
Vol.: (0123456789)
1 3

Meccanica (2023) 58:1539–1553 
https://doi.org/10.1007/s11012-023-01686-x

Transport in a stochastic double diffusivity model

Amit K. Chattopadhyay  · Konstantinos Parisis · 
Avraam Konstantinidis · Elias C. Aifantis

Received: 26 June 2022 / Accepted: 20 June 2023 / Published online: 3 August 2023 
© The Author(s) 2023

Abstract A recent study analyzed the role of stochas-
tic perturbations on the interface dynamics of two inter-
acting species within a double-diffusivity framework, 
involving double diffusion models. The model relied 
on a restricted translation–reflection (TR) symmetry 
manifold, leading to a single variable description. The 
present study generalizes this model for a TR symme-
try violating system that does not permit reduction to a 
single variable dynamics, leading to a hitherto unseen 
stochastic resonance (SR), a mechanism that indicates 
discrete, rather than a continuous, mode of energy 
transport. The SR exhibited by the model captures 
the signature fast transport observed in   stochastically 
driven dynamics of  nanopolycrystals, that previous 
deterministic models failed to emulate. We show that 
the speed of transfer relates to the strength of energy 

cross-correlations between the two diffusing species 
communicating through interface dynamics that eventu-
ally drives the energy throughput and identifies the role 
of stochasticity in nanopolycrystalline transport.

Keywords Double diffusion · Nanopolycrystal · 
Stochastic · Interface dynamics

1 Introduction

A continuum theory of diffusion for media contain-
ing two types of “low” and “high” diffusivity paths 
was initially proposed by Aifantis [1–3] to supple-
ment existing discrete models for transport along dis-
location lines (dislocation pipe diffusion) and grain 
boundaries (grain boundary diffusion). It is described 
by two second order “Fick type” partial differential 
equations for modeling the transport of the diffusive 
species along each of the existing paths, containing 
also a “chemical reaction type” or source term mod-
eling the spontaneous jumps of diffusion species from 
one path to another. Uncoupling of these double dif-
fusivity (DD) model equations resulted in a higher 
fourth order partial differential equation which con-
tained new terms characterizing previously proposed 
transport equations, namely: a second time deriva-
tive term found in the telegrapher’s equation [4]; a 
mixed time—second space derivative reminiscent 
of Barenblatt’s seepage equation in fissured rocks 
[5]; and a fourth spatial derivative term appearing in 
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the Cahn–Hilliard theory of spinodal decomposition 
[6]. The DD model was also employed by Aris (in 
a landmark paper dedicated to the memory of Dick 
Bellman) who also extended it to discuss diffusion in 
membranes with n pathways. Details pertaining to the 
original derivation of the DD model can be found in 
[7], where a “mechanical basis” for interstitial diffu-
sion was provided in terms of the momentum balance 
for the diffusing species and the introduction of a 
“drag” or “diffusive” force to account for the momen-
tum exchange between the solute and the solid matrix 
(in analogy to Maxwell’s statistical mechanics theory 
of polyatomic gases). Mathematical properties of the 
DD model and analytical solutions expressed in terms 
of known fundamental solutions of the classical diffu-
sion equation were provided in [8–10].

The DD model has found numerous applications 
in a variety of problems and configurations where 
two distinctly different paths for transport (lattice and 
dislocation pipe or grain boundary diffusion; heat 
or electricity conduction in inhomogeneous media; 
fluid or traffic flow; and others) are present [11–15]. 
Within a continuum formulation, this is equivalent 
to assuming that two non-equilibrated field variables 
(two concentrations, two temperatures, two pore pres-
sures) co-exist in the elementary volume at hand: e.g., 
“bulk” vs. “grain boundary” solute concentration, 
“electron” vs. “ion” temperature; “pore” vs. “fissure” 
pressure. Our present work focuses on diffusion in 
nanopolycrystals (where the “grain boundary” space 
occupies  30% of the “bulk”), within the context of a 
stochastic extension of the DD model. More specifi-
cally, we elaborate on the coupled system of the two 
partial differential solved in [9, 10] and employed in 
[16] to interpret experimental measurements of diffu-
sion in polycrystals and nanocrystalline aggregates.

As reviewed in [1–3], the first models for mass 
transport in high-diffusivity paths (e.g., dislocations or 
grain boundaries) were discrete in nature, assuming a 
single dislocation with a core size R0 or a grain bound-
ary with thickness H0 placed in a medium of infinite 
extent and solving the classical Fick’s equation for 
these configurations, with appropriate boundary con-
ditions, to determine the concentration—distance pro-
file along the dislocation “pipe” or the grain boundary 
layer. In contrast, the continuum DD model assumes 
a continuous distribution of high-diffusivity paths 
(with volume fraction “f” as in “mixture theories” for 
composites) and allows for both mass transport and 

mass exchange between the two distinct families of 
locally co-existing paths within the elementary mate-
rial volume considered. The continuum DD model 
becomes increasingly relevant with decreasing grain 
size, where deterministic (and more importantly sto-
chastic) heterogeneity effects (dislocation clusters, 
grain boundary ledges, etc.) prevail over the idealized 
geometry used in the discrete models. In fact, with 
decreasing grain size down to the nanometer level, 
dislocation core sizes and grain boundary thicknesses 
are safer to be represented by the aforementioned aver-
age local volume fraction parameter. This, in turn, 
leads to the definition of two average local concentra-
tion fields, each obeying Fick’s law with distinct dif-
fusivities for each family of paths and also account-
ing for mass transfer between them. The dependence 
of granular flow on rheology and consequent impact 
of local friction has also been shown to abide struc-
tural invariance in plasticity models [17]. Apart from 
the obvious importance of such observations from the 
perspective of phase transitions and implicit renor-
malization of the diffusion constant, presence of mul-
tiscale features as a consequence of microstructure 
evolution is a well-studied phenomenon in metal plas-
ticity, particularly in the understanding of the impact 
of grain boundaries [18]. Topical experiments on Cop-
per, using optical and electron microscopy along with 
micro x-ray tomography, to analyze the nature and 
degree of damaged microstructure show tensile dam-
age in the recovered samples is examined using [19]. 
This latter study points to differential impact of grain 
sizes on surface velocity, another feature that has been 
traditionally beyond the scope of traditional DD mod-
els, an excellent summary of which has been outlined 
in [20]. As this article [20] explains, dislocation pat-
terning in thin films was already understood to be a 
multiscale feature that could be analyzed by gradient-
dependent modeling, but micro-nano level stochastic 
fluctuations remained outside the scope of such stud-
ies. A key study analyzing the nature of distribution 
of such granular imperfections and the consequences 
of that on the emergent statistics of such processes 
was studied recently [21]. The present study adds the 
critical element of quantifying the dynamical evolu-
tion of such nanolevel granular processes by analyzing 
domain boundary movement using Langevin and Fok-
ker–Planck based models.

Moreover, for the important class of ultrafine grain 
(UFG) materials (grain size of ∼100 nm fabricated 
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by severe plastic deformation/SPD), a new family 
of high-angle (non-equilibrium) grain boundaries 
emerge with different substructure than their usual 
low-angle (equilibrium) counterparts and, thus, dif-
ferent diffusion properties. The same is true for other 
types of novel nanocrystalline (NC) materials (grain 
size of ∼ 10 nm fabricated by vapor deposition) where 
the density of volume fraction of triple grain bound-
ary junctions (TJs) increases significantly, leading to 
another distinct family of paths with very high diffu-
sivity, thus necessitating the use of a “triple” diffu-
sion model [22]. The multiscale and nonlocal nature 
of diffusion at the nanoscale leads to hybrid or anom-
alous transport of deformation energy, characterized 
by the coexistence of a diffusive field with a propa-
gative component [23]. Such anomalous transport has 
been shown recently to be captured by fractional dif-
fusion equations, able of modeling both retarding sub-
diffusion as well as accelerating superdiffusion [24]. 
Such anomalous diffusion possessing non-unique dif-
fusion coefficients (diffusion coefficients varying with 
time), corresponding to cases with rapidly-changing 
microstructure are not within the scope of the present 
formulation which only considers two distinct diffu-
sion paths as well as small random perturbations of 
the materials’ microstructure modeled through the 
noise terms entering the diffusion equations.

More detalis on the physics and properties of high 
density or volume fraction grain boundary materi-
als can be found in the materials science literature 
(e.g., [25, 26]). For micropolycrystals (grain size ∼ 1 
μm), the two families of paths correspond to the bulk 
(grain interior) and the surrounding internal surface/
grain boundary space. In all these configurations, the 
applicability of the DD model renders new insight 
for diffusion in inhomogeneous media and provides 
new possibilities for interpreting related experimen-
tal results, as is further demonstrated in the present 
article.

The above discussion clearly points to the lack 
of appropriate consideration of internally induced 
fluctuations arising out of the structural difference 
between the two types of diffusion paths involved, 
exhibiting different local material topology and struc-
tural randomness. In line with well established sto-
chastically forced flow models [27–30] representing 
archaic dynamical randomness (generated close to the 
boundary layers), the present article will explore this 
realistic limit of double-diffusion, thereby accounting 

for all modes of randomness. It will be structured 
within a well-knit Langevin formulation of stochas-
tic dynamics [31, 32]. Phenomenologically, this 
can be viewed as the effect of an external stochastic 
force that is randomly redistributing the relevant spa-
tial material inhomogeneity: for example, that of the 
high-diffusivity paths, in which a stochastic increase 
(decrease) in temperature or fluctuation of internal 
stress, may extend (or contract) the interlayer grain 
boundary thickness between two nanosized grains 
and, thus, alter the configuration of the associated 
structural defects (dislocations, disclinations). Such a 
multi ensembled stochastic reorganization of the local 
space distribution is sometimes known to create new 
universality classes [32, 33], another aspect that could 
be of critical interest in analyzing the dynamics of 
nanopolycrystals.

2  The model equations

The double diffusivity mathematical models referred 
to in the previous section were purely determin-
istic and the role of stochastic fluctuations, which 
become increasingly important as the specimen size 
decreases, was not considered. The first relevant work 
on the DD model under stochastic forcing, analyzing 
the implications of micro/nano structure-induced con-
centration fluctuations, was recently done by Chatto-
padhyay and Aifantis [34]. In a major departure from 
the general trend of results derived from deterministic 
models, this work highlighted the role played by sto-
chastic effects in stretching the relaxation time scales 
of nanopolycrystal samples. Moreover, the implica-
tions of boundary layer perturbations on inhomo-
geneity induced micro- and nano-fluctuations were 
analyzed. What this study did not reveal, though, was 
the quantitative importance of the nature of noise 
distribution that drives the force field. Also, the role 
of multiple time scales could not be unambiguously 
dealt with, as often observed in experiments with 
such nano-sized samples.

As established in [34], we focus here on the 
time evolution of the concentration of two stochas-
tically interacting diffusing species, identified in 
the “slow” ( �1 ) and “high” ( �2 ) diffusivity paths. 
Assuming a minimalist view for the interaction 
between these two diffusing populations along two 
different paths (e.g., intracrystalline grain interior 
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(GI) and grain boundary (GB) or intercrystalline 
(IC) and triple grain boundary junction (TJ) space) 
with corresponding concentrations �1 and �2 , we can 
represent the dynamics by an extended stochasti-
cally forced DD model as follows: 

 Here ��
i
(x, t) (i = 1, 2) are Ornstein–Uhlenbeck noises 

[35] that are introduced to account for substructural 
randomness associated with both boundary layers 
and the surrounding bulk matrix. They are defined, as 
usual, by the relations 

 where � �
i

(0) denotes noise strength and � is the relaxa-
tion time, � is the usual Dirac delta function, and �ij is 
the Kronecker symbol (no summation of the dummy 
indices implied). In Eqs. (1a) and (1b) above, D1 and 
D2 respectively refer to the diffusion coefficients in 
the two paths, with the constants �1 and �2 denoting 
the respective formation or depletion rates of concen-
trations of the diffusing species which can pass from 
one path to another. Equations (1a) and (1b) represent 
interacting diffusion fluxes, incorporating linear inter-
action in between the two diffusive paths. For all prac-
tical purposes, we will resort to the non-dimensional 
representation of this model, defined as follows: 

Here �is(x, t) (i = 1,2) are the scaled variables 
derived from �1 and �2 , respectively, such that 
c1 =

D1

D2

 , c2 =
√

�1

�2
 , c3 = 1 , d1 = d2 = 1 and 

d3 = 1∕c2 , whereas �1 and �2 are the scaled stochas-
tic forcing terms, such that 

(1a)
��1

�t
= D1∇

2�1 − �1�1 + �2�2 + ��
1
(x, t),

(1b)
��2

�t
= D2∇

2�2 + �1�1 − �2�2 + ��
2
(x, t).

(2a)⟨��
i
(x, t)⟩ = 0,

(2b)
⟨��

i
(x, t) ��

j
(��, t�)⟩

= 2�ij �
�
i

(0)
�3(� − x

�) exp

�
−

�t − t��
�

�
,

(3a)
��1s

�t
= c1∇

2 �1s − c2 �1s + c3�2s + �1(x, t),

(3b)
��2s

�t
= d1∇

2�2s + d2�1s − d3 �2s + �2(x, t).

Here �i(0) ( i = 1, 2 ) are the rescaled noise strengths 
corresponding to �1 and �2 respectively, and � is the 
noise decay time. Our primary focus in this work will 
be to analyze the role of the Ornstein–Uhlenbeck decay 
time � in determining the scaled diffusing species in the 
dynamics of the IC-TJ paths.

3  Phase evolution dynamics

As detailed in [34], the phase evolution kinetics of 
the IC and TJ diffusion will be discussed using the 
standard language of two-point correlation functions 
involving the scaled variables. Henceforth, with-
out loss of generality, we will identify the variables 
in Eqs. (3a) and (3b) as �1(x, t) and �2(x, t) . Fourier 
transformation of these variables, can be represented 
as 𝜓(x, t) = ∫ ddk ∫ d𝜔 �̂�(k,𝜔) ei(�.�−𝜔t) , where � 
generically represents either �i or �i (i = 1, 2). This will 
lead to the following set of coupled linear equations

where the matrix M is defined as

To analyze the kinetics from this stochastic model, we 
need to calculate measurable quantities. This is done 
using the formulation discussed in [28, 30]; the quan-
tities that could be experimentally measured will be 
the (Brownian) root-mean-square averaged quantities 
of their deterministic equivalents as detailed below:

and a complementary set of cross-correlation func-
tions given by

(4a)⟨�i(x, t)⟩ = 0,

(4b)
⟨�i(x, t) �j(��, t�)⟩

= 2�ij �i
(0) �3(� − x

�) exp

�
−

�t − t��
�

�
.

(5)M

(
�̂�1s
�̂�2s

)
=

(
�̂�1
�̂�2

)
,

M =

(
−i� + c1k

2 + c2 − c3
−d2 − i� + d1k

2 + d3

)
.

(6)�1s
rms =

�
⟨�2

1s
(x, t)⟩, �2srms =

�
⟨�2

2s
(x, t)⟩,

(7)
�12s

rms =
�

⟨�∗
1s
(x, t)�2s(x, t)⟩ =

�
⟨�1s(x, t)�∗2s(x, t)⟩.
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The above cross-correlation term shown in Eq. (7) is 
likely to be much smaller compared to the root-mean-
square (rms) quantities defined in Eq.  (6) above. 
The quantities within the brackets (“< . > ”) indicate 
“ensemble average” while �∗

is
 is the complex conju-

gate of �is.

4  Phase autocorrelation and cross‑correlation

The kinetics of our stochastic model is estimated 
using the language of two-point structure functions, 
popularly referred to as autocorrelation and spati-
otemporal functions, separately between similar 
variables as well as between different ones (cross-
correlation). Section  4.1 below shows the autocor-
relation structure, Sect. 4.2 refers to the cross-corre-
lation between zero-point different autocorrelators. 
The following Sects. 4.3 and 4.4, respectively, 
allude to spatial and temporal correlation func-
tions, both for like minded variables as also for 
cross-correlations.

4.1  Autocorrelation

To evaluate the scaled �isrms ( i = 1, 2 ), we need to 
calculate their corresponding complex conjugates in 
the Fourier transformed k − � space represented as 
follows

It is important to note that unlike the case with 
Gaussian white noises [34], the presence of Orn-
stein–Uhlenbeck dynamics, leads to a non-trivial spa-
tiotemporal correlation for the noise part due to finite 
time correlation of fluctuations. This can be estimated 
to give the following form

where �i = �i
(0)VT  , V and T being the total volume 

and time of the evolution. In the k − � space, the 
complex correlation functions can be calculated to 
obtain the following forms 

(8)(�is
rms)2 =∫ ddk ∫ d� ⟨�is(k,�) �∗is(−�,−�)⟩,

(9)⟨�̂�(k,𝜔)�̂�∗(−k,−𝜔)⟩ =
2𝛾i

i𝜔 +
1

𝜏

,

 where �1 = d22(�
2(c2 + k2(c1 + d1) + d3)

2+
(�2 − c3d2 + (c1k2 + c2)(d3 + d1k2))

2) . The denomi-
nator �1 is given by

Here, again, c1 = D1∕D2 , c2 =
√

�1

�2
 , c3 = 1 , d1 = 1 , 

d2 = 1 , d3 =
√

�2

�1
 . The equation �1 = 0 defines the 

poles of the scaled model. The removable singulari-
ties lead to the following 4th-order polynomial pole 
structure ( � = Ω are the poles): 

The correlation functions shown in Eqs. (10a, 10b) 
can now be used to evaluate (analytical results validated 
against Mathematica 12) 

(10a)

⟨�1s(k,�) �∗1s(−k,−�)⟩

=
2�1[�

2 + (d1k
2 + d3)

2
](−i� +

1

�
) + 2�2c

2
3
(i� +

1

�
)

�1
,

(10b)

⟨�2s(k,�) �∗2s(−k,−�)⟩

=
2�2[�

2 + (c1k
2 + c2)

2
](i� +

1

�
) + 2�1�1 (−i� +

1

�
)

�1
,

(11)

�
1
=�4 + (k4d2

1
+ 2c

3
d
2
+ 2k

2
d
1
d
3
+ d

2

3

+ k
4
c
2

1
+ c

2

2
+ c

2
)�2 +

(
c
2

3
d
2

2
− 2c

2
c
3
d
2

(d
1
k
2 + d

3
) + c

2

1
k
4(d

1
k
2 + d

3
)
2

+ c
2

2
(d

1
k
2 + d

3
)
2

− 2c
1
c
3
d
2
k
2(d

1
k
2 + d

3
)

+ 2k
2
c
1
c
2
(d

1
k
2 + d

3
)
2

)
.

(12a)Ω = ±
1

21∕2
(Ωs)

1∕2,

(12b)

Ωs = − (c2
1
k4 + c2

2
+ 2c3d2 + 2c1c2k

2) − (d3 + d1k
2)

2

± [(c1k
2 + c2) + (d3 + d1k

2)]
√

4c3d2 + (c2 + (c1 − d1)k
2 − d3)

2
.

(13a)

[�auto
1s

]
2
=∫

4�2�2 k2

8Ω7
s
(−1 + �2Ω2

s
)
4

[
[Ω2

s
− 5�2Ω4

s
+ 15�4Ω6

s

+ 32�4Ω7
s
+ 5�6Ω8

s
]�1

+ [�1(d3 + d1k
2)

2
+ �2c

2
3
](5 − 21�2Ω2

s
+ 35�4Ω4

s

+ �6Ω6
s
(−35 + 32Ωs))

]
dk,
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with their corresponding plots given in Fig. 1, from 
where it can be seen that the autocorrelation function 
�auto
1s

 shows much higher saturation rates, but is three 
orders of magnitude lower than �auto

2s
.

(13b)

[�auto
2s

]
2
=∫

4�2�2 k2

8Ω7
s
(−1 + �2Ω2

s
)
4

[
d2
2
[8�2Ω4

s
(−1 + �2Ω2

s
)
3

− 2�2(−1 + 2�2Ω2
s
)(Ωs − �2Ω3

s
)
2
×

(12Ω2
s
+ 4c3d2 − 4(c2 + c1k

2)(d3 + d1k
2)

− 2(c2 + k2(c1 + d1) + d3)
2
) − 4Ω2

s
(1 − �2Ω2

s
)×

(−5�2 + 16�4Ω2
s
− 19�6Ω4

s
)(−Ω2

s
− c3d2

+ (c2 + c1k
2)(d3 + d1k

2)

+
1

2
(c2 + k2(c1 + d1) + d3)

2
)

+ �2(−5 + 7�2Ω2
s
(3 − 5�2Ω2

s
+ 5�4Ω4

s
))

(Ω2
s
(c2 + k2(c1 + d1) + d3)

2

− (Ω2
s
+ c3d2 − (c2 + c1k

2)(d3 + d1k
2))

2
)]�1

+ �2(Ω2
s
− 5�2Ω4

s
+ 15�4Ω6

s
+ 5�6Ω8

s

− (−5 + 7�2Ω2
s
(3 − 5�2Ω2

s
+ 5�4Ω4

s
))(c2 + c1k

2)
2
)�2

+ 32�4Ω7
s
(d2

2
(�2(c2 + k2(c1 + d1) + d3)

2

+ (1 + �2(−c3d2 + (c2 + c1k
2)(d3 + d1k

2)))
2
)�1+

�2(1 + �2(c2 + c1k
2)

2
)�2)

]
dk,

As can be easily seen from Eq. (13a), for Ω =
1

�
 , 

the energy associated with either energy will diverge. 
In experimental parlance, this is the point of reso-
nance, mediated by the presence of stochastic noise, 
and hence can be identified as “stochastic reso-
nance” (SR) [36]. As shown in a complementary 
model [37], this is a unique result as conventional SR 
is known to be a nonlinear effect only, whereas here 
the dynamics is entirely linear. This resonance point 
also gives us a quantitative idea of the validity regime 
of the Ornstein–Uhlenbeck noise strength for this 
dynamics that comes out as � ≤ 1√

�1 + �2

 . This �

-inequality sets out a validity regime for the lower 
limit of the wave-vector k = k0 given by √

−(𝜅1 + 𝜅2) +
1

𝜏2

D1 + D2

< k0 < ∞ . Although D1 = D2 is 

not a particularly interesting case for nanopolycrystal 
double diffusion, as well as for situations involving 
diffusion of two different species through the same 
media (obtained by carefully choosing values of the 
other parameters), this can serve as an appropriate 
benchmark against which relative growth of the �1 or 
�2 species could be measured. Comparing with Eqs. 
(12a, 12b), the stochastic resonance conditions 
implies that while very high diffusivity rates D1 and 

Fig. 1  Variation of the autocorrelation functions �rms
1

 (a) 
and �rms

2
 (b) against the scaled diffusivity 1∕c1 = D2∕D1 , for 

�1 = 45 ∗ 10−4 and �2 = 20 ∗ 10−7 as in Eqs. (13a) and (13b). 

The plots show variations against � = 0.03 (dot-dashed), 
� = 0.04 (dashed) and � = 0.05 (dotted) for �1 = 5 and �2 = 0.1 
(parameter values from [16])
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D2 are not allowed for such a resonance (as Ωs will be 
imaginary), large values of “mixing rates” k1 and k2 
ensuring � → 0 will precipitate stochastic resonance. 
In other words, the impact of heterogeneity will be 
expressed through the mixing rates and not diffusivity 
itself due to the specific temporal scale chosen by this 
type of resonance. This feature is unique compared to 
conventional “internal length” theories. that Here the 
average energy dissipation rates of each of the two 
phases (IC and TJ equivalent) will be equal to each 
other. For many experimental observations (e.g., 
[16]) concerning double diffusivity, the two diffusive 
constants typically differ by about three orders of 
magnitude whose exact correlation forms can be ana-
lyzed using Eqs. (13a,13b). Another key qualitative 
difference between the two cases D1 = D2 and 
D1 ≠ D2 is the lack of “stochastic resonance” in the 
former.

4.2  Cross-correlation

While diffusive relaxation of individual species can 
be measured against the autocorrelation thresholds 
�1s

auto or �2sauto , the off-diagonal terms in the Hessian 

will contribute to a diffusive flux across different spe-
cies that, especially when long-ranged, could con-
tribute substantially to the transport of either species. 
The scaled cross-correlated autocorrelation function 
�12s is given as follows (analytical results validated 
against Mathematica 12)

As Fig. 2 clearly indicates, the qualitative nature of 
transport remains the same as that of individual dif-
fusive relaxation as depicted in Fig. 1, with the flux 
magnitude for cross-correlated diffusion being of the 

(14)
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Fig. 2  Variation of the cross-correlation function �12s(auto-
cross) against scaled diffusivity D2∕D1 for �1 = 45 ∗ 10−4 
and �2 = 20 ∗ 10−7 as in Eq. (14). The plots show variations 
against � = 0.03 (dot-dashed), � = 0.04 (dashed) and � = 0.05 
(dotted) for �1 = 0.1 and �2 = 5 (parameter values from [16])



1546 Meccanica (2023) 58:1539–1553

1 3
Vol:. (1234567890)

same order of magnitude as �auto
2s

 . The trend remains 
unchanged for � = 0.03 (dot-dashed), 0.04 (dashed) 
and 0.05 (dotted), although there are minor quantita-
tive differences in their saturation rates. Since Figs. 1b 
and 2 are conjugate of each other for identical noise 
strengths, e.g., �1 = �2 = 1 , as represented by equa-
tions (13b) and (14) respectively, we chose comple-
mentary pairs for the respective figures; in particular 
�1 = 5, �2 = 0.1 for Fig.  1b and �1 = 0.1, �2 = 5 for 
Fig. 2.

4.3  Spatial correlation of phases

In this section, we analyze how the concentration 
of each phase changes with spatial distance in the 
dynamical equilibrium limit. This can be done by 
solving the respective spatial correlation functions 
of each phase for all times and then taking ensemble 
averages over all noise realizations, an approach in 
line with [42]. By definition, we have

This then leads to the following (radial) spatial cor-
relation functions 

(15)
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Within a very short interval, contributions to the 
correlation functions from such large-spatial sepa-
rations can be seen to decay to a saturated state as 
shown in Fig.  3. This confirms the convergence of 
the integrals in Eq. (16a). In Fig.  3, we show how 
the spatial correlation oscillates and then saturates 
with increasing separation distance, for the case 
�1 = �2 . The oscillation relates to the phase contri-
bution that numerically corresponds to the imagi-
nary part of the solution; the decaying envelope 
confirms that spatial correlation trails off as the sep-
aration between the active sites increase.

As with autocorrelation, the cross-correlation of 
the two diffusivity paths will lead to a source-sink 
(or reverse) effect between the two paths �1s and �2s , 

(16b)
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as depicted in Fig. 4. The corresponding correlation 
function is given below:

There is a remarkable quantitative similarity between 
cross-relations in the autocorrelation and spatial cor-
relation sectors. As Fig.  4 shows, the magnitude of 
spatial cross-correlation is almost comparable to that 
of one of the individual spatial two-point correlations 
and three orders of magnitude larger than the other.

4.4  Temporal correlation of phases

It is well known that a fundamental consideration 
in multi-phase systems is the time evolution of the 
interface separating two different phases. Often such 
systems are known to be stochastically perturbed 
and hence non-equilibrated in nature, potentially 

(17)

[𝜌12s(rms-cross, r)]2

= ∫ d3k ∫ d𝜔 ⟨�̂�1(k,𝜔) ∗ �̂�2(−k,−𝜔) e
−ik.r⟩

= ∫
4𝜋2𝜏2 k2 J0(kr)

8Ω7
s
(−1 + 𝜏2Ω2

s
)
4

�
𝜏2
�
Ω2

s
− 5𝜏2Ω4

s
+ 15𝜏4Ω6

s
+ 5𝜏6Ω8

s

− (−5 + 7𝜏2Ω2
s
(3 − 5𝜏2Ω2

s
+ 5𝜏4Ω4

s
))

× (d3 + d1k
2)

2
)𝛾1 + d2

2
(8𝜏2Ω4

s
(−1 + 𝜏2Ω2

s
)
3

− 2𝜏2Ω2
s
(−1 + 2𝜏2Ω2

s
)(1 − 𝜏2Ω2

s
)
2

× (12Ω2
s
+ 4c3d2 − 4(c2 + c1k

2)(d3 + d1k
2)

− 2(c2 + k2(c1 + d1) + d3)
2
)

− 4Ω2
s
(1 − 𝜏2Ω2

s
)

(−5𝜏2 + 16𝜏4Ω2
s
− 19𝜏6Ω4

s
)

(−Ω2
s
− c3d2 + (c2 + c1k

2)(d3 + d1k
2)

+
1

2
(c2 + (c1 + d1)k

2 + d3)
2
)

+ 𝜏2(−5 + 7𝜏2Ω2
s
(3 − 5𝜏2Ω2

s

+ 5𝜏4Ω4
s
))(Ω2

s
(c2 + (c1 + d1)k

2 + d3)
2

− (Ω2
s
+ c3d2 − (c2 + c1k

2)(d3 + d1k
2))

2
))𝛾1

+ 32𝜏4Ω7
s
(d2

2
(𝜏2(c2 + (c1 + d1)k

2 + d3)
2

+ (1 + 𝜏2(−c3d2 + (c2 + c1k
2)(d3 + d1k

2)))
2
)𝛾1

+ 𝜏2(1 + 𝜏2(c2 + c1k
2)

2
)𝛾2

��
.

rendering the relevant dynamics as oscillatory, or 
with oscillatory-rotatory instability leading to chaos 
[38]. Phase control through synchronization driv-
ing such systems away from the chaotic bifurcation 
point has, in fact, benchmarked the hare-lynx model 
in ecology [39].

By analogy with two-phase systems, we calculate 
below the theoretical quantities which, in princi-
ple, can be compared with the experimental set ups 
describing the temporal correlation dynamics. In 
the present case, the relevant variables necessary to 
model such a stochastically driven two-phase system 
are �irms(T) , which are encapsulated in the following 
equations

for i = 1, 2 . The scaled temporal correlation functions 
are given by 

(18)
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As is quite obvious, both temporal correlation 
functions for �1 and �2 show stochastic resonance for 
Ω = 1∕� . With longer time gaps between the recorded 
fluctuations, there is an evident decay in the strength 

(19b)
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of correlation. Figure 5a and b, show a steady decline 
with increasing T where the faster diffusive energy 
relaxation leads to stronger connection with fluctua-
tions separated by larger time gaps.

As like the auto and spatial correlations, cross-corre-
lation between the paths would also impact the tempo-
ral correlation, defined in Eq. (20) and plotted in Fig. 6.
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A look at Fig.  6 indicates that the amplitude of 
temporal cross-correlation is between that of the 
slowly and that of the quickly diffusing path, with the 
decay profile similar to both. The results are similar to 

that of the spatial cross-correlated paths. The crosso-
ver at around T = 0.1 is indicative of the time point 
at which the conservative deterministic dynamics is 
taken over by the additional energy pumping through 
the cross-correlation terms. As expected, a larger 
decay time, amounting to a longer relaxation span, is 
precipitated by a slower release of energy.

5  Discussion

In this article, we have extended the continuum dou-
ble diffusivity (DD) model to include stochastic 
forcing, in order to analyze the transport dynamics 
of nanopolycrystals. While earlier works have estab-
lished the origin of stochasticity [34, 37], a simple 
hand weaving recapitulation can help in reminding us 
about the importance of stochastic contribution to the 
DD modeling architecture. The stochasticity in the 
model in Eq. (3) relates to a combination of bound-
ary layer fluctuations and separate contributions due 
to bulk inhomogeneity in the nanopolycrystaline sam-
ple, leading to randomness in the distribution of the 
diffusion profiles. A key aspect of stochastic models 

Fig. 3  Variation of the spatial correlation functions �rms
1s

(r) 
(a) and �rms

2s
(r) (b) against the separation distance r for 

�1 = 45 ∗ 10−4 , �2 = 20 ∗ 10−7 , D1 = 1.88 ∗ 10−16 and 

D2 = 6.1 ∗ 10−12 as in Eqs. (16a) and (16b), respectively for 
� = 0.03 (dot-dashed), � = 0.04 (dashed) and � = 0.05 (dotted) 
(coefficient values from [16])

Fig. 4  Variation of the spatial cross-correlation func-
tion �12s(rms-cross, r) for �1 = 45 ∗ 10−4 , �2 = 20 ∗ 10−7 , 
D1 = 1.88 ∗ 10−16 and D2 = 6.1 ∗ 10−12 . Results are obtained 
by numerically solving Eq. (17) for � = 0.03 (dot-dashed), 
� = 0.04 (dashed) and � = 0.05 (dotted) for �1 = �2 = 1 (coef-
ficient values from [16])
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is the “avalanche” effect whereby minor random per-
turbations accumulate and pile on [40, 41].

Moreover, previous higher order gradient material 
mechanics models (including DD ones), deterministic 
or stochastic, initially structured on multiscale descrip-
tion [43], commonly rely on the existence of transla-
tion–reflection (TR) symmetry, whereas experimental 
description often hints at the violation of such sym-
metries in finite sized systems [16, 25, 26]. The present 
study sacrificed the aforementioned minimalist descrip-
tion in favor of a rigorous one. The violation of the 
TR symmetry not only leads to inhomogeneity in the 
definition of the underlying model, but also the trans-
port process sees a major energy transduction through 
stochastic resonance. The modeling results highlighted 
here, using input parameters from [16], leads to key 
quantitative understanding of the interface dynamics 
of dual diffusion in nanopolycrystals. In particular, the 
role of heterogeneities and lattice imperfections, largely 
overlooked in [16], can now be analyzed using the syn-
tax of stochasticity, again emphasizing the importance 
of correctly interpreting randomness in studying exper-
imental data. Our results show that root-mean-squared 
auto and cross-correlations in a stochastically forced 
kinetic model, e.g., that for phase densities in a forced 
Fick’s type model, actually play the role of their equiva-
lent quantities from deterministic models, e.g., a con-
ventional Fick’s model [44].

Fig. 5  Variation of the temporal correlation functions �rms
1s

(T) 
and �rms

2s
(T) against the time difference T for �1 = 45 ∗ 10−4 , 

�2 = 20 ∗ 10−7 , D1 = 1.88 ∗ 10−16 and D2 = 6.1 ∗ 10−12 . 

Results are obtained by numerically solving Eqs. (19a) 
and (19b) for � = 0.03 (dot-dashed), � = 0.04 (dashed) and 
� = 0.05 (dotted) for �1 = �2 = 1 (coefficient values from [16])

Fig. 6  Variation of the temporal cross-correlation func-
tion �12(rms-cross,T) for �1 = 45 ∗ 10−4 , �2 = 20 ∗ 10−7 , 
D1 = 1.88 ∗ 10−16 and D2 = 6.1 ∗ 10−12 . Results are obtained 
by numerically solving Eq. (20) for � = 0.03 (dot-dashed), 
� = 0.04 (dashed) and � = 0.05 (dotted) for �1 = �2 = 1 (coef-
ficient values from [16])

Technically, we introduce stochasticity as a white 
noise in a Fick-type model [34, 37, 44] of coupled 
equations describing the concentrations at each type of 
diffusion paths. Comparisons between the two interac-
tive diffusive paths (or corresponding concentrations) 
have been made in terms of their spatiotemporal cross-
correlations and autocorrelations. As we see, the energy 
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transfer is aided by the cross-correlations of the two dif-
fusivity paths, in addition to translational energy fluxes. 
As discussed in detail in [31], microscopic fluctuations 
either in the nature of forcing or as part of the dynami-
cal evolution process of a system, typically modeled 
through a combination of Langevin and Fokker–Planck 
equations, serve as additional non-equilibrium energy 
sources that are not present in deterministic models. 
This may lead both to additional energy flux, expressed 
as stochastic resonance [37] in the present DD model, 
or as shearing stress in similar fluid flow problems 
[28–30]. In passing, we point out that local internal 
stress or substructure fluctuations are not accounted for 
in recent generalized formulations of elasticity, plastic-
ity, transport and coupled thermo-chemo-mechanical 
models. As such models are now increasingly extended 
from macro/meso to micro/nano scales, it is advisable 
to enhance them with combined deterministic-stochas-
tic terms to interpret material behavior at these scales 
(see, for example, [43]).

The autocorrelation plots in Fig. 1a and b conform 
qualitatively to predictions based on the determinis-
tic double diffusivity models (e.g., [16]); although the 
amplitudes are higher due to additional energy inputs 
through stochastic forcing. As to the cross-correla-
tion terms in the spatiotemporal dynamics (Figs. 3a, 
b, 4), the stochastic model leads to a new regime of 
description where stochasticity mediates off-diagonal 
terms, often asymmetric forcing across multiple vari-
ables even at the first Gaussian approximation order. 
While this is very much an expected part of real life 
nanodynamic processes, the deterministic DD model 
does not capture this aspect that we have successfully 
addressed now.

6  Conclusions

Models of multidiffusion are nothing new, nei-
ther is the knowledge about their ability explain the 
dynamics of physical processes with multiple time 
and length scales [1–3, 9, 10]. In a series of paradig-
matic works, Aifantis, et al showed that the “Internal 
Length” theory could unilaterally summarize such 
multicomponent transport. These studies initially 
lacked the stochastic component [8], but was inte-
grated with later models [11, 12, 14, 45]. What was 
lacking still was the ability to associate experimen-
tal observations of transport processes, specifically 

multispecies diffusion rates [22, 46], with corre-
sponding models. That knowledge gap got recently 
bridged by showing that thermally driven stochastic 
forces arising from inherent inhomoegenieties and 
lattice defects could actually contribute a lot more 
than previously envisaged [34, 37].

A key success of these stochastically driven mod-
els [34, 37] was in accurately quantifying established 
experimental results of multidiffusion models [16]. 
These studies [34, 37] had a technical simplification 
embedded though, that of combining the two coupled 
Fick equations of motion to obtain a single higher 
ordered PDE-equation that was analyzed to explain 
experimental results not only for double-diffusion 
models, but also in transdomain studies related to 
calculation of infection kinetics [47]. The issue was 
threefold. First, higher ordered models have structural 
singularities that may prompt numerical artefact in 
predictions. Second was a more fundamental issue 
concerning translational and rotational symmetry 
violation that such a transformation (from two cou-
pled diffusion models to a single PDE model) could 
amount to. Finally, and most importantly, these sto-
chastic models although correct in their engineer-
ing remits were still unable to analyze the nature of 
energy transfer during transport. They could not 
explain that such transports are essentially discrete 
processes where maximum energy transfer has to 
happen during stochastic resonance, and not as a 
continuous energy transfer process. This article com-
pletes this theoretical loop of understanding.

An important aspect of this analysis is the relative 
independence of both spatial and temporal correlation 
functions to the stochastic fluctuations. Over a wide 
range of noise strengths ( 10−9 < 𝛾0

i
< 10−2 , i = 1, 2), 

the correlation functions showed no remarkable qual-
itative change and only minor quantitative changes, 
thereby confirming the stability of this model to 
noise perturbations. This, indirectly, explains why 
some earlier theories [16] have managed to model 
experimental results reasonably well for some cases, 
while faltering in others. For both spatial and tem-
poral cross-correlations, the magnitudes are found to 
be comparable with that of their slow counterparts, a 
direct implication of long-ranged correlation amongst 
“fast” and “slow” diffusion paths. The results are 
very likely to see drastic change if nonlinear convec-
tive effects are introduced, as in fluid mixtures. The 
bulk energy transfer through stochastic resonance is 
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a unique feature of prevailing randomness, and this 
should be explored further on the basis of existing or 
future experiments.

In summary, we point out some interesting fea-
tures that stochasticity brings into the double diffusiv-
ity model by forcing a conservative energy flux (i.e., 
rate change of the total diffusivity is zero) with sto-
chastic perturbations. This is only a first step toward 
integrating the double diffusivity properties with real 
life fluctuations that could modulate the process. As 
this model and the corresponding higher-order diffu-
sion equation have been shown to effectively interpret 
transport in heterogeneous media possessing more 
than one family of transport paths, as well as nonlin-
ear phenomena at the nanoscale, more detailed analy-
sis focusing on the precise nature of randomness, as 
also delving deeper into the microscopic dynamics of 
the process, need to be conducted in the future.
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