of degree 3 and of different
sizes N . Each point is based on 20 samples. (c) With K edges removed, the capacities of random regular networks decrease slowly. Results
were obtained for networks with degree 3 and size N = 100, and the number of wavelength Q = 10. Each point is averaged on 20 instances.
(d) Network growth by adding K edges to CONUS60 with geographic distances as edge weights [21]. (e) the relative average path length after
K edges were added with respect to that of the original graph 〈L0〉. (f) the capacities when K edges introduced. The bottom magenta dash-doted
line is the relative total path length of adding all the 60 edges in the external edge set, which is the lower bound. Both (e) and (f) are under
the edge-disjoint scenario, the number of wavelengths is Q = 11 and the number of requests is M = N = 60. Each point is averaged over 20
instances.

three methods: (i) random—where K edges in S′ are selected
at random; (ii) greedy selection—where K edges with the
highest impact are selected; (iii) BP decimation—where K
edges with the largest ri, j (1) values (after BP iterations are
performed) are set to state 1 (connected).

We test the three algorithms on the 60-node Continental
United States (CONUS60) optical communication network
[21] under the same edge set S′ for a fair comparison. The
original network has 79 edges, and M = N = 60 random
requests are to be allocated on Q = 11 wavelengths. The
external edge set S′ is of size 60 is obtained by a greedy

TABLE I. The number of requests (M) allocated to Q = 10
wavelengths on random regular networks of degree 3 and different
sizes (N). The value of M selected for each of the cases is propor-
tional to the capacity (Mmax) obtained by the corresponding routing
algorithms of Ref. [14].

N 50 100 150 200

MNode Disjoint 64 100 132 162

MEdge Disjoint 67 100 129 155

algorithm. Figs. 3(d)–3(f) show decimation is more effective
than random or greedy allocation, in finding configurations
that increase capacities and decrease average path length
the most.

V. DISCUSSION

Network topology design is challenging due to the opti-
mization of edge deletion/addition to extremize an objective
that is in itself obtained through nontrivial optimization.
While graph properties are often used for the design of net-
works, they typically ignore the specific task objectives. The
BP-guided decimation algorithms developed here provide bet-
ter solutions than existing alternatives, with lower path lengths
and higher capacities. The average path length is chosen here
as the objective function; however, the framework can be
generalized to accommodate other nonlinear costs and edge
weights [14]. As all BP-based approaches, also the current
method is exact only on trees. Results are likely to dete-
riorate as the number of short loops increases, but since
practical networks operate away from criticality we expect
good performance in a broad range of operational conditions.
While the exemplar task we selected is of great importance
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for optical communication networks that carry most of the
Internet traffic, network design has significant impact on many
other applications, from the design and maintenance prior-
itization of road networks given demand [33], the design
of VLSI circuits [34,35] and reducing electricity networks
[36,37] to the pruning of metabolic networks based on flux
[38]. This framework can be instrumental for addressing these
and many other real-world applications. It can also help sim-
plify approximation tasks by reducing the number of variable
interactions/constraints in a manner that minimizes impact on
the original target Hamiltonian.
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APPENDIX A: EDGE REMOVAL AND AVERAGE
PATH LENGTH

The motivation for removing/adding edges is different
from one application to another. In optical communication
networks, maintaining optical cables is very costly and the
industry looks for edges to be removed to save costs, similarly,
they would like to invest prudently in lying new cables; all
of this is conditioned on traffic and transmission demands.
In VLSI design, removing unnecessary edges reduces cross-
noise and interference, allowing for more components to
be used per area. In complex metabolic network, pruning
nonessential links helps in identifying the underlying mecha-
nism, which is not always fully known, ignoring less relevant
paths.

In the energy function of the system, Eq. (1), the edge
removal state ci, j restricts the routing variables σ

μ
i, j on edge

(i, j), since if the edge is removed there would be no trans-
missions through it. This restriction is expressed by the
conditioning of the variable not being zero on the existence
of an edge

σ
μ
i, j ← ci, jσ

μ
i, j, ∀μ. (A1)

The factor graph of Fig. 1 of the main text represents the
interactions between vertices, edges and removal constraints.

From the energy function Eq. (1) and considering all the
constraints, we obtain the partition function

Z (β ) =
∑
σ,�c

∏
(i, j)

e−βλci, j ·
∏

(i, j),μ

e−β|σμ
i, j |δ

[
σ

μ
i, j, ci, jσ

μ
i, j

]

·
∏
i,μ

δ

⎡
⎣∑

j∈∂i

σ
μ
j,i,−Aμ

i

⎤
⎦�

[
2 −

∑
k∈∂i

∣∣σμ

k,i

∣∣], (A2)

where the inverse temperature β is introduced, ∂i ≡
{ j|(i, j) ∈ G} is the nearest-neighbor vertex set, δ[x, y] is the
Kronecker delta function, δ[x, y] = 1 if x = y and 0 other-
wise, and �[x] is the Heaviside step function, �[x � 0] =
1 and 0 otherwise. There are three terms in the partition
function: the first represents the edge removal cost, the sec-
ond is the path length objective and removal implications of
Eq. (A1), and the last term is the continuity constraint from

vertex to neighboring edge [e.g., vertex i to edge (i, j) and
(k, i) for each request in the factor graph of Fig. 1]. The vari-
able Aμ

i in Eq. (A2) provides source/destination information
for request μ, if vertex i is the source/destination of request
μ: Aμ

i = 1/ − 1, and Aμ
i = 0 otherwise.

1. Belief-propagation equations

A natural question is the reason behind the demonstrated
success of the algorithm given the loopy structure of the
factor graphs. In the case of linear cost with either NDP
(node-disjoint paths) or EDP (edge-disjoint paths) constraints,
different wavelength layers interact only through the sources
and destinations (vertex i—where Aμ

i = ±1 for request μ),
and if the original graph is acyclic we expect only loops
of larger size to exist. In more general cases with nonlinear
costs on edges, interactions between layers are found on every
edge [through a general cost function Fi, j (n), where n is the
number of wavelengths used in edge (i, j)], and hence the
resulting graphs are loopy for both NDP and EDP scenarios.
Nevertheless, the loopy cross-wavelength interaction is rela-
tively weak with respect to the interaction along the entire
lightpath and the contiguity constraint. More specifically, in
the EDP/NDP cases the cross-layer interaction is independent
of the specific wavelength assignment as it only depends on
the number of wavelengths used per edge, while messages
within layers are a results of a complete trajectory of inter-
action between nodes/edges, verifying contiguity, wavelength
availability and edge load [14].

Following the Bethe-Peierls approximation [26,27], the
marginal probability qμ

i, j (σ ) of edge (i, j) for request μ is
calculated by

qμ
i, j (0) = 1

zμ
i, j

rμ
i, j (0) pμ

i→ j (0) pμ
j→i(0),

qμ
i, j (±1) = 1

zμ
i, j

e−βrμ
i, j (±1)pμ

i→ j (±1)pμ
j→i(∓1), (A3)

where zμ
i, j is the normalization factor

zμ
i, j =

∑
σ

e−β|σ | rμ
i, j (σ ) pμ

i→ j (σ )pμ
j→i(−σ ). (A4)

The edge variable σ
μ
i, j in the factor graph of Fig. 1 is influ-

enced by neighboring nodes, vertices i and j and constraint
factor ri, j , through the messages pμ

i→ j (σ ), the cavity proba-
bility of edge (i, j) being in state σ with vertex i supporting
request μ, pμ

j→i(σ ) and rμ
i, j (σ ), the probability of σ

μ
i, j = σ

after marginalization over ci j . Another cavity probability to be
defined is qμ

i→ j (σ ), being the probability of edge (i, j) being
in state σ without the influence of vertex j for request μ.

If Aμ
i = 0, the routing continuity constraint takes the form

zμ
i =

∏
j∈∂i

qμ
j→i(0) +

∑
j,k∈∂i

qμ
j→i(1)qμ

k→i(−1)
∏

l∈∂i\ j,k

qμ

l→i(0),

(A5)

where the first term represents the case where vertex i is
not a part of path μ, and the second that there exists a two
edges construct j → i → k as a part of the path for request
μ. If Aμ

i �= 0, vertex i is a source or destination of request μ,
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making the continuity constraint

zμ
i =

∑
j∈∂i

qμ
j→i

(− Aμ
i

) ∏
k∈∂i\ j

qμ

k→i(0), (A6)

where there exists one edge (i, j) for accommodating the
outgoing/incoming path from the source/destination vertex.

In the partition function of Eq. (A2), remaining edges con-
tribute e−βλ each, totaling

zi, j =
∏
μ

r̃μ
i, j (0) + e−βλ

∏
μ

∑
σ

r̃μ
i, j (σ ), (A7)

where r̃μ
i, j (σ ) ∝ e−β|σ | pμ

i→ j (σ )pμ
j→i(−σ ) is the cavity prob-

ability of edge (i, j) for request μ without the influence of
the edge removal state ci, j . The removal probabilities are
calculated by

ri, j (0) = 1

zi, j

∏
μ

r̃μ
i, j (0),

ri, j (1) = 1

zi, j
e−βλ

∏
μ

∑
σ

r̃μ
i, j (σ ) = 1

zi, j
e−βλ, (A8)

where the equality in the second equation is based on the nor-
malization

∑
σ r̃μ

i, j (σ ) = 1. From the constraint in Eq. (A1),
ci, j = 0 leads to σ

μ
i, j = 0, ∀μ and consequently

∏
μ r̃μ

i, j (0) in
the first equation; while ci, j = 1, σμ

i, j leads to the more general
product

∏
μ

∑
σ r̃μ

i, j (σ ) in the second.
The corresponding BP equations (2) for Aμ

i = 0 are

pμ
i→ j (0) ∝

∏
k∈∂i\ j

qμ

k→i(0)

+
∑

m,n∈∂i\ j

qμ
m→i(1)qμ

n→i(−1)
∏

k∈∂i\ j,m,n

qμ

k→i(0),

pμ
i→ j (±1) ∝

∑
k∈∂i\ j

qμ

k→i(±1)
∏

l∈∂i\ j,k

qμ

l→i(0);

qμ
i→ j (σ ) ∝ e−β|σ |rμ

i, j (σ )pμ
i→ j (σ ), (A9)

and for Aμ
i �= 0

pμ
i→ j (0) ∝

∑
k∈∂i\ j

qμ

k→i

(− Aμ
i

) ∏
l∈∂i\ j,k

qμ

l→i(0),

pμ
i→ j

(
Aμ

i

) ∝
∏

k∈∂i\ j

qμ

k→i(0),

pμ
i→ j

(− Aμ
i

) = 0. (A10)

The influence of the removal constraint rμ
i, j (σ ) in Eq. (2) is

computed by

rμ
i, j (0) ∝

∏
ν �=μ

r̃ν
i, j (0) + e−βλ

∏
ν �=μ

∑
σ

r̃ν
i, j (σ )

=
∏
ν �=μ

r̃ν
i, j (0) + e−βλ,

rμ
i, j (±1) ∝ e−βλ

∏
ν �=μ

∑
σ

r̃ν
i, j (σ ) = e−βλ. (A11)

Note that the arguments in r̃μ
i, j (σ ) in Eq. (A11) and

ri, j (c) in Eq. (A8) are different, where σ ∈ {0,±1} and

c ∈ {0, 1}, the routing state and removal state variables,
respectively.

To calculate the BP equations, we obtain the value of the
external field λ, which is defined by

∑
(i, j) ci, j = E − K and,

in mean-field framework, can be written as

E − K =
∑
(i, j)

ri, j (1) =
∑
(i, j)

e−βλ

r̃i, j + e−βλ
, (A12)

where r̃i, j =
∏

μ r̃μ
i, j (0)∏

μ

∑
σ r̃μ

i, j (σ ) = ∏
μ r̃μ

i, j (0). As r̃i, j � 0, the second

equation is monotonically increasing as a function of e−βλ,
and therefore can be easily solved numerically using the bi-
section or fixed point iteration methods.

We iterate the BP equations (or part of them) syn-
chronously and calculate λ using the cavity probabilities
(pμ

→, qμ
→ and rμ

i, j) until convergence or until a predetermined
iteration limit is reached. The corresponding marginal proba-
bilities and external field can then be calculated as well as the
free energy, entropy, and average path length.

2. Replica symmetric mean-field theory

Using the relation F = − 1
β

ln Z [18,28], we calculate the
factors and nodes contributing to the free energy

F =
∑

μ,(i, j)

f μ
i, j +

∑
μ,i

f μ
i +

∑
(i, j)

fi, j

−
∑

μ,(i, j)

(
f μ,i
i, j + f μ, j

i, j + f ′μ
i, j

)
, (A13)

where f μ
i, j = − 1

β
ln zμ

i, j , f μ
i = − 1

β
ln zμ

i and fi, j = − 1
β

ln zi, j ,
which are free energy contributions from the various factor
and variable nodes: edge-request factors (rectangle node (i, j)
of request μ in Fig. 1), vertex-request nodes (circle node
i of request μ) and edge removal constraint factors (e.g.,
gray square ri, j) and their neighboring links respectively.
Additionally, the three last terms are free energy contri-
butions from links in the factor graph, which have been
considered twice and should be subtracted. The resulting
equations are

f μ,i
i, j = − 1

β
ln

[∑
σ

pμ
i→ j (σ )qμ

j→i(−σ )

]
,

f μ, j
i, j = − 1

β
ln

[∑
σ

pμ
j→i(σ )qμ

i→ j (−σ )

]
,

f ′μ
i, j = − 1

β
ln

[∑
σ

r̃μ
i, j (σ )rμ

i, j (σ )

]
. (A14)

The energy function for the system is

H =
∑

μ,(i, j)

[
1 − qμ

i, j (0)
] + λ

∑
(i, j)

ri, j (1)

= L + λ(E − K ), (A15)

where L is the total path length.
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FIG. 4. Belief-propagation simulations on 100-node random reg-
ular graph of degree 3 and 100 requests, where 24 edges are to be
removed. The inset focuses on the ground-state value of L/M where
s = 0. Each point is averaged over 20 instances.

The resulting entropy

S = β(H − F ) (A16)

is related to the number of solutions, and the entropy density
is defined as s ≡ S/(MN ).

The numerical entropy density average given path lengths
is used to estimate the average path lengths of the ground
state. There are two different situations: when zero-entropy
states are reached, the ground state is identified at s = 0 and
the corresponding value of L/M constitute the theoretical op-
timal average path length, e.g., in Fig. 4 〈L/M〉min ≈ 4.843,
according to the inset; if L/M and s remain flat and positive
as β increases, this value of L/M is the ground state estimate
(this may be a property of the network topology, which offers
multiple shortest paths). In Fig. 2, we show the ground state
predictions in random regular networks of degree 3 and size
100, based on 20 randomly generated specific networks and
request sets. We average over the instances for each β, to
obtain the curves of L/M and s with standard deviation rep-
resented by error bars in Fig. 4. These results give rise to the
dependence of L/M on K in Fig. 2 of the main text. In the flat
L/M and s regimes of Fig. 4 (that correspond to small K values
in Fig. 2), the resulting error bars are with very small giving
rise to the corresponding ground state average path length
〈L/M〉 and error bars of Fig. 2. To find the ground states we
look for zero-entropy L/M values, where the optimal average
path length is estimated by fitting the points of (〈L/M〉, 〈s〉)
near s = 0 (inset of Fig. 4); the error bars are the standard
deviation of the nearest point around s = 0.

3. Decimation algorithm

BP messages and marginal probabilities give rise to a
guided decimation algorithm for edge removal. The steps of
the algorithm are

0. input the network, set of communication requests and
the edge removal number K , set β to a large value and initial-
ize the messages {pμ

→} randomly;

1. calculate {r̃μ
i, j}, update λ, {rμ

i, j} and {qμ
→}, then update

{pμ
→} according to the related equations (2) and (A9)–(A12);
2. repeat step 1 a predefined number of times or until

convergence, then calculate the edge removal probabilities
{ri, j (0)}; fix the state ci, j = 0 for the edge with the largest
removal probability ri, j (0) and remove the edge to simplify
the network;

3. repeat step 2 K times, output the residual network.
The performance of the decimation algorithm is shown in

Fig. 2, which is close to the ground state described by the
mean-field theory. More numerical results on random regu-
lar networks of different sizes N = 50, 100, 150 and 200 are
shown in the inset of Fig. 2.

To obtain the collapse fitting parameter α in Figs. 2, 3(a),
and 6, we first select data for given (N, L) and the same value
of K/N , then use logarithmic scaling (ln ln(E − K ), ln L) to
obtain the first order coefficient a(K/N ) by linear fitting; α is
the average value of a(K/N ) over different K/N ratios. The
general logarithmic scaling is assumed due to the expected
path lengths scaling logarithmically with the number of edges;
the power α encapsulate the fine differences between the
emerging structures after edge removal.

APPENDIX B: EDGE REMOVAL
IN NODE-DISJOINT ROUTING

In the multiwavelength node-disjoint routing scenario,
wavelengths used on a node (vertex) cannot be shared by
different communication paths; there is no interaction be-
tween the transmissions using different wavelengths on the
same node/edge. Compared with the general routing problem,
this scenario has two additional constraints—the node disjoint
constraint and a restriction on the choice of wavelength, where
each communication request uses one and only one wave-
length. The marginal vertex and edge probabilities for each
wavelength and communication request are given by

pa,μ
i (0) ∝ t a,μ

i (0)
∏
j∈∂i

qa,μ
j→i(0),

pa,μ
i (1) ∝ t a,μ

i (1)
∑

m,n∈∂i

qa,μ
m→i(1)qa,μ

n→i(−1)
∏

j∈∂i\m,n

qa,μ
j→i(0),

qa,μ
i, j (σ ) ∝ ra,μ

i, j (σ )pa,μ
i→ j (σ )pa,μ

j→i(−σ ), (B1)

where t a,μ
i is the node disjoint constraint from using wave-

length a on vertex i for request μ, and ra,μ
i, j the influence of

edge removal on the state of edge (i, j) using wavelength a
for request μ.

In multiwavelength routing, edge removal ci, j = 0 influ-
ences routing variables on all wavelengths and all requests
since σ

a,μ
i, j ← ci, jσ

a,μ
i, j , ∀μ, a, hence the marginal removal

probability should be calculated by

ri, j (0) ∝
∏
a,μ

r̃a,μ
i, j (0),

ri, j (1) ∝ e−βλ
∏
a,μ

∑
σ

r̃a,μ
i, j (σ ), (B2)

where r̃a,μ
i, j (σ ) = pa,μ

i→ j (σ )pa,μ
j→i(−σ ). The message from re-

moval factor node to wavelength a on edge (i, j) of request
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FIG. 5. (a) Mapping the original network (left) onto multilayer replica networks that use different wavelengths (right). In this example, node
i is the source/destination of request μ. Introducing an auxiliary node μ, denoted by a square and connected to nodes i at each of the layers,
facilitates message passing between the new node and the different layers to determine the allocation of transmissions to wavelengths. These
auxiliary nodes also facilitate the interaction among different wavelengths. (b) An example of routing paths on a simple network with N = 7
nodes and M = 4 requests, which shows the complete algorithmic framework with wavelengths as colored layers, sources and destinations as
auxiliary nodes denoted by elliptic symbols on the planes and nonelliptic symbols, respectively; transmission paths are represented by colored
solid lines with arrows and unoccupied wavelength channels as colored dotted lines.

μ is computed by

ra,μ
i, j (0) ∝

∏
(b,ν)�=(a,μ)

r̃b,ν
i, j (0) + e−βλ

∏
(b,ν)�=(a,μ)

∑
σ

r̃b,ν
i, j (σ ),

ra,μ
i, j (±1) ∝ e−βλ

∏
(b,ν)�=(a,μ)

∑
σ

r̃b,ν
i, j (σ ). (B3)

To enforce the node-disjoint constraint, where at most one
request can be transmitted through each wavelength on an
edge, the messages from the corresponding factor to each
node are computed by

t a,μ
i (0) ∝

∏
ν �=μ

t̃ a,ν
i (0) + e−βwi

∑
ν �=μ

t̃ a,ν
i (1)

∏
ω �=μ,ν

t̃ a,ν
i (0),

t a,μ
i (1) ∝ e−βwi

∏
ν �=μ

t̃ a,ν
i (0). (B4)

The first term in the first equation of (B4) is the case where
no communication path uses wavelength a on vertex i; the
second is where communication path ν takes wavelength a on
vertex i, therefore this wavelength cannot be used by other
communication paths on this vertex. Passing through vertex
i, also incurs a node cost wi that may be arbitrarily defined
for the specific problem at hand. The second equation cor-
responds to communication path μ using wavelength a on
vertex i, therefore, it cannot be used by other communication
paths; this also incurs a cost of wi. Notice that while using
a vertex incurs some cost using edges does not (reversed
in edge-disjoint routing). The auxiliary probabilities are
defined as

t̃ a,μ
i (0) ∝

∏
j∈∂i

qa,μ
j→i(0),

t̃ a,μ
i (1) ∝

∑
j,k∈∂i

qa,μ
j→i(1)qa,μ

k→i(−1)
∏

l∈∂i\ j,k

qa,μ

l→i(0), (B5)

being proportional to the probabilities of wavelength a on
vertex i being used by communication μ (or not), respectively,
in the absence of the node-disjoint constraint.

Belief-propagation iteration with reinforcement

Considering all the quantities we need, the belief-
propagation equations become

pa,μ
i→ j (0) ∝ t a,μ

i (0)
∏

k∈∂i\ j

qa,μ

k→i(0) + t a,μ
i (1)

×
∑

m,n∈∂i\ j

qa,μ
m→i(1)qa,μ

n→i(−1)
∏

k∈∂i\ j,m,n

qa,μ

k→i(0),

pa,μ
i→ j (±1) ∝ t a,μ

i (1)
∑

k∈∂i\ j

qa,μ

k→i(±1)
∏

l∈∂i\ j,k

qa,μ

l→i(0);

qa,μ
i→ j (σ ) ∝ ra,μ

i, j (σ ) pa,μ
i→ j (σ ). (B6)

The same approach is being used when it comes to
source/destination vertices. However, we add two external
auxiliary vertices for each request, connected to each source
or destination vertex, for assigning particular wavelengths for
each request [14]. The messages from auxiliary vertices are

qa
μ→i(0) ∝ e−β

∑
b�=a

qb
i→μ

(− Aμ
i

) ∏
c �=a,b

qc
i→μ(0),

qa
μ→i

(
Aμ

i

) ∝ e−β
∏
b�=a

qb
i→μ(0),

qa
μ→i

(− Aμ
i

) = 0, (B7)

where the symbol “μ” in the subscripts “i → μ” and “μ →
i” stands for the auxiliary source and destination vertices of
request μ as described in Figs. 5(a) and 5(b).

The algorithm with reinforcement includes the following
steps

0. read the graph and request set, input the value of the
number of edges to be removed K and wavelengths to be used
Q, set the value β, and randomly initialize {qμ

→};
1. using the value of {qμ

→}, calculate {t a,μ
i } and {pμ

→};
2. using {pμ

→}, calculate {r̃a,μ
i, j }, then λ and {ra,μ

i, j };
3. according to {ra,μ

i, j } and {pμ
→}, compute {qμ

→}.
Repeating the steps 1–3 we calculate the related probabili-

ties and quantities of interest.
The reinforcement factor ηi, j is introduced to accelerate the

process of determining the edge removal marginal probabili-
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FIG. 6. Performance of reinforcement-based and random edge
removal algorithms under node-disjoint routing for networks of size
N . The power α and scale prefactor c for random edge removal are
1.4754 and 1, respectively, and for the reinforcement-based algo-
rithm α = 1.3869 and c = 0.8763, when the curves are adjusted to
the same average starting value (K = 0) as random removal. The
logarithm in the figure is of base e. From the current figure and
Fig. 3(a), it is clear that our algorithm shows better performance than
random edge removal. Each point is based on at least 15 samples.

ties. The corresponding probabilities are modified as

qa,μ
i, j (σ ) ∝ ηi, j (|σ |) ra,μ

i, j (σ ) pa,μ
i→ j (σ )pa,μ

j→i(−σ ),

qa,μ
i→ j (σ ) ∝ ηi, j (|σ |) ra,μ

i, j (σ ) pa,μ
i→ j (σ ),

r̃a.μ
i, j (σ ) ∝ ηi, j (|σ |) pa,μ

i→ j (σ )pa,μ
j→i(−σ ). (B8)

The reinforcement algorithm used is based on BP iterations
with reinforcement up to a certain number of times, followed
by calculation of the removal probability {ri, j}, and infer-
ence of the edge configuration �c accordingly, where ci, j =
arg maxc=0,1 ri, j (c). If |�c| = E − K , use the routing algorithm
[14] to check whether the residual network is able to accom-
modate the requests or not. If routes are allocated successfully,
return the edges of state 0 in the configuration �c, otherwise
repeat the BP iterations several times, and check again.

Results of numerical experiments for random regular net-
works of degree 3, different network sizes and number of
removed edges are shown in Fig. 6.

APPENDIX C: EDGE REMOVAL
IN EDGE-DISJOINT ROUTING

The equations of ri, j and ra,μ
i, j for edge disjoint are similar

to Eqs. (B2) and (B3), where auxiliary quantities r̃a,μ
i, j should

be modified due to the constraint on edge routing variables

r̃a,μ
i, j (σ ) ∝ t a,μ

i, j (|σ |) pa,μ
i→ j (σ )pa,μ

j→i(−σ ), (C1)

where ra,μ
i, j has similar meaning as ra,μ

i in the node-disjoint
scenario.

Enforcing the edge-disjoint constraint, similar to Eq. (B4),
edge-disjoint messages take the form

t a,μ
i, j (0) ∝

∏
ν �=μ

t̃ a,ν
i, j (0) + e−βwi, j

∑
ν �=μ

t̃ a,ν
i, j (1)

∏
ω �=μ,ν

t̃ a,ω
i, j (0),

t a,μ
i, j (1) ∝ e−βwi, j

∏
ν �=μ

t̃ a,ν
i, j (0), (C2)

where an arbitrary cost wi, j of using edge (i, j) is included
(this can be length, signal-to-noise ratio or any other edge
cost). The probabilities of wavelength a on edge (i, j) for
request μ without the influence from edge-disjoint constraint,
similar to Eq. (B5), are obtained by

t̃ a,μ
i, j (0) ∝ ra,μ

i, j (0) pa,μ
i→ j (0)pa,μ

j→i(0),

t̃ a,μ
i, j (1) ∝

∑
σ=±1

ra,μ
i, j (σ ) pa,μ

i→ j (σ )pa,μ
j→i(−σ ). (C3)

1. Belief-propagation iteration and reinforcement

The BP equation set for multiwavelength edge-disjoint
routing problem is given by

pa,μ
i→ j (0) ∝

∏
k∈∂i\ j

qa,μ

k→i(0)

+
∑

m,n∈∂i\ j

qa,μ
m→i(1)qa,μ

n→i(−1)

×
∏

k∈∂i\ j,m,n

qa,μ

k→i(0),

pa,μ
i→ j (±1) ∝

∑
k∈∂i\ j

qa,μ

k→i(±1)
∏

l∈∂i\ j,k

qa,μ

l→i(0);

qa,μ
i→ j (σ ) ∝ ra,μ

i, j (σ ) t a,μ
i, j (|σ |) pa,μ

i→ j (σ ). (C4)

The messages from auxiliary vertices for the wavelength se-
lection are calculated by Eq. (B7).

We notice that quantities ra,μ
i, j and t a,μ

i, j are interlinked, to
solve the equations, one can do the following steps:

0. initialize the quantities {qμ
→}, {ra,μ

i, j };
1. taking {qμ

→}, calculate {pμ
→};

2. using {pμ
→} and {ra,μ

i, j }, calculate {t a,μ
i, j };

3. calculate {r̃a,μ
i, j }, then λ and {ra,μ

i, j };
4. do steps 2–3 several times, and compute {qμ

→} by taking
{ra,μ

i, j , t a,μ
i, j , pa,μ

→ }.
Repeat steps 1–4 until convergence or a maximum number

of steps to calculate the related probabilities and quantities of
interest.

With the introduction of reinforcement factor ηi, j , the cor-
responding probabilities are modified as

qa,μ
i, j (σ ) ∝ ηi, j (|σ |) ra,μ

i, j (σ ) t a,μ
i, j (|σ |) pa,μ

i→ j (σ )pa,μ
j→i(−σ ),

qa,μ
i→ j (σ ) ∝ ηi, j (|σ |) ra,μ

i, j (σ ) t a,μ
i, j (|σ |) pa,μ

i→ j (σ ),

r̃a.μ
i, j (σ ) ∝ ηi, j (|σ |) t a,μ

i, j (|σ |) pa,μ
i→ j (σ )pa,μ

j→i(−σ ),

t̃ a.μ
i, j (|σ |) ∝ ηi, j (|σ |)

∑
σ=±|σ |

ra,μ
i, j (σ ) pa,μ

i→ j (σ )pa,μ
j→i(−σ ). (C5)

From our numerical experiments, as one increases the growth
of the reinforcement factor η more rapidly using higher ε in
Eq. (4) of the main text, the number of iterations decreases
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FIG. 7. Average path lengths of the various edge-removal methods under node- and edge-disjoint routing for N = 100 and 200 nodes
random regular networks of degree 3. In the experiments, the number of wavelengths is Q = 10 and the values of corresponding number of
communication requests M are chosen according to Table I. Each point is based on more than 15 samples.

at the increasing risk of failure to obtain good solutions. We
therefore experimented with various values of ε.

2. Computational complexity

Clearly, the computational complexity of the algorithms we
introduce impacts on their suitability to larger networks. We
therefore summarize the computation effort in the different
cases per iteration:

1. Simple routing scenario (path independent routing) -
O(M2E ).

2. Multiwavelength disjoint routing is approximately -
O((M + Q)M2EQ).

where in all the cases E , M and Q are the number of edges,
communication requests and wavelengths, respectively.

3. Betweenness centrality order for edge removal

Betweenness centrality is a commonly used measure to
evaluate the importance of vertices and edges [32,39] on a
given graph, defined as

Bi, j =
∑
s �=d

nsd
i, j

gsd
, (C6)

where gsd is the number of (weighted) shortest paths from s
to d , and nsd

i, j is the number of the shortest paths gsd passing
through edge (i, j). Generally, the removal of edges with
higher Bi, j values would have a high impact on the average
path lengths. In our case, it is reasonable to remove edges

with the lowest Bi, j values to have minimal impact on the
objective function, which we term removal using the reverse
betweenness centrality order.

Interestingly, it seems from our numerical experiments
that the order (betweenness centrality, reverse betweenness
centrality and random) of edge removal does not make big
difference on performance, as shown in Figs. 7 and 8. It is
probably since the tested networks are random regular and
edges are unweighted, which weaken the relevance of be-
tweenness centrality. From the numerical simulation results,
our algorithm exhibits the lowest average path length L/M
[in Fig. 7(d)] and can remove far more edges (Kmax) than
the other edge-removal protocols as shown in Fig. 8. This is
not surprising since our algorithm does not rely merely on
topological properties but takes the requested communication
paths into account.

APPENDIX D: NETWORK GROWTH

We take edge-disjoint routing as an example, where the
newly introduced edge set is S′ of size |S′| � K , the latter be-
ing the number of edges added. As explained in the main text,
the selection of the edge set S′ from all available edges outside
the original edge set of size E is carried out by examining the
impact of individual additions on reducing the routing cost.
The constraint on the number of edges added takes the form∑

(i, j)∈S′
ri, j (1) = K. (D1)
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FIG. 8. Performance of the various edge removal methods for
edge-disjoint (ED) and node-disjoint (ND) routing for different net-
work sizes N = 100 and 200. The parameters used are the same as
in Fig. 7 and each point is based on 20 samples.

It means that the calculation of λ in each iteration depends
only on the edges introduced in the edge set S′, and the
routing variables σ

a,μ
i, j on the original edge set are not directly

impacted by edge “removal” (addition) linked to variable ci, j ,
equivalently, ci, j = 1 ∀(i, j) /∈ S′, or that the influence of vari-
ables ci, j on messages are all constant, such that t a,μ

i, j (0) =
t a,μ
i, j (1) = 1/2, ∀(i, j) /∈ S′.

Expansion algorithms

Three algorithms are used for selecting K edges from the
set S′:

(1) random. randomly select K edges out of S′;
(2) greedy. select a previously unselected edge in S′, which

reduces the average path length the most; repeat K times;
(3) decimation. follow the steps in the decimation algo-

rithm of the average path length section, but in the decimation
step, fix the edge state ci, j = 1 with the largest ri, j (1) ∈ S′
value.

[1] R. Albert, H. Jeong, and A.-L. Barabási, Error and attack toler-
ance of complex networks, Nature (London) 406, 378 (2000).

[2] R. Albert and A.-L. Barabási, Statistical mechanics of complex
networks, Rev. Mod. Phys. 74, 47 (2002).

[3] M. E. J. Newman, The structure and function of complex
networks, SIAM Rev. 45, 167 (2003).

[4] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical
phenomena in complex networks, Rev. Mod. Phys. 80, 1275
(2008).

[5] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer,
K. Kaski, J. Kertész, and A.-L. Barabási, Structure and tie
strengths in mobile communication networks, Proc. Natl. Acad.
Sci. 104, 7332 (2007).

[6] P. Yuan and A. Xu, The influence of physical network
topologies on wavelength requirements in optical networks,
J. Lightwave Technol. 28, 1338 (2010).

[7] R. Matzner, D. Semrau, R. Luo, G. Zervas, and P. Bayvel,
Making intelligent topology design choices: understanding
structural and physical property performance implications in
optical networks [invited], J. Opt. Commun. Netw. 13, D53
(2021).

[8] R. Luo, R. Matzner, G. Zervas, and P. Bayvel, Towards a traffic-
optimal large-scale optical network topology design, in 2022
International Conference on Optical Network Design and
Modeling (ONDM) (IEEE, Piscataway, NJ, 2022), pp. 1–3.

[9] B. Li, D. Saad, and C. H. Yeung, Bilevel optimization in
flow networks: A message-passing approach, Phys. Rev. E 106,
L042301 (2022).

[10] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan, The complex-
ity of the network design problem, Networks 8, 279 (1978).

[11] R. M. Karp, Reducibility among combinatorial problems, in
Complexity of Computer Computations, edited by R. E. Miller,
J. W. Thatcher, and J. D. Bohlinger (Springer US, Boston, MA,
1972), pp. 85–103.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, 1st ed. (W. H.
Freeman, New York, 1979).

[13] B. Korte and J. Vygen, Multicommodity flows and edge-
disjoint paths, in Combinatorial Optimization: Theory and Al-
gorithms (Springer, Berlin, Heidelberg, 2012), pp. 489–520.

[14] Y.-Z. Xu, H. F. Po, C. H. Yeung, and D. Saad, Scalable node-
disjoint and edge-disjoint multiwavelength routing, Phys. Rev.
E 105, 044316 (2022).

[15] E. K. Çetinkaya, M. J. Alenazi, Y. Cheng, A. M. Peck, and J. P.
Sterbenz, A comparative analysis of geometric graph models
for modelling backbone networks, Opt. Switch. Netw. 14, 95
(2014).

[16] J. Velinska, M. Mirchev, and I. Mishkovski, Optical net-
works’ topologies: costs, routing and wavelength assignment,
ICT Innovations 1 (2017).

[17] Y. Kabashima and D. Saad, Belief propagation vs. TAP for
decoding corrupted messages, Europhys. Lett. 44, 668 (1998).

[18] M. Mézard and A. Montanari, Information, Physics, and Com-
putation (Oxford University Press, Oxford, UK, 2009).

[19] C. De Bacco, S. Franz, D. Saad, and C. H. Yeung, Shortest
node-disjoint paths on random graphs, J. Stat. Mech.: Theory
Exp. (2014) P07009.

[20] F. Altarelli, A. Braunstein, L. Dall’Asta, C. De Bacco, and S.
Franz, The edge-disjoint path problem on random graphs by
message-passing, PLoS ONE 10, e0145222 (2015).

[21] 60-node network derived from the coronet conus topology,
the data was originally downloaded from the web site http:
//monarchna.com/60-Node-CONUS-Topology.xls but is also
available on [31].

[22] P. Šulc and L. Zdeborová, Belief propagation for graph parti-
tioning, J. Phys. A: Math. Theor. 43, 285003 (2010).

[23] Y.-Z. Xu and H.-J. Zhou, Optimal segmentation of directed
graph and the minimum number of feedback arcs, J. Stat. Phys.
169, 187 (2017).

[24] C. H. Yeung and D. Saad, Competition for Shortest Paths on
Sparse Graphs, Phys. Rev. Lett. 108, 208701 (2012).

[25] C. H. Yeung, D. Saad, and K. M. Wong, From the physics of
interacting polymers to optimizing routes on the london under-
ground, Proc. Natl. Acad. Sci. USA 110, 13717 (2013).

033087-11

https://doi.org/10.1038/35019019
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1109/JLT.2010.2045153
https://doi.org/10.1364/JOCN.423490
https://ieeexplore.ieee.org/document/9782843
https://doi.org/10.1103/PhysRevE.106.L042301
https://doi.org/10.1002/net.3230080402
https://link.springer.com/chapter/10.1007/978-3-642-24488-9_19
https://doi.org/10.1103/PhysRevE.105.044316
https://doi.org/10.1016/j.osn.2014.05.001
https://proceedings.ictinnovations.org/2017/paper/447/optical-networks-topologies-costs-routing-and-wavelength-assignment
https://doi.org/10.1209/epl/i1998-00524-7
https://doi.org/10.1088/1742-5468/2014/07/P07009
https://doi.org/10.1371/journal.pone.0145222
http://monarchna.com/60-Node-CONUS-Topology.xls
https://doi.org/10.1088/1751-8113/43/28/285003
https://doi.org/10.1007/s10955-017-1860-5
https://doi.org/10.1103/PhysRevLett.108.208701
https://doi.org/10.1073/pnas.1301111110


YI-ZHI XU AND DAVID SAAD PHYSICAL REVIEW RESEARCH 5, 033087 (2023)

[26] H. A. Bethe, Statistical theory of superlattices, Proc. R. Soc.
London A 150, 552 (1935).

[27] M. Mézard and G. Parisi, The Bethe lattice spin glass revisited,
Eur. Phys. J. B 20, 217 (2001).

[28] H.-J. Zhou, Spin Glass and Message Passing (Science Press,
Beijing, China, 2015).

[29] M. E. J. Newman, Message passing methods on complex net-
works, Proc. R. Soc. A 479, 20220774 (2023).

[30] A. Braunstein and R. Zecchina, Learning by Message Passing
in Networks of Discrete Synapses, Phys. Rev. Lett. 96, 030201
(2006).

[31] Data available on https://github.com/XuYZh/Network-
Pruning-and-Growth—Probabilistic-Optimization.

[32] L. Freeman, A set of measures of centrality based on between-
ness, Sociometry 40, 35 (1977).

[33] H. Yang and M. G. H. Bell, Models and algorithms for road
network design: a review and some new developments, Transp.
Rev. 18, 257 (1998).

[34] M. Cutler and Y. Shiloach, Permutation layout, Networks 8, 253
(1978).

[35] A. Aggarwal, J. Kleinberg, and D. P. Williamson, Node-disjoint
paths on the mesh and a new trade-off in vlsi layout, SIAM J.
Comput. 29, 1321 (2000).

[36] L. Wang, M. Klein, S. Yirga, and P. Kundur, Dynamic reduction
of large power systems for stability studies, IEEE Trans. Power
Syst. 12, 889 (1997).

[37] J. Yang, G. Cheng, and Z. Xu, Dynamic reduction of large
power system in pss/e, in 2005 IEEE/PES Transmission
and Distribution Conference & Exposition: Asia and Pacific
(IEEE, Piscataway, NJ, 2005), pp. 1–4.

[38] P. Erdrich, R. Steuer, and S. Klamt, An algorithm for
the reduction of genome-scale metabolic network mod-
els to meaningful core models, BMC Syst. Biol. 9, 48
(2015).

[39] M. Newman, Networks: An Introduction, 1st ed. (Oxford Uni-
versity Press, Oxford, UK, 2010).

033087-12

https://doi.org/10.1098/rspa.1935.0122
https://doi.org/10.1007/PL00011099
https://doi.org/10.1098/rspa.2022.0774
https://doi.org/10.1103/PhysRevLett.96.030201
https://github.com/XuYZh/Network-Pruning-and-Growth---Probabilistic-Optimization
https://doi.org/10.2307/3033543
https://doi.org/10.1080/01441649808717016
https://doi.org/10.1002/net.3230080308
https://doi.org/10.1137/S0097539796312733
https://doi.org/10.1109/59.589749
https://ieeexplore.ieee.org/document/1546815
https://doi.org/10.1186/s12918-015-0191-x

