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Abstract

Self-adaptive systems (SASs) exhibit autonomous decision-making to deal with uncertainty
in their operating environments. A fundamental problem with SASs is to ensure that their
requirements remain satisfied as they adapt. Trade-off analysis of the non-functional re-
quirements (NFRs), based on their satisfaction priorities, is a key to establishing a balance
among them. Such trade-off analysis is often based on optimization techniques comprising
decision analysis and utility theory. A problem with these techniques is that they use a
single-scalar utility value to specify a combined priority for all the NFRs. Nevertheless, this
combined priority does not give any information about the impacts of the environmental
contexts on the individual priorities of NFRs. Moreover, these separate NFR priorities may
change according to the runtime environmental contexts. Therefore, there is a need to have
an approach that supports the runtime, autonomous reasoning with the distinct priorities
of NFRs during the decision-making process. This PhD thesis addresses this problem by
presenting Pri-AwaRE, a self-adaptive architecture for decision-making in SASs. The ap-
proach uses Multi-Reward Partially Observable Markov Decision Process (MR-POMDP) as
a runtime specification model to support the modelling of the individual NFRs’ priorities.
The MR-POMDP model also provides runtime reasoning and autonomous tuning of these
separate priorities. Therefore, it underpins priority-aware decisions. The approach has been
evaluated using two substantial case studies from the different networking domains. A com-
parison with other state-of-the-art approaches has also been carried out. The results have
shown that the priority-aware decisions offered by Pri-AwaRE provide compliance with the
requirements for both the case studies even under the changing environmental contexts at
runtime.

Keywords: Runtime models, Non-Functional Requirements, Priorities, Autonomous

Tuning, Multi-Reward POMDPs.
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Chapter 1

Introduction

1.1 Context and Motivation

Self-adaptive systems (SASs) represent systems that are required to perform adaptation

decisions under uncertain environmental contexts [86, 93, 139, 165]. The goal is to ensure

that their requirements remain satisfied as they adapt. The unforeseen changes in the

environment affect the satisfaction of non-functional requirements (NFRs). Therefore, to

meet the required NFR satisfaction levels1, these adaptation decisions typically involve

trade-offs between the NFRs under the different environmental contexts at runtime. Let us

consider an example of a self-adaptive Internet of Things (IoT) network [7, 173] to provide

motivation for the research:

1.1.1 Motivating Example

IoT refers to the networked interconnection of small computing systems (also known as

nodes) comprising of different hardware and software components such as Radio-Frequency

Identification (RFID) tags, sensors, actuators, mobile phones etc. These nodes interact with

each other to achieve the target functional goal of transmission of information within the

network. Due to the limitations of size and operational costs, the nodes in the IoT network

have to deal with limitations of computational storage and energy resources. Hence, the

IoT system is required to increase the lifetime of the network by minimizing the energy

consumption of the nodes. Moreover, it is also required to improve the packet delivery

1Satisfaction level of an NFR refers to the degree to which it is satisfied.
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performance under the uncertain environmental contexts of dynamic interference levels2

and packet traffic loads on the links. These environmental contexts have different effects on

the satisfaction of individual NFRs such as Minimization of Energy Consumption (MinEC)

and Maximization of Packet Delivery Performance (MaxP). The higher the traffic load, the

lower MinEC will be, and higher link interference would lead to lower satisfaction of MaxP

[90, 106, 143]. As the environmental factors affect the satisfaction of NFRs, it requires the

SAS to make a trade-off between NFRs based on their individual priorities for satisfaction

under different contexts. Hence, the SAS is required to perform decision-making that takes

into account the individual NFRs’ priorities.

1.1.2 Problem Statement

A number of specification models have been developed that specify the decision-making

process based on the NFR trade-offs, and involve alternate adaptation actions and NFRs’

priorities [64, 93]. Suppose these specification models, developed at design time, can also be

used and updated at runtime. In such a case, a SAS can be made requirements-aware [139,

164] by monitoring its compliance with the requirements at runtime. Analysts derive the

specification model (S) from the requirements and the knowledge domain (K ). Monitoring

compliance with the requirements (R), according to Zave and Jackson [176], can be done

by compliance with the specification model (S) as follows:

S,K ⊢ R (1.1)

Hence, based on equation 1.1, we can argue that S will remain a valid implementation

of R if K does not change from the moment S was built until the compliance with the

requirements is assessed. However, as K is subject to change, there is uncertainty about K

in a SAS [33]. Hence, the SAS may be required to learn about its environment and thereby,

reduce K ’s uncertainty.

Several runtime optimisation approaches have been developed to support the decision-

making process specified in S of SASs [3, 18, 28, 51, 57, 103, 167]. These approaches are

typically based on optimisation methods, including decision analysis and utility theory.

Such methods involve selecting an adaptation action yielding the highest utility value from

2Link interference refers to constraints that affect the signal quality typically due to noise or unwanted
disturbances in the electric signals.
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a set of alternatives.

A problem with these approaches is that they usually use single-objective optimisation

techniques. These single-objective techniques use a single scalar cumulative utility value to

specify a combined cardinal priority for all the NFRs [129, 149]. However, the adaptation

decisions performed by a SAS can have varied impacts, either positive or negative, on the

satisfaction levels of individual NFRs [94, 149, 167]. For example, in an IoT system, the

decision to increase transmission power on the links under the context of high interference

will positively impact the packet delivery performance. However, it will negatively impact

energy consumption [173]. The single-objective optimization approaches, using a single

combined priority for NFRs, do not give any information about these distinct impacts of

adaptations on the satisfaction levels of individual NFRs. Furthermore, these adaptation

impacts may change based on the evolution of the SAS over time, leading to the evolution

of the adaptation strategies by the SAS. Therefore, the priorities assigned at design time

may not be valid at runtime based on the newly found contexts which in turn may result

in violation of an NFR.

Based on the above, the limitations of the existing optimisation techniques are as follows:

(i) the treatment of the NFRs’ priorities is done as a single combined value which does

not provide information about the distinct impacts of adaptations on the satisfaction levels

of individual NFRs, and

(ii) the assigned NFRs’ priorities are considered to be fixed (i.e. they do not change).

The point to be argued in this thesis is that adaptation decisions need to be aware of the

individual NFRs’ priorities to perform better trade-offs. This is something that cannot be

accomplished if the priorities are aggregated into a single combined value. Nevertheless, it

may prove that the priorities assigned at design time may not be appropriate under certain

situations. Hence, the priorities may need to be reassessed, updated and informed by the

knowledge attained by the SAS encountering such situations. Therefore, priority-awareness

can be defined as:

Definition 1. Priority-awareness is the capability of providing autonomous changes of

NFRs’ priorities to address the required satisfaction levels of NFRs.

Considering the above, the key challenges for the research are described in the next
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subsection as follows:

1.1.3 Key Challenges

According to Zave and Jackson [176], compliance with the requirements (R) can be accom-

plished using a runtime specification model (S) equipped with the newly found knowledge

(K’ ) that has an impact on changing individual priorities of NFRs.

S,K ′ ⊢ R (1.2)

The key challenges here are to have a runtime specification model that can provide

compliance with the requirements by:

Challenge 1: modelling of the individual priorities of NFRs and considering those individ-

ual NFRs’ priorities during the decision-making process to offer better-informed, priority-

aware decisions.

Challenge 2: updating the NFRs’ respective priorities according to the changing environ-

mental contexts at runtime, and this update should be done in an autonomous way.

1.2 Aim and Research Questions

The overall aim of this thesis is to present an architecture supported by the specification of

a runtime model that has the capability of:

1) modelling and reasoning with the individual cardinal priorities of NFRs.

2) supporting tuning of the NFRs’ priorities according to the newly encountered environ-

mental situations and acquired knowledge, while respecting their relative importance

of priorities.

In this thesis, we move towards this direction by defining the following research ques-

tions:

RQ1: Can modelling and reasoning of the priorities of individual NFRs under uncertain

environmental contexts be supported?
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RQ2: Can decision-making in SASs include tuning of the NFRs’ priorities to match the

dynamic runtime situations?

The RQ1 is related to the first research challenge and the RQ2 is related to the second

challenge.

1.3 Research Contributions

In this section, the main contributions towards addressing the research challenges are de-

scribed. To address the research challenges, Pri-AwaRE, a self-adaptive decision-making

architecture has been developed. Pri-AwaRE embodies a runtime specification model known

as multi-reward partially observable markov decision process plus plus (MR-POMDP ++)

that works as part of a Monitor, Analyze, Plan and Execute over the Knowledge base

(MAPE-K) feedback loop [79]. MR-POMDP++ is based on the multi-objective reinforce-

ment learning technique and is used to support:

Contribution 1: Modelling and reasoning with priorities of individual NFRs which is part

of the first research challenge.

Contribution 2: Tuning of NFRs’ priorities to better match the newly discovered envi-

ronmental situations and acquired knowledge which is part of the second research challenge.

Moreover, for evaluation purposes, the approach has been applied to two substantial case

studies from the Remote Data Mirroring (RDM) [78] and Internet of Things (IoT) domains

[72]. For the RDM case study, RDMSim [137], a new simulation paradigm to support

decision-making in SASs, has been developed as part of the research project presented in

this thesis.

List of Publications

Following is the list of publications that arose from this research:

1. H. Samin, “Priority-awareness of non-functional requirements under uncertainty,” in
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2020 IEEE 28th International Requirements Engineering Conference (RE), Doctoral Sym-

posium Track, IEEE, 2020.

2. H. Samin, L. Garcia Paucar, B. Nelly, and P. Sawyer, “Towards priority-awareness in

Autonomous Intelligent Systems,” in 36th ACM/SIGAPP Symposium On Applied Com-

puting (SAC). ACM, 2021.

3. H. Samin, Luis H. G. Paucar, Nelly Bencomo, Cesar M. Carranza Hurtado, Erik M.

Fredericks, “RDMSim: An Exemplar for Evaluation and Comparison of Decision-Making

Techniques for Self-Adaptation”, in 16th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems (SEAMS), Artefacts Track, 2021

4. H. Samin, N. Bencomo, and P. Sawyer, “Pri-AwaRE: Tool support for priority-aware

decision-making under uncertainty,” in 2021 IEEE 29th International Requirements Engi-

neering Conference (RE), Posters and Tools Demonstration Track, IEEE, 2021

5. H. Samin, N. Bencomo, and P. Sawyer, “Decision-Making under Uncertainty: Be Aware

of your Priorities,” in International Journal on Software and Systems Modeling (SoSyM),

2021.

1.4 Research Methodology

A number of research methods exist in Computing Science [70, 75] that are categorised as

qualitative or quantitative [65]. The qualitative research method is based on the study of

subjective data. In contrast, the quantitative method is based on collecting and analysing

numerical data that could be structured into statistics. In Software Engineering (SE),

the traditional quantitative approach is considered suitable for some research topics, for

instance, where performance is a research challenge. However, there exist research topics

where the empirical value of quantitative approaches is not evident. In such cases, the SE

practitioners follow a qualitative approach [141].

Moreover, research in SE is mainly considered as a synthetic approach which focuses

on making and inventing [110]. Hence, SE research involves the design and development
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of abstract mechanisms to support software developers by not only improving development

process but also to understand and model complex systems [151]. These proposed abstract

mechanisms are useful in terms of presenting new concepts, or new relationships between

existing unrelated concepts.

Considering the above, the work presented in this thesis followed a Design Science

methodology [170]. Design Science is a popular problem-solving paradigm in SE and involves

the design and investigation of artifacts to solve real-world problems [171]. In SE research,

an artifact refers to an algorithm, a method, a technique or a conceptual framework created

for some practical purpose. The Design Science framework typically involves the activity

of designing the artifacts within a problem context to improve something in that context.

Based on the Design Science approach, the research presented in this thesis focuses on

presenting the technique of Pri-AwaRE as an artifact to improve the decision-making process

in SASs with better-informed, and priority-aware decisions.

Considering the Design Cycle presented in [171], the research study followed the follow-

ing three steps:

A. Problem Investigation

The first step of the design cycle involved the investigation of the problem under study.

For this purpose, a systematic scientific approach of conducting a literature study of the

state-of-the-art Artificial Intelligence (AI) based approaches for decision-making in SASs

was carried out. In addition, the techniques that focus on prioritization of requirements

during the decision-making process at runtime were also studied. After critically analysing

the existing approaches, the research focused on the application of the selected approaches

to support priority-aware requirements-driven decision-making in SASs.

B. Treatment Design

The treatment design involved the design of an artifact as a treatment for the problem

under investigation. Therefore, the research project focused on designing and developing

a self-adaptive architecture to support the runtime awareness of NFRs’ priorities during

decision-making.
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C. Treatment Validation

The treatment validation involved demonstrating and evaluating the proposed Pri-AwaRE

architecture by its application to two case studies from domains of IoT and RDM systems.

Experimental evaluations also involved comparing the proposed approach with the existing

state-of-the-art techniques to fulfil the proposed solution’s evaluation.

1.5 Research Plan

In order to reach the aim of the research study, the following plan was followed according

to the Research Methodology explained in Section 1.4:

1) To undertake a literature review of the state-of-the-art decision-making techniques in

SASs for identifying the research gaps that eventually have driven the research presented

in this thesis.

2) To undertake a literature review of the state-of-the-art techniques for requirements pri-

oritization and their role in the decision-making process in SASs.

3) To evaluate and examine the state-of-the-art techniques for requirements prioritization

in SASs, specifically the runtime techniques and identify the research gaps.

4) To carry out an investigation on the runtime models for self-adaption and usage of run-

time models as a means to support priority-aware decision-making and reasoning under

uncertainty.

5) To develop a structured technique, which is called Pri-AwaRE, to support runtime mod-

elling and reasoning with priorities of NFRs. The technique also provides autonomous tuning

of these priorities according to the changing environmental contexts to support decision-

making in SASs.

6) To evaluate the viability and benefits of Pri-AwaRE by applying it two different real case

studies. For both the case studies, the decision-making mechanism has been designed.
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7) To evaluate the quality of decision-making offered by the Pri-AwaRE approach using

techniques like Logistic Regression [21] and DeSiRE [44].

The research has also involved the design and development of RDMSim [137], a simu-

lation tool to represent the operating environment for the case study based on RDM. The

RDMSim has been designed to offer researchers an RDM environment to test and com-

pare their decision-making techniques against other techniques. For the IoT case study, the

existing simulation tool of DELTA-IoT [72] has been used.

1.6 Thesis Outline

The Thesis is organized as follows:

Chapter 2: State of the Art of Decision-Making in Self-Adaptive Systems

and Requirements Prioritization describes the state-of-the-art techniques with respect

to the scope of this thesis. The focus is on discussing the techniques for decision-making in

SASs. In addition, the techniques dealing with the prioritization of requirements during the

decision-making process are also described. This chapter motivates the approach presented

in this thesis.

Chapter 3: Research Baseline presents the baseline concepts for the research pre-

sented in this thesis. First, the basic concepts for decision-making process in a SAS are

described. Second, details about the runtime models are provided. In the end, the concept

of Multi-objective Reinforcement Learning is described which is a baseline technique for the

proposed research approach.

Chapter 4: Pri-AwaRE: A priority-aware self-adaptive architecture for de-

cision making in Self-Adaptive Systems presents Pri-AwaRE which is a self-adaptive

architecture for supporting priority-aware decision-making in SASs. The architecture makes

use of MR-POMDP++ as part of MAPE-K loop to support better-informed decisions. The

details about how the Pri-AwaRE supports modelling and reasoning of individual priorities

of NFRs during the decision-making process are provided. The chapter also explains the

procedure for autonomous tuning of NFRs’ priorities during the decision-making carried

out by the Pri-AwaRE.
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Chapter 5: Case Studies presents the two case studies (i.e. IoT and RDM system)

used for the evaluation of the proposed Pri-AwaRE approach. The chapter provides details

about simulation tools used for experiments. The operational model, architecture and

uncertainty scenarios representing the different dynamic environmental situations for both

the simulated environments are also described.

Chapter 6: Experimental Evaluation provides the experiments for evaluation of

the Pri-AwaRE approach. The experiments using both the case studies are provided. Com-

parisons with the state-of-the-art techniques are also presented.

Chapter 7: Validation of Results provides experimental evaluations for assessing

the quality of the decision-making offered by the Pri-AwaRE approach. Comparisons with

the Related Work and threats to the validity of the approach are also provided.

Chapter 8: Conclusion and Future Work presents the conclusion and future di-

rections for the research presented in this thesis. Concluding remarks highlighting the main

contributions of the research project and answers to the research questions are provided.

Furthermore, the future research agenda is also presented.
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Chapter 2

State of the Art of

Decision-Making in Self-Adaptive

Systems and Requirements

Prioritization

This chapter presents the literature study on the state-of-the-art decision-making techniques

in SASs. The focus is mainly on exploring the techniques that support requirements-driven

adaptations. It also explores the techniques focusing on modelling and reasoning with the

priorities of NFRs during the decision-making process. A number of studies exist that

explore requirements prioritization [77, 118, 157] and decision-making under uncertainty

[30, 48, 93] for SASs. These existing studies focus on the techniques that are applied at

design time. However, to support the research challenges addressed in this thesis, there

is a need to explore the state-of-the-art for requirements-driven decision-making and un-

certainty resolution at runtime. The focus is specifically to explore the approaches that

support the prioritization of NFRs during the decision-making process. The chapter is or-

ganized as follows: Section 2.1 discusses the techniques for decision-making and uncertainty

resolution during decision-making in SASs. Section 2.2 presents the techniques dealing with

requirements prioritization in SASs which is followed by Summary in Section 2.3.
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2.1 Techniques for Decision-Making in Self-Adaptive Sys-

tems

This section provides a literature study of the decision-making techniques for SASs and the

techniques for uncertainty resolution for SASs. In order to support the critical evaluation

of the approaches, a comparison of the techniques is presented in Tables 2.1 and 2.2. The

techniques and their comparisons are discussed as follows:

A number of frameworks have been presented in the literature to support the decision-

making in SASs. The most notable ones of these are RELAX [169], FLAGS [11] and ZAN-

SHIN [146], which support the notion of requirements-driven decision-making in SASs. The

focus here is to establish the relationship between satisfaction and priorities of requirements

under uncertain environmental contexts at runtime [117].

RELAX is a requirements specification language based on fuzzy logic. RELAX of-

fers a modification in the requirements specification statements to address environmental

uncertainty. For this purpose, it offers to include additional information concerning the en-

vironmental context, monitored data from the environment and their relationship. Hence,

RELAX offers to facilitate the flexibility of requirements satisfaction criteria by provid-

ing relaxation of their selected priority thresholds. Based on the RELAX framework, the

techniques of AutoRELAX [122] and Providentia [25] have been developed. The focus of

these techniques is on the optimization of requirements’ priorities by taking a KAOS1 goal

model [38] as a reference. AutoRELAX is based on the approach of genetic algorithms, an

Evolutionary Computation [81], which is used to optimise the goal constraints represented

in the form of a genome structure. The values of the genome represent the satisfaction

values of the requirements. These satisfaction values of the requirements are optimized to

get their respective utility values. These utility values represent the preferred thresholds for

priorities of requirements. Providentia supports the automated optimization of functional

requirements which consequently has an effect to support the satisfaction of individual

NFRs in SASs. Similar to AutoRELAX, it uses genetic algorithms, to be used at design

time, for quantifying the NFRs’ priorities at runtime by optimizing the functional require-

ments (FRs). Both approaches make use of the genome structure to represent the goal

constraints and their satisfaction levels as runtime model entities. However, the approaches

1KAOS stands for Keep All Objectives Satisfied. It is a goal-oriented requirements modelling method.
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of AutoRELAX and Providentia make use of KAOS goal model as a reference to optimize

the requirements (i.e. FRs and NFRs), they lack the causal connection [97] of a goal model

to be used as a Model@Runtime (runtime model) to support awareness of requirements.

The introduction of causal connection can help support the runtime prioritization of the

requirements. Moreover, it can also support handling the dependencies in requirements

during the decision-making process.

In order to treat requirements as live runtime entities, the Fuzzy Live Adaptation Goals

for SASs (FLAGS) framework [11] proposes an extension of the KAOS goal model. The

extended version of KAOS introduces the concept of adaptive goals. The framework dif-

ferentiates between fuzzy and crisp goals. In FLAGS, crisp goal satisfaction is viewed as

binary in nature. In contrast, the satisfaction of fuzzy goals (i.e. the NFRs) is presented in

the form of fuzzy constraints. The adaptation strategies based on the concept of adaptive

goals are defined to offer trade-offs and re-prioritization between the goals to achieve the

satisfaction of goals,

Analogous to the technique of FLAGS, the ZANSHIN framework [146] presents an

extension of goal models by including the monitored information, adaptive strategies and the

relationships between them. The goal models are incrementally refined by the identification

of indicators known as Awareness requirements [147, 152]. Awareness requirements refer to

the elements that are required to be monitored along with the parameters and adaptation

strategies. They represent what things need to be changed according to the newly identified

environmental context. Consequently, the Awareness requirements are used to specify the

satisfaction state of other requirements, leading to the re-prioritization of the parameters

by applying the adaptation strategies at runtime. Neither the technique of ZANSHIN or

FLAGS provide information about the distinct modelling of the NFRs’ priorities.

As stated above, AutoRELAX and Providentia use genetic algorithms to model the

satisfaction values of requirements but there are also techniques that employ evolutionary

computing to support the decision-making in SASs. In [87, 89], Enki, a novelty search-based

approach [92], an Evolutionary Computation technique, has been used along with Deep

Neural Networks (DNN) to improve the decision-making process to address environmental

uncertainty. The approach makes use of evolution based technique to generate synthetic

data for representing different environmental situations. The situations that cause extreme

and unique behaviors are then selected to train the DNN for improving decision-making.
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Furthermore, ENLIL3 [88] uses evolutionary computation and machine learning to predict

runtime behaviour of the SAS in advance by a priori detection of uncertain conditions. The

automated approach helps the system to uncover the failure situations that are not covered

by the existing training datasets, and thereby improving the decision-making process. The

approach presented in [83] makes reuse of prior plans to improve the selection of adaptation

tactics under unforeseen situations at runtime and as a result satisfies the quality objectives

(i.e. NFRs). The decision-making planner reuses the prior knowledge by initializing the

population with existing plans as a seed. It then selects the plan of action based on the

candidate fitness value computed to measure the expected quality of the entire system.

In [20], a three-step adaptation approach has been presented that models the decision-

making as a Multi-Objective Constrained Optimisation Problem (MOCOP). The approach

performs adaptations for the satisfaction of requirements based on available resources. The

first step of the approach involves the identification of resources to satisfy the requirements.

The second step is to search for possible substitutions for satisfaction of requirements if

the required resources are not available. And finally, the approach makes the required

adaptations based on availability of resources.

The concept of Digital Twins (DT) has also been proposed to model, control and predict

behaviour of the SASs. In [156], Case-Based Reasoning (CBR), an AI planning technique,

has been presented to leverage the DT. It supports the DT with the domain knowledge

and plan for the operations at runtime [23]. The cases in CBR represent the undesired

conditions that the system responds to, and the possible reactions that the system can

perform in such situations. Taking the cases as a base, the DTs are able to take decisions

by finding similar cases under the detected uncertain conditions.

A number of approaches based on control theory to support decision-making have also

been developed [27, 114, 115]. The focus is on combining AI-based techniques such as

Evolutionary Computation, Regression Analysis and Classification techniques with control

theory to offer better adaptation strategies for satisfying requirements [27, 126]. Further-

more, in [145], the presented approach makes use of a search-based approach as part of

the feedback control loop to perform the runtime decision-making. The technique uses the

Non-dominated Sorting Genetic Algorithm version 2 (NSGAII), an Evolutionary Compu-

tation algorithm, to select the optimal configuration for the purpose of satisfaction of the

NFRs simultaneously. The approach proposed by Peng et al. [114, 115] presents a PID
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controller which is used to make a trade-off among NFRs to support decision-making at

runtime. However, the approach does not consider the evolution of the satisfaction level of

NFRs during the course of decision-making.

Techniques based on probabilistic models such as Dynamic Decision networks (DDNs)

have also been used to perform decision-making in SASs. The DDNs are used to represent

goal models as Models@Runtime [18], a mapping of a goal model to a DDN [17] is presented

in literature. Based on Bayesian methods and Decision Theory, DDNs provide a procedure

to perform runtime decision-making [15]. The approach models the satisfaction levels of

NFRs using conditional probabilities. Moreover, utility functions are used to prioritize

different decisions. The approach of DDN supports requirements-awareness by providing

requirements reflections at runtime but it lacks the reflection of dependencies between them.

Moreover, the focus is on the satisfaction of NFRs only.

Techniques based on reinforcement learning such as Markov Decision Processes (MDPs)

and Partially Observable Markov Decision Processes (POMDPs) have also been used to

perform requirements driven decision-making. These techniques facilitate uncertainty quan-

tification and support awareness of the requirements by maintaining probabilities over the

states of the environment. MDPs consider the decision-making agent working in fully ob-

servable environment. In [102], the MDP model is constructed using formal methods at

design time, and is later used to perform decision-making at runtime. In addition, a tech-

nique based on stochastic model checking is presented to propose a language for Stochastic

Multiplayer Games and MDPs known as PRISM [31]. The language is used to create a

PRISM SMG model where reasoning about the adaptation strategies is carried out. In

contrast to MDPs, POMDPs consider the decision-making agent working in a partially ob-

servable environment. The POMDP model has been used to model NFRs at runtime and

represents the satisfaction levels of NFRs as conditional probabilities [112]. Due to partial

observability, the state of satisfaction of NFRs is not directly observable. Instead, a belief

about the state of satisfaction of NFRs is maintained based on the monitored observations.

Considering the current observation, and state of satisfaction of NFRs, an adaptation action

is selected based on expected cumulative utility value [58].
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Table 2.1: Approaches for Decision-Making in SASs

Approaches Design Time/Runtime Technique Used FRs/NFRs Uncertainty Resolution

AutoRELAX Design Time Genetic Algorithms NFRs No

Providentia Design Time Genetic Algorithms FRs+NFRs No

FLAGS Runtime Fuzzy Logic FRs+NFRs Yes

ZANSHIN Design Time Control Theory NFRs Yes

Enki Design Time
Evolutionary Computation +

DNN
None Yes

ENLIL3 Design Time
Evolutionary Computation +

DNN
None Yes

Stochastic Search Runtime Genetic Programming NFRs Yes

Composition based

Adaptation
Runtime MOCOP FRs+NFRs No

Digital Twins Runtime
Digital Twin +

Case-Based Reasoning
FRs Yes

Control Theoretic

Self-Tuning
Runtime Control Theory NFRs No

Probabilistic Model Runtime Dynamic Decision Networks NFRs Yes

PRISM Runtime Formal Analysis + MDP NFRs Yes

RE-STORM Runtime POMDP NFRs Yes

Table 2.2: Approaches for Uncertainty Resolution in SASs

Approaches Technique
Uncertainty

Detection

Level of

Uncertainty

Uncertainty

Resolution

Bayesian Surprise
Kullback Leibler (KL)

Divergence
Yes No No

RELAX Fuzzy Logic No No No

RELAXing Claims Fuzzy Logic No No Yes

REAssure Fuzzy Logic No No Yes

POISED
Possibility Theory +

Fuzzy Mathematics
Yes No Yes

Rainbow
Control Systems +

Probablity theory
Yes No Yes

FUSION Machine Learning Yes No Yes

Stochastic Search Genetic Programming Yes No Yes

Enki Evolutionary Computation Yes No Yes

PRISM Formal Analysis +MDP Yes No Yes

Table 2.3: Approaches for Prioritization of Requirements

Approaches
Design Time/
Runtime

Technique Used FRs/NFRs
Individual
Priority
Modelling

Autonomous
Tuning

Multi-Criteria
Decision-Making

Design Time
Analytic Hierarchy
Process

NFRs Yes No

ARROW Runtime POMDP + P-CNP NFRs Yes No
AutoRELAX Design Time Genetic Algorithms NFRs Yes No
Providentia Design Time Genetic Algorithms FRs+NFRs Yes No
Probabilistic
Model

Runtime
Dynamic Decision
Networks

NFRs No No

Markov based
Approaches

Runtime MDPs + DTMC NFRs No No

FLAGS Runtime Fuzzy Logic FRs+NFRs No Information No
ZANSHIN Design Time Control Theory NFRs No Information No
Control Theoretic
Self-Tuning

Runtime Control Theory NFRs Yes No
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2.1.1 Uncertainty Resolution during Decision-Making

An important aspect of the decision-making in SASs is to deal with uncertain environmental

contexts at runtime. Several techniques have been provided in the literature to support

the resolution of uncertain environmental situations [61, 69]. These techniques vary from

detecting uncertainties to their quantification for assessing and measuring uncertainty at

runtime.

To measure the degree of uncertainty and deviations of the SASs from normal behaviour,

the Bayesian Theory of Surprise has been presented [17, 22]. A surprise measures the

impacts of the model on observed data and assumptions of the world at runtime, and

variation between the two helps detect uncertainty. To provide reasoning over uncertainty

in SASs, Bayesian surprise has been used along with the approaches of DDNs [13, 15]

and POMDPs [57, 112]. Moreover, to support multi-criteria decision making (MCDM)

processes, Bayesian surprises have been used along with multi-attribute analysis and Pareto

Analysis [67]. Therefore, the usage of Bayesian surprises helps in the evaluation of the

importance and impacts of uncertain events. Moreover, it can be used to calculate the

extent of the impact that uncertain contexts can have on the decisions taken at runtime.

To deal with uncertainty at runtime, techniques based on fuzzy logic [82] have also been

presented in the literature. RELAX, a formal requirements language, uses fuzzy logic in the

requirements specification to specify uncertainty [168, 169]. Taking the semantics of RELAX

as a base, a technique known as RELAXing Claims has been proposed [123]. The approach

studies the impacts of uncertainty, considering problems in the monitoring infrastructure,

on the validity of Claims (i.e. assumptions of the environment). Furthermore, to support

the idea of RELAXing Claims, a technique called REAssuRE [164] has been presented. The

approach of REAssuRE uses goal models and Claims to facilitate runtime decision-making

in SASs. In order to study positive and negative effects of uncertainty on the runtime

configurations of SASs, an approach called POssIbilistic SElfaDaptation (POISED) has also

been proposed [49]. The POISED approach uses possibility theory and fuzzy mathematics

to tackle uncertainty for improving the quality of service of SASs at runtime. Possibility

theory is an extension of fuzzy logic and is used to deal with different types of uncertainties

[175].

As described before, the frameworks of RELAX, FLAGS and ZANSHIN focus on ad-
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dressing the environmental uncertainty in SASs. For this purpose, RELAX tries to specify

uncertainty in the requirements specification; FLAGS present the concept of adaptive goals

by providing an extension of goal models and ZANSHIN provides the concept of Aware-

ness requirements. These approaches could be used to improve the results of techniques

like AutoRELAX, Providentia and ARROW. The techniques of AutoRELAX, Providentia

and ARROW specify fixed priority thresholds. However, situations might arise at runtime

that may require the relaxation of the priority threshold of one requirement to support

the satisfaction of another requirement. The above frameworks can help in providing such

flexibility by making a SAS capable of adjusting the requirements’ priorities for the purpose

of resolution of uncertainty.

A technique underpinning an architecture based self-adaptive framework known as Rain-

bow [59] has been proposed. Rainbow augments the architecture of SASs using probabilistic

models. The model tries to resolve three types of uncertainties at runtime. The first type

of uncertainty is the problem-state identification which is related to the Monitoring and

Analysis phases of the MAPE-K loop (described in Section 3.1.1). The running average

approach is applied to deal with the variable and stochastic nature of the environment for

mitigating this type of uncertainty. The second type of uncertainty is the uncertainty in

the strategy selection process which is related to the planning step of the MAPE-K loop.

It is mitigated with the help of Stitch language [59] that allows uncertainty modelling in

strategies. The third type of uncertainty corresponds to the strategy outcome related to

the Execute step of the MAPE-K loop. This type of uncertainty is resolved by specifying

the time period for Rainbow to monitor strategy implementation before committing change

in the adaptation loop. This feature is also modelled using Stitch language.

A technique called FUSION [46] has been presented to deal with uncertain environ-

mental contexts. FUSION stands for FeatUre oriented Self-adaptatION. The technique

uses a feature-oriented self-adaptive procedure to carry out self-adaptation for supporting

functional goals and quality attributes. It provides the tuning of the adaptation logic by

using the Model Tree Learning approach. The FUSION process consists of the learning

cycle and the adaptation cycle. During the learning cycle, the FUSION framework gathers

measurements of the observable metrics and checks if any emergent pattern is discovered.

This is done as part of the observe phase of the learning cycle. Once an emergent pattern is

observed, the new behaviour is learned during the induce phase of the learning cycle. This
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newly learned behaviour is stored in the knowledge base for decision-making mechanisms

in future cycles. The adaptation cycle consists of three phases: detect, plan, and effect. In

the detect phase, the achieved utility (a measure of user-satisfaction) is computed based on

the measured metrics to discover the violation of the goal. If a goal violation is recognized,

the plan phase searches for the configuration of the features to achieve its satisfaction and

maximization of the overall utility. Once a plan is selected, the effect phase executes the

plan by applying the selected feature configuration. However, the whole process is carried

out at runtime; an initial learning cycle is executed in offline mode before the system’s

deployment. This is done by using a simulator to train FUSION for inducing a preliminary

model of the system’s behaviour. Therefore, the accuracy of the results depends on the

accuracy of the induced model.

A technique based on stochastic search has been presented to deal with unforeseen en-

vironmental situations at runtime [83]. The technique augments the approach of genetic

programming [85], an Evolutionary Computation Technique [43], with the reuse of prior

plans to deal with the environmental uncertainty. The approach detects newly found sit-

uations and plans for the resolution of uncertainty by exploitation of prior knowledge and

exploration of new solution space.

For the purpose of resolving uncertainty, tool such as Enki [87] has been presented. The

tool makes use of evolutionary computation to generate different environmental situations

to train the decision-making model. The approach helps in detection of environmental

uncertainty at design time to facilitate the designers in discovering a priori the uncertain

situations and training the model in advance.

Although, the techniques of Rainbow, FUSION and Enki provide the capability of re-

solving uncertainty at runtime but they lack quantification of uncertainty. In contrast,

to support quantification of uncertainty, the approach of Bayesian Surprise is presented.

Bayesian Surprise has been used along with DDNs to detect uncertain environmental sit-

uations at runtime. However, it has not been used to measure the level of uncertainty, to

indicate its extent [9, 13] and its impact on the satisfaction priorities of NFRs.

Furthermore, the techniques presented in [31, 102] makes use of formal analysis for

explicit specification and reasoning about uncertainty of the environment to support the

reduction of uncertainty in the decision-making offered by MDPs.
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2.2 Techniques for Requirements Prioritization in Self Adap-

tive Systems

This section discusses different techniques dealing with prioritization of NFRs in SASs. The

techniques have been selected on the basis of the criteria: they should augment the SASs

with the capability of self-awareness [79], i.e. having the capability to reason about how

well the NFRs are satisfied concerning their priorities for satisfaction. Comparison of the

techniques is presented in Table 2.3. The techniques have been classified into two categories

as follows:

2.2.1 Design Time Techniques

In order to support ranking and explicit modelling of the NFRs, the approaches based on

Multi-Criteria Decision Making (MCDM) techniques, such as Analytic Hierarchy Process

[94] and Primitive Cognitive Network Process (P-CNP) [174], have been proposed in the

literature. Although they support explicit modelling of the NFRs and their priorities, they

are more of design time techniques. Furthermore, the technique of ARROW [113], based on

P-CNP, provides support to RE-STORM (using the POMDP model [57]) to deal with the

prioritization of NFRs. Using P-CNP, ARROW supports automatic updates for initially

defined priorities of NFRs at runtime. However, this priority update is not autonomous and

does not work from within the POMDP model.

Furthermore, to support the optimization of NFRs, there are also techniques that make

use of search-based approaches such as [25, 122]. These techniques optimize priorities at

design time which are further used at runtime in an offline fashion. However, these tech-

niques offer the optimization of the individual priorities of requirements but they are more

design time techniques. There is a need to optimize the configuration of the requirements

based on their respective priorities under the changing environmental contexts at runtime.

2.2.2 Runtime Techniques

For the purpose of supporting decision-making in SASs, several runtime modelling tech-

niques have been in use to provide priority-awareness. Such techniques involve the usage

of probabilistic models such as Dynamic Decision Networks (DDNs) [15]. The DDNs have

been used to represent the goal model as a runtime model to support decision-making under
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uncertainty. The DDNs, with the help of the Bayesian Surprise [18], support the quantifi-

cation of uncertainty. Although, usage of DDNs provides the capability of quantification

of uncertainty to support requirements-driven decision-making, it lacks modelling of the

individual priorities of NFRs. The technique represents the priorities of NFRs as a single

scalar utility value to specify a combined priority value for all NFRs. This scalar utility

value is then used to deduce the impact (positive or negative) of the adaptation decision on

the satisfaction of all NFRs at runtime. Although, usage of DDNs provides the capability

of quantification of uncertainty to support requirements-driven decision-making, it lacks

modelling of the individual priorities of NFRs. Furthermore, the technique based on DDNs

deals with the problem of scalability over time (i.e. the curse of history, the graph to repre-

sent the history of observations and actions for the DDN planning grows exponentially with

the planning horizon). In contrast, the approaches presented in [3, 28, 51, 103, 112, 167]

make use of Markov based approaches. These approaches include Markov Decision Pro-

cess (MDPs), Partially Observable Markov Decision Processes (POMDPs) and Discrete

Time Markov Chains (DTMCs) with probabilistic model checking, and are used to support

runtime assurance of NFRs during the decision-making process. As these approaches are

Markov based, they provide the quantification of uncertainty by maintaining probabilities

over the environment’s state. A significant limitation of these approaches is that they lack

explicit modelling of the individual priorities of NFRs at runtime. Moreover, the approaches

based on MDPs and POMDPs model the ranking of the NFRs as a scalar-reward value to

specify a cumulative priority of all the NFRs. As this single cumulative priority value does

not give any information about the separate priority-value of each NFR, therefore it deters

priority-awareness. Furthermore, all the above techniques, make use of the requirements’

priorities that are defined by the requirements engineers at design time. However, the prior-

ities assigned at design time may no longer be valid due to the emergence of the unforeseen

environmental contexts at runtime. Therefore, the SAS should be capable of tuning the

priorities autonomously based on the changing runtime contexts.

Control theory based approaches such as [98, 114], have also been used to support explicit

runtime configuration and tuning of NFRs. The technique by Maggio et al. [98] lacks the

autonomous prioritization of NFRs, and the approach by Peng et al. [114] can’t deal with

the NFRs having the same priority rank. Moreover, the technique by Peng et al. [114] does

not support quantification of uncertainty to support the runtime NFRs’ trade-offs.
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2.3 Summary

Based on the literature study, it can be deduced that most of the techniques that support

decision-making in SASs rely on the design time assignment of the priorities by the require-

ments engineers. The techniques also lack the autonomous tuning of the priorities of NFRs

according to the runtime situations which were not foreseen by the requirements engineers

at design time. However, there are approaches that facilitate the runtime modelling and

awareness of the requirements, but they lack the modelling of the individual NFRs’ priori-

ties. Hence, the research presented in this thesis focuses on trying to fill these research gaps

by presenting a self-adaptive architecture Pri-AwaRE. The proposed Pri-AwaRE architec-

ture provides awareness of requirements by supporting modelling and reasoning with the

individual priorities of NFRs. It also considers the tuning of priorities in an autonomous

way based on the changing runtime contexts.
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Chapter 3

Research Baseline

This chapter describes baseline concepts for the work presented in this thesis. The research

baseline is presented in two parts. The first part describes the decision-making process

in autonomous and self-adaptive systems and the concepts of requirements-awareness and

runtime models in Section 3.1. The second part describes the concept of multi-objective

reinforcement learning (MORL) and the MORL techniques: Partially Observable Markov

Decision Process (POMDP) and Multi-Reward Partially Observable Markov Decision Pro-

cess (MR-POMDP) in Section 3.2.

3.1 Autonomous and Self-Adaptive Systems

Autonomous and self-adaptive systems are defined as systems that are able to adjust their

behavior according to the changes in the environment and within the systems. The prefix self

means that the system autonomously decides how to adapt to changes in its environmental

context (internal or external) [166]. These decisions can be taken without or with minimal

human intervention. The challenge here is to satisfy certain objectives at runtime along

with dealing with uncertainty in the environment. Uncertainty is defined as the state of the

system having incomplete or inconsistent knowledge, where it is unable to realize which of

the alternative system configurations to choose at a particular time [124]. In order to deal

with uncertainty, a SAS is required to be self-aware. Self-Awareness means that the system

should be able to predict its next possible state based on analysis of the environment [12, 29].

Moreover, it should be able to self-reflect. Self-reflection means that the system should have

an awareness of its execution environment, software architecture, its functional operational
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goals and non-functional quality requirements (NFRs) [37, 80]. Based on this awareness,

the system should perform adaptive decisions to continuously meet it operational goals.

Considering the definitions of self-awareness and self-reflection, in this thesis the concept of

the priority-awareness is introduced. Priority-awareness means that the system should be

aware of the NFRs’ satisfaction priorities under the changing environmental contexts and

should be capable of tuning these priorities to perform better-informed adaptive decisions

to satisfy its requirements. Moreover, the focus of the work presented in this thesis is to

deal with external environmental uncertainty.

3.1.1 Decision-Making in Autonomous and Self-Adaptive Systems

The main challenge for the decision-making process in SASs is to deal with different sources

of environmental uncertainty along with balancing of the objectives of the system. Different

environmental contexts have different effects on the satisfaction of the NFRs. Based on the

observations of its environment, the SAS makes a decision for the adaptation action to be

performed and acts upon it. As a result, these adaptation actions can have different impacts

on the satisfaction levels of NFRs.

Considering the above, the decision-making process of a SAS involves the following main

concepts [15]:

1) NFRs: The primary focus of decision-making in a SAS is to satisfy its NFRs while

achieving its functional operational goals [18]. The NFRs exhibit two main properties at

runtime [64] as follows:

- Satisfaction Level: The satisfaction level of an NFR refers to the degree to which it

is satisfied. During the decision-making process in SASs, an NFR’s satisfaction level at a

particular point in time corresponds to the extent to which it is satisfied as a result of an

adaptation performed by the system, and its level of satisfaction at the previous execution

time step. The satisfaction level can be represented by a conditional probability distribution

i.e. P(NFRi+1 is satisfied | action a, NFRi)[15, 112].

- Priority: The priorities of NFRs refer to the mapping of the NFRs on a level of im-

portance for the stakeholders [116]. They are used to ensure that finite resources are used

optimally. During the decision-making process in SASs, the priority is defined as a scalar

cardinal value representing the importance or significance of an NFR in terms of its satis-
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faction at runtime. The NFRs’ priorities, initially at least, are assigned by the developers

at design time. Moreover, the priority value of an NFR may change due to the uncertain

environmental changes at runtime.

2) Monitorables: At the time of execution, the SAS is required to continuously monitor

the environment for changes. Monitorables refer to the observed information regarding the

state of the environment. For example, in a computer network, traffic load and interference

on the network links can be monitored at runtime.

3) Actions: Actions refer to the discrete set of software configurations, solutions or service

components that are chosen by the SAS to fulfill its functional goals and satisfy NFRs

[17, 136]. The adaptation actions are selected based on the monitorable values, and the

priorities and satisfaction levels of NFRs at a particular point of time [112]. Once the action

is performed by the SAS, it has an impact (positive or negative) on the NFRs’ satisfaction.

For example, in a computer network, based on the monitored interference on the network

links, adaptation action of increasing or decreasing the transmission power are selected to

improve the satisfaction of packet delivery performance.

4) MAPE-K Architecture

The MAPE-K is an architecture pattern for autonomous systems. It was introduced for the

first time by IBM as a vision of Autonomic Computing [79]. The architecture pattern com-

prises of the two main components which are i) the managed system and ii) the managing

system as presented in Fig. 3.1. The managed system refers to the application logic. On

the other hand, the managing system refers to the decision-making agent which executes a

feedback control. The feedback control loop has four functional phases: Monitor, Analyze,

Plan and Execute. All of these phases share common Knowledge. Hence, this architectural

control loop is known as MAPE-K loop in short. The phases of the MAPE-K loop are

described as follows:

a) Monitor: During the Monitor phase, the managing system observes and collects data

(i.e. monitorables) from the managed system and its environment. This collection of data

is done using sensors connected to the managed system.
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Figure 3.1: MAPE-K Architecture Pattern

b) Analyze: During the Analyze phase, the managing system performs analysis of the

monitored data to examine if the adaptation is required.

c) Plan: Based on the result of Analyze, the decision-making agent plans for the adapta-

tion actions to be performed to fulfill the functional goals and satisfy the NFRs.

d) Execute: During the Execute phase, the decision-making agent performs the planned

actions over the managed system.

e) Knowledge: The data required by the managing system to execute all the phases of

the loop.

3.1.2 Requirements-Awareness

As SASs are required to be able to possess the property of self-reflection, therefore the

system needs to be aware of its requirements. Requirements-Awareness [16, 139] refers

to the idea that a SAS needs to be aware of both its functional goals and NFRs, and

how it can contribute towards their fulfillment. The requirements of SASs may change
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due to unforeseen changes in the environmental contexts [119, 164]. These changes in the

environmental contexts may result in the changes in the satisfaction priorities of NFRs.

Therefore, the SAS is required to be aware of its NFRs with respect to their satisfaction

when selecting a specific adaptation action at runtime. For this purpose, the system needs

to make a trade-off between NFRs in terms of their re-prioritization at runtime. Hence,

the system is required to be priority-aware with respect to the NFRs.

To achieve requirements-awareness with respect to the trade-off between requirements,

the SAS needs to possess the capability of modelling and reasoning about its requirements

at runtime. For the purpose of treating requirements as live runtime entities, the concept

of Models@Runtime (also known as Runtime Models) is used [8, 14, 16].

Next, a description of the Runtime Models and their types is presented.

3.1.3 Runtime Models

A runtime model [14, 19] is defined as a runtime abstraction of the system or any aspect

of the system used to realize self-adaptation. The aspects of the system include behavioral,

structural and functional or quality goals. As the systems’ aspects are related to self-

adaptation, they are subject to a continuous change. Hence, the runtime models are also

required to be up-to-date and should be able to reflect these dynamic changes at any point

of time. Using runtime models, the system maintains a self-representation of itself by having

a causal connection between the runtime model and the system itself. Causal connection

means if the system changes, the runtime model representation of the system also changes,

and vice versa [97, 166].

Types of Runtime Models

According to [166], the runtime models can be classified based on the different dimensions.

The dimensions specify particular characteristics of the representation of a SAS or aspects

associated to the system. The dimensions are considered as orthogonal to some extent. This

means that during the specification of a runtime model, an option of each of the dimensions

could be selected. However, not all dimensions could be applied to all runtime models. In

that case, the dimensions that do not apply could be ignored. The classification of the

runtime models, based on the dimensions, is provided as follows:
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Structural or Behavioral:

Structural model refers to a runtime model that represents the actual structure of the

system and its constituents or related aspects. It focuses on the composition of the con-

stituent elements of the system and their relationships and states.

Conversely, a behavioral model refers to a runtime model that represents the behavior

of a system or its parts with respect to the changes over time. It mainly focuses on how the

system will behave based on the uncertain situations and its current state. The behavioral

model captures the aspects related to activities. These aspects may include control flow

of the computation and data and uncertain events of the environment, aspects related

to transitions between the states of the system under uncertain conditions or the aspects

regarding the interactions among the components of the system.

For example, for an Internet of Things (IoT) network, the structural model will repre-

sent the way the nodes in the network are connected with one another and other external

elements such as the node manager. Whereas a behavioral model will specify the flow of

activities and interactions between the different nodes of the network.

Declarative or Procedural: The declarative and procedural models complement each

other and are usually required in the realization of self-adaptations. A declarative model

denotes a runtime model that specifies the knowledge about what is the case and the

knowledge about what is required to be done by the system in such a case. For instance,

the declarative model is used to specify the knowledge of the adaptation goal indicating

the purpose of self-adaptation. Moreover, it also specifies what adaptations the managing

system should perform in order to achieve it. On the other hand, a procedural model is

a runtime model that specifies the knowledge about how something is done or is required

to be done. In other words, it specifies the knowledge of how the adaptation is going to

be done. For instance, an adaptation plan specifies how a managed system needs to be

adapted.

For example, for an IoT network, the declarative model could be used to specify the

adaptation goals, such as the maximum packet loss in the network should not exceed 15

percent. Whereas the procedural model would specify the plan for adaptations by tuning

the network link parameters, such as the increase or decrease of the transmission power.
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Functional or Quality: The functional or quality models are also known as requirements

models. They denote runtime models that specify the set of requirements (functional or non-

functional) that a system is required to meet. The functional model focuses on specifying

the functional and operational requirements of the system and its constituent elements that

the system is required to achieve. For example, a functional model can specify internal

functionality of a system or an element of it, input or output of elements, or flows between

elements. In contrast, the quality model denotes a runtime model specifying the current

state of the non-functional quality requirements (i.e. NFRs) of the system under uncertain

environmental contexts. For instance, a quality model describes the characteristics that

are significant for a system (e.g. its performance, reliability or security). Moreover, it

also specifies how these characteristics are to be determined. The main focus of the work

presented in this thesis is on requirements models, specifically the quality models.

3.2 Multi-Objective Reinforcement Learning

The decision-making in SASs requires the system to reason about multiple and often con-

flicting objectives under uncertain environmental contexts over time [68] (as described in

Section 3.1.1). For example, an IoT network [7, 173] is continuously exposed to different

environmental contexts such as dynamic traffic load and link interference. These environ-

mental contexts have an effect on the satisfaction of the quality objectives (NFRs) such

as higher levels of energy consumption and lower levels of packet delivery performance

[90, 106, 143]. Therefore, a trade-off between the objectives is carried out based on their

competing priorities for satisfaction. Several techniques have been developed to perform

decision-making in SASs (as described in Chapter 2). However, they do not support the ex-

plicit modelling and reasoning with individual priorities of the objectives (NFRs). Instead,

Reinforcement Learning approaches such as Partially Observable Markov Decision Process

(POMDPs) offer a framework for SASs to naturally model such sequential decision-making

problems [129, 130, 153]. Therefore, they allow reasoning about the multiple objectives and

uncertainty corresponding to the environment’s state. However, the setting of POMDPs

typically assume only a single objective. In a setting with multiple objectives, their priorities

are represented as a single combined utility value handled through a simple linear combi-

nation [112]. However, multi-objective decision problems require the explicit modelling of
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the objectives along with their priorities. This could be achieved using multi-objective re-

inforcement learning techniques such as multi-reward partially observable markov decision

processes (MR-POMDPs) [95, 128, 129]. The Pri-AwaRE architecture presented in this

thesis makes use of the MR-POMDP approach to offer runtime multi-objective decision-

making. Next, the concepts of POMDP and MR-POMDP are presented.

3.2.1 Partially Observable Markov Decision Process

POMDPs [153] present a decision-making framework that considers an agent working in a

partially observable environment. An agent is defined as an entity that can carry out dif-

ferent activities or actions under changing environmental conditions [84]. In a partially ob-

servable environment, the agent can’t directly observe the actual underlying state. Instead,

it maintains a belief (as a probability) over the set of possible states based on observations

to select the optimal adaptation action. The basic elements of a POMDP model are shown

in Fig. 3.2.

Figure 3.2: POMDP

A POMDP is specified as a tuple <S,A,Z,T,O,R,γ > where:

• S specifies the set of states of the environment;

• A represents the set of Actions that can be selected and performed by the decision-

making agent at a particular point in time;
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• Z specifies the set of Observations that represents the information related to the state

s of the environment received by the agent using sensors or actuators;

• T specifies the transition function T (s, a, s′) = P (s′|s, a). It represents the probability

of moving to the next state s’ based on the current state s and an action a;

• O specifies the observation function O(s, a, z) = P (z|s, a). It represents the probability

of observing an observation z based on an action a and the resulting state s;

• R represents the reward function that is denoted by R(s,a) or R. It is a scalar real

value generated as a feedback by the environment as a result of an action a performed

by the agent based on the state s of the environment;

• γ is the discount factor. It is used to support the preference for the immediate reward

values over the future ones. The discount factor value is between 0 and 1.

The agent tries to find the policy π, a mapping from state to action, that maximizes

the value function i.e. expected utility value of the sum of discounted future rewards. The

value function Vπ is computed as follows:

Vπ = Eπ[R(st, at) + γR(st+1, at+1) + γ2R(st+2, at+2)...|st] (3.1)

Hence, the value function Vπ estimates how much cumulative reward, discounted by γ,

we can expect to get in future when a particular action is performed based on the current

state st at time t. Therefore, the reward value R(s,a) is used to compute the impact of

performing an action a given state s using the value function. Hence, a cardinal scale, using

reward values, is assigned to each adaptation decision during a particular state of the system

to specify its priority. The reward values are typically assigned by the domain experts at

design time based on their previous experiences or the information provided to them at

design time [76, 104, 107].

In order to support quantification of uncertainty, POMDPs maintain a belief b over

the partially observed states of the system. In point-based planning techniques for solving

POMDPs, the computation of a policy is performed based on the sampling of points from

the belief space [144, 154]. In such approaches, the value function over the belief Vb is

specified in the form of a set of α-vectors denoted by A. Each α-vector has a length equal
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to |S| as it provides a value for each state s, and is associated with an action a. Hence, the

α-vector presents a value for each state s after an action a is performed. The α-vector is

presented as follows:

αa = [V (si), V (si+1), ..., V (s(n))] (3.2)

The V (si) represents the value function for state si provided a total number of n states.

Therefore, given the set A, the value over the belief is computed as:

Vb = max
αa∈A

b.αa (3.3)

Hence, for each belief b, a set of α vectors A gives a policy πA for the action that

maximizes the value. The selected action is then performed by the decision-making agent

which results in a change in the state of the system.

3.2.2 Multi-Reward Partially Observable Markov Decision Process

MR-POMDP [129, 148, 149] is a POMDP with multiple rewards presented in the form of a

vector-valued reward function R as shown in Fig. 3.3. In case of MR-POMDP, a separate

reward value is associated with each objective. Therefore, the reward vector size is equal

to the number of objectives. As the rewards are represented in the form of a vector, the

value function, given an initial belief Vb0 is also a vector. Hence, each single element in

the Vb0 represents the expected utility value associated with each individual objective. As

a consequence, it estimates the impact of performing an action on the satisfaction of each

objective separately given a particular state. The value of elements in the value vector,

create a relative ranking for the objectives. Hence, these expected utility values associated

with separate objectives specify the priority of the objectives in terms of their satisfaction

during the decision-making. The Pri-AwaRE architecture presented in this thesis uses this

built-in capability of MR-POMDP to evaluate the expected utility value for each objective

as the basis of autonomous tuning of the priorities. Therefore, it is used to answer the

RQ2.

As the reward is presented in the form of a vector R, each element in the α-vector is also

a vector, thereby creating an α-matrix, A. Each row in the α-matrix specifies the values

for all the objectives in a specific state. Therefore, the multi-objective value for selecting
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Figure 3.3: MR-POMDP

an action a corresponding to the alpha matrix A under a belief b is calculated as follows:

Vb = bA (3.4)

In MR-POMDP, as the value function is a vector, multiple policies may exist. The

value functions associated with these multiple policies can be considered as optimal based

on the individual priorities of the objectives. For the purpose of selecting the best optimal

policy out of these multiple policies, a scalarization function f(Vb,W) is used. The function

f(Vb,W) scalarizes the value vectors Vb with the help of weights W, calculated by the agent,

corresponding to the objectives [128] as follows:

f(Vb,W ) = W.Vb = wiVbi + wi+1Vbi+1
...+ wnVbn = Vb(w) (3.5)

The wi and Vbi represents the weight and value for the ith objective having n as the

total number of objectives. The size of the weights vector is also equal to the total number

of the objectives. The weights vector values can be estimated using different optimization

techniques such as Optimistic Linear Support (OLS) [129] and evolutionary computation

[148]. For the work presented in this thesis, the approach of OLS is used. The OLS, based

on linear programming, computes the optimal weights that maximize the Value Vb(w), as

presented by Roijers et al. [129]. To the best of my knowledge, its the only implementation

of the MR-POMDP solver available. Description of the OLS is provided in Appendix D.
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Hence, for a given belief b, α matrix for each action and weight w, we can calculate the

policy πA that takes the maximal value using equations 3.4 and 3.5 as:

V ∗
b (w) = max

A∈A
bAW (3.6)

Therefore, in MR-POMDP, the values in the reward vector represents the priorities of

objectives by specifying their desirability for satisfaction given a particular state of the

environment. These reward vector values are initialized with the estimated values that are

assigned by the domain experts. The domain experts assign these values at design time

based on their knowledge in the domain and the information provided to them.

3.3 Summary

In summary, the decision-making in SASs requires the system to reason about multiple and

often conflicting objectives (i.e. NFRs) under uncertain environmental contexts over time.

Different environmental conditions can have different effects on the satisfaction of the NFRs.

Hence, a trade-off between the NFRs is carried out based on their competing priorities for

satisfaction. Multi-objective Reinforcement Learning techniques, such as MR-POMDPs,

offer a framework for sequential decision-making that naturally supports modelling and

reasoning with the multiple objectives and their respective priorities. The details of how

Pri-AwaRE makes use of MR-POMDPs as part of MAPE-K loop to carry out runtime

priority-aware decisions for SASs are provided in Chapter 4.
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Chapter 4

Pri-AwaRE: A priority-aware

self-adaptive architecture for

decision-making in Self-Adaptive

Systems

The work presented in this chapter has been adapted from the following publications:

[136] H. Samin, L. Garcia Paucar, B. Nelly, and P. Sawyer. Towards priority-awareness in

autonomous intelligent systems. In 36th ACM/SIGAPP Symposium On Applied Computing

(SAC). ACM, 2021.

[138] H. Samin, N. Bencomo, and P. Sawyer. Decision-making under uncertainty: be aware

of your priorities. International Journal on Software and Systems Modeling (SoSyM), 2022.

4.1 Introduction

This chapter presents the Pri-AwaRE architecture which is a self-adaptive architecture

for decision-making in SASs. The architecture makes use of the Multi-Reward Partially

Observable Markov Decision Process plus plus (MR-POMDP++) as a runtime model that

works as part of MAPE-K loop. MR-POMDP++ is an extension of MR-POMDP which is a

multi-objective reinforcement learning technique. It supports modelling and reasoning with

individual priorities of NFRs. It also offers autonomous tuning of NFRs’ priorities during the
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decision-making process. The “++” refers to the capability of offering priority-awareness

for NFRs. In the following sections, a description of the Priority-Aware MR-POMDP++

and its use as a part of the Pri-AwaRE architecture is presented using an illustrative case

of the Remote Data Mirroring (RDM) network.

4.2 Illustrative Example

Remote Data Mirroring [74, 78] is a disaster recovery technique that is used to tolerate

failures by maintaining multiple copies of data at remotely located servers (also known as

Mirrors). It helps in making the data available by preventing data loss. Each link in the

RDM network has an associated operational cost, measurable throughput, latency and loss

rate. These parameters can be used to determine the cost, performance and reliability of

the RDM system. The goal is to achieve the satisfaction of the NFRs such as Minimization

of Operational Costs1 (MinC). Maximization of Performance2 (MaxP) and Maximization

of Reliability3 (MaxR) under uncertain environmental conditions of network link failures

and varied bandwidth consumption [74]. The uncertainty in the environment has an effect

on the satisfaction of NFRs. Therefore, to maintain the required NFRs’ satisfaction levels,

the network is required to take adaptive decisions by switching between the topologies such

as Minimum Sapnning Tree (MST) and Redundant Topology (RT) [53]. Both the topologies

have different impact on the satisfaction of NFRs. MST topology supports the satisfaction

of MinC and MaxP by maintaining a minimum spanning tree for the network. However,

it has a negative impact on the satisfaction of MaxR. Conversely, RT topology supports

the MaxR. Whereas it has a negative impact on the satisfaction of MinC and MaxP as the

non-stop application of RT results in higher operational costs and lower performance due

to data redundancy.

4.3 MR-POMDP++

In this section, the MR-POMDP++ runtime model to perform priority-aware decision-

1Operational Cost is measured in terms of inter-site network traffic.
2Performance is measured as the sum of writing time of all copies of data on each remote site.
3Reliability is measured in terms of the number of active network links.

H. Samin, PhD Thesis, Aston University 2022 50



CHAPTER 4. PRI-AWARE

Figure 4.1: Mapping of MR-POMDP to Priority-Aware MR-POMDP++

making in SASs is presented. The MR-POMDP++ is an extension of MR-POMDP. It

offers the runtime modelling and reasoning with the individual priorities and satisfaction

levels of NFRs during decision-making. The “++”, therefore, refers to the ability to offer

priority-awareness for NFRs. The mapping of MR-POMDP to MR-POMDP++ is shown

in Fig. 4.1. As presented in Fig. 4.1, the states are used to represent the satisfaction state

of NFRs, the rewards are used to represent the priorities of the NFRs, the actions are used

to represent the adaptation actions for the SAS and the observations are used to represent

the monitorables. Next, a detailed description of the mapping using the mapping rules for

NFRs’ representation in the form of MR-POMDPs is presented.

1) NFR satisfaction and MR-POMDP states

Let us recall that the satisfaction level of an NFR refers to the degree to which it

is satisfied (see Section 3.1.1). During the decision-making process in SASs, an NFR’s

satisfaction level at a particular point in time corresponds to the extent to which it is
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satisfied as a result of an adaptation performed by the system, and its level of satisfaction

at the previous execution time step. Therefore, to achieve satisfaction of NFRs, a SAS

is required to take adaptive actions. These adaptive actions can have different effects

(good or bad) on the NFRs’ satisfaction. Due to such lack of crispness in the nature of

NFRs, they can’t be labelled as fully satisfied nor fully violated. Therefore, the NFRs’

satisfaction levels can’t be represented in the form of an absolute value of True or False

[63]. Hence, the satisfaction levels can be modelled as the probability distributions such

as P(NFR=True). For an NFR to be considered as satisfied, it should meet the required

acceptability threshold. The acceptability threshold refers to an acceptance condition or

criterion for the NFR’s satisfaction. If the satisfaction level of an NFR meets the acceptance

condition, it is considered as satisfied and vice versa. The acceptability thresholds for NFRs

are defined by the domain experts at design time based on the stakeholders’ requirements

[155]. For example, in the case of the RDM, the satisfaction level of MaxR could be

represented as P(MaxR=True)=0.9 or P(MaxR=True)=0.5. If the acceptability threshold

for satisfaction of MaxR is 0.8, then MaxR having P(MaxR=True)>=0.8 will be considered

as highly satisfied.

Such specification of NFRs’ satisfaction levels can be modelled using the states of MR-

POMDP. Therefore, in MR-POMDP++, each state is considered to present the set of

combinations of satisfaction levels of NFRs, as shown in Fig. 4.1. As the states in MR-

POMDP are partially observable, a belief (i.e. a probability) over each state is maintained.

Hence, the satisfaction levels of NFRs can be represented as the marginalized probability

distributions P (NFRi = True) where NFRi is a member of the set of NFRs [112].

Based on the above description, a mapping rule is derived as follows:

Rule: 1 The state s ∈ S in MR-POMDP++ represents the set of combinations of sat-

isfaction levels of the non-functional requirements (NFR1...NFRn). As the states in the

MR-POMDP++ are partially observable, the satisfaction levels of the NFRs can be repre-

sented in the form of probability distributions P (NFRi = True).

These probabilities can be used to conclude if the satisfaction levels meet the accept-

ability thresholds.

Using Rule 1, the total number of states in MR-POMDP++ in terms of the satisfaction
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Table 4.1: States of the RDM Network in terms of NFRs

S NFR1=MinC NFR2=MaxR NFR3=MaxP
s1 True True True
s2 True True False
s3 True False True
s4 True False False
s5 False True True
s6 False True False
s7 False False True
s8 False False False

levels of NFRs can be calculated as: |S| = |2||NFR|. The |S| represents the size of set S,

|NFR| represents the number of NFRs, and 2 indicates True and False. For example, in

the RDM network, if we consider 3 NFRs of Minimization of Operational Cost (MinC ),

Maximization of Reliability (MaxR) and Maximization of Performance (MaxP), so the

number of states for MR-POMDP++ will become |S| = 23 = 8 as shown in Table 4.1.

2) NFR priorities and Reward Vectors

A priority of an NFR refers to the importance of an NFR in terms of satisfaction. The

higher the priority, the more important it is to satisfy that NFR. Therefore, the satisfaction

priorities of individual NFRs should be considered during decision-making in a SAS.

MR-POMDPs supports the modelling of these individual NFR priorities with the help

of a vector-valued reward function, as shown in Fig. . Each value in the reward vector

is associated with each separate objective (i.e. NFR in case of Pri-AwaRE). The reward

values are generated in the form of a feedback signal as a result of the decisions (adaptation

actions) taken by MR-POMDPs. The reward value for a specific objective refers to the

effect (positive or negative) of performing an adaptation action on the satisfaction of that

objective. Therefore, the values in the reward vector represent a relative ranking of the

objectives (NFRs). This relative ranking is with respect to the cardinal effect that an

action will have on the satisfaction of the objectives under an uncertain environmental

situation. As a consequence, an objective having a higher reward value indicates that the

objective has a higher priority (importance level) for satisfaction. These priorities, in the

form of rewards, are considered by MR-POMDPs while selecting adaptation actions.

For example, in the RDM network, if link failures occur at a particular point of time,

they will result in the loss of data packets. Consequently, there will be a decrease in the

reliability of the network. To support the satisfaction of MaxR, the decision-making agent

might take the adaptation decision of switching to the topology of RT. The application
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of RT topology will have a positive impact on the satisfaction of MaxR whereas it will

negatively impact MinC and MaxP. As the application of RT activates more network links,

it increases the operational cost and reduces the performance4 of the system. Therefore,

based on the selected adaptation action of RT, under the current environmental situation

of link failures, the system will generate a higher immediate reward for MaxR (such as 80)

than for MinC and MaxP (that could be -40 and -20 respectively). The reward for MaxR is

higher than the rewards for MinC and MaxP because it is more important to satisfy MaxR

under the current environmental situation.

The reward values, in the form of a vector, specify a relative ranking of the NFRs MinC,

MaxR and MaxP concerning the impact that an adaptation action a (i.e. RT ) will have on

their satisfaction state s as follows:

R(s,a) = [RMinC , RMaxR, RMaxP ] = [−40, 80,−20]

The initial assignment of the reward values is done by the requirements engineers or domain

experts at design time [155]. In MR-POMDP++, these reward values are considered as the

initial expert defined priorities for NFRs.

Based on these concepts, in MR-POMDP++, the priorities representation for NFRs is

described by the following rule:

Rule: 2 The values in the reward vector R(s,a) over the execution of an action a ∈ A

given state s ∈ S in MR-POMDP++ represent the priorities of non-functional requirements

(NFRs).

R(s,a)=[RNFR1, RNFR2,..., RNFRm]

The RNFR1 specifies the reward for NFR1 indicating the priority value of NFR1 and so on.

The mapping of the rewards to the priorities of the NFRs is presented in Fig. 4.1.

Assignment of Reward values

As noted above, NFR priorities are typically initialized using estimated values at design

time. These values are defined by the domain experts based on their expertise in the

4Performance for the RDM is measured in terms of total time to write data.
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domain and the information available to them. The assignment of priorities at design time

is a normal requirements practice. However, in case of SASs, the priorities assigned at

design time may not be appropriate under all the dynamic contexts encountered by the

system at runtime. Moreover, deploying expert knowledge in such cases is not always easy,

as highlighted in [155], where the experts’ consensus proved hard to achieve. In the work

presented in this thesis, simulation environments of [72, 137] are used to come up with good

initial values for the rewards.

3) Expected Utility Values and Autonomous Tuning of Priorities

In SASs, the priorities of NFRs may change due to the variation in the environmental

conditions. The capability to adapt autonomously according to the changing environmental

contexts is what MR-POMDP++ offers. For instance, in an Internet of Things (IoT)

network, the conservation of energy may be the NFR with highest priority. However, if the

sensors’ batteries become fully charged at a particular time, generating a higher reward to

support this NFR may not be the optimal behaviour in such a case. To handle such kind of

situations, MR-POMDP++ using reward vector provides an opportunity to autonomously

tune the individual priorities of NFRs. This is performed by computing an individual

expected utility value for each NFR EUNFR during the decision-making carried out by

MR-POMDPs (using equation 3.1) as follows:

EUNFRi = VNFRi = Eπ[Rit + γRit+1 + γ2Rit+2...|st] (4.1)

where EUNFRi and Ri specify the expected utility value and reward values for NFRi

respectively. As presented in equation 4.1, the rewards, specifying the initial expert as-

signed priorities, are used to calculate the individual expected utility value for each NFR

at runtime. Therefore, these expected utility values represent the newly tuned priority of

the individual NFRs. The expected utility values take into account the impact of executing

an adaptation action on the satisfaction of each NFR given an uncertain environmental

condition. Therefore, they are considered by MR-POMDP++ while taking decisions for

adaptations at runtime.
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Hence, MR-POMDP++ as a runtime specification model (S) considers the new knowl-

edge (K’) about the individual priorities of the NFRs to perform runtime decision-making

for SASs in order to conform to the Requirements (R).

Next, the Pri-AwaRE self-adaptive architecture that uses Priority-Aware MR-POMDP++

to perform decision-making for SASs is presented.

4.4 Pri-AwaRE Architecture for Decision-Making in SASs

The Pri-AwaRE architecture for decision-making in SASs takes inspiration from the

feedback architecture of the Reinforcement Learning (RL) process. The RL process com-

prises of the interactions between the decision-making agent and its operating environment

[95]. As a result of the monitored observations, the decision-making agent performs an

action for the purpose of achieving the desired goals. The process is repeated continuously.

On the basis of this description, the Pri-AwaRE architecture is defined. Pri-AwaRE com-

prises of two components: 1) the managed system (i.e. the environment in RL process),

and 2) the managing system (i.e. the decision-making agent in RL process), as shown in

Fig. 4.2.

The Pri-AwaRE architecture structures the managing system interacting with the man-

aged system using the probe and effector interfaces [137], as presented in Fig. 4.2. The

main focus of Pri-AwaRE lies in the aspects of the managing system, which is based on the

MAPE-K loop.

Next, the components of the Pri-AwaRE architecture such as the managed and the

managing system are presented. The usage of priority-aware MR-POMDP++ to support

modelling of the satisfaction levels and priorities of individual NFRs is also described.

1) Managed System

The managed system specifies the environment for which the self-adaptive capabilities

are implemented. It is equipped with the components of probe and effector that act as

an interface for interacting with the managing system. For example, an RDM network

executing according to its pre-defined settings can be viewed as a managed system. For

the purpose of adding self-adaptive capabilities, an external managing system has to be
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Figure 4.2: Pri-AwaRE Architecture

connected to the network. This connection between the managing and managed system is

established using the probes and effectors [72, 137].

2) Managing System

The structure of the managing system is based on the phases of the MAPE-K feedback

loop. Hence, the managing system comprises of the following components:

a) Monitoring Component: The monitoring component of the managing system makes

use of sensors to acquire data related to the monitorable values (e.g. traffic load on the

network links in the RDM network). These monitored values are then sent as an input to

the MR-POMDP++ to indicate observations for the model.

b) Analysis and Planning Components: The analysis and planning components of

the managing system depends on the steps of the MR-POMDP++ process. MR-POMDP++

analyses the observations received from the monitoring component and the runtime Knowl-
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edge in the form of current belief over the states (maintained by MR-POMDP++). Based

on this information, it then performs planning for selecting adaptation actions. The goal

here is to choose adaptation actions that help achieve the network’s target operational goals.

Moreover, the satisfaction of the NFRs with respect to complying with the requirements

specification (R) should also be achieved.

c) Execution Component: The execution component takes the selected action by MR-

POMDP++ as an input and executes it on the managed system using the effectors.

d) Knowledge Component: The knowledge component comprises of the runtime knowl-

edge maintained by MR-POMDP++ which is considered during the decision-making pro-

cess.

This process is repeated continuously during the execution of the SAS. Next, the appli-

cation of Pri-AwaRE architecture to the example case of the RDM network is described.

4.5 Pri-AwaRE Architecture for decision-making in the RDM

Network

The Pri-AwaRE Architecture for decision-making of the RDM network comprises of the

following two components:

1)The Managed System: represents an RDM network. As a concrete example, let’s

consider an RDM network presented by the RDMSim simulator [137]. More details about

the simulator are provided in Chapter 5.

2)The Managing System: is based on the MAPE-K loop and MR-POMDP++. It

comprises the following components:

a) Monitoring Component

At a particular time, data related to the different network parameters (such as total
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bandwidth consumption, total time to write data and number of active links etc.) is accu-

mulated by the monitoring component using the probe of the RDM network. The monitored

data is then sent to the Analysis and Planning components.

b)Analysis and Planning Components

To support priority-awareness during decision-making, the analysis and planning com-

ponents are based on the steps of MR-POMDP++. The monitored network parameter

values are sent as the input observations to the MR-POMDP++ model. The model anal-

yses the observed network parameter values and the current belief (i.e. the Knowledge K )

maintained by the MR-POMDP++ model itself at runtime. It then plans for the selection

of the next adaptation action to be performed by the RDM system. The knowledge com-

ponent of the MAPE-K loop consists of the knowledge maintained by MR-POMDP++ at

runtime.

c)Execution Component

The execution component executes the chosen adaptation action, in the form of the

topology configuration, on the managed RDM system by using the effector.

4.6 Summary

In summary, the proposed Pri-AwaRE architecture offers priority-awareness during the

decision-making process of the SASs. The architecture makes use of the priority-aware

runtime model, known as MR-POMDP++, as part of the MAPE-K feedback loop. MR-

POMDP++ is based on the multi-reward POMDP model. It defines a separate reward

value for each NFR using a vector-valued reward function. These reward values refer to

the initial defined priority of the NFRs indicating their importance for satisfaction. During

the decision-making process, the MR-POMDP++ offers autonomous tuning of the NFRs’

priorities according to the changing runtime contexts. This autonomous tuning is carried

out by computation of the individual expected utility values for the NFRs.
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Chapter 5

Case Studies

The work presented in this chapter has been part adapted from the following publication:

[137] H. Samin, L. H. G. Paucar, N. Bencomo, C. M. C. Hurtado, and E. M. Fredericks.

RDMSim: An Exemplar for Evaluation and Comparison of Decision-Making Techniques for

Self-Adaptation. In 16th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS), Artefact Track, 2021.

5.1 Introduction

This chapter describes the case studies used for the evaluation of the research presented

in this thesis. As a proof of generalization of the Pri-AwaRE approach, two case studies

from the different networking domains have been selected for evaluation purposes. The first

case study is based on a self-adaptive IoT network. As a concrete example for the IoT

case, an existing artefact of DELTA-IoT [72] has been selected. The DELTA-IoT provides

a simulated environment for an IoT network for a smart university campus. On the other

hand, the second case study is based on the self-adaptive remote data mirroring (RDM)

network. For the RDM system, a simulation tool of RDMSim [137] has been developed as

part of the research presented in this thesis. The RDMSim is designed to provide simulations

of the different dynamic contexts of the RDM network. The runtime decision-making offered

by the Pri-AwaRE focuses on the SASs that are not hard real time. The selected case

studies provide a good representation of such systems. Moreover, both the IoT and RDM

applications are well accepted in the research community, and are already in use by the

other teams [26, 54, 72, 73]. The details about both the case studies and the respective
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simulation tools are provided in the next sections.

5.2 Case Study 1: Internet of Things

Internet of Things (IoT) [7, 173] refers to the networked interconnection of different com-

puting systems (also known as nodes). The nodes interact with each other to achieve the

target goal of transmission of information within the network. These computing systems

may include hardware and software components such as Radio-Frequency Identification

(RFID) tags, sensors, actuators and mobile phones etc. To connect the digital processes to

our physical world, the nodes in the network monitor and control the physical environment.

The IoT systems serve as a base to the application areas of smart homes, assisted living

for elderly care etc. Hence, such systems play an important role in improving the activities

of daily living. Due to the limitations of size and operational costs, the nodes in the IoT

network have to deal with limitations of computational storage and energy resources. The

main goal for IoT systems is to increase the network’s lifetime by minimizing the energy

consumption of the nodes. Moreover, the system is also required to maintain the packet de-

livery performance while dealing with the uncertainties such as communication interference

and dynamic traffic load. To deal with the environmental uncertainties, network settings

are required to be tuned autonomously at runtime. For this purpose, the IoT network

is required to maintain an optimal configuration to satisfy the NFRs, by performing lo-

cal self-adaptive decisions for each node. To evaluate the Pri-AwaRE approach, from the

perspective of performing local decisions, the simulation tool of DELTA-IoT [72] has been

used as a concrete example. Next, the operational model, architecture and the uncertainty

scenario of the DELTA-IoT network are described.

5.2.1 Operational Model

The DELTA-IoT simulator is an exemplar representing an IoT network for a smart campus.

The simulator represents a multi-hop IoT network comprising 15 nodes which are installed

across the different buildings of the KU Leuven campus. The nodes are based on LoRa

(Long-Range) radio communication. In each building, the nodes are deployed to offer access

to labs, monitor the occupancy status, and sense the temperature using RFID, passive

infrared, and temperature sensors respectively. The nodes communicate with each other
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to achieve the functional requirement of relaying information to the central gateway. The

gateway is installed at the central monitoring facility of the campus and is responsible for

linking the network nodes and monitoring the traffic on the network. The main goal for

the IoT systems is that they are required to survive longer on a single battery and provide

reliable communication. Therefore, the DELTA-IoT network is required to satisfy the NFRs:

Minimization of Energy Consumption (MinEC) and Minimization of Packet Loss (MinPL). To satisfy

these NFRs under uncertain environmental contexts such as link interference or dynamic

traffic load at runtime, the network is required to configure the network link settings (e.g.

the transmission power, communication range1 and distribution factor2 for links) for each

individual node using different local adaptation decisions.

5.2.2 Architecture

The DELTA-IoT simulator has been designed by the experts of Internet of Things domain

[73, 166] to support the self-adaptive decision-making process for an IoT network. The

architecture for the DELTA-IoT simulator, as presented in [72], is shown in Fig. 5.1. The

architecture comprises of the Managing System Tier placed on top of the Managed System

that simulates an IoT network (known as DELTA-IoT network). The Managed System

comprises of the three tiers known as IoT Network Tier, Gateway Tier and Management

Tier. The Managing System tier is responsible for selecting the adaptation decisions for

the DELTA-IoT network. The IoT Network Tier includes the implementation of nodes

that constitute the DELTA-IoT network. The Gateway Tier is responsible for providing

an implementation of the network gateway. All the nodes in the network transfer the

data to the central gateway which can then be passed to the Managing system. Finally,

the Management Tier is responsible for monitoring and managing the gateway and all the

network nodes using the probe and effector application programming interfaces (APIs).

The probing APIs can be used by the managing system to collect the sensor data about

the simulated DELTA-IoT network. On the other hand, the effector APIs can be used to

perform tuning of the network parameters as a result of the decision made by the managing

system. Using the architecture of the DELTA-IoT, the simulator can, therefore, be used to

facilitate the two-layered architecture of the Pri-AwaRE approach, as presented in Chapter

1The communication range refers to the distance over which signals can be transmitted in the IoT network.
2Distribution factor refers to the percentage of the traffic that is sent by a node to its parent node. In

an IoT network, the sum of the distribution factors for one node is 100 [72].
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4. According to the Pri-AwaRE architecture, a managing system using the MAPE-K loop

[79] is structured on top of the managed system. Hence, using the probe and effector APIs,

the DELTA-IoT network can be used as the managed system for the Pri-AwaRE.

Figure 5.1: DELTA-IoT Architecture

5.2.3 Uncertainty Scenario

The uncertainty scenario representing the dynamic environmental situation for the DELTA-

IoT network is described as follows:

Scenario - Wireless Interference. Under this scenario, the uncertain situations

caused by wireless network interference on the network links are considered. The commu-

nication interference observed has an effect on the energy consumption and also increases

packets loss. The goal here is to minimize the packet loss (i.e. MinPL) and reduce energy

consumption (i.e. MinEC) by tuning the network link settings such as transmission power

and communication range.
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5.3 Case Study 2: Remote Data Mirroring

RDM is a technique used to protect data by storing multiple copies (i.e. replicas) on the

remotely located servers (i.e. mirrors) [74, 78]. As a consequence, a RDM system prevents

loss of data and ensures data availability. Moreover, to ensure data protection, the RDM

system must perform the mirroring efficiently and reliably while incurring low operational

costs. To evaluate the Pri-AwaRE approach, the simulation tool of RDMSim is developed

to serve as a concrete example for the RDM case study. Next, a description of the RDM

network presented by the RDMSim tool is provided.

5.3.1 RDMSim: Remote Data Mirroring Simulator

The RDMSim is an exemplar that is developed considering the operational model of an RDM

system presented in [74, 78]. It simulates the RDM system as a fully connected network

of mirrors. The RDMSim allows the creation of a customized RDM network based on the

experiments’ requirements by offering flexibility to change the number of mirrors. The focus

is to make self-adaptive decisions in the form of topologies of Minimum Spanning Tree (MST)

and Redundant Topology (RT). An MST topology uses the least possible number of network

links to transmit data among different remote servers. Contrarily, an RT topology uses

simultaneously, several network links paths to transmit information among remote servers.

The application of these topologies has an impact on the different network parameters such

as bandwidth consumption and writing time of the data. As a consequence, it affects the

satisfaction of NFRs such as the minimization of operational costs and maximization of

performance of the network. A trade-off of such impacts needs to be considered as part

of the decision making process [45, 64, 121, 131, 139]. These topological impacts in the

RDMSim have been defined based on the expert knowledge presented in [56]. Moreover,

different scenarios that specify the different possible uncertain environmental conditions for

the RDM have also been implemented in the RDMSim. The simulator has been implemented

in Java, and is publicly available at [132]. The simulator has been developed in such a way

that it can also be used by researchers working on the different decision-making techniques

such as Evolutionary Computation [120], Multi-Criteria Decision-Making (MCDM) [158]

among others. Furthermore, considerable research efforts have targeted the domain of

Remote Data Mirroring [2, 25, 52, 56, 120] for SASs. However, the RDM applications are
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very costly to implement as the equipment used to install such applications is expensive.

To the best of my knowledge, there is no simulator available to facilitate experiments for

decision-making techniques for a self-adaptive RDM system.

In this thesis, the RDMSim has been used to perform experimental evaluations for the

proposed Pri-AwaRE approach. Next, the operational model, architecture and the different

uncertainty scenarios of the RDMSim are described.

5.3.2 Operational Model

The RDM application constitutes data servers and network links [74, 78]. The primary

focus is on the replication and distribution of data efficiently. Moreover, the system is

also required to minimise consumed bandwidth and ensure that the distributed data is

neither lost nor corrupted [74]. The RDM system must attain the functional requirements

of constructing a connected network and distributing data. These functional requirements

can be accomplished through alternative realization strategies specified by two different

topologies: MST and RT. An MST Topology uses the minimum possible number of network

links to transfer data among different remote servers (i.e. mirrors). In contrast, an RT

topology simultaneously uses numerous redundant network links paths for the transmission

of information across the servers. The operational model of RDMSim also considers the

satisfaction of the NFRs concerning the quality and performance of the RDM system [63].

The NFRs that have been considered are Minimization of Operational Cost (MinC)3, Maximization

of Reliability (MaxR)4 and Maximization of Performance (MaxP)5. The satisfaction levels related

to the performance, reliability and operational costs of the RDM are determined according

to trade-offs which are based on the application of the topologies as follows:

• An RT Topology offers higher levels of reliability as compared to MST topology. How-

ever, sustaining an RT topology may be expensive in some contexts, given the addi-

tional cost of required bandwidth consumption.

• On the other hand, MST Topology offers lower operational costs and higher levels of

performance in comparison to the RT topology. However, the system’s reliability is

affected negatively by the application of MST Topology.
3Operational Cost is measured in terms of inter-site network traffic.
4Reliability is measured in terms of the number of active network links.
5Performance is measured in terms of total time to write data i.e. the sum of writing time of all copies

of data on each remote site.
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5.3.3 Architecture

Similar to the case of DELTA-IoT, the RDMSim supports the two-layered architecture

of Pri-AwaRE. The architecture for RDMSim to facilitate the implementation of a self-

adaptive RDM network is shown in Fig. 5.2. Next, a description of each layer is provided.

Figure 5.2: RDMSim Architecture

1) Managing System

At the upper layer, the Managing system is responsible for providing the logic for self-

adaptive decision-making. A MAPE-K loop is implemented to monitor the environment

and Managed system (e.g. RDMSim) and perform adaptations on the Managed system

when necessary. Different decision-making techniques such as MCDM [158], Reinforcement

Learning [136], and Evolutionary Computation [25, 120] can be used to serve as a Managing
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Table 5.1: Probe Functions

Function Description
Topology getCurrentTopology() Returns the current topology for the network.

int getBandwidthConsumption()
Returns the total bandwidth consumption of the
network.

int getActiveLinks() Returns the number of active links.

int getTimeToWrite()
Returns the total time to write data for
the network.

Monitorables getMonitorables() Returns the values for all the monitorable metrics.

system. In case of Pri-AwaRE, the Managing system makes use of MR-POMDP++ as part

of MAPE-K loop to perform decisions.

2) Managed System

The RDMSim simulator represents the Managed system. It provides probes and effectors

that the Managing System can use to interact with the simulator. Probes are used to monitor

information from the environment. Whereas the effectors are responsible for execution of

the adaptation decisions on the Managed system.

Next, the architecture of the RDMSim implemented in the form of Java Packages is

described. The components of the RDMSim architecture, presented in Fig. 5.2, are as

follows:

Management Component

The Management Component serves as a bridge between the Managing system and internal

components of the RDMSim. It offers an implementation of probes and effectors that the

Managing system can use to apply decisions. The functions provided by the probes can be

used to monitor the status of the RDM in terms of cost, performance and reliability. On the

other hand, the effectors’ functions can be used to apply the change of network topology

and different network parameters based on the selected decisions. The probe and effector

functions as provided in Tables 5.1 and 5.2, respectively.

Network Component

The Network Component implements the main physical elements of the RDM. These el-

ements comprise the number of mirrors and the network links to create a fully connected

network of mirrors. For example, for the 25 mirrors, a fully connected network of 300 links

will be created. A customized RDM network can be created by modifying the number of
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Table 5.2: Effector Functions

Function Description

void setNetworkTopology(int timestep,Topology selectedtopology)
To set the network
topology at a particular
simulation timestep.

void setActiveLinks(int active links)
To set the number of
active links for
the network.

void setTimeToWrite(double time to write)
To set the time to write
data for the network.

void setBandwidthConsumption(double bandwidth consumption)
To set bandwidth
consumption for the
network.

void setCurrentTopology(Topology current topology)
To set topology for the
network.

mirrors. The Network Component also implements the topologies and monitorables for the

network. In the RDMSim, implementation of three monitorables is provided:

Mon1– Active Network Links: specify the currently active links of the network used

to measure the reliability of the RDM. The RDM provides higher reliability levels with a

more significant number of active links.

Mon2– Bandwidth Consumption: represents the current bandwidth consumed. It

is used to measure the operational cost for the RDM based on the inter-site network traffic.

Operational costs for the RDM will increase with higher levels of bandwidth consumed.

The bandwidth consumption is measured in GigaBytes per second.

Mon3– Time to Write Data to mirrors: specifies the network’s performance in the

form of writing time to maintain multiple copies of data on each remotely located server. A

higher writing time results in a reduction in the performance of the RDM. Time to Write

Data is measured in milliseconds.

The design of RDMSim considers synchronous mirroring [2, 78] for the communication

between the mirrors. Sequential writing is performed during the synchronous mirroring for

the purpose of preventing data loss [2]. During the sequential writing process, the primary

mirror (known as the sender) waits for an acknowledgement (i.e. handshake) about the

receipt and writing of data from the secondary mirror (known as the receiver). This process

is applied for each active link located on the communication path between the mirrors.

Hence, the time to write data is calculated as:

Total Writing Time= (α× number of active links) × Time to Write Data Unit (5.1)

In equation 5.1, α specifies a fraction of active links that constitute the communication
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path between mirrors. The α can have a value of greater than zero and less than and equal

to one. For the experiments presented in this thesis, α has been set to 1. The reason behind

this choice is to utilize all the active links as part of the communication path. The usage

of different α values, to set up different communication paths for the network, is out of the

scope of the research presented in this thesis. Furthermore, for implementation of realistic

impacts, time to write a data unit is randomly generated between 10 to 20 milliseconds at

runtime [137]. However, this range might vary depending on the equipment installed and

the mirroring protocol being used [2, 78].

In a similar way, the bandwidth consumption also depends on the number of active links.

More active links indicate more transmission of data leading to higher levels of bandwidth

consumption [2]. Furthermore, for implementation of realistic impacts at runtime, the

Bandwidth per link is randomly generated between the range of 20 to 30 GBps [137].

However, this range might vary depending on the equipment installed [55]. The Bandwidth

Consumption is calculated as:

Total Bandwidth Consumed=(α×number of active links)×Bandwidth per link (5.2)

Simulation Component

The Simulation Component implements the uncertainty scenarios specifying the different

dynamic environmental situations that the RDM system can face. It allows the setting of the

different simulation properties, such as selecting the uncertainty scenario for experiments

and the number of simulation runs.

A partial class diagram presenting the main elements of the Management Component,

Network Component and Simulation Component is shown in Fig. 5.3. The NetworkMan-

agement class and the Probe and Effector interfaces offer an implementation of the Man-

agement Component. The Probe interface provides the probing API functions that could

be used by the Managing System to get information about the current topology, Current

values of the network parameters (i.e. bandwidth consumption, active links and wrting

time) and information about all the monitorable network parameters as a single object. On

the other hand, the Effector interface provides API functions to change the values of the

network parameters and topology for the network at a particular simulation time step. The

H. Samin, PhD Thesis, Aston University 2022 69



CHAPTER 5. CASE STUDIES

NetworkManagement class is used to provide the management capabilities for the network

by setting of the network properties and simulation properties.

Figure 5.3: RDMSim Class Diagram

Furthermore, the classes NetworkProperties, Monitorables, Topology and TopologyList

are part of the Network Component and implement the respective features of the RDM.

The NetworkProperties class provides the functionality of initial setup of the network such as

the number of mirrors, number of links and topologies and monitored network parameters.

Moreover, the classes Monitorables, Topology and TopologyList are used to define the mon-

itorable network parameters and implementation of the topologies and their characteristics

respectively.

Finally, the Simulation Component is implemented using SimulationProperties and Un-

certaintyScenario classes. The SimulationProperties class provides functionalities with re-

spect to the simulations to be executed including the number of simulation runs, the uncer-

tainty scenario for the simulation and the current simulation time step. The UncertaintySce-

nario scenario class provides the functionality related to the currently selected uncertainty

scenario and the deviations (minimum and maximum) in the initial values of network pa-

rameters (i.e. active links, bandwidth and writing time) when a particular topology (MST

or RT) is applied under that scenario.
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5.3.4 Uncertainty Scenarios

In the RDMSim, six different scenarios to specify the different dynamic environmental

contexts for the RDM system have been defined. These scenarios have been designed to

simulate different archetypal real situations which can affect the satisfaction of NFRs. The

reason behind defining different scenarios is to facilitate the evaluation of the decision-

making offered by the Pri-AwaRE approach. Moreover, it can help in assessing how the

Pri-AwaRE might react under uncertain situations compared to the system working under

stable conditions. The description of the scenarios is provided as follows:

Default scenario S0: A default scenario specifying an environment envisioned by

the requirements experts [53, 56] is defined for comparison purposes. Under the default

scenario, the RDM system is considered to be working under stable environmental situa-

tion. Under stable conditions, the following thresholds for the satisfaction levels related to

the operational cost, performance and reliability are required to be achieved: Bandwidth

consumed at particular point in time should be less than or equal to 40% of the total band-

width consumption of the entire network on average. Correspondingly, the time to write

data at a particular point in time should, on average, be less than or equal to 45% of the

total writing time of the entire network. In contrast, the number of active network links

should be greater than or equal to 35% of the total number of network links. Under scenario

S0, the MST topology is used as the initial topology for the network.

Scenario S1 - Unexpected Packet Loss during MST: Scenario S1 represents the

environmental situation where a phase of consecutive and unexpected packet loss is ob-

served during the execution of MST topology. Such a situation leads to a reduction in the

reliability of the system as the data packet loss specifies link failures in the RDM system.

These link failures may be caused due to failures of the equipment (e.g. switch or router)

or power failures [74]. Under scenario S1, the MST topology is set as the initial topology.

Scenario S2 - Unexpected Packet Loss during RT: The initial topology being

used by the RDMSim under this scenario is RT Topology. Unexpected data packet loss

during the execution of the RT generates an unusual rate of data forwarding due to more
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active links. This leads to an increase in the bandwidth consumption (i.e. operational cost)

and reduction in the system’s performance. As mentioned earlier, in the RDM system,

the inter-site links communication cost is a function of the data sent over them. Hence,

the RT topology, involving more inter-site network links, is more expensive than the MST

topology. The operational cost increases with an increase in the number of active links, and

a reduction in the system’s performance could also be expected.

Scenario S3: Scenario S3 represents the dynamic environmental situation where sce-

narios S1 and S2 are simultaneously observed. The initial topology for scenario S3 is selected

randomly.

Scenario S4 - MST topology execution failures: Scenario S4 involves the behaviour

specified in scenario S1. Moreover, an increase in the bandwidth consumption (MinC) and

a reduction in the system’s performance (MaxP) is also observed during the execution of

the MST topology. The reason behind this behaviour is due to the implementation of syn-

chronous mirroring. In this scenario, the initial topology being used by the RDMSim is

MST topology.

Scenario S5 - RT Topology execution failures. Scenario S5 includes the behaviour

specified in scenario S2. Furthermore, during the execution of RT topology, a reduction in

the system’s reliability (MaxR) is also observed because of the failures of the equipment (i.e.

routers and switches). In this scenario, the initial topology being used is RT topology.

Scenario S6 - Significant site failure. The initial topology in this scenario is selected

randomly. Scenario S6 includes the simultaneous occurrence of scenarios S4 and S5. It

represents a significant site failure situation, where both repeated and multiple simultaneous

failures are expected [74, 78]. The situation may be caused by a power outage affecting all

the campus buildings or buildings within several metropolitan areas. Under such a situation,

the worst-case data loss may happen in different RDM node sites. For example, a site can

be down before the full information backup is shipped offsite. Site failure disasters rarely

occur, having approximately a failure rate of once per year [62, 78].

The above scenarios cover almost all of the possible dynamic contexts that an RDM
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network would encounter at runtime. Therefore, these scenarios have been used for experi-

mental evaluations of the Pri-AwaRE approach which are presented in Chapter 6.

5.4 Summary

To sum up, two case studies from different domains of IoT and RDM have been selected to

evaluate the Pri-AwaRE approach. The first case study is based on an existing exemplar

of the DELTA-IoT, which supports simulations of the self-adaptive IoT network. The

DELTA-IoT network allows the adaptation decisions at the individual node level to tune

their associated network links. The second case study is based on the self-adaptive RDM

network. To provide simulations for the RDM network, an exemplar tool of RDMSim

has been implemented as part of the research presented in this thesis. In contrast to the

DELTA-IoT, the RDMSim network allows adaptation decisions of change in topology for

the entire network.
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Chapter 6

Experimental Evaluation

The work presented in this chapter has been adapted from the following publications:

[136] H. Samin, L. Garcia Paucar, B. Nelly, and P. Sawyer. Towards priority-awareness in

autonomous intelligent systems. In 36th ACM/SIGAPP Symposium On Applied Computing

(SAC). ACM, 2021.

[138] H. Samin, N. Bencomo, and P. Sawyer. Decision-making under uncertainty: be aware

of your priorities. International Journal on Software and Systems Modeling (SoSyM), 2022.

[135] H. Samin, N. Bencomo, and P. Sawyer. Pri-aware: Tool support for priority-aware

decision-making under uncertainty. In 2021 IEEE 29th International Requirements Engi-

neering Conference (RE), Poster and Tools Demonstration Track. IEEE, 2021.

6.1 Introduction

This chapter describes the experiments for the evaluation of the Pri-AwaRE approach. The

experiments have been executed for all the scenarios defined for the two case studies of the

IoT and RDM systems presented in Chapter 5. Furthermore, comparison with the state-of-

the-art single-objective POMDP technique has also been provided. The approach has been

further evaluated using T test [142] and Non-Inferiority Trial [140]. Section 6.2 presents the

hypotheses for the experiments, followed by the experimental evaluations for both the case

studies in Sections 6.3 and 6.4, respectively.
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6.2 Experimental Hypotheses

In this section, the hypotheses for the experiments are defined. The Hypotheses have been

designed to address the RQs:

RQ1: Can modelling and reasoning of the priorities of individual NFRs under uncertain

environmental contexts be supported?

RQ2: Can decision-making in SASs include tuning of the NFRs’ priorities to match the

dynamic runtime situations?

We wish to assess how well the Pri-AwaRE approach offers priority-aware decision-

making and informed choices related to the individual NFRs under changing environmental

contexts.

Let us revisit Definition 1 priority-awareness as presented in Chapter 1.

“Priority-awareness is the capability of providing autonomous changes of NFRs’ prior-

ities to address the required satisfaction levels of NFRs.”

Based on the above concept of priority-awareness, the null H0 and alternative Ha hy-

potheses are described as follows:

H0: There is no difference in the quality of decision-making under uncertainty with or with-

out Pri-AwaRE.

Ha: There is difference in the quality of decision-making under uncertainty with or without

Pri-AwaRE.

The quality is measured in terms of the approach’s capability of offering priority-

awareness during decision-making for SASs. It means the approach should be capable

of modelling and reasoning with individual priorities of NFRs. Moreover, these priorities

should be tuned autonomously considering the runtime environmental contexts to achieve

the required NFRs’ satisfaction levels. The experimental evaluations for the case studies of
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Table 6.1: States of Priority-AwaRE MR-POMDP++ for DELTA-IoT Network

S NFR1=MinEC NFR2=MinPL
s1 True True
s2 True False
s3 False True
s4 False False

IoT and RDM to test the hypotheses are presented in the following sections.

6.3 Experiments for DELTA-IoT

The first case study represents the IoT network for a smart university campus simulated

using the DELTA-IoT exemplar tool [72]. The experimental setup using the DELTA-IoT

exemplar is described as follows:

6.3.1 Experimental Setup

The experimental setup considers the operational model of the DELTA-IoT network as

described in Chapter 5. The experiments have been executed for 100 simulation time steps

for the DELTA-IoT network. Each simulation time step corresponds to 15 minutes of

network activity. At each time step, the Pri-AwaRE approach is applied for each node (i.e.

sensor) individually to make adaptation decisions. The nodes have ids from 2 to 15. The Pri-

AwaRE makes these local node-level decisions to perform the adaptation action ITP or DTP

based on the monitored link interference values. Hence, the experiments comprise a total

of 1400 adaptation decisions during the 100 simulation time steps which is a considerable

number to evaluate the effects of adaptations performed on the satisfaction levels of NFRs of

the DELTA-IoT network. For experiments with the DELTA-IoT, the focus is on the NFRs

of MinEC and MinPL. These NFRs are related to the network’s quality and performance [63].

For the purpose of verification of the behavior of the DELTA-IoT under the adaptation

decisions offered by Pri-AwaRE, experiments have been repeated for 5 simulation runs.

The results logs for the simulation runs are provided in [133]. The experiments have been

performed on a Lenovo Thinkpad with intel Core i7, 8th Gen processor and 16 GB RAM.

a) Components of MR-POMDP++ for DELTA-IoT network

The components of the MR-POMDP++ model for the considered DELTA-IoT network are

explained as follows:
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States: According to Rule 1 (presented in Chapter 4), for MinEC and MinPL, four states

are identified as presented in Table 6.1.

Actions: Actions represent the adaptation strategies performed to achieve the satis-

faction of MinEC and MinPL. The actions for the DELTA-IoT network are Increase Transmis-

sion Power (ITP) and Decrease Transmission Power (DTP). ITP supports MinPL by increasing the

nodes’ communication range and adjusting the distribution factor on the links. The value of

the communication range is directly proportional to the transmission power [90, 91]. Hence

increasing the communication range improves packet delivery performance at the expense

of high energy consumption [72]. In contrast, the action DTP supports MinEC by decreasing

the communication range and adjusting the links’ distribution factor. A decrease in the

communication range leads to a decrease in transmission power and therefore leads to a

lower level of energy consumption.

Rewards: According to Rule 2 of Pri-AwaRE (presented in Chapter 4), the reward

vector is used to represent the priorities of the individual NFRs. As the considered NFRs for

DELTA-IoT network are 2 in number, the size of the reward vector is 2 which is presented

as follows:

R(s,a)=[RMinEC ,RMinPL].

RMinEC and RMinPL specify the priority values for MinEC and MinPL respectively. The

reward vector values for NFRs in the DELTA-IoT network have been defined by the domain

experts [155] and are shown in Table 6.2. The rewards values for the NFRs are positive to

indicate the positive impact of application of the adaptation actions ITP and DTP on the

satisfaction of both the NFRs MinEC and MinPL. For example, selection of ITP will have

more priority for the NFR MinPL but it will still provide support for the satisfaction of

MinEC.

Transition Function: On the basis of Rule 1, the states in MR-POMDP++ are

specified as a combination of NFRs. Moreover, according to [112], the transition prob-

abilities T(s,a,s’) can be factored as marginal conditional probabilities of the NFRs (i.e.

P (MinEC ′ | MinEC, a) and P (MinPL′ | MinPL, a)) using the property of conditional inde-

pendence and Bayes rule as follows:

T (s, a, s′) = P (s′|s, a) = P (MinEC ′ |MinEC, a)P (MinPL′ |MinPL, a)
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Table 6.2: Reward Values (i.e. Initial Priorities) for the NFRs in the DELTA-IoT Network

S Action(A) Reward Vector Values
RNFR1 = RMinEC RNFR2 = RMinPL

s1 DTP 89 80
s2 DTP 75.1 20
s3 DTP 75 30
s4 DTP 10 5
s1 ITP 80 89.67
s2 ITP 40 75
s3 ITP 30 70
s4 ITP 5 10

The transition probabilities for the DELTA-IoT case are presented in Appendix A. These

transition probabilities are provided by the domain experts [112, 138].

Observations: As the states of the NFRs are not directly observable, the monitorables

are used to acquire observations about their satisfaction based on the information accumu-

lated from the environment. In the DELTA-IoT network, under the uncertainty scenario

presented in Chapter 5, the monitorable SNR is considered to observe link interference [72].

Based on the SNR values, i.e. being less than, greater than or equal to zero, the observations

fall into three categories. If the value of SNR is greater than 0, it refers to a strong signal

and low susceptibility to interference. On the other hand, the value of SNR less than zero

indicates a weak signal and high susceptibility to interference. Whereas, the SNR value

equal to zero refers to no signal.

b) Requirements Specification

The experimental setup also considers the Requirements (R) for the DELTA-IoT net-

work that indicate the required satisfaction levels of NFRs. These requirements are defined

by the experts [72]. The requirements actually specify the satisfaction thresholds indicating

the suitable zone of satisfaction of NFRs. The requirements for the DELTA-IoT network

provided by the experts are as follows:

R1: Total Energy Consumption in the network should be less than or equal to 20 Coulombs

i.e. SATMinEC <= 20.

R2: Total Packet Loss in the network should be less than or equal to 20 percent i.e.

SATMinPL <= 0.20.
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6.3.2 IoT-based Experiments

The experiments have been designed to study how well Pri-AwaRE supports informed

choices of priorities related to the individual NFRs, and therefore satisfy the requirements

(R). Due to uncertain environmental contexts, NFRs’ priorities assigned at design time

may no longer be valid at runtime. Hence, it would require the Pri-AwaRE to tune these

priorities. For the purpose of evaluation of Hypotheses, two experiments have been designed.

i) The first experimental evaluation focuses on the assessment of the capability of Pri-

AwaRE to offer priority-aware decisions and autonomous tuning of NFRs’ priorities.

ii) The second experimental evaluation focuses on the assessment of the impacts of priority-

aware decisions on satisfaction levels of NFRs to comply with the requirements (R). Com-

parison to a single-objective decision-making technique, known as RE-STORM [112], is also

provided. The RE-STORM approach is considered as single-objective as it is based on the

single-objective POMDP and uses scalar reward to represent a combined priority for all the

NFRs (as described in Chapter 3). The results have been further evaluated using T-Test

[142], for computing statistical significance of the results, and the NI Trial approach [140].

The experiments are presented as follows:

IoT Experiment 1: Priority-Aware Decisions and Autonomous Tuning of NFRs’

Priorities

As described earlier, for experiments, the Pri-AwaRE has been applied for each node in the

network during each simulation time step. Pri-AwaRE monitors the link interference on the

outgoing links for a particular node. Based on the monitored values, Pri-AwaRE decides

to increase or decrease the transmission power on the links by increasing or decreasing the

communication range. Therefore, the approach takes a local decision related to each node

at a particular time step to configure its corresponding links, as shown in Table 6.3. For

example, at time step t1, all the links for node 2 are configured by the application of the

adaptation action of DTP. Consequently, the satisfaction level for MinEC becomes 33.961559

Coulombs, and the satisfaction level for MinPL becomes 0.041667 (i.e. 4.1 percent), respec-

tively. The approach is then executed to perform adaptations for all other nodes i.e. node

3, node 4 and so on.

H. Samin, PhD Thesis, Aston University 2022 79



CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.3: Pri-AwaRE: Experiment Results for time step 1

Node Id Action EUMinEC EUMinPL SatMinEC SatMinPL

2 DTP 764.171898 605.188297 33.961559 0.041667
3 ITP 650.060976 788.044468 38.485869 0.008333
4 DTP 788.335155 642.632839 36.958176 0.015385
5 ITP 650.420667 788.205516 37.720203 0.030769
6 DTP 788.338781 642.644331 29.817813 0.141667
7 ITP 650.420788 788.205554 31.967988 0.083333
8 DTP 788.338787 642.644351 33.204893 0.0
9 ITP 650.420789 788.205554 37.024339 0.030769

10 DTP 788.338787 642.644352 30.900698 0.01
11 ITP 650.420789 788.2055545 36.969265 0.146154
12 DTP 788.338787 642.644351 32.772624 0.058333
13 ITP 650.420789 788.205554 37.853066 0.046154
14 DTP 788.338787 642.644351 43.682137 0.014286
15 ITP 650.420789 788.205554 33.083955 0.009091

*EUNFRi represents the expected utility value of NFRi
*SatNFRi represents satisfaction level of NFRi

The initial setup of experiments considers the initial NFRs’ priorities for the DELTA-

IoT network which are taken into account during the selection of adaptation actions. These

initial priorities were defined in the form of rewards for the MR-POMDP++ model (pre-

sented in Table 6.2). Let us study how the priorities of NFRs represented in the form of

rewards impact the decisions of action selection to configure links of a particular node in

the DELTA-IoT network, as shown in Table 6.3. Considering the case of time step t1 as

an example, the expected utility (EU ) values for NFRs, using equation 4.1, are considered

during the decision-making. For example, for node 2, the EU for MinEC has a higher value

of 764.171898 than that for MinPL, which is 605.188297. Therefore, the action selected for

node 2 is DTP to support MinEC. On the other hand, for the links’ configuration of node 7,

the action of ITP is chosen based on the higher EU of 788.205554 for MinPL compared to the

EU of MinEC, which is 650.420788. The application of the decision of ITP shows an increase

in the satisfaction level of MinPL from 0.083333 percent to 0.0 percent, representing an

ideal situation of no packet loss, as shown in Table 6.3. Hence, it shows that expected utility

values, representing the autonomously tuned NFRs’ priorities, impact action selection deci-

sions leading to priority-aware and informed choices related to the individual NFRs. This

in turn provides evidence that Pri-AwaRE does provide priority-aware decision-making and

therefore answers the RQs.

As a result of tuning all the nodes’ link configurations, at the end of time step t1, the

satisfaction levels of MinEC and MinPL become 33.083955 Coulombs and 0.009091 (i.e. 0.9

percent), respectively. This process is repeated at each time step, leading to compliance
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to the required satisfaction levels for both the NFRs, as shown in Fig. 6.2. Pri-AwaRE

shows an average satisfaction of 17.860959 and 0.141865 for MinEC and MinPL respectively.

Therefore, it satisfies the requirements SATMinEC <= 20 and SATMinPL <= 0.20. Hence,

Pri-AwaRE shows promising results in terms of satisfying both MinEC and MinPL.

Figure 6.1: Satisfaction of NFRs over Time without adaptation, by applying Pri-AwaRE and RE-STORM.

IoT Experiment 2: Impact of Priority-Aware Decisions on satisfaction levels of

NFRs

In this experiment, the impact of the priority-aware decisions, taken by the Pri-AwaRE

approach, on the satisfaction of NFRs of the DELTA-IoT network is discussed. The goal
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is to assess how well Pri-AwaRE achieves the required satisfaction levels of NFRs. In

addition, comparison with the approach of RE-STORM [112] is also provided. RE-STORM

is a single-objective POMDP based optimization technique that uses scalar reward value

to represent a combined priority for all the NFRs. The details about the single-objective

POMDP have been provided in Chapter 3. The approach of RE-STORM is implemented

using Perseus [154], a single-objective POMDP solver. Comparison of the results with the

network performing without any adaptive approach are also discussed.

Let us consider the case of the DELTA-IoT network operating without adaptation. In

such a situation, the network focuses on supporting the MinPL at the expense of a higher en-

ergy consumption value. The satisfaction level of MinPL is well below the satisfaction thresh-

old of 20 percent throughout the timeline compared to the satisfaction level of MinEC. MinEC

ranges between 25.0 and 44.0 Coulombs, which is significantly higher than the required

satisfaction threshold of 20 Coulombs, as shown in Fig. 6.1. In contrast, as a result of the

adaptation decisions offered by Pri-AwaRE, the DELTA-IoT network showed improvement

in compliance with the requirements of SATMinEC <= 20.0 and SATMinPL <= 0.20.

Furthermore, the approach also exhibits better satisfaction levels of the NFRs MinEC and

MinPL compared to the approach of RE-STORM. Let us observe Fig. 6.1. Pri-AwaRE gives

promising results with respect to the satisfaction of MinPL in comparison to RE-STORM.

The RE-STORM results in higher levels of packet loss than Pri-AwaRE by having a packet

loss above the satisfaction threshold (i.e. 20 percent of total packet loss) more often during

the simulation time steps, as shown in Fig. 6.1. Let us consider the results of all the local

decisions performed for the individual nodes, during each simulation time step. RE-STORM

shows violations for the 25.4 percent of the times for MinPL whereas Pri-AwaRE exhibits

the violations for the 21.28 percent of the times which is lower than RE-STORM. Moreover,

if we consider the satisfaction levels achieved at the end of each simulation time step, Pri-

AwaRE satisfies MinPL 68 percent of the simulation time steps, whereas for RE-STORM, it

is 72 percent of the simulation time steps. Furthermore, after the first simulation time step,

where the initial configuration for the system is done, the maximum packet loss shown by

Pri-AwaRE is 0.336 (i.e. 33.6 percent), whereas in the case of RE-STORM, the maximum

packet loss is 0.358 (i.e. 35.8 percent), which is higher than Pri-AwaRE. Hence, Pri-

AwaRE offers comparable satisfaction levels for MinPL with RE-STORM. The difference

between the average satisfaction levels for MinPL achieved by Pri-AwaRE and RE-STORM
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is statistically significant having a p-value of 2.459E-151.

On the other hand, both the Pri-AwaRE and RE-STORM show comparable results

concerning the satisfaction of MinEC. The satisfaction level of MinEC exhibited by Pri-AwaRE

is below or closer to the threshold at almost all the time steps. At the first simulation time

step, the energy consumption value is 33.083955 Coulombs which is quite high in case of

Pri-AwaRE. However, at the second time step, the approach shows a reduction in the energy

consumption to 17.226979 Coulombs. Hence, the Pri-AwaRE shows an improvement in the

satisfaction of MinEC by complying to the requirement of SATMinEC <= 20, as shown in

Fig. 6.1. In case of Pri-AwaRE, the total percentage violation for MinEC, as a result of all

the local decisions performed for the nodes, is 14.64 percent of the times. Whereas for RE-

STORM, it is 2.78 percent of the times. Furthermore, considering the results at the end of

each simulation time step (presented in Fig 6.1), Pri-AwaRE has shown conformance to the

requirements 92 percent of the times by having the satisfaction level below the threshold,

whereas RE-STORM has shown the satisfaction of requirements 98 percent of the times.

Furthermore, after the first simulation time step, where the initial configuration for the

system is done, the maximum energy consumed by Pri-AwaRE is 23.31 Coulombs. In

contrast, RE-STORM shows a maximum energy consumption of 27.478 Coulombs which

is higher that of Pri-AwaRE. Moreover, the difference between the average satisfaction

levels for MinEC achieved by Pri-AwaRE and RE-STORM is statistically significant having

a p-value of 2.8398E-151.

Figure 6.2: Average Satisfaction of NFRs
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6.3.3 Discussion

From the results, it can be deduced that the Pri-AwaRE approach maintains the required

satisfaction levels, as evident from the average satisfaction levels of MinEC and MinPL as

shown in Fig. 6.2. The average satisfaction levels for the NFRs MinEC and MinPL, generated

by Pri-AwaRE, are 17.860959 and 0.141865 respectively. RE-STORM also shows similar

results by having the average satisfaction level 11.845 for MinEC and 0.14943 for MinPL.

Moreover, the difference between the average satisfaction levels for NFRs achieved by Pri-

AwaRE and RE-STORM is statistically significant having a p-value < 0.05. In case of

RE-STORM, the average satisfaction level of MinEC lies between the confidence interval of

11.67242 and 12.01765, showing a confidence level of 95 percent, with a standard error of

0.0879, as shown in Figs. 6.3 and 6.4. Moreover, the average satisfaction level of MinPL lies

between the confidence interval of 0.14523 - 0.15363 having a standard error of 0.00214,

with a confidence level of 95 percent. In comparison for Pri-AwaRE, the average satisfaction

level of MinEC lies between the confidence interval of 17.6989 and 18.0229, with a standard

error of 0.0826. Furthermore, the average satisfaction level of MinPL, exhibited by Pri-

AwaRE, lies between the confidence interval between 0.1381 and 0.1457 with a standard

error of 0.0019. Hence, Pri-AwaRE offers conformance to the requirements specification of

SATMinEC <= 20 and SATMinPL <= 0.20. Moreover, in comparison to RE-STORM, Pri-

AwaRE offers priority-awareness and informed choices for selection of adaptation decisions

related to the individual NFRs. Furthermore, comparison of Pri-AwaRE to RE-STORM

using the approach of Non-Inferiority (NI) Trial has also been performed and Pri-AwaRE

has proven to be non-inferior to RE-STORM. The results are reported in Appendix F. The

results have also been provided in a GitHub repository [71].

Furthermore, the Pri-AwaRE with priority-awareness offers more flexibility in terms of

balancing the satisfaction of NFRs based on their individual priorities at runtime. Conse-

quently, the NFRs are more RELAXable [169] in the interest of better resource utilization.

It means Pri-AwaRE, with its capability of autonomous tuning of priorities, can facilitate

the relaxation of the priority of one NFR to satisfy another NFR considering the runtime

context. Hence, based on the above, the scope of the decision-making offered by Pri-AwaRE

qualifies for the systems where the NFRs can be RELAXed [168]. More specifically, the

focus is on the NFRs related to the quality and performance attributes [63]. The approach
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Figure 6.3: Confidence Interval for Average Satisfaction of MinEC

Figure 6.4: Confidence Interval for Average Satisfaction of MinPL

is not suitable for the systems where the NFRs are hard such as in safety critical systems

where the experts’ initial assignment of priorities must be respected.

To sum up, based on the experimental evaluations, it can be concluded that Pri-AwaRE

offers priority-aware decision-making and informed choices related to the individual NFRs

by autonomously tuning of the NFRs’ priorities at runtime. Moreover, it also shows statisti-

cally significant better results, when compared to RE-STORM, in maintaining the required

satisfaction levels of the NFRs on average. Hence, we reject Hypothesis H0 and accept Ha.

6.4 Experiments for the RDM

The second case study is based on the RDM network simulated using the RDMSim exemplar.

The experimental setup using the RDMSim is described as follows:
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Table 6.4: States of Priority-Aware MR-POMDP++ for RDMSim Network

S NFR1=MinC NFR2=MaxR NFR3=MaxP
s1 True True True
s2 True True False
s3 True False True
s4 True False False
s5 False True True
s6 False True False
s7 False False True
s8 False False False

6.4.1 Experimental Setup

The RDMSim [137] exemplar considers the RDM network based on the operational model

presented in [74, 78]. The experimental setup considers a fully connected RDMSim network

of 25 RDM mirrors and 300 network links. The experiments involve the execution of the

decisions having a global impact of change in topology (MST or RT) of the network. These

decisions have an effect on the satisfaction levels of the NFRs MinC, MaxR and MaxP. The

satisfaction thresholds for the NFRs are selected based on the requirements provided by

the RDMSim experts as described in [137]. The experiments have been executed for 500

simulation time steps. For the experiments presented in this thesis, 1 simulation time step is

considered to represent 1 hour of network activity [138]. Therefore, an adaptation decision

taken by Pri-AwaRE represents a decision to change the network topology after an hour of

network activity. The experiments have been performed on a Lenovo Thinkpad with intel

Core i7, 8th Gen processor and 16 GB RAM. Next, the components of the MR-POMDP++

model and the requirements specifications for the RDMSim network are described.

a) Components of MR-POMDP++ for the RDMSim network

The components of MR-POMDP++ for the considered RDMSim network are as follows:

States: For the RDMSim, three NFRs of MinC, MaxR and MaxP are considered. Ac-

cording to Rule 1, for these three NFRs, eight states are identified as presented in Table

6.4.

Actions: Actions are performed to achieve satisfaction of the NFRs MinC, MaxR and

MaxP. These actions specify the adoption of one of the two topologies: Minimum Spanning

Tree (MST) and Redundant Topology (RT).

Rewards: According to Rule 2, the reward vector is used to represent the priorities

of the individual NFRs. As the considered NFRs for RDMSim network are 3 in number,
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Table 6.5: Reward Values (i.e. Initial Priorities) for the NFRs in the RDM Network

S Action(A) Reward Vector Values
RNFR1 = RMinC RNFR2 = RMaxR RNFR3 = RMaxP

s1 MST 39.17 39.0 40.0
s2 MST 41.0 40.0 39.0
s3 MST 39.0 38.0 38.5
s4 MST 17.0 16.0 15.0
s5 MST 44.0 43.0 43.5
s6 MST 29.0 28.0 27.0
s7 MST 14.0 13.0 13.5
s8 MST 2.0 1.0 1.0
s1 RT 41.0 43.0 41.0
s2 RT 32.0 33.0 31.0
s3 RT 28.0 29.0 27.0
s4 RT 26.0 27.0 25.0
s5 RT 28.0 29.0 27.0
s6 RT 16.0 17.0 15.0
s7 RT 23.0 24.0 22.0
s8 RT 11.0 12.0 10.0

the size of the reward vector is 3 which is presented as follows:

R(s,a)=[RMinC ,RMaxR,RMaxP ].

Where RMinC , RMaxR and RMaxP specify the priority values for MinC, MaxR and MaxP

respectively. The values of the reward vector for NFRs in the RDM network are shown in

Table 6.5. These values have been defined by the domain experts considering the simulating

environment of RDMSim [137, 138].

Transition Function: According to Rule 1, the states in MR-POMDP++ are speci-

fied as a combination of NFRs. Similar to the case of the DELTA-IoT network, the transition

probabilities T(s,a,s’) have been factored as marginal conditional probabilities of NFRs (i.e.

P (MinC ′ | MinC, a), P (MaxR′ | MaxR, a) and P (MaxP ′ | MaxP, a)) using the property of

conditional independence and Bayes rule [112] as follows:

T (s, a, s′) = P (s′|s, a) = P (MinC ′ |MinC, a)P (MaxR′ |MaxR, a)P (MaxP ′ |MaxP, a)

The transition probabilities for the RDMSim network are presented in Appendix A.

These transition probabilities are provided by the domain experts [56].

Observations: Due to the partial observable states of the NFRs, the monitorables

are used to acquire observations of the satisfaction levels of NFRs based on the information

accumulated from the environment. In case of the RDMSim, three network parameters of

Total Bandwidth Consumption (TBC), Active Network Links (ANL) and Total Time to Write

Data (TTW), related to the NFRs ofMinC,MaxR andMaxP, respectively, are considered as the
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monitorable variables. A high value of the ANL parameter is a proxy for a high satisfaction

level of MaxR. On the other hand, low values of TBC and TTW imply higher satisfaction

levels for MinC and MaxP. In the RDMSim network, all of these monitorables have range

boundaries which are assigned by the domain experts [56, 137] as shown in Table A.5.

Similar to the transition model, the observation model is also factored into the product

of conditional probabilities [112] as follows:

O(s′, a, z) = P (z|s′, a) = P (Mon1, ..Monn|s′, a)

Therefore,

P (z|s′, a) = P (TBC,ANL, TTW |s′, a) = P (TBC|s′, a)P (ANL|s′, a)P (TTW |s′, a)

The observation probabilities for the RDMSim network, defined the domain experts

[56, 112], are presented in Appendix A.

b) Requirements Specification

Similar to the case of DELTA-IoT, the experimental setup for RDMSim also considers the

Requirements (R) to indicate the required satisfaction levels of the NFRs. The require-

ments for the RDMSim network, provided by the experts of RDM, are as follows:

R1: The bandwidth consumption should be less than or equal to 40 percent of total bandwidth

consumption to satisfy MinC.

R2: The time to write data should be less than or equal to 45 percent of total writing time

to satisfy MaxP.

R3: The number of active links should be greater than or equal to 35 percent of total links

to satisfy MaxR.

For an RDMSim network comprising 25 mirrors, the required satisfaction thresholds for

MinC, MaxR and MaxP are SatMinC <= 3600GBps, SatMaxR >= 105 active links and

SatMaxP <= 2700 milliseconds respectively. The NFRs are considered in their poor zone

of satisfaction if they do not meet the required thresholds for satisfaction.
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Table 6.6: Experiment Results for time steps 158 - 164 under Scenario S0

Time Action EUMinC EUMaxR EUMaxP SatMinC SatMaxR SatMaxP

158 MST 391.7338 388.0187 394.9388 1276 58 638
159 MST 391.4357 387.7522 394.8336 3720 124 1984
160 MST 391.6977 388.0349 395.1344 2320 80 880
161 MST 391.4272 387.7457 394.8357 2376 99 1881
162 MST 391.4207 387.7397 394.8322 2376 108 1728
163 RT 386.2634 391.7545 385.8755 2160 80 1440
164 MST 391.6597 387.9502 394.9176 3500 175 3150

*EUNFRi represents the expected utility value of NFRi
*SatNFRi represents satisfaction level of NFRi

6.4.2 RDM-based Experiments

The experiments have been designed to study how well Pri-AwaRE supports informed

choices of priorities related to the individual NFRs, and therefore satisfy the requirements

(R). Similarly to the case of DELTA-IoT, experiments for the RDMSim have been designed

to study how well Pri-AwaRE supports informed choices of priorities related to the individ-

ual NFRs, and therefore satisfy the requirements (R). The following two experiments have

been performed to evaluate the hypotheses considering all the dynamic scenarios (presented

in Chapter 5) for the RDMSim. The results have been further evaluated using T-Test [142],

for computing statistical significance of the results, and the NI Trial approach [140].

RDM Experiment:1– Priority-Aware Decisions and Autonomous Tuning of NFRs’

Priorities

Experiment 1 demonstrates priority-awareness during the decision-making offered by

the Pri-AwaRE approach. It also shows how the approach supports compliance with the

requirements specification by autonomously tuning of the NFRs’ priorities. For the purpose

of making priority-aware decisions, Pri-AwaRE makes use of MR-POMDP++ to model the

distinct priorities of NFRs in the form of rewards. The experiment studies the way the

individual NFRs’ priorities are considered by the Pri-AwaRE during the selection of the

adaptation action as shown in Table 6.6. For example, at time step 160, Pri-AwaRE offers

the best possible trade-off in the form of a decision to use MST as the preferred topology

instead of RT. This is due to the fact that the expected utility values (EUs) for MinC and

MaxP are 391.6977 and 395.1344 respectively, which are higher than the EU for MaxR which

is 388.0349 as presented in Table 6.6. Conversely, at time step 160, the EUs in case of RT
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topology were 385.9493, 385.5438 and 391.3854 for MinC, MaxP and MaxR respectively. As

MST offered higher impacts than RT, Pri-AwaRE decided to select MST as the preferred

topology to support the reduction of the operational cost and improvement in the network’s

performance. This means that MST is selected considering the priorities for satisfaction

(represented by EU ) of MinC and MaxP which is higher than the priority of MaxR. As a

result of this decision, the MST topology is configured for the network. Therefore, to offer

priority-awareness, the decisions made by Pri-AwaRE make the system aware of the explicit

impacts that the adaptation decisions have on the NFRs’ satisfaction, as presented in Table

6.6.

In contrast, at time step 163, the decision of switching from MST to RT topology is taken.

The reason behind this decision is that the EU of MaxR (i.e. 391.7545 ) is higher than the

EUs of MinC (i.e. 386.2634 ) and MaxP (i.e. 385.8755 ) as presented in Table 6.6. As a

result of the application of RT topology, a rise in the network’s reliability is observed due to

increase in the number of active links from 80 to 175, as shown in Table 6.6. Hence, it shows

compliance to the required threshold for satisfaction which is SatMaxR >= 105 active links.

Therefore, the Pri-AwaRE approach considers these EUs representing the autonomously

tuned priorities of NFRs during the decision-making process. This autonomous tuning

offered by Pri-AwaRE during the decision-making process helps a SAS in making priority-

aware decisions.

Similar to the case of DELTA-IoT, the initial setup of experiments considers the ini-

tial NFRs’ priorities for the RDM network. These initial priorities were set by the ex-

perts [136, 138] by taking into account the different foreseen runtime contexts. As per the

rules defined in Chapter 4, this initial set of priorities was defined as rewards for the MR-

POMDP++ model (presented in Table 6.5). According to the runtime situations, these

pre-defined priorities are tuned autonomously by Pri-AwaRE by computation of the sepa-

rate EU for each NFR using equation 4.1. This tuning of individual priorities by Pri-AwaRE

helps the SASs comply with the requirements (R) by achieving high levels of satisfaction

for NFRs.
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RDM Experiment:2–Impacts of Priority-Aware Decisions on satisfaction levels

of NFRs

Experiment 2 studies the impacts of the priority-aware decisions offered by Pri-AwaRE

on satisfaction of NFRs under the dynamic scenarios of the RDMSim. The goal is to

assess how well Pri-AwaRE achieves the required satisfaction levels of NFRs. Similar to

the case of DELTA-IoT, the results of Pri-AwaRE have been compared with the existing

single-objective technique of RE-STORM [112]. The results presented in Table 6.6 show the

effects of applying the selected topology for the network on the NFRs’ satisfaction levels at a

particular simulation time step. This decision of topology selection considers the individual

EUs for NFRs (i.e. the autonomously tuned NFRs’ priorities). The experiment results for

all the scenarios are shown in Figs. 6.5 to 6.11.

Figure 6.5: Satisfaction of NFRs over Time under Scenario S0

Figure 6.6: Satisfaction of NFRs over Time under Scenario S1
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Figure 6.7: Satisfaction of NFRs over Time under Scenario S2

Figure 6.8: Satisfaction of NFRs over Time under Scenario S3

Figure 6.9: Satisfaction of NFRs over Time under Scenario S4
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Figure 6.10: Satisfaction of NFRs over Time under Scenario S5

Figure 6.11: Satisfaction of NFRs over Time under Scenario S6

Let us observe Figs. 6.5 to 6.11 representing the results of Pri-AwaRE and RE-STORM

under i) the stable scenario S0, and ii) the dynamic scenarios S1 to S6. Under all the scenar-

ios, both Pri-AwaRE and RE-STORM show comparable results by showing compliance with

the requirements i.e. achieving the required satisfaction thresholds of SatMinC <= 3600

GBps, SatMaxR >= 105 active links and SatMaxP <= 2700 milliseconds. Both the ap-

proaches show a preference for the MST topology under all the scenarios as shown in Figs.

6.12 and 6.13. Under scenario S0, for the 500 simulation time steps, the percentage usage

of MST topology by Pri-AwaRE is 90.6 percent and RE-STORM uses the MST topology

90.2 percent of times. Furthermore, both Pri-AwaRE and RE-STORM show an increase

in the usage of MST topology under dynamic scenarios of S2, S3, S5 and S6 as shown in

Figs. 6.12 and 6.13. Under these situations, selection of MST is the most suitable decision

as it provides lower levels of operational costs and better performance [56, 137]. Moreover,

it also helps in maintaining the minimal level of reliability for the network. Furthermore, to
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support reliability, the approach of Pri-AwaRE shows an increase in the usage of RT topol-

ogy (which was 9.4 percent under scenario S0) to 33.2 and 39.4 percent under scenarios

S1 and S4, respectively. This is the expected behavior by the self-adaptive RDM network

under the dynamic contexts of S1 and S4 as defined by the experts [53, 137].

Figure 6.12: Topology Selection by Pri-AwaRE under Scenarios S0 to S6

Figure 6.13: Topology Selection by RE-STORM under Scenarios S0 to S6

Similar to the case of Pri-AwaRE, RE-STORM also shows an increase in the usage of RT

topology to 31.4 percent under scenario S4. However, it shows a decrease in the usage of RT

topology under scenario S1. As a consequence of the behavior of RE-STORM under S1, the

reliability of the network is affected as shown in Fig. 6.6. Under S1 and S4, the percentage

violations for MaxR, exhibited by Pri-AwaRE, during the 500 simulation time steps are 41.8

and 37.4, respectively. Compared to Pri-AwaRE, RE-STORM shows higher violations for

MaxR under S1 and S4. The percentage violations exhibited by RE-STORM under S1 and

S4 are 60.4 and 45.6, respectively. Hence, Pri-AwaRE shows better levels of satisfaction for
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Figure 6.14: Confidence Interval for Average Satisfaction of MinC under Scenarios S0 to S6

Figure 6.15: Confidence Interval for Average Satisfaction of MaxR under Scenarios S0 to S6

Figure 6.16: Confidence Interval for Average Satisfaction of MaxP under Scenarios S0 to S6

MaxR as compared to RE-STORM under both S1 and S4. Moreover, under these scenarios,

the percentage violations for MinC and MaxP exhibited by Pri-AwaRE are 47.4 and 28.79

respectively under S4, and 37.0 for MinC and 25.4 for MaxP under S1. Whereas RE-

STORM shows a percentage violation of 14.0 for MinC and 5.0 for MaxP under S1, and

41.4 for MinC and 24.2 for MaxP under S4. This is due to the fact that RE-STORM shows

more support to MinC and MaxP under these dynamic contexts which is not the expected
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behaviour under these scenarios. Let us recall that S1 and S4 represent environmental

situations where a phase of consecutive and unexpected packet loss is observed due to

link failures during the execution of MST topology and in case of S4, increase in bandwidth

consumption and writing time is also observed. Due to link failures, reliability of the network

is affected. Hence, the prioritized requirement under both the scenarios is MaxR. From the

topology selection behavior of RE-STORM (presented in Fig. 6.13), it is evident that the

RE-STORM approach is not making informed decision by not realizing the priority for

satisfaction for MaxR. Therefore it leads to reduction in the satisfaction of MaxR as shown in

Fig. 6.15. In comparison, Pri-AwaRE is making informed choice by giving priority to MaxR,

and therefore achieves the required satisfaction level of SatMaxR >= 105. Furthermore,

for the purpose of verification of the behavior of the RDMSim under decisions offered by

both the approaches, experiments have been executed for 5 different number of simulation

runs for each dynamic scenario. The experiments have shown similar results for all the 5

simulation runs. The results logs for the simulation runs are provided in [133].

6.4.3 Discussion

In summary, the experiment results show that Pri-AwaRE offers compliance with the re-

quirements specification for the NFRs under almost all of the scenarios. This is evident from

the average satisfaction levels of NFRs presented in Fig. 6.17. The results show a confidence

level of 95 percent. The confidence intervals along for average satisfaction of NFRs under all

the dynamic scenarios are presented in Figs. 6.14, 6.15 and 6.16. Let’s observe the results

for MinC and MaxP. Under all the scenarios, the average satisfaction levels for MinC and MaxP

are below the satisfaction thresholds. Therefore, Pri-AwaRE meets the threshold require-

ments of SatMinC <= 3600 GBps and SatMaxP <= 2700 milliseconds. For example,

under scenario S1, the average satisfaction level for MinC is 3149.716 GBps with a standard

error of 76.4134 as shown in Fig. 6.14. Moreover, for MaxP, Pri-AwaRE shows an average

satisfaction of 1929.314 milliseconds with a standard error of 49.4895 as presented in Fig.

6.16. The Pri-AwaRE also exhibits compliance with the threshold requirements for MaxR.

For example, under scenarios S0, S1 and S4, the average satisfaction for MaxR is 110.556,

125.928 and 133.432, respectively. Hence, it satisfies the requirement of SatMaxR >= 105

active links as shown in Fig. 6.15. Furthermore, Pri-AwaRE approach shows similar results

under other scenarios as well. Under scenarios S2 and S5, the average satisfaction level for
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(a) Pri-AwaRE (b) RE-STORM

Figure 6.17: Average Satisfaction of NFRs under Scenarios S0 to S6

MaxR is closer to the satisfaction threshold. In case of S2, the average satisfaction level

is 101.096 active links with a standard error of 2.0134. Whereas for S5, the satisfaction

average is 98.054 active links with a standard error of 1.9662. The exception lies in case of

S3 and S6. Under these scenarios, the average satisfaction for MaxR is 90.296 and 86.484

with confidence intervals of 86.8165 - 93.7755 and 83.0079 - 89.9601, respectively. These

satisfaction values for MaxR under the dynamic scenarios of S3 and S6, where situations

such as significant site failures are observed, are considered to be usual. Moreover, under

such circumstances, the preference is given to support MinC and MaxP more than MaxR as

presented by the topology selection behavior presented in Fig. 6.12. However, the average

satisfaction level for MaxR under the scenarios S3, S5 and S6 are below the satisfaction

threshold of 105 active links, Pri-AwaRE shows significantly better results with respect to

H. Samin, PhD Thesis, Aston University 2022 97



CHAPTER 6. EXPERIMENTAL EVALUATION

satisfying MaxR compared to RE-STORM. The difference between the average satisfaction

levels for MaxR achieved by Pri-AwaRE and RE-STORM is statistically significant having

a p-value < 0.05. The results for RE-STORM are described next.

The RE-STORM approach shows similar results as Pri-AwaRE concerning the satisfac-

tion of MinC and MaxP under all the scenarios. The average satisfaction levels for NFRs

exhibited by RE-STORM are presented in Fig. 6.17. For example, under scenario S1, the

average satisfaction for MinC is 2282.842 GBPs with a standard error of 52.3704. More-

over, for MaxP the average satisfaction level is 1352.444 milliseconds with a standard error

of 32.1922. The confidence interval for MinC and MaxP are 2179.9483 - 2385.7357 and

1289.1949 - 1415.6931 respectively, as shown in Figs. 6.14 and 6.16. Hence, the average

satisfaction level for both MinC and MaxP, achieved by RE-STORM, comply with the re-

quired thresholds of SatMinC <= 3600 GBps and SatMaxP <= 2700 milliseconds. The

confidence intervals along with the standard error for average satisfaction of NFRs under

all the scenarios are shown in Figs. 6.14, 6.15 and 6.16. Furthermore, RE-STORM also

shows similar results to Pri-AwaRE in terms of satisfying MaxR under all the scenarios. The

exception lies in case of scenario S1. Under S1, RE-STORM shows a satisfaction average

of 89.878 active links for MaxR with a confidence interval of 86.0913 - 93.6647. Whereas

in case of Pri-AwaRE, the satisfaction average for MaxR is 125.928 active links with a con-

fidence interval of 120.1966 - 131.6594. Hence, Pri-AwaRE shows higher reliability levels

than RE-STORM under S1. Furthermore, under scenarios S0 and S4, the average satisfac-

tion levels of MaxR, exhibited by RE-STORM, are 107.216 and 121.096 respectively. These

satisfaction values are above the satisfaction threshold and comply with the requirements.

For rest of the scenarios, RE-STORM doesn’t show compliance with the requirement of

SatMaxR >= 105 active links as shown in Fig. 6.17. Moreover, under all the scenarios,

Pri-AwaRE is making informed choices for adaptation decisions by realizing the priorities

of the NFRs based on the environmental situations. Under scenarios S2, S3, S5 and S6

Pri-AwaRE is showing more support to the NFRs MinC and MaxP than MaxR which is the

required behaviour under these scenarios. This is due to the fact that these scenarios rep-

resent environmental situations that cause reduction in the satisfaction of MinC and MaxP

(see Section 5.3.4). On the other hand, under scenarios S1 and S4, Pri-AwaRE shows more

support to the NFR MaxR as the environmental context presented by these scenarios re-

duces the reliability of the network. Hence, Pri-AwaRE realizes the satisfaction priorities
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for the NFRs under all these scenarios and makes informed choices by showing required

topology selection behaviours as shown in Fig. 6.12. In comparison, RE-STORM, being

a single-objective approach, doesn’t realize the satisfaction priority for MaxR under S1 and

S4. This is evident by the topology selection behaviour of the RE-STORM presented in

Fig. 6.13. As a result of this, the satisfaction of MaxR is not achieved and RE-STORM

doesn’t show compliance to the requirement SatMaxR >= 105.

To further compare the results of Pri-AwaRE to RE-STORM, evaluation using the

approach of NI Trial has also been carried out and the results show that Pri-AwaRE in

non-inferior to RE-STORM. The results are reported in Appendix F. The results are also

provided in a GitHub repository [71].

Hence, from the experimental evaluations, it can be concluded that Pri-AwaRE offers

more awareness to the decisions by using the individual NFRs’ priorities during decision-

making. Furthermore, under all the scenarios, Pri-AwaRE shows no significant difference

compared to RE-STORM in terms of satisfying the NFRs (MinC, MaxR and MaxP). More-

over, under some environmental scenarios, Pri-AwaRE shows even better satisfaction levels

for NFRs (such as MaxR under Scenarios S1 and S4) compared to the single-objective tech-

nique of RE-STORM. To further evaluate the approach, comparison with another single-

objective POMDP based technique known as RE-STORM-ARROW [113] has also been

performed. The comparison results are reported in Appendix B, and show that the Pri-

AwaRE performs better than RE-STORM-ARROW.

6.5 Summary

To sum up, the Pri-AwaRE approach provides a framework that considers the individual

NFRs’ priorities during the decision-making process of SASs. The approach also has the

capability of autonomously tuning these individual NFRs’ priorities under uncertain envi-

ronmental contexts. As a proof of concept, Pri-AwaRE has been applied to the two case

studies from the IoT and RDM domains. The results have shown that the Pri-AwaRE based

decision-making offers compliance with the requirements (R), and out-performs single-

objective POMDP based techniques.
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Chapter 7

Validation of Results

This chapter aims to assess the quality of the decision-making offered by the Pri-AwaRE

approach. For this purpose, validation of the experiments’ results reported in Chapter 6 is

presented. The chapter is organized as follows:

• Section 7.1 presents the evaluation of the Extent of Satisfaction of NFRs using the

quantitative approach of DeSiRE [44].

• Section 7.2 provides an evaluation of the fidelity of the belief satisfaction probabilities

maintained by the Pri-AwaRE approach.

• Section 7.3 discusses a comparison with the related work.

Further, threats to the validity of the approach are presented in Section 7.4.

7.1 Evaluation of Extent of Satisfaction of NFRs provided

by Pri-AwaRE

Pri-AwaRE has been applied to two case studies to perform decision-making. The goal is

to achieve the required satisfaction levels of NFRs. An immediate question the reader can

ask is: “To what Extent have the NFRs been Satisfied when using Pri-AwaRE?”

To answer this question, the quantification approach of Degrees of Satisfaction in Re-

quirements Engineering (DeSiRE) [44] has been used. The Pri-AwaRE results for both case

studies (presented in Chapter 6) have been evaluated by computing the Extent of Satisfac-
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tion (ExS ) of the NFRs using DeSiRE. Next, a description of the DeSiRE approach and

experimental evaluations for both the case studies are presented.

7.1.1 Degrees of Satisfaction in Requirements Engineering (DeSiRE)

Degrees of Satisfaction in Requirements Engineering (DeSiRE) [44] is a statistical approach

used to quantify the level of satisfaction of NFRs. It measures the extent to which an NFR

is satisfied or violated. Most multi-objective decision-making techniques treat the NFRs’

satisfaction as a boolean style measure. Here, the value of zero represents the NFR to be

fully violated and the value of one represents the NFR to be fully satisfied. On the other

hand, DeSiRE considers zero as the boundary point between the satisfaction and violation

of NFR. The positive and negative values represent the extent of satisfaction and violation,

respectively. DeSiRE calculates the extent of satisfaction for an NFR using the following

equation:

ExS(NFRn) = ∆p/σp (7.1)

Here ExS(NFRn) represents the extent of satisfaction of nth NFR. ∆p represents the

difference between the referenced value pr(threshold value for satisfaction) and the measured

value pm of the monitored property of NFR. The ∆p is calculated using equations of DeSiRE

operators [44].

For minimization of an NFR, ∆p is calculated as:

∆p = pr − pm (7.2)

Whereas, for maximization of an NFR, ∆p is calculated as:

∆p = pm − pr (7.3)

σp is the standard deviation of the measured values of the monitored property of NFR.

The extent of an NFR being satisfied or violated is proportional to the magnitude of the

measure of ExS(NFRn). For example, in an IoT network, if the measured value for energy

consumption at a particular time step is 30 coulombs and the threshold for satisfaction,

considered as the reference value, is 20 coulombs. Then, ∆p for Minimization of Energy
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Consumption (MinEC) will become ∆p = referencevalue −measuredvalue = 20 − 30 =

−10. If the σp for the measured values is 4.67, then ExS(MinEC) will be equal to -2.14. As

the ExS(MinEC) is less than the satisfaction boundary of zero, it means the NFR MinEC

is violated. The ExS value specifies the extent (i.e. degree) of its violation. Hence, the

DeSiRE approach presents, in a normalized way, the severity of an NFR’s satisfaction or

violation which is independent of the NFR’s metrics (e.g. numbers of packets lost) presented

in Chapter 6. Moreover, for an NFR to be considered as satisfied, the requirement is to

have an ExS value greater than or equal to zero.

7.1.2 Experimental Evaluations

The main objective of the evaluations presented in this section is to perform a validation

analysis of the decision-making results offered by Pri-AwaRE. The goal is to assess the

extent of satisfaction of NFRs for both case studies by addressing the following question:

Q: To what extent does Pri-AwaRE satisfy the required extent of satisfaction for NFRs (i.e.

ExS>= 0)?

Next, the experimental evaluations using the DeSiRE approach for both the case studies

are presented.

IoT case: Experimental Evaluations

Experimental results for the Extent of Satisfaction (ExS ) of the NFRs computed using

DeSiRE [44] are shown in Fig 7.1. Based on the specifications of the DeSiRE, the value

of zero represents the satisfaction boundary between the positive and negative degree of

satisfaction (i.e. ExS values). As presented in Fig 7.1, the Pri-AwaRE approach shows

positive ExS values for MinEC at almost all of the simulation time steps. However, the ExS

value for MinEC does go below zero at several steps, yet this drop in the value never dips

far below the satisfaction boundary.

On the other hand, Pri-AwaRE also demonstrates promising results with respect to

the satisfaction of MinPL. The ExS value for MinPL is above zero most of the time steps,

representing a positive degree of satisfaction for MinPL. When the ExS value does dip below

zero, the maximum deviation in the ExS value ranges between -1.5 to -2.0. which is not
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that far from the satisfaction boundary. The reason behind this behaviour is to create a

balance between the NFRs in achieving the required extent of satisfaction of NFRs. The

Pri-AwaRE approach achieves this balance by making a trade-off between NFRs based on

their priorities. Hence, in order to achieve higher energy consumption levels, MinPL is

slightly violated. However, this violation is not of a higher magnitude, and is re-balanced

at the time step following the dip, as presented in Fig. 7.1.

Figure 7.1: IoT Case: Extent of Satisfaction (ExS ) of NFRs over Time

Summary of Findings

To sum up, from the results it is evident that Pri-AwaRE shows high ExS values for

both the NFRs indicating high degrees of satisfaction. For the 100 simulation time steps,

the ExS value of MinPL was 68 percent of the simulation time steps greater than zero,

whereas for MinEC, ExS(MinEC) was positive 92 percent of the times. Pri-AwaRE shows

promising results in terms of minimizing violations of MinEC while also providing a fair level

of satisfaction of MinPL.

RDM Case: Experimental Evaluations

For the RDM case, experimental evaluations using DeSiRE have been performed to evaluate

Pri-AwaRE’s results for all the scenarios (described in Chapter 5) of RDMSim. Let us

discuss the experiment results for scenarios S0 and S1. Scenario S0 presents the default

scenario where the RDM system is considered to be working under a stable environmental

situation. Under S0, all the three NFRs MinC, MaxR and MaxP, are required to comply
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with the requirements most of the time. On the other hand, Scenario S1 presents the

environmental situation where a phase of consecutive and unexpected packet loss is observed

during the execution of MST topology. This packet loss is due to equipment failures and

affects the system’s reliability.

Experimental results presenting the ExS values of the NFRs for Scenario S0 are shown

in Fig 7.2. Under Scenario S0, the Pri-AwaRE approach shows positive ExS values for MinC

and MaxP at almost all of the simulation time steps. Although the ExS value for these NFRs

does drop below zero at a few time steps, these drops in the value are tolerable as they are

re-balanced following the dip. With respect to the satisfaction of MaxR, the ExS value is

above zero at most of the time steps, but the results also show a drop in the ExS value for

MaxR at several time steps. However, the ExS(MaxR) value goes below zero, this deviation

in the ExS value ranges between -1.0 to -1.5 which is not that far from the satisfaction

boundary. Moreover, this violation of MaxR is acceptable as the more prioritized NFRs

under S0 are MinC and MaxP. This is due to the fact that MST is considered as the preferred

topology under such a situation, as described by the experts of RDM [56].

Under Scenario S1, the decisions carried out by Pri-AwaRE show similar results con-

cerning the ExS values, which are mostly positive for all the three NFRs, as shown in Fig

7.3. Nevertheless, there is also a decrease in the ExS value for the NFRs at several time

steps. This reduction in the ExS is quite close to the satisfaction boundary. For MinC, the

drop in the ExS value ranges from -0.3 to -1.8. For the MaxR and MaxP, it ranges from

-0.4 to -1.3 and -0.3 to -1.8, respectively. The experimental evaluations for all the other

scenarios of RDMSim also exhibit comparable results in terms of ExS values, and therefore

show maintenance of the required extent of satisfaction, i.e. ExS>= 0 in more than 50

percent of the simulation time steps. Experimental evaluations for the scenarios S2 to S6

are provided in Appendix C.

Summary of Findings

In summary, the Pri-AwaRE approach shows high ExS values indicating positive degrees

of satisfaction for the NFRs MinC, MaxR and MaxP. The ExS value for all the NFRs is

greater than or close to zero at almost all of the simulation time steps. Under Scenario S0,

ExS values for MinC, MaxR and MaxP are positive 70.2, 54.6 and 88.8 percent of the times,

respectively. Under S1, the results show a positive ExS value for MinC 63 percent of times
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Figure 7.2: RDM Case: Extent of Satisfaction (ExS ) of NFRs over Time under Scenario S0

Figure 7.3: RDM Case: Extent of Satisfaction (ExS ) of NFRs over Time under Scenario S1

and forMaxR andMaxP 58.2 and 74.6 percent of the times, respectively. This satisfaction rate

is based on the priorities of NFRs under both the scenarios and is considered as acceptable

under these environmental contexts. Moreover, Pri-AwaRE exhibits similar results under

all the scenarios by showing ExS >= 0 in more than 50 percent of the simulation time steps

for all three NFRs.

Therefore, based on the evaluations performed using DeSiRE for both the case studies,

we can say that:

The decision-making offered by Pri-AwaRE approach maintains the required extent of sat-

isfaction for NFRs (i.e. ExS>= 0) in more than 50 percent of the simulation time steps.
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7.2 Evaluation of Fidelity of Belief Satisfaction Probabilities

Let us recall that the Pri-AwaRE approach, based on MR-POMDP++, maintains a belief

(i.e. probability) over the satisfaction state of the NFRs due to partial observability. A

question that the reader can ask is: “How accurate these beliefs are when reflecting the

satisfaction state of the NFRs?”

Therefore, to further assesses the quality of the decision-making offered by the Pri-

AwaRE, this section presents evaluation of the fidelity of these belief satisfaction proba-

bilities. Here, the fidelity of the beliefs refers to the extent to which they are a faithful

representation of the real satisfaction values of the NFRs for the SASs. This relationship

between real observations and the belief satisfaction probabilities of the NFRs (maintained

by Pri-AwaRE) has been evaluated using Logistic Regression [99]. The Logistic Regression

approach has been applied to evaluate the decision-making results for both case studies

(presented in Chapter 6). It considers both the belief satisfaction probabilities for the

NFRs and the network parameters’ values coming from the simulated environments for the

DELTA-IoT [72] and the RDMSim [137] networks. By using Logistic Regression, we want

to check when both the features are considered: to what extent they represent a specific

satisfaction state of an NFR; and how good the beliefs are in reflecting the satisfaction state

of the NFRs at runtime.

Furthermore, due to the uncertain (random) nature of the belief values, the real environ-

mental observations do not strongly correlate with beliefs for the hidden satisfaction state.

This is evident from the dataset1 provided at [133]. Due to this fact and the binary nature

of the satisfaction state (True or False) of the NFRs, Binary Logistic Regression [99] is se-

lected for evaluation purposes. It helps study the fidelity of beliefs to reflect the satisfaction

states of the NFRs using simple binary classification. Moreover, the Softmax function [21]

is applied during Logistic Regression to determine the extent to which a particular belief

satisfaction probability belongs to a particular satisfaction class (True or False).

Next, hypotheses and experimental evaluations for Pri-AwaRE approach are described.

1The dataset is based on the observations and belief satisfaction probabilities maintained by Pri-AwaRE
at runtime during different simulation time steps.
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Table 7.1: IoT Case: DataSet Format

Total Energy Consumption Satisfaction Probability Actual Satisfaction State
27.713032 0.882122473 False
27.166639 0.838070816 False
26.961975 0.831177457 False
14.415679 0.882122473 True
15.693936 0.838070816 True

Hypotheses

The Hypotheses for the experimental evaluations are as follows:

H0: During the decision-making process for SASs, the satisfaction states for the NFRs

are not accurately reflected by the belief satisfaction probabilities maintained by Pri-AwaRE

based on the real observations.

Ha: During the decision-making process for SASs, the satisfaction states for the NFRs are

accurately reflected by the belief satisfaction probabilities maintained by Pri-AwaRE based

on the real observations.

Next, the experimental evaluations performed for the validation of the results of decision-

making carried out by Pri-AwaRE for both the case studies are presented.

7.2.1 IoT case: Setup for Evaluation

In the IoT case, the experiments have been executed to evaluate the Pri-AwaRE based

decision-making for the uncertainty scenario presented in Chapter 5. The scenario considers

the uncertainty context of network link interference measured using the signal-to-noise-ratio

(SNR) and its effects on the NFRs of MinEC and MinPL.

DataSet:

The dataset format for the experiments is presented in Table 7.1. The input and output

variables are presented as follows:

Input Features:

1) Value of the Network Parameter such as total energy consumption or total packets lost

after each decision at a particular simulation time step.

2) Probability of Satisfaction of an NFR.
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Output Variable:

Actual Satisfaction State having a value of True when an NFR is satisfied and False other-

wise.

For the experiments, the training data set consists of decision-making results for Pri-

AwaRE from 4 simulation runs of DELTA-IoT. Each run was executed for 50 simulation

time steps. One simulation time step in case of the DELTA-IoT network is equal to 15

minutes of network activity [72]. During each time step, local decisions were taken for each

of the nodes (sensors) individually. As a result, the training set is composed of 2800 training

examples. For the purpose of tuning of the parameters of the Logistic Regression model,

the Stochastic Gradient Descent (SGD) Algorithm [21] is used. To tune the parameters,

cross-validation has been applied by splitting the training set into 80/20 proportions. During

cross-validation, the 80 percent of the training set data is used as training set and remaining

20 percent is used as cross-validation set. After tuning of the parameters using cross-

validation, the results for the test set comprising of the newly generated decision-making

results from 50 simulation time steps were collected. Hence, the test set comprises 700 test

examples. The data set is available at [133].

7.2.2 IoT case: Experimental Evaluations

Experimental evaluations have been performed to evaluate the decision-making results for

the Pri-AwARE approach. In the experiments, the fidelity of beliefs to reflect the satisfac-

tion state of NFRs at runtime for Pri-AwaRE is assessed. The parameter tuning and the

classification results using Logistic Regression are described as follows:

1) Parameter Tuning

For the purpose of tuning of the parameters for the Logistic Regression model, the SGD

algorithm is executed for 10,000 iterations with different learning rates for the Pri-AwaRE

results of each NFR separately. On the basis of the accuracy scores presented in Table 7.2,

the learning rate of 0.009 is selected for the model to evaluate the test set.
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Table 7.3: IoT Case: Example Classification Results for MinEC

Test
Example

Energy
Consumed

SatProb Actual
State

Predicted
State

Probability
per class

634 11.31384 0.83118 True True [6.68881718e-04 9.99331118e-01]
635 10.3967 0.88212 True True [1.70297893e-04 9.99829702e-01]
636 13.24697 0.83807 True True [0.00285094 0.99714906]
637 16.28405 0.83118 True True [0.0337675 0.9662325]
638 11.86322 0.88212 True True [5.46885746e-04 9.99453114e-01]

Table 7.4: IoT Case: Example Classification Results for MinPL

Test
Example

Packets
Lost SatProb Actual

State
Predicted
State

Probability
per class

440 0.083333333 0.926129374 True True [2.21770858e-05 9.99977823e-01]
441 0.061538462 0.979701363 True True [1.68675727e-06 9.99998313e-01]
442 0.142857143 0.981213319 True True [0.00313043 0.99686957]
443 0.2 0.926129374 True False [0.52700155 0.47299845]
444 0.275 0.979701363 False False [0.99851764 0.00148236]

Table 7.2: IoT: Learning Rate Accuracy Score for MR-POMDP++

Learning Rate Accuracy Score MinEC Accuracy Score MinPL
0.0001 1.0 0.83542
0.0003 1.0 0.92308
0.0005 1.0 0.94097
0.0007 1.0 0.96422
0.0009 1.0 0.98032
0.001 1.0 0.98032
0.003 1.0 0.98032
0.005 1.0 0.98389
0.007 1.0 0.99821
0.009 1.0 1.0
0.01 1.0 1.0
0.03 1.0 1.0
0.05 1.0 1.0
0.07 1.0 1.0
0.09 1.0 1.0

2) Classification Results

For the purpose of description, 5 classification results examples for the NFRs are presented

in Tables 7.3 and 7.4. The results for all the other test cases have been provided in the

repository [133]. The results show an accuracy score of 1.0 for MinEC and 0.9943 for MinPL

with a precision of 1.0 for both MinEC and MinPL. The F1 scores for the classification results

of MinEC and MinPL are 1.0 and 0.9963, respectively. The classification results for the NFRs

are discussed as follows:
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a) Classification Results for MinEC

For the 700 test examples, collected as a result of 50 simulation time steps, the model

correctly classifies the satisfaction state of MinEC as shown in Fig. 7.4.

Moreover, based on the results presented in Table 7.3, we can deduce the extent to which

MinEC can be considered as satisfied, when both the energy consumption and satisfaction

probability are considered. For example, for test example 636, the energy consumed is

13.24697 coulombs and the satisfaction probability is 0.83807. Similar to the actual state,

the satisfaction state predicted by the model is True with 0.99714906 probability. Hence,

given the input values, there is around 99 percent chance of MinEC being satisfied i.e. having

satisfaction state as True.

b) Classification Results for MinPL

For the 700 test examples collected as a result of 50 simulation time steps, the model

correctly classifies the satisfaction state of MinPL with an exception of 4 test examples, as

shown in Fig. 7.4. For these test examples, the actual satisfaction state for MinPL was True

but it was predicted as False.

Moreover, based on the results presented in Table 7.4, we can deduce the extent of the

satisfaction state of MinPL, when both the percentage packets lost and satisfaction proba-

bility are considered. For example, for test example 441, the packet loss is 0.061538462 and

the satisfaction probability is 0.979701363. The output satisfaction state predicted by the

model is True, similar to the actual state, with 9.99998313e-01 probability of being True.

It means that given the input values, there is around 99 percent chance of MinPL being

satisfied i.e. having the satisfaction state as True.

Summary of Findings

In summary, the results for the IoT case show an overall accuracy score of around 99 percent

in predicting the satisfaction states of the NFRs of MinEC and MinPL. The predictions

are based on the beliefs and observations. Therefore, it satisfies the hypotheses for the

experiments by proving the fidelity of beliefs to reflect the hidden satisfaction state of

NFRs, which is estimated to be approximately 99 percent. Hence, it rejects the hypothesis

H0 and satisfies Ha.
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Figure 7.4: IoT: Confusion Matrix for Classification of Satisfaction State of NFRs

7.2.3 RDM Case: Setup for Evaluation

In the RDM case, the experiments have been executed to evaluate the Pri-AwaRE based

decision-making for all the dynamic scenarios described in Chapter 5.

DataSet

The dataset for the experiments is of the format presented in Table 7.5. The input and

output variables are presented as follows:

Input Features:

1) Value of the Network Parameter such as Bandwidth Consumption, Time to Write Data

and Active Links generated by RDMSim.

2) Probability of Satisfaction of an NFR.

Output Variable:

Actual Satisfaction State having a value of True when an NFR is satisfied and False other-

wise.

For the experiments, the training data set consists of results for Pri-AwaRE from 4

simulation runs of RDMSim. Each run was executed for 500 simulation time steps. As a

result, the training set is composed of 2000 training examples. For the purpose of tuning

of the parameters of the Logistic Regression model, the SGD [24] algorithm is used. To
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Table 7.5: RDM Case: DataSet Format

Bandwidth Consumption Satisfaction Probability Actual Satisfaction State
2376 0.88656982 True
4050 0.904919218 False
2465 0.878517531 True
2320 0.902641707 True
1080 0.906088102 True

Table 7.6: RDM: Learning Rate Accuracy Score for MR-POMDP++

Learning Rate Accuracy Score MinC Accuracy Score MaxR Accuracy Score MaxP
0.0001 0.96241 0.98496 0.93985
0.0003 0.97995 0.99749 0.96742
0.0005 0.98496 0.99749 0.97494
0.0007 0.98496 0.99749 0.98496
0.0009 0.98747 0.99749 0.98747
0.001 0.98747 0.99749 0.98747
0.003 0.99248 0.99749 0.99499
0.005 0.99749 0.99749 0.99499
0.007 0.99749 0.99749 0.99749
0.009 0.99749 0.99749 0.99749
0.01 0.99749 1.0 0.99749
0.03 1.0 1.0 1.0
0.05 0.99749 1.0 1.0
0.07 0.99749 1.0 1.0
0.09 0.99749 1.0 1.0

tune the parameters, cross-validation is applied by splitting the training set into 80/20

proportions. During cross-validation, the 80 percent of the training set data is used as

training set and remaining 20 percent is used as cross-validation set. After tuning of the

parameters using cross-validation, results for the test set comprising the newly generated

results from 500 simulation time steps have been executed. The data set for the experiments

is available at [133].

7.2.4 RDM Case: Experimental Evaluations

The experiments have been executed to evaluate results for all the scenarios provided by

RDMSim that represent different dynamic environments for an RDM network. For the

purpose of discussion, the evaluation results for one of the dynamic scenario for the RDMSim

network, known as Scenario S1, have been presented in this section. The Scenario S1

represents the dynamic situations of unexpected packet loss during the execution of an

MST topology. Evaluation results for the rest of the scenarios are reported in [133]. The

parameter tuning and the classification results using the Logistic Regression approach are

described as follows:
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1) Parameter Tuning

For the purpose of the tuning of the parameters, the SGD algorithm is executed for 20,000

iterations with different learning rates for the results of Pri-AwaRE. On the basis of the

accuracy scores presented in Table 7.6, the learning rate of 0.03 is selected for the model to

evaluate the test set.

2) Classification Results

For the purpose of description, 7 classification results’ examples for the NFRs are presented

in Tables 7.7, 7.8 and 7.9. The results for all the other test cases have been provided in the

repository [133]. The results show an accuracy score of 0.986 for MinC, 0.998 for MaxR and

1.0 for MaxP with a precision of 1.0 for MinC and MaxP, and 0.9967 for MaxR. The F1 scores

for MinC, MaxR and MaxP are 0.9889, 0.9983 and 1.0 respectively.

a) Classification Results for MinC

For the 500 simulation time steps, under Scenario S1 of RDMSim, the model correctly

classifies the satisfaction state of MinC with the exception of 7 simulation time steps, as

shown in Fig. 7.5. For these 7 simulation time steps, the actual satisfaction state for MinC

was True but it was predicted as False.

Moreover, based on the results presented in Table 7.7, we can deduce the extent to which

MinC can be considered as satisfied, when both the bandwidth consumption and satisfaction

probability are considered. For example, at time step 482, the bandwidth consumption is

5550 GBps and the satisfaction probability is 0.725491276. The satisfaction state predicted

by the model is also False with the 1.00000000e+00 probability of being False. It means

that given the input values, there is 100 percent chance of MinC not being satisfied i.e.

having satisfaction state of False.

Table 7.7: RDM Case: Example Classification Results for MinC for time steps 482-488 under Scenario S1

Step
Bandwidth
Consumed SatProb Actual

State
Predicted
State

Probability
per class

482 5550 0.725491276 False False [1.00000000e+00 4.28385292e-10]
483 4833 0.783454523 False False [9.99998958e-01 1.04154805e-06]
484 4725 0.791813864 False False [9.99996635e-01 3.36520499e-06]
485 2625 0.864214984 True True [5.38856619e-05 9.99946114e-01]
486 1944 0.902410103 True True [3.51550671e-08 9.99999965e-01]
487 5175 0.867215377 False False [9.9999996e-01 4.0101029e-08]
488 3525 0.873227415 True True [0.40579247 0.59420753]
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Table 7.8: RDM Case: Example Classification Results for MaxR for time steps 482-488 under Scenario S1

Step
Active
Links SatProb Actual

State
Predicted
State

Probability
per class

482 222 0.958693166 True True [2.3037888e-17 1.0000000e+00]
483 179 0.964496786 True True [2.57926305e-11 1.00000000e+00]
484 225 0.952357296 True True [8.70731399e-18 1.00000000e+00]
485 125 0.83784989 True True [9.89801317e-04 9.99010199e-01]
486 81 0.766044144 False False [9.99337825e-01 6.62174864e-04]
487 225 0.902908016 True True [8.61891872e-18 1.00000000e+00]
488 141 0.83331521 True True [5.55843368e-06 9.99994442e-01]

Table 7.9: RDM Case: Example Classification Results for MaxP for time steps 482-488 under Scenario S1

Step
Writing
Time SatProb Actual

State
Predicted
State

Probability
per class

482 2220 0.716539246 True True [0.00121563 0.99878437]
483 2148 0.699744551 True True [4.48927419e-04 9.99551073e-01]
484 2475 0.699741136 True True [0.04798941 0.95201059]
485 1375 0.80810347 True True [4.86431874e-09 9.99999995e-01]
486 1215 0.910140268 True True [3.73099626e-10 1.00000000e+00]
487 2925 0.849803269 False False [0.95807766 0.04192234]
488 2820 0.823122431 False False [0.84301066 0.15698934]

Figure 7.5: RDM: Confusion Matrix for Classification of Satisfaction State of NFRs under Scenario S1

b) Classification Results for MaxR

For all of the 500 simulation time steps comprising the test set, the model correctly classifies

the satisfaction state of MaxR with the exception of only 1 simulation time step, as shown

in Fig. 7.5. For this 1 simulation time step, the actual satisfaction state for MaxR was False

but it was predicted as True.

Moreover, based on the results presented in Table 7.8, we can deduce the extent of

the satisfaction state of MaxR, when both the active links and satisfaction probability are

considered. For example, at time step 482, the active links are 222 and the satisfaction

probability is 0.958693166. The output satisfaction state predicted by the model is True

similar to the actual state with the 1.000e+00 probability of being True. It means that given

the input values, there is 100 percent chance of MaxR being satisfied i.e. having satisfaction
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state of True.

c) Classification Results for MaxP

For all of the 500 simulation time steps in the test set, the model correctly classifies the

satisfaction state of MaxP as shown in Fig. 7.5.

Moreover, based on the results presented in Table 7.9, we can deduce the extent of

the satisfaction state of MaxP, when both the writing time and satisfaction probability are

considered. For example, at time step 482, the writing time is 2220 ms and the satisfaction

probability is 0.716539246. The output satisfaction state predicted by the model is True

similar to the actual state with the 0.99878437 probability of being True. It means that

given the input values, there is around 99 percent chance of MaxP to be satisfied i.e. having

satisfaction state of True.

Summary of Findings

In summary, the results show an accuracy score of around 99 percent for prediction of

the satisfaction states of all the NFRs of MinC, MaxR and MaxP based on the beliefs and

given observations. Hence, it proves that the chances of beliefs in Pri-AwaRE to reflect the

hidden satisfaction state of NFRs is estimated to be approximately 99 percent. Moreover,

the evaluation of fidelity of beliefs in Pri-AwaRE for two different case studies shows that

beliefs can be considered as a strong representation of the state of the NFRs during the

decision-making for SASs. Hence, it rejects the hypothesis H0 and satisfies the hypothesis

Ha for the experiments.

Therefore, based on the evaluations performed using Logistic Regression for both the

case studies, we can say that:

During the decision-making process for SASs, the satisfaction states for the NFRs are ac-

curately reflected by the belief satisfaction probabilities maintained by Pri-AwaRE based on

the real observations.
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Table 7.10: Comparison with Related Work

Approaches
Technique

Used

Scalability

w.r.t.

NFRs

Scalability

w.r.t.

Time

Runtime

Individual

Priority

Modelling

Autonomous

Tuning

Quantify

Uncertainty

Multi-

criteria

Decision

Making

Analytic

Hierarchy

Process

✓ ✓- X ✓ X X

ARROW

POMDP

+

P-CNP

✓- ✓ ✓ ✓ X ✓

AutoRELAX
Genetic

Algorithms
✓ - X ✓ X X

Providentia
Genetic

Algorithms
✓ - X ✓ X X

Probabilistic

Model

Dynamic

Decision

Networks

✓- X ✓ X X ✓

Markov based

Approaches

MDPs

+

DTMC

✓- ✓ ✓ X X ✓

FLAGS
Fuzzy

Logic
✓- - ✓ - X X

ZANSHIN
Control

Theory
✓- - X - X X

Control

Theoretic

Self-Tuning

Control

Theory
✓- - ✓ ✓ X X

Pri-AwaRE MR-POMDP ✓- ✓ ✓ ✓ ✓ ✓
X: the approach does not fulfill the criteria. ✓-: the approach is in process to fulfill the criteria.

-: the approach does not provide information. ✓: the approach fulfills the criteria.

7.3 Comparison with Related Work

This section compares the Pri-AwaRE approach with the related approaches (as described

in Chapter 2). These approaches deal with the modelling and reasoning of NFRs’ priorities

during the decision-making process for SASs. Comparative analysis, presented in Table

7.10, is performed by taking into consideration the aims of the research using the following

criteria:

1) Scalability: The Mutli-Criteria Decision-Making (MCDM) [94] and search-based tech-

niques [25, 122] exhibit scalability in terms of supporting the ranking of multiple NFRs.

In contrast, the technique based on DDNs deal with the problem of scalability over time

(i.e. the curse of history). The graph representing the history of observations and ac-

tions for DDN planning grows exponentially with the planning horizon. In comparison,

Markov-based techniques such as [3, 28, 51, 103, 112, 167] resolve this issue of the curse

of history. The techniques of ARROW [113], FLAGS [11], ZANSHIN [146] and Control

Theory-based approaches [98, 114] have presented initial implementations mostly related to
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a single application domain, but they still require further exploration in terms of scalability.

2) Modelling of Individual NFRs’ priorities: The approaches based on MCDM, such

as Analytic Hierarchy Process [94] and Primitive Cognitive Network Process (P-CNP) [174],

support the explicit modelling of the NFRs’ priorities. The technique of ARROW [113],

which is based on P-CNP, also allows the explicit specification of the NFRs’ priorities.

Moreover, similar to MCDM based techniques, search-based techniques such as AutoRE-

LAX [122] and Providentia [25] also provide modelling and reasoning with the distinct

priorities of NFRs. However, these techniques optimize priorities at design time and these

initially optimized priorities are further used at runtime in an off-line fashion. In contrast,

the techniques based on probabilistic models such as DDNs [15] and Markov-based ap-

proaches [3, 28, 51, 103, 112, 167] model the NFRs’ priorities as a single scalar utility value

representing a combined priority for all NFRs. These approaches lack the explicit mod-

elling of the individual priorities of NFRs, and therefore do not support priority-awareness.

Moreover, the approaches based on Control Theory [98, 114] provide support for explicitly

modelling the NFRs’ priorities at runtime. Finally, the techniques of ZANSHIN and FLAGS

do not provide information about the distinct modelling of the NFRs’ priorities.

3) Design time vs Run time: As discussed, the MCDM techniques presented in [94]

and [174] provide support for explicit modelling of the NFRs and their priorities. How-

ever, they are more design time techniques, i.e. they make use of the priorities assigned

by the requirements engineers at design time. These design time priorities are then used

at runtime during the decision-making process. The technique of ARROW, which is based

on P-CNP, provides support to RE-STORM (using the POMDP model [57]) to deal with

the prioritization of NFRs. The techniques of AutoRELAX, Providentia and ZANSHIN

also support the optimization of priorities at design time. In the case of AutoRELAX and

Providentia, these initially optimized priorities are further used at runtime in an off-line

fashion. All of the other techniques support the runtime optimization of NFRs’ priorities.

4) Autonomous Tuning of Priorities: The techniques presented in Table 7.10 do not

support the autonomous tuning of the NFRs’ priorities under the changing environmental

contexts. Although these techniques provide the optimization or tuning of the priorities,
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this update of the priorities is not done autonomously. It is mostly done at design time or

in offline mode. The only techniques that support the runtime tuning of priorities are the

techniques based on Control Theory [114] and ARROW [113]. However, ARROW supports

automatic updates for initially defined priorities of NFRs at runtime. This priority update

is not autonomous and does not work from within the POMDP model. The Control Theory

approach [114] cannot deal with the NFRs having the same priority rank.

5) Quantification of Uncertainty: The DDNs, with the help of the Bayesian Surprise

[18], support the quantification of uncertainty. Moreover, Markov-based techniques based

on MDPs and POMDPs [3, 28, 51, 103, 112, 167], similar to Pri-AwaRE, also consider

uncertainty as a quantifiable measure. In contrast, the other techniques do not support the

quantification of uncertainty.

Compared to the above techniques, the Pri-AwaRE approach offers runtime modelling

and reasoning with the individual priorities of NFRs by using the MR-POMDP++ model.

The MR-POMDP++ supports explicitly modelling NFRs’ priorities using a vector-valued

reward function. Moreover, the technique also supports the autonomous tuning of the

priorities of NFRs during the decision-making process. As Pri-AwaRE is based on MR-

POMDP++, it considers the decision-making agent working in a partially observable en-

vironment. Hence, it supports the quantification of uncertainty. The approach uses the

OLSAR MR-POMDP solver [129] that resolves the curse of history problem, and therefore

offers scalability. However, the approach’s scalability in dealing with a large number of

NFRs still requires more exploration.

7.4 Threats to Validity

This section presents the threats to the validity of the approach to assess the factors to

dispute the research findings presented in this thesis. The threats to validity, based on the

classification described in [50], are presented as follows:

External Validity: External validity indicates the generalization of the outcomes which

are outside the scope of the study. A key threat to validity of the proposed Pri-AwaRE

approach lies in the computational cost. The Pri-AwaRE is based on MR-POMDP++.
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Solving an MR-POMDP is a computationally intractable problem in its worst case, even

with the help of the OLSAR algorithm [129] that can deal with the issues related to

scalability (such as the “curse of history” problem). In the case of Pri-AwaRE, the states

are represented as the combinations of satisfaction levels of NFRs. If the NFRs are 2 in

number, 4 states will be defined for MR-POMDP++, for 3 NFRs, it would be 8 and so on.

Hence, practically, the Pri-AwaRE approach will work with only a small number of NFRs.

This means that experts using the Pri-AwaRE approach, must limit their reasoning to the

NFRS that are critical to driving the self-adaptations. Therefore, the approach belongs

to the group of techniques that focus theoretically and practically on a few objectives to

support multi-objective sequential decision-making [128].

Furthermore, the experiments presented in this thesis have been executed using the ex-

emplars of DELTA-IoT [72] and RDMSim [137] which focus on a centralized setting. The

Pri-AwaRE approach has not been tested in a decentralized setup. More experiments would

be required to test the feasibility of Pri-AwaRE for applications in both centralized and de-

centralized domains.

Internal Validity: Internal validity refers to ensuring that the treatment for the setup

of experiments is similar to the real setting. It corresponds to the extent to which the

Pri-AwaRE approach performs when working in an actual environmental setup. The ex-

periments presented in this thesis focus on a case study approach based on a simulator. All

the experimental results are based on environmental factors, simulated by tools of DELTA-

IoT and RDMSim, not an actual physical network. The case studies that have been selected

are well-known and provide simulations that are close to real settings. Both RDM [53, 137]

and IoT [72] are well-accepted example cases in the research community and are already in

use by other teams.

Construct Validity: Construct validity focuses on the relationship between the theory

behind the experiments and the actual observations. Construct validity for the Pri-AwaRE

approach refers to the mirroring relationship between Pri-AwaRE and the managed system.

In this thesis, reflections have been established for the current state of the managed system

by MR-POMDP++ and are verified by estimation of the fidelity of the belief over the states

(as described in Section 7.2).
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7.5 Summary

In summary, based on the validation of the decision-making results offered by Pri-AwaRE,

it can be deduced that Pri-AwaRE supports the maintenance of the Extent of Satisfaction

of NFRs. It also shows statistically sound results in terms of reflecting the real satisfaction

state of NFRs using the belief probabilities maintained by MR-POMDP++. Furthermore,

compared to the existing state-of-the-art approaches, Pri-AwaRE offers better-informed,

priority-aware decisions by providing runtime modelling and autonomous tuning of the

NFRs’ priorities during the decision-making process. Therefore, Pri-AwaRE addresses the

research challenges described in Chapter 1, and thereby answers the RQs.
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Chapter 8

Conclusion and Future Work

This chapter sums up the work presented in this thesis. The main motivation for devel-

oping the proposed Pri-AwaRE architecture has been the challenges concerning the need

for new techniques for decision-making under uncertainty. The challenges specify that the

approach should: i) support modelling of the individual priorities of NFRs, and ii) perform

autonomous tuning of the priorities according to the changing runtime contexts.

The chapter is organized as follows: Section 8.1 revisits the main contributions of the

thesis which is followed by the future research directions in Section 8.2.

8.1 Contributions

This section presents the main contributions of the research presented in this thesis in terms

of answering the research questions presented in Chapter 1.

RQ1: Can modelling and reasoning of the priorities of individual NFRs under uncertain

environmental contexts be supported?

To addressRQ1, this thesis presents Pri-AwaRE, a self-adaptive architecture for decision-

making in SASs. The architecture uses MR-POMDP++, a runtime specification model, as

part of the MAPE-K loop to select decisions at runtime. The technique tries to overcome

the limitations of the existing approaches by supporting the modelling and reasoning with

individual NFRs’ priorities during the decision-making process. MR-POMDP++ is an ex-

tended version of MR-POMDP, and supports the modelling of individual NFR priorities
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using a vector-valued reward function. Each value in the reward vector is associated with

a separate NFR. The reward values are generated as a feedback signal due to the decisions

(adaptation actions) taken by MR-POMDP++. The reward value for a specific NFR refers

to the effect (positive or negative) of performing an adaptation action on the satisfaction

of that NFR. Therefore, the reward vector values represent a relative ranking of the NFRs

in terms of the cardinal effect an action will have on the NFRs’ satisfaction under an envi-

ronmental situation. Consequently, an NFR with a higher reward value indicates that the

NFR has a higher priority for satisfaction and vice versa. These priorities, in the form of

rewards, are considered by MR-POMDP++ while selecting adaptation actions during the

decision-making process.

The mapping rules for rewards to represent the initial NFR priorities are presented in

Chapter 4. Furthermore, this modelling of priorities by MR-POMDP++ serves as a base

to answer RQ2.

RQ2: Can decision-making in SASs include tuning of the NFRs’ priorities to match the

dynamic runtime situations?

MR-POMDP++ using the reward vector enables the Pri-AwaRE to autonomously tune

the individual priorities of NFRs according to the changing runtime contexts. Therefore, it

addresses RQ2. This autonomous tuning of priorities is performed by the computation of

an individual expected utility value for each NFR during the decision-making performed by

MR-POMDP++ using equation 4.1 (presented in Chapter 4). The expected utility values

represent the newly tuned priority values of the individual NFRs. Moreover, the rewards,

representing the initial expert assigned priorities, are used to calculate the individual ex-

pected utility value for each NFR at runtime. Hence, the expected utility values take into

account the impact of executing an adaptation action on the satisfaction of an NFR sepa-

rately under an environmental context. These expected utility values are considered while

taking decisions for adaptations at runtime. Therefore, the Pri-AwaRE approach using

MR-POMDP++ supports priority-awareness during the decision-making process.

As a proof of concept, the approach is applied to the two well-established case studies of

IoT and RDM networks. The experiments show that Pri-AwaRE provides the autonoumous

tuning of NFRs’ priorities according to the dynamic contexts for both the cases. Moreover,
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the results also show that the decisions take into account the individual priorities of the

NFRs which are adjusted according to the runtime situations to meet compliance with the

requirements.

DELTA-IoT: For the IoT case, an existing simulation tool of DELTA-IoT [72] has been

selected. The DELTA-IoT provides a simulated environment for an IoT network for a smart

university campus. The simulator represents a multi-hop IoT network comprising 15 nodes

which are installed across the different buildings of the campus. The nodes communicate

with each other and relay information to the central gateway.

RDMSim: For the RDM case study, a simulation tool of RDMSim [137] has been devel-

oped as part of the research work presented in this thesis. The simulator has been designed

on the basis of the operational model presented in [74, 78]. The simulator also provides

a number of uncertainty scenarios to represent the different dynamic situations for the

RDM network. The RDMSim simulator is publicly available and can be downloaded from

[132]. Moreover, the simulator provides the probe and effector components as APIs for con-

necting to the RDMSim network. The researchers working with different decision-making

approaches, such as evolutionary computation [120] or multi-criteria decision-making tech-

niques [158], can use these APIs for working with RDMSim. The simulator also provides

researchers with the flexibility of designing their own uncertainty scenarios.

Comparisons with the existing approaches of RE-STORM [112] and RE-STORM-ARROW

[113] have also been provided. The results show that the Pri-AwaRE offers comparable

and sometimes even better results under certain dynamic situations compared to both ap-

proaches.

To sum up, the contributions of the research presented in this thesis are as follows:

Contribution 1: Pri-AwaRE, a priority-aware self-adaptive architecture for decision-making

in SASs that offers:

i) modelling and reasoning with the individual priorities of NFRs which is answer

to RQ1, and

ii) autonomous tuning of the NFRs’ priorities during the decision-making process

which is answer to RQ2.
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Contribution 2: Application of the Pri-AwaRE approach to the two case studies of IoT

and RDM networks and design of experiments for the case studies.

Contribution 3: Design and development of the RDMSim, a simulator for the RDM case

study. The simulator is publicly available at [132] and can be used by researchers

working on different decision-making techniques for SASs to test their techniques.

Contribution 4: Design of the decision-making mechanism for both the case studies. For

the IoT case, a local decision-making mechanism has been designed to carry out local

decisions for each individual node of the network. For the case study of RDM, the

decision-making mechanism has been designed to perform global decisions of changing

the entire topology for the network.

Contribution 5: The implementation of Pri-AwaRE approach along with data set of ex-

periments’ results logs for both case studies. The implementation can be downloaded

to carry out experiments using Pri-AwaRE. The data set is provided to facilitate the

researchers working on different decision-making approaches for comparisons. The

Pri-AwaRE implementation and data set are available at [133, 134].

8.2 Future Work

The contributions presented in this thesis can be developed further. As a future research

agenda, new research areas have been identified that would allow researchers to produce

more useful knowledge. The future research directions are as follows:

8.2.1 Elicitation of Expert-Defined NFR Priorities

The initial NFR priorities are typically defined by the domain experts at design time.

However, there might be situations which are unforeseen by the experts and they might

challenge the assigned priorities. Hence, one of the future directions can be usage of the

Pri-AwaRE approach, with its capability of autonomous tuning of priorities, as a tool for

a priori -elicitation of priorities for NFRs. This will facilitate the experts in defining of

the initial priorities. The idea would be to execute simulations in order to learn about

the environment, and to therefore uncover the contexts that would not be anticipated

otherwise. Based on this newly discovered knowledge K’ , a new specification S’ could
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be used in the implementation of new releases of the SAS. Furthermore, as the approach

supports in enriching the decision-making process in SASs with newly discovered knowledge

K’ , the Pri-AwaRE could also be used to provide explanations for unclear adaptation

decisions [111, 139].

The elicitation process can be supported by automation tools:

Firstly, as the priorities are represented as rewards in the MR-POMDP++, techniques

like Inverse Reinforcement Learning (IRL) [35, 178] could infer these reward values. There-

fore, such values can support the elicitation process by guiding the experts. IRL is an

AI based technique that supports imitation of the preferred system behavior by using its

behavioral history. It helps in the inference of the reward values by taking the observed

history of policies as an input. The usage of IRL could be considered a prospective research

direction for inference of the initial NFRs’ priorities.

In addition to IRL, to support elicitation of NFR priorities, techniques based on multi-

objective evolutionary computation [159, 177] along with reinforcement learning [41, 81]

can also be explored as one of prospective research directions.

8.2.2 Further Specification of Uncertainty Quantification to Improve Pri-

ority Awareness of NFRs

MR-POMDP++ considers the decision-making agent working in a partially observable envi-

ronment. It therefore supports the quantitative specification of uncertainty by maintaining

a belief over the state. However, more research is needed to study the quantification of un-

certainty. For this purpose, usage of uncertainty quantification techniques such as Bayesian

Surprise [13, 17] could be explored. More work is needed to evaluate the levels of uncer-

tainty using Bayesian Surprise and their impacts on the priorities of NFRs. Based on these

impacts, Bayesian Surprise can provide the temporal RELAXation [169] of priority values

of one or more NFRs to support the satisfaction of a critical NFR.

Moreover, the analysis of results with respect to the Extent of Satisfaction ExS (de-

scribed in Chapter 7) also generates an opportunity for studying the RELAXation of NFRs

[169]. For instance, if we consider the situation where a particular NFR has a high ExS

value at a specific simulation time step. Another critical NFR shows a slight violation by

having the ExS value below but closer to zero. In such a situation, the first NFR can be

RELAXed [169] at that simulation time step to benefit the satisfaction of the other. The
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exploration of such autonomous RELAXation of priorities facilitated by Bayesian Surprises

could be one of the future research directions to follow. Moreover, the goal will be to

perform uncertainty resolution using Bayesian Surprise and modelling it in terms of the

RELAX [169].

8.2.3 Fidelity Marker for Digital Twins

The results reported in this thesis show the potential use of the Pri-AwaRE approach to

reflect the satisfaction state of NFRs based on the belief values maintained at runtime.

Crucially, the decision-making process based on beliefs can be used to support technologies

such as Digital Twins (DTs) [10, 36, 100]. It will help in providing simulations of the real

world to study the consequences of executing the adaptations. For this purpose, fidelity

(i.e. accuracy) of the beliefs to reflect the real but partially observable state of the NFRs

needs to be assessed. Further exploration in this domain could also be one of the future

research directions to follow.

8.3 Final Remarks

This thesis has presented Pri-AwaRE, a self-adaptive architecture for decision-making in

SASs. The approach offers the capability of modelling and reasoning about the individual

priorities of NFRs. Moreover, it also supports autonomous tuning of individual NFRs’ pri-

orities based on the changing runtime environmental contexts. Hence, Pri-AwaRE provides

priority-awareness during the runtime decision-making. The approach has been applied

to the case studies belonging to two networking domains. The results have shown that

the priority-aware decision-making offered by Pri-AwaRE offers compliance with the re-

quirements during execution. Also, more information concerning the individual satisfaction

priorities of NFRs is considered during decision-making. The PhD research project also led

to the development of RDMSim, a simulator for the RDM network.

An insight into the usage of MR-POMDP as a runtime model to support modelling

and reasoning with the separate NFRs’ priorities is also provided. The belief satisfaction

probabilities maintained by the MR-POMDP to represent real satisfaction state of NFRs

help establishing a causal connection with the real system. Based on this, we can envision

that Pri-AwaRE has the potential to support technologies such as Digital Twins to provide
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realistic and accurate simulations of the world. In addition, we can also envisage the

usage of Pri-AwaRE as a tool for providing further insight to the experts when eliciting

NFRs’ priorities. Moreover, the approach could also be foreseen as a tool to support the

quantitative specification of uncertainty.
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APPENDIX A.

Appendix A

Experimental Setup
MR-POMDP++

This appendix presents the experimental setup of the MR-POMDP++ model for both the

case studies. Section A.1 presents the transition and observation model for DELTA-IoT

which is followed by the transition and observation model for RDMSim in Section A.2.

A.1 DELTA-IoT: MR-POMDP++ Experimental Setup

This section describes the transition and observation model probabilities for the MR-

POMDP++ model for the case of DELTA-IoT network.

A.1.1 Transition Model

The DELTA-IoT network focuses on two NFRs of MinEC and MinPL which leads to the

identification of 4 states for MR-POMDP++. Based on this, the transition function is

factored as marginal conditional probabilities of NFRs (i.e. P (MinEC ′ | MinEC, a) and

P (MinPL′ |MinPL, a)) using the property of conditional independence and Bayes rule [56]

as follows:

T (s, a, s′) = P (s′|s, a) = P (MinEC ′ |MinEC, a)P (MinPL′ |MinPL, a)

The transition probabilities for the IoT case, defined by the domain experts [138], are

presented in the Table A.1.

A.1.2 Observation Model

In case of DELTA-IoT, one monitorable of Signal-to-Noise Ratio (SNR) on the links associated

with the nodes is considered. The SNR can a value of greater than, less than or equal to zero.
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Table A.1: Transition Probabilities for NFRs

NFR1=Minimization of Energy Consumption(MinEC)
Action(A) MinECt MinPLt P(MinECt+1 = True) P(MinECt+1 = False)
DTP True True 0.89 0.11
DTP True False 0.92 0.08
DTP False True 0.84 0.16
DTP False False 0.87 0.13
ITP True True 0.85 0.15
ITP True False 0.88 0.12
ITP False True 0.73 0.27
ITP False False 0.76 0.24
NFR2=Minimize Packet Loss(MinPL)
Action(A) MinECt MinPLt P(MinPLt+1 = True) P(MinPLt+1 = False)
DTP True True 0.92 0.08
DTP True False 0.89 0.11
DTP False True 0.96 0.04
DTP False False 0.91 0.01
ITP True True 0.98 0.02
ITP True False 0.96 0.04
ITP False True 0.99 0.01
ITP False False 0.97 0.03

Hence, based on this the observation model comprises of the probabiliies for the three cases.

The observation probability of 0.33 is considered for each situation, as all three situations

are considered to be observed equally likely at runtime [72].

A.2 RDMSim: Experimental Setup

This section describes the transition and observation model probabilities for the MR-

POMDP++ for the case of RDMSim network.

A.2.1 Transition Model

The RDMSim network focuses on three NFRs MinC, MaxR and MaxP which leads to the

identification of 8 states for MR-POMDP++. Similar to the case of DELTA-IoT, the

transition probabilities T(s,a,s’) have been factored as marginal conditional probabilities

of NFRs (i.e. P (MinC ′ |MinC, a), P (MaxR′ |MaxR, a) and P (MaxP ′ |MaxP, a)) using the

property of conditional independence and Bayes rule [112] as follows:

T (s, a, s′) = P (s′|s, a) = P (MinC ′ |MinC, a)P (MaxR′ |MaxR, a)P (MaxP ′ |MaxP, a)

The transition probabilities for the RDM network are shown in the Tables A.2, A.3 and

A.4. These transition probabilities are provided by the domain experts [56].

A.2.2 Observation Model

In the case of the RDM network, three network parameters Total Bandwidth Consumption

(BC), Active Network Links (ANL) and Total Time to Write Data (TTW) related to the NFRs
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Table A.2: Transition Probabilities for NFR MinC

NFR1=Minimization of Cost (MinC)
Action(A) MinCt MaxRt MaxPt P(MinCt+1 = T ) P(MinCt+1 = F )
MST True True True 0.9 0.1
MST True True False 0.88 0.12
MST True False True 0.92 0.08
MST True False False 0.9 0.1
MST False True True 0.85 0.15
MST False True False 0.83 0.17
MST False False True 0.87 0.13
MST False False False 0.85 0.15
RT True True True 0.86 0.14
RT True True False 0.84 0.16
RT True False True 0.88 0.12
RT True False False 0.86 0.14
RT False True True 0.73 0.27
RT False True False 0.71 0.29
RT False False True 0.75 0.25
RT False False False 0.73 0.27

Table A.3: Transition Probabilities for NFR MaxR

NFR2=Maximization of Reliability (MaxR)
Action(A) MinCt MaxRt MaxPt P(MaxRt+1 = T ) P(MaxRt+1 = F )
MST True True True 0.91 0.09
MST True True False 0.93 0.07
MST True False True 0.89 0.11
MST True False False 0.91 0.09
MST False True True 0.93 0.07
MST False True False 0.95 0.05
MST False False True 0.91 0.09
MST False False False 0.93 0.07
RT True True True 0.95 0.05
RT True True False 0.97 0.03
RT True False True 0.93 0.07
RT True False False 0.95 0.05
RT False True True 0.97 0.03
RT False True False 0.99 0.01
RT False False True 0.95 0.05
RT False False False 0.97 0.03

Table A.4: Transition Probabilities for NFR MaxP

NFR1=Maximization of Performance (MaxP)
Action(A) MinCt MaxRt MaxPt P(MaxPt+1 = T ) P(MaxPt+1 = F )
MST True True True 0.9 0.1
MST True True False 0.85 0.15
MST True False True 0.92 0.08
MST True False False 0.87 0.13
MST False True True 0.88 0.12
MST False True False 0.83 0.17
MST False False True 0.9 0.1
MST False False False 0.85 0.15
RT True True True 0.82 0.18
RT True True False 0.75 0.25
RT True False True 0.84 0.16
RT True False False 0.77 0.23
RT False True True 0.8 0.2
RT False True False 0.73 0.27
RT False False True 0.82 0.18
RT False False False 0.75 0.25

H. Samin, PhD Thesis, Aston University 2022 151



APPENDIX A.

Table A.5: Observation Probabilities for RDM network

Mon1=Total Bandwidth Consumption(TBC)
Action(A) MinCt P(TBCt+1 < x) P(TBCt+1in[x, y]) P(TBCt+1 >= y)
MST True 0.8 0.15 0.05
MST False 0.72 0.18 0.1
RT True 0.78 0.16 0.06
RT False 0.68 0.2 0.12
Mon2=Active Network Links(ANLs)
Action(A) MaxRt P(ANLst+1 < r) P(ANLst+1in[r, s]) P(ANLst+1 >= s)
MST True 0.06 0.16 0.78
MST False 0.12 0.2 0.68
RT True 0.05 0.15 0.8
RT False 0.1 0.18 0.72
Mon3=Time to Write(TTW)
Action(A) MaxPt P(TTWt+1 < f) P(TTWt+1in[f, g]) P(TTWt+1 >= g)
MST True 0.83 0.13 0.04
MST False 0.67 0.23 0.1
RT True 0.8 0.15 0.05
RT False 0.63 0.25 0.12

MinC, MaxR and MaxP, respectively, are considered as the monitorable variables. Similar to

the transition model, the observation model is also factored into the product of conditional

probabilities [112] as follows:

O(s′, a, z) = P (z|s′, a) = P (Mon1, ..Monn|s′, a)

Therefore,

P (z|s′, a) = P (TBC,ANL, TTW |s′, a) = P (TBC|s′, a)P (ANL|s′, a)P (TTW |s′, a)

The probabilities for the observation model of the RDM network are presented in Table

A.5. These probabilities are provided by the domain experts [56, 112].
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Appendix B

Comparison of Pri-AwaRE with
RE-STORM-ARROW

This appendix provides the details of the experimental evaluations for the Remote Data

Mirroring (RDM) network [78, 137]. Experiments have been performed to compare the

Pri-AwaRE approach with the approach of RE-STORM-ARROW [113]. The RE-STORM-

ARROW is based on the technique of primitive cognitive network process (P-CNP) [174] and

RE-STORM. The approach provides the support of updating initially defined reward values

for the technique of RE-STORM. The implementation of RE-STORM-ARROW makes use

of the DESPOT POMDP solver [112, 150]. All the experiments have been performed

using Lenovo Thinkpad with intel Core i7, 8th Gen processor and 16 GB RAM. Next, the

experimental setup and requirements specifications for the experiments are discussed.

B.1 Experimental Setup

The experimental setup involves the usage of the same initial setup of the RDM network

and MR-POMDP++ model as described in Chapter 6. The initial setup for comparisons

with the RE-STORM-ARROW considers a different set of Requirements Specifications (R)

defined by the experts of RE-STORM [57, 112]. The requirements specifications for the

experiments are as follows:

R1: The probability of satisfaction of Minimization of Cost shall be greater than or equal

to 0.70. i.e. P(MinC=True)>=0.70.

R2: The probability of satisfaction of Maximization of Reliability shall be greater than or

equal to 0.85 i.e. P(MaxR=True)>=0.85.
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R3: The probability of satisfaction of Maximization of Performance shall be greater than

or equal to 0.75. i.e. P(MaxP=True)>=0.75.

Next, the experiment results for all the dynamic scenarios S1 to S6 of the RDM, presented

in Chapter 5, are discussed.

B.2 Experiments Results

The experiments results for all the scenarios are presented in Figs. B.1 to B.6. Let’s ob-

serve, Figs. B.1, B.2 and B.3 presenting the results for scenarios S1, S2 and S3 respectively.

Under these scenarios, the approach of Pri-AwaRE shows better satisfaction levels of NFRs

MinC and MaxP compared to the approach of RE-STORM-ARROW. On the other hand,

RESTORM-ARROWmaintains higher reliability levels than Pri-AwaRE under scenarios S1

and S3. The reason behind this behavior is that the RE-STORM-ARROW, using P-CNP,

supports the update of the initially defined reward values for the RE-STORM approach.

This is not the case with Pri-AwaRE. In case of Pri-AwaRE, the autonomous tuning of

priorities is provided at runtime without the update of the initially defined reward values.

Furthermore, RE-STORM-ARROW, even supported by the update of reward values, does

show poor satisfaction levels of NFRs. For example, under scenario S5, the approach of

Pri-AwaRE shows better satisfaction levels for all the NFRS compared to RE-STORM-

ARROW, as presented in Fig. B.5. Both the approaches, show comparable results under

scenarios S4 and S6. Therefore, from the results, it can be deduced that the Pri-AwaRE ap-

proach offers higher levels of satisfaction of NFRs in comparison to the single-objective tech-

nique of RE-STORM-ARROW. Furthermore, the approach of RE-STORM-ARROW does

support the update of the initial reward values, this update is not performed autonomously.

Instead, it requires external support from P-CNP that causes efficiency problems.

———

B.2.1 Summary of Findings

In summary, the experiment results show that Pri-AwaRE shows compliance with the re-

quirements specification for the NFRs under almost all of the scenarios, as presented in Fig.

B.10. The results show a confidence level of 95 percent. The confidence intervals along

with the standard error for average satisfaction of NFRs for both Pri-AwaRE and RE-
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Figure B.1: Satisfaction of NFRs over Time under Scenario S1

Figure B.2: Satisfaction of NFRs over Time under Scenario S2

Figure B.3: Satisfaction of NFRs over Time under Scenario S3

Figure B.4: Satisfaction of NFRs over Time under Scenario S4
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Figure B.5: Satisfaction of NFRs over Time under Scenario S5

Figure B.6: Satisfaction of NFRs over Time under Scenario S6

STORM-ARROW are presented in Tables ?? and ??, respectively. For both Pri-AwaRE

and RE-STORM-ARROW, the average satisfaction levels for MinC and MaxP are above

the satisfaction thresholds under all the scenarios. Hence, they show compliance with the

threshold requirements of P (MinC = True) >= 0.70 and P (MaxP = True) >= 0.75.

For example, under scenario S1, in case of Pri-AwaRE, the average satisfaction level for

MinC is 0.8439 with a standard error of 0.0088. For MaxP, Pri-AwaRE exhibits the average

satisfaction of 0.8301 with a standard error of 0.0105. As the average satisfaction is above

the satisfaction threshold, it shows compliance with the requirements for both MinC and

MaxP under S1. RE-STORM-ARROW also shows comparable results to Pri-AwaRE for

scenario S1. It exhibits the average satisfaction level of 0.8453 for MinC with a standard

error of 0.0091. For MaxP, it shows the average satisfaction of 0.8289 with a standard error

of 0.0098.

The experiment results for Pri-AwaRE also show satisfaction of the threshold require-

ments for MaxR with the average satisfaction being above the threshold of 0.85 under most

of the scenarios. For example, under scenarios S1, S2, S4 and S5, the average satisfac-

tion levels for MaxR are 0.8727, 0.9016, 0.8555 and 0.8965 respectively. As the average
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Figure B.7: Confidence Interval for Average Satisfaction of MinC under Scenarios S1 to S6

Figure B.8: Confidence Interval for Average Satisfaction of MaxR under Scenarios S1 to S6

Figure B.9: Confidence Interval for Average Satisfaction of MaxP under Scenarios S1 to S6
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satisfaction for MaxR is above the satisfaction threshold, it satisfies the requirement of

P (MaxR = True) >= 0.85. For RE-STORM-ARROW, the average satisfaction for MaxR

under these scenarios complies with the requirements, as shown in Fig. B.11. Furthermore,

Pri-AwaRE shows comparable results to RE-STORM-ARROW concerning satisfaction of

MaxR under other scenarios as well. In case of S3 and S6, the average satisfaction for MaxR

achieved by Pri-AwaRE is 0.8155 and 0.8171 respectively. The confidence intervals exhib-

ited by Pri-AwaRE under these scenarios are 0.7999 - 0.8311 for S3 and 0.8025 - 0.8317

for S6. However, the average satisfaction level for MaxR is below the threshold, it is closer

to the required satisfaction level. Moreover, these satisfaction values for MaxR, achieved

by Pri-AwaRE, under the dynamic scenarios of S3 and S6 are considered to be usual. As

under such circumstances, the preference is given to support the satisfaction of MinC and

MaxP more than MaxR. In case of RE-STORM-ARROW, the average satisfaction of MaxR

is above the satisfaction threshold under these scenarios, as presented in Fig. B.11. To

sum up, it can be concluded from the results that Pri-AwaRE offers statistically sound

results in terms of satisfaction of the requirements. Furthermore, under all the scenarios,

the Pri-AwaRE approach shows comparable and sometimes even better satisfaction levels

for NFRs in comparison to the technique of RE-STORM-ARROW.

Figure B.10: Average Satisfaction of NFRs using Pri-AwaRE

Figure B.11: Average Satisfaction of NFRs using RE-STORM-ARROW
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Appendix C

Extent of Satisfaction of NFRs

This appendix presents an evaluation of the Pri-AwaRE’s results for the case of RDM net-

work using the quantitative approach of DeSiRE. The DeSiRE approach helps in evaluating

the Extension of Satisfaction (ExS ) of an NFR. The ExS indicates the degree of satisfaction

or violation of an NFR. Figs. C.1 to C.5 present the ExS results for the different scenarios

of RDMSim (presented in Chapter 6). Under scenarios S2, S3, S5 and S6, the ExS values for

both MinC and MaxP are above the satisfaction boundary at almost all of the time steps.This

indicates positive degrees of satisfaction. The exception lies only under scenario S4 where

there is drop in the ExS of MinC and MaxP at several time steps. As S4 represents an en-

vironmental situation where a phase of consecutive and unexpected packet loss is observed

during the execution of MST topology, this drop is considered as usual. However, there is

a reduction in the ExS, yet this decline lies closer to the satisfaction boundary of zero, as

shown in Fig. C.3.

Furthermore, the Pri-AwaRE also demonstrates promising results with respect to the

satisfaction of MaxR under all the scenarios. The ExS value for MaxR is above the satisfac-

tion boundary of zero at most of the time steps. It represents positive degrees of satisfaction

for MaxR. Furthermore, the results also show a drop in the ExS value for MaxR. However,

the ExS value goes below zero, this deviation in the ExS value ranges between -0.2 to -1.8

under scenario S2, -0.1 to -2.2 under S3, -0.1 to -1.4 under S4 and -0.1 to -1.8 under S5,

as shown in Figs. C.1 to C.4. The exception lies in case of scenario S6. Under S6, a

decline in the ExS value of MaxR is observed at most of the time steps. However, there

is a decrease in the ExS value, but this drop is not large enough and ranges from -0.3 to

-2.2, as presented in Fig. C.5. Moreover, all these ExS values are closer to the satisfaction

boundary of zero. Moreover, Pri-AwaRE shows maintenance of the extent of satisfaction of
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NFRs (i.e. ExS(NFRs)>= 0) in more than 50 percent of the simulation time steps.

Figure C.1: RDM Case: Extent of Satisfaction (ExS) of NFRs over Time under Scenario S2

Figure C.2: RDM Case: Extent of Satisfaction (ExS) of NFRs over Time under Scenario S3

Figure C.3: RDM Case: Extent of Satisfaction (ExS) of NFRs over Time under Scenario S4
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Figure C.4: RDM Case: Extent of Satisfaction (ExS) of NFRs over Time under Scenario S5

Figure C.5: RDM Case: Extent of Satisfaction (ExS) of NFRs over Time under Scenario S6
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Appendix D

Optimistic Linear Support

This appendix discusses the Optimistic Linear Support (OLS) algorithm. The algorithm

makes use of the Multi-Reward Persues (MR-Persues) solver, a point-based technique used

for solving POMDPs. Details about the MR-Persues algorithm are also described.

D.1 OLS algorithm

The Optimistic Linear Support (OLS) [129] algorithm is an approach used to solve POMDPs,

and is based on Cheng’s Linear Support [34]. The OLS is presented as Algorithm 1. It

follows an outer loop approach by creating an outer shell around Multi-reward Persues (MR-

Perseus) solver. Persues [154] is a point-based planning technique for solving POMDPs. By

using an outer loop for MR-Persues solver, it generates a solution set referred as the Convex

Coverage Set (CCS) X [128]. The CCS X is used to specify the collection of value-vectors

Vπ (representing the multi-objective values) and their associated policies π such that after

performing scalarization a maximizing policy is in the set. To select the policy, having

a maximizing value V∗
X(w), linear scalarization of the value vector is carried out. Linear

scalarization uses parameters specified in the form of weights vector1. OLS helps in com-

putation of these weights in an intelligent way at runtime. The OLS algorithm for a two

objective problem, as presented in [127, 129] is shown in Fig D.1.

The OLS algorithm begins by taking an empty set of X specifying the CCS of value-

vectors as presented in line 1 of Algorithm 1. The algorithm repeats steps 2 to 9 up till no

improved value-vectors are found. This is estimated by the Maximal Possible Improvement

∆ [127, 129]. During the first two iterations of the while loop, the algorithm chooses the

1For a two objective problem, the value of one of the weights can be calculated as one minus the other
weight by applying linear scalarization as: w1= 1- w2. Where w1 and w2 represent the scalarization weights
for the values related to objective 1 and objective 2 respectively.

H. Samin, PhD Thesis, Aston University 2022 162



APPENDIX D.
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Figure D.1: Optimistic Linear Support

first two corner points known as the extrema of the weights simplex i.e. wa= 0.0 and

wb=1.0 specified by the red vertical lines shown in Fig. D.1. Then, the value-vectors, for

instance Va= [8,1] and Vb=[2,7], for these corner points (wa and wb) are calculated using a

MR-Persues Solver. Va and Vb are specified by the blue lines between these corner points.

Based on these value vectors, a new corner point (wc) is discovered at their intersection.

Next, maximal possible improvement ∆ [129] is calculated for wc. If ∆ is improved then for

this new corner point wc, a new value vector Vc= [6,5] is computed using the MR-Persues

solver as presented in Fig D.1. Based on the Vc, more corner points, such as wd and we,

are identified from the intersection points of the existing value vectors. Again Maximal

Possible Improvement ∆ for each corner point wd and we is computed. The corner point

(out of wd and we) having high ∆ is then selected, and MR-Persues solver is called again to

calculate the value-vector for the selected corner point. The process is repeatedly executed

until none of the remaining corner points yield an improvement in the form of ∆.

This whole process returns a CCS set X comprising of the value vectors and their cor-

responding policies. As more than one policy is returned, the best policy is selected with

the help of a scalarization function by taking weight values computed as part of the OLS

algorithm. The policy with the maximum scalarized value V∗
X(w) is then chosen. The

flowchart showing the step by step execution of OLS algorithm is presented in Fig D.2.

The OLSAR algorithm is an extension of OLS algorithm and follows the same steps

as OLS. However, it reuses the alpha matrices from previous iterations to estimate the

approximate Convex Coverage Set (CCS) of value vectors.
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Algorithm 1: Optimistic Linear Support

1: X ← ∅
2: while ¬(∆.isMaximum()) do
3: Select w ▷ Select Corner Point w
4: (V, π)←MRPersuesSolver(w) ▷ Calculate Value-Vector V and π
5: Calculate∆
6: if ∆.isMaximum() then
7: X ← X ∪ V
8: end if
9: end while

10: return Convex Coverage Set X

Figure D.2: Step By Step Execution of OLS

D.2 Persues POMDP Solver

Persues is a POMDP solver based on the point-based Value Iteration framework (PBVI)

[154]. The algorithm is divided into two main parts, as presented in Algorithms 2 and 3, as

follows:

1)Random Exploration of the belief space to gather the belief values for objectives (i.e.

H. Samin, PhD Thesis, Aston University 2022 164



APPENDIX D.

NFRs in case of Pri-AwaRE).

2) Update of the Value function by applying Bellman backup [144].

In point based methods, the Value function V is specified in the form of α-vectors that

are presented as follows:

V = α =

⎡⎢⎢⎢⎢⎢⎢⎣
V (s1)

V (s2)

...

V (sn)

⎤⎥⎥⎥⎥⎥⎥⎦ (D.1)

and Value over belief is calculated as:

Vb = α.b (D.2)

Algorithm 2: Perseus: Random Exploration

1: Initialize b← b0
2: repeat
3: select a ∈ A randomly
4: o = performAction(a)
5: ba,o ← beliefUpdate(b, a, o)
6: Add ba,o to B
7: b← ba,o

8: until |B| ̸= n
9: return B

Perseus algorithm begins with creation of a sample set of belief points by performing

Random Exploration in the belief space. During the Random Exploration, an action is

randomly chosen. The chosen action is then executed which results in an observation. For

instance, based on the selected action a and observation o, a new belief sample point is

calculated using the belief update procedure presented as follows:

ba,o(s′) = Pr(s′|b, a, o) = Pr(s′, b, a, o)

Pr(b, a, o)
(D.3)

=
Pr(o|s′, b, a)Pr(s′|b, a)Pr(b, a)

Pr(o|b, a)Pr(b, a)
(D.4)

=
O(a, s′, o)

∑︁
s∈S Pr(s′|b, a, s)Pr(s|b, a)
Pr(o|b, a)

(D.5)
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Algorithm 3: Perseus: Value Function Update

1: Initialize V ← V0 ← αmin

2: repeat
3: B′ ← B
4: V ′ ← ∅
5:

6: repeat
7: Randomly pick b ∈ B′

8: αnew ← PointBasedBackup(b, V )
9:

10: if α.b ≥ Vb then
11: B′ ← b ∈ B′ : α.b < Vb

12: αb ← αnew

13:

14: else
15: B′ ← B′ − b
16: αb ← argmaxα∈V α.b
17:

18: end if
19: V ′ ← V ′ ∪ αb

20:

21: until B′ = ∅
22: until V converges
23: return V, B ← ∅

where

Pr(o|b, a) =
∑︂
s∈S

b(s)
∑︂
s′∈S

T (s, a, s′)O(a, s′, o) (D.6)

Once the belief sample set is created, the initial value function specified in the form of

α-vectors is calculated as follows:

Rmin = minR(s, a) (D.7)

αmin = Rmin/1− γ (D.8)

V0 = {αmin} (D.9)

After the computation of the belief sample set and the initial set of α-vectors, a point-

based backup is carried out iteratively to estimate an optimal α-vector. During each iter-

ation, a set B’=B and a new Value function V’=∅ are generated. One belief sample point

is chosen at random from B’, and is used to for the computation of a new α-vector by
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executing the point-based Bellman backup. For example, for k+1 iteration, the backup can

be computed as follows:

backup(b, V ) = argmax
αb,a
k+1

b.αb,a
k+1 (D.10)

where

αk+1 = ra + γ
∑︂
o∈Ω

argmax
ga,o

b.ga,o (D.11)

ga,oi =
∑︂
s′∈S

O(a, s′, o)T (s, a, s′)αi(s
′) (D.12)

where ga,o represent the back-projections for all actions a and observations o of each

next stage α-vector i.e αi ∈ αk.

If αnew.b > V (b), then αnew is added to the set V’ and all other belief sample points

b′ ∈ B′ the value of which is improved by αnew i.e. αnew.b
′ > V (b′) are removed from B’.

Hence, the values of these belief points are not backed up at the current iteration. On the

other hand, if αnew.b < V (b) then αold = argmaxα∈V α.b is added to V’. The iteration ends

when B’= ∅ and V is set to V’.

The procedure is repeated until V converges i.e. the difference between the V(b) from

the current iteration and previous iteration is greater than the precision parameter η. More

details about the implementation of the Perseus solver can be found at [162].

D.3 Multi-Reward Perseus

For the purpose of solving multi-objective decision-making problems, multi-objective rein-

forcement learning techniques that have a vector-valued reward function R, instead of a

scalar reward value, are used. Therefore, in such a case, point-based methods represent the

value function in the form of α-matrix A, instead of α-vector, to support multiple objectives

as follows:

A =

obj1 obj2 ... objn[︄ ]︄
V (s1) V (s1) ... V (s1)

V (s2) V (s2) ... V (s2)

(D.13)

Hence, in Multi-Reward Perseus (MR-Perseus) algorithm, the point-based backup re-
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turns an α-matrix instead of an α-vector. It takes the set of sampled belief points and

initial set of α-matrix and carries out the computation of backup for the Value vector by

calculating the vectorized back-projections Ga,o for each next stage α-matrix Ai ∈ Ak. The

point-based backup for MR-Perseus is calculated as follows:

backup(b,V) = argmax
Ab,a

k+1

b.Ab,a
k+1 (D.14)

where

Ak+1 = ra + γ
∑︂
o∈Ω

argmax
Ga,o

b.Ga,o (D.15)

Ga,o
i =

∑︂
s′∈S

O(a, s′, o)T (s, a, s′)Ai(s
′) (D.16)

The MR-Persues solver follows the same steps as that of the single-objective Perseus

solver except that it works with α-matrices and value vectors.
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Appendix F

Technical Report:
Evaluation of Pri-AwaRE using
Non-Inferiority Trials

Abstract

The main objective of decision-making techniques for self-adaptive systems (SAS) is to

support decisions for maintaining the satisfaction of non-functional requirements (NFRs)

under environmental fluctuations. For this purpose, these techniques pursue the best possi-

ble trade-offs between the NFRs in order to keep the system inside the acceptability envelop

of good behaviour. Understanding the nuances of these trade-offs is crucial to exploit the

acceptability envelop. Therefore, the following questions are presented: given a decision-

making technique, what is the margin of acceptable sacrifice inflicted on one NFR to satisfy

another? How one technique compares to other techniques with respect to those margins of

acceptability? In this report, an approach based on the Non-Inferiority (NI) Trial, used in

clinical trials, has been applied to compare different decision-making techniques in SAS to

tackle the previous questions. The evaluation has been performed for the decision-making

techniques: Pri-AwaRE and RE-STORM. The results have shown that NI Trials can of-

fer additional valuable insights about the achieved NFRs’ satisfaction by decision-making

techniques and their nuances, to therefore exploit the envelop of acceptability.

F.1 Introduction

Self-adaptive systems (SAS) are required to continuously adapt under changing environ-

mental conditions [93, 139]. The main goal is to maintain the satisfaction levels of the
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multiple quality properties, also known as non-functional requirements (NFRs), such as

maximization of performance, maximization of reliability levels and minimization of oper-

ational costs or energy consumption for a network [86, 93, 139, 165]. As the environmental

conditions change, a SAS performs self-adaptations that imply trade-offs between the differ-

ent NFRs. These trade-offs involve diminishing one NFR in return for gains in other NFRs.

Decision-making techniques for SAS should pursue the best possible NFR trade-offs to keep

the system inside the acceptability envelope of good behavior. The acceptability envelope

is defined as a region where the system delivers acceptable (even if imperfect) service to its

users [125]. Different trade-offs can maintain the system inside the acceptability envelop.

However, some trade-offs are better than others. For the purpose of optimizing the use

of the envelope of acceptability according to the requirements specification, it is crucial to

understand the nuances of the NFR trade-offs implied by decision-making techniques. A

point to be argued is how much can the satisfaction level of one NFR be sacrificed to further

satisfy another while still keeping the system inside the acceptability envelope? In other

words, what is the acceptable margin that we can let go for one NFR to compensate the

satisfaction of another NFR.

As other authors [4, 5], inspiration has been found from the area of medical research

to go in quest of possible answers. In the area of clinical research, new treatments for

illnesses can be proposed while a working treatment exists (called active control). When

this happens, the new treatment is evaluated to demonstrate that it is not inferior to an

unacceptable extent [66]. The new treatment is evaluated for the purpose of assessing its

effectiveness (with respect to ease of use, adverse effects or cost etc.) when compared to the

existing working treatment. In medicine, effectiveness (also known as efficacy) is defined as

the ability of a drug to produce the desired beneficial effect [1]. Specifically, clinical experts

are interested in studying possible trade-offs between the quality properties offered by the

new treatment and those offered by the existing currently used treatment. To evaluate

the similarities and differences between the two treatments the statistical test known as

the Non-Inferiority (NI) Trial is used [140, 161]. While the existing treatment has already

proven to be effective [6], the NI Trial is used to demonstrate that the new treatment is not

inferior to the existing treatment (i.e. active control) to an unacceptable extent.

This is important because using a new treatment that has been shown to be not unac-

ceptably worse than the active control, might offer benefits. For example, when developing
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a new treatment to prevent tuberculosis, medical researchers might be willing to sacrifice

a small amount of the benefits offered by the existing treatment in order to obtain (e.g.)

simpler dosing schedules, or fewer side effects [161] if one or more of these benefits were

offered by the new treatment.

A number of approaches exist that evaluate the trade-offs offered by the decision-making

techniques, typically based on Pareto Front [67] or on Utility Functions [122, 172]. In con-

trast to these approaches the use of the NI Trial can offer insights about the nuances of

the trade-offs of NFRs offered by self-adaptation techniques that are not offered by these

approaches. These insights offers better exploitation of the acceptability envelop and decide

on the best techniques, given the requirements for the NFRs’ satisfaction specified [136, 138].

The report focuses on presenting two main things:

1) How the NI Trial technique can be used to evaluate the level of effectiveness of the

decision-making techniques for SAS.

2) A proof of concept based on the application of the NI Trial-based approach to eval-

uate two decision-making techniques based on reinforcement learning: Pri-AwaRE and

RE-STORM.

The report is organized as follows: Section F.2 provides a description of the NI Trial.

Section F.3 presents the approach by describing the mapping for the NI Trial to the decision-

making techniques for SASs. Section F.4 provides the Experimental Evaluation which is

followed by Related Work and Conclusion in Sections F.5 and F.6 respectively.

F.2 Non-Inferiority Trial (NI Trial)

In the field of medicine, new treatments are developed to progressively provide more effective

treatment for diseases [66]. Once a new treatment has been developed the differences

between it and the existing standards of care or working treatments (also known as active

control), are explored. To be successful, the new treatment must be shown to perform better,

for at least some given parameters that may be preferable under some circumstances; (e.g.)

that it is a better treatment for a given sector of the population. The main idea is to

demonstrate the superiority of a new treatment over an existing one.

However, even if the new treatment does not prove to be better than the existing one,
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it may still offer advantages with (e.g.) respect to ease of use, adverse effects or cost that

may as well contribute towards the effectiveness of the treatment. For example, blood

thinning medication Warfarin was widely used in patients with irregular heart rhythms

(like Atrial Fibrillation) to prevent complications such as stroke. Patients taking Warfarin

require regular monitoring through blood tests for dose adjustment because there is risk of

bleeding which could sometimes be life threatening. New blood thinners known as DOACs

(Direct Oral Anticoagulants) are now recommended in these patients instead of Warfarin

due to a number of reasons. There is a reduced risk of bleeding with DOACs. Therefore,

regular monitoring through blood tests is not required. This adds to the effectiveness of

DOACs in terms of its cost, safety and ease of use for the patients. However, DOACs has a

limitation that it cannot be given to patients with severe kidney failure whereas Warfarin

is considered safe for these patients [32, 47].

Hence, clinical experts do make a trade-off based on the quality properties offered by the

new treatment in comparison to those offered by the existing treatment. In order to evaluate

how similar the two treatments are in terms of their effectiveness, the statistical test known

as the Non-Inferiority Trial is typically used [140, 161]. The goal is not to show that the

new treatment is better, but to show that the new treatment is ‘not unacceptably worse’

than the existing treatment (i.e. active control). Hence, a non-inferiority trial, in contrast

to a superiority study [66, 161], demonstrates that the new treatment is not inferior to the

existing treatment, as presented in Fig. F.1. Using a new treatment (such as DOAC), that

is not unacceptably worse in effectiveness than the active control (such as Warfarin), might

be beneficial as it might cause fewer side effects and improved quality of life and dosing

regime. Hence, to achieve the satisfaction of such quality properties, medical researchers

might be willing to sacrifice some small amount of benefit specified as the margin dNI . The

main goal of the NI trial is to test whether the effect of the new treatment is not unac-

ceptably worse than the effect of the active control by more than a pre-defined NI margin

dNI . The effect is represented by the difference in mean outcomes of the two groups for a

particular quality property and the margin is defined as the largest acceptable difference

with respect to achieving the quality property between the new treatment and the active

control [6].

The steps for carrying out the NI-Trial are as follows:

H. Samin, PhD Thesis, Aston University 2022 173



APPENDIX F.

Figure F.1: Non-Inferiority Trial for Medical Treatments[140]

Step 1: Define the Null H0 and Alternative Hypothesis Ha for the experimental

evaluation: The hypothesis for the NI Trial is defined in terms of the difference of means

as follows:

H0: The Confidence Interval of the difference of means is less than or equal to the dNI i.e.

CIµnew − µcontrol <= dNI

Ha: The Confidence Interval of the difference of means is greater than the dNI i.e. CIµnew−

µcontrol > dNI

Step 2: Choose an active control that has proven to be performing better than

placebo: Placebo is defined as a fake or dummy drug that has no therapeutic effect [39]. It

is used in clinical trials to evaluate the effectiveness of new drugs or treatments.

Step 3: Choose the NI margin dNI : The dNI is defined in advance by the clinical

experts before performing the NI Trial. The margin can be selected conceptually [140] by

asking the experts what level of effectiveness they would be willing to sacrifice in return

for the benefits offered by the new treatment. Alternatively, a number of formal approaches

for setting the margin exist such as synthesis approach (also known as putative placebo)

and fixed margin approach etc [161]. Out of these, the fixed margin approach is the one

H. Samin, PhD Thesis, Aston University 2022 174



APPENDIX F.

recommended by the US Food and Drug Administration (FDA) [66]. Therefore, we use the

fixed margin method for selection of the margin dNI for our experimental evaluations. The

fixed margin approach is described as follows:

Fixed Margin Approach: The fixed margin approach starts by calculating M1, where

M1 represents the entire effectiveness of the active control compared to placebo. This cal-

culation makes use of meta-analytic methods with data from previous experimental studies

carried out to evaluate the active control. For this purpose, a 95% Confidence Interval (CI)

around the difference of means between the active control and placebo is calculated. The

CI of the difference of means is calculated as follows:

CI = (µcontrol − µplacebo)± 1.96

√︄
σ2
control

ncontrol
+

σ2
placebo

nplacebo
(F.1)

Here, µ, σ and n represent the mean, standard deviation and sample size for the placebo

and active control respectively. After the CI is computed, M1 is the lower limit of this CI.

Once M1 is specified then a smaller margin, M2, is calculated. M2 is specified by preserv-

ing some pre-determined fraction (50% or 75%) of the estimated effect of the active control.

This fraction is selected based on clinical practice and expert judgement [140]. The M2 is

interpreted as the largest loss of effect (inferiority) that would be considered as clinically

acceptable when comparing the new treatment to the active control. This M2 represents

the dNI for the NI Trial.

Step 4: Evaluate Non-inferiority of the new treatment : This is done by calculation

of the 95% CI for the difference of means of the new treatment and the active control as

follows:

CI = (µnew − µcontrol)± 1.96

√︄
σ2
new

nnew
+

σ2
control

ncontrol
(F.2)

Here, µ, σ and n represent the mean, standard deviation and sample size for the new

treatment and active control. The NI Trail is considered as successful if the lower limit of

the 95% CI for the difference of means lies above the dNI . As a result, the new treatment

will be considered non-inferior to the active control, as shown in Fig. F.1. Therefore, it will

reject the H0 and accept Ha.
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F.3 An NI Trial-based Approach to assess SAS decision-
making techniques

This section presents the approach for evaluating decision-making techniques for SASs using

the NI Trial. A mapping from the NI Trial in medical science to a NI Trial-based technique

to evaluate decision-making in SAS is described as follows:

F.3.1 From New Treatment for Disease in Medical Science to New Decision-
Making Technique for SAS

In medical science, the NI Trial is used to assess the effectiveness of the new treatment

under investigation based on the quality attributes that it offers such as increasing survival

time, minimization of costs etc. In a similar way, we can assess the effectiveness of the

decision-making techniques for SAS. Using the NI trial, we can evaluate the effectiveness of

the new technique in terms of the satisfaction of the quality properties (i.e. NFRs) for the

SAS. Based on this, Definition 1 is presented as follows:

Definition 1: In the NI Trial for decision-making techniques in SASs, the new decision-

making technique is considered as the new treatment in the NI Trial for medical science.

In the experimental evaluation provided in this report, Pri-AwaRE based on MR-

POMDP is selected as the new technique.

F.3.2 From Active Control in Medical Science to State-of-the-Art Decision-
Making Techniques for SAS

In the NI Trials for medical science, active control represents the existing treatments for the

diseases that are already in use and have proven to be effective. Similarly, in the domain

of decision-making for SAS, we have existing state-of-the-art techniques. These techniques

have already been applied to different example applications and have proven to be effective

in terms of satisfaction of NFRs for SAS. Based on this, Definition 2 is provided as follows:

Definition 2: In the NI Trial for decision-making techniques in SASs, the state-of-the-art

decision-making techniques are considered as the active control in the NI Trial for medical

science.
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In the experiments presented in this report, the single-objective approach of RE-STORM

is selected as the active control.

F.3.3 From Placebo in Medical Science to a Placebo Technique for SASs

The clinical trials in medical science are typically termed as placebo controlled trials. In

this context, placebo is a dummy or fake drug that doesn’t have any physiological benefits.

However, in some cases, it is prescribed to the patients for psychological effects. In NI

Trials, the placebo is used to test the effectiveness of the active control. In other words,

the active control, that is selected, should have proven to be effective when compared to a

placebo. Similarly, in the NI Trial for decision-making in SAS, a placebo technique should be

selected that has some kind of effect on the adaptive system. The main challenge lies in the

selection of the placebo for SAS. Considering the properties of a placebo in the controlled

trials for medical research, we cannot consider the system working without an adaptive

mechanism as the placebo. Hence, a random adaptation mechanism has been selected as

a placebo technique because it might have some random effect on the NFRs of the SAS.

Based on this, the third definition is presented as follows:

Definition 3: In the NI Trial for decision-making techniques in SAS, a placebo technique

similar to the placebo in the NI Trial for medical science will be chosen.

In the experiments of this report, an adaptation technique that comes up with random

options to decide the adaptations to be applied is selected as a placebo.

F.3.4 From dNI to the margin of acceptability specified in SAS

In NI Trials for medical research, the dNI is selected in advance by clinical experts using

their expert judgement [108] As discussed before, the NI margin dNI refers to the largest

acceptable difference in effectiveness between the new treatment and the active control. Set-

ting the dNI in medical research can be seen as defining the requirements specifications for

a SAS, which is carried out by requirements engineers [139]. In the case of a SAS, the dNI

can be described as the largest acceptable difference in terms of satisfaction of a particular

NFR between the new technique and the existing state-of-the-art technique (active control).

As the requirements engineers set the specifications for the NFR satisfaction levels, they

H. Samin, PhD Thesis, Aston University 2022 177



APPENDIX F.

will also specify the dNI . The latter triggers interesting future research threads discussed

further in Section F.4.5. Based on the above, Definition 4 is presented as follows:

Definition 4: In the NI Trial for decision-making techniques in SAS, dNI is defined as

the largest acceptable difference for the satisfaction of a particular NFR between the new

technique and the existing state-of-the-art technique.

In the experiments presented in this report, the fixed margin approach has been used

for setting the dNI . Let’s recall, in the fixed margin approach, the M1 represents the entire

effectiveness of the active control compared to the placebo. Similarly, in the fixed margin

approach for SAS, M1 would refer to the total required NFR satisfaction achieved by the

active control technique in comparison to the placebo technique. Furthermore, the expert

judgement of the requirements engineers would be applied to choose the fraction of M1

that must be preserved by the new technique. The dNI (M2) will represent the remaining

fraction of M1. The new technique would be considered non-inferior to the existing decision

making technique, if the CI of the difference of the average (mean) satisfaction level (for a

NFR) between the new technique and existing technique is greater than dNI . Here, non-

inferior means that the new technique is not unacceptably worse than the existing technique

with respect to satisfying a particular NFR.

F.4 Experimental Evaluations

As part of the work presented in the thesis, Pri-AwaRE based on the multi-objective (multi-

reward) reinforcement learning i.e. MO-RL has been applied to offer decision-making to

the case studies of Remote Data Mirroring (RDM) network and Internet of Things (IoT)

network. The RDM is simulated using the application RDMSim [137] and the IoT network is

based on the simulating environment of DELTA-IoT [72]. The experiments for the different

scenarios for both the case studies are performed. The approach of RE-STORM, based on

single-objective (single-reward) reinforcement learning (SO-RL), has also been applied to

offer decision-making for both the case studies. The approaches based on SO-RL present

state-of-the-art techniques as they have been applied successfully to a number of example

applications [22, 112, 154] in comparison to MO-RL, which is a newer technique for decision-

making in SAS.
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The study presented in Chapter 6 required the evaluation of the decision-making offered

by both techniques (Pri-AwaRE and RE-STORM) in terms of their ability to maintain the

required satisfaction levels of the NFRs. However, in this report, further details are provided

to identify acceptable trade-offs in terms of the satisfaction of the NFRs with respect to

assessing the acceptable loss of a given NFR against the benefits of another NFR. As

Pri-AwaRE (based on MR-POMDP) offers additional benefits, in this report, the focus is

on assessing the acceptability envelope of good behaviour for the SAS in terms of NFRs’

satisfaction.Using the NI Trial-based technique, experimental evaluations of the decision-

making offered by Pri-AwaRE (a MO-RL technique) against the approach of RE-STORM

(a SO-RL technique) are provided. RE-STORM is used as the active control.

Next, the experimental setup and dataset for the NI Trial are described.

F.4.1 Experimental Setup

This section presents the experimental setup for the evaluation of the Pri-AwaRE using

the NI Trial. The definitions, presented in Section F.3, have been used to identify the

new technique, active control technique and placebo technique. Based on the definitions,

Pri-AwaRE is selected as the new technique, RE-STORM is the active control and Random

Adaptation Mechanism is selected as the placebo.

F.4.2 Dataset

The dataset for the NI Trial comprises results for the decision-making (presented in Chapter

6) by both the Pri-AwaRE and RE-STORM for the case studies: RDM and IoT. The NI

Trial for evaluation of the Pri-AwaRE technique in terms of the satisfaction of NFRs against

the RE-STORM is performed. The objective is to prove that Pri-AwaRE is not inferior to

RE-STORM in terms of satisfying the NFR. The dataset for the experiments with NI Trial is

composed of the satisfaction values of a particular NFR that is achieved by both techniques

and placebo under a specific environmental scenario. The dataset format is presented in

Table F.1. The dataset containing results for all the scenarios for both the case studies are

available at [71]. Next, the experimental hypotheses are presented.

F.4.3 Experimental Hypothesis

This susbsection presents the hypotheses for the NI Trial:
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Table F.1: Experimental DataSet Format

MinC (Pri-AwaRE) MinC (RE-STORM) MinC (Placebo)
2376.0 3360.0 3060.0
4050.0 3048.0 2260.0
2465.0 4160.0 4258.0
2320.0 3225.0 3460.0
1080.0 1122.0 1130.0

*MinC refers to the NFR Minimization of Operational Cost and
it is specified as the total bandwidth consumed.

H0: The Confidence Interval of the difference of mean for an NFR satisfaction is less than

or equal to the dNI i.e. CIµPri−AwaRE − µRE−STORM <= dNI

Ha: The Confidence Interval of the difference of mean for an NFR satisfaction is greater

than the dNI i.e. CIµPri−AwaRE − µRE−STORM > dNI

F.4.4 Experiments

The experimental results for the NI Trial applied to decision-making techniques for SAS are

presented. The experiments have been executed for all the RDMSim [137] and DELTA-IoT

[72] scenarios. The results can be found at [71]. For the purpose of description, the experi-

ment results for two RDM scenarios Scenario 1 and Scenario 2 are provided. RDM Scenario

1 represents an environmental situation where link failures occur during the execution of

MST topology that results affecting the reliability of the RDM network, and RDM Scenario

2 specifies an environmental situation where unexpected packet loss might generate an un-

sual rate of data forwarding during the execution of Redundant Topology. This would lead

to higher bandwidth consumption and also reduce the system’s performance.

Next, a description of the results for the NI Trial for the RDM scenarios as shown in

Figs. F.2 and F.3 is provided.

Lets take the example of NI Trial for the case of MinC under RDM environmental

Scenario 1. The main goal is to test that Pri-AwaRE is non-inferior to RE-STORM in

terms of satisfying the NFR MinC. In order to carry out the NI Trial, the NI Margin dNI

is selected using the fixed margin approach.

The selection of the margin is described as follows: In order to select the dNI , the CI for

the difference of mean of RE-STORM against placebo for MinC satisfaction is evaluated.

The mean and standard deviation for the satisfaction of MinC using RE-STORM is 2282.842
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Figure F.2: RDM Case: Non-Inferiority Trial to assess the non-inferiority of Pri-AwaRE in comparison to
RE-STORM under Scenario 1

Figure F.3: RDM Case: Non-Inferiority Trial to assess the non-inferiority of Pri-AwaRE in comparison to
RE-STORM under Scenario 2

GBps and 1169.866 GBps respectively. In case of placebo, the mean and standard deviation

for MinC is 3632.87 and 1751.196 GBps respectively. The important point to note here is

that the RE-STORM (i.e. active control) is showing better satisfaction of MinC on average

than the placebo (Random Adaptation) under Scenario 1 as presented in Fig. F.4. After the

CI for the difference of means is evaluated on the basis of the mean and standard deviation,

we can select M1 as the lower level of the CI which is equal to -1534.628. Next, the M2,

i.e. dNI is selected. Following the best practice in medical science that is to preserve 50

percent of the effectiveness of the active control [140], M2 is selected as (1-0.50) x M1. As a

result, we get the dNI equal to -767.314 under Scenario 1. Based on this, the Pri-AwaRE is

considered as non-inferior if the CI of the difference of mean for MinC satisfaction between

Pri-AwaRE and RE-STORM is greater than or equal to -767.314 GBps. The dNI here

specifies the margin or threshold for the acceptability envelope for the satisfaction of MinC.

It means if the CI of the difference of mean (for MinC satisfaction) between Pri-AwaRE
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and RE-STORM is greater than the acceptable margin dNI then the Pri-AwaRE would be

showing the satisfaction of MinC within the acceptability envelope as it was the case and

is explained next.

After computing the dNI , the CI of the difference of means is computed as shown in Fig.

F.2. The mean difference for Pri-AwaRE and RE-STORM is 866.874 GBps and the CI for

the difference of means is 685.486 - 1048.261. As the lower bound of the CI is greater than

the dNI , the Pri-AwaRE is considered non-inferior to RE-STORM in terms of satisfaction of

MinC. Moreover, as the CI is greater than zero, it is also considered superior to RE-STORM.

The NI Trial for the case of MaxP under Scenario 1 shows similar results. Therefore, it

proves that the Pri-AwaRE is non-inferior to RE-STORM in terms of satisfying both MaxP

and MinC. The CI for the difference of means for the NFRs under RDM Scenarios 1 and 2

are shown in Table F.2. Based on the results provided, the H0 is rejected to accept Ha for

the case of MinC and MaxP. Furthermore, the NI Trial for MinC and MaxP under RDM

Scenario 2 also shows that Pri-AwaRE is non-inferior to RE-STORM as presented in Fig.

F.3. Hence, it proves that that the Pri-AwaRE is not unacceptably worse than RE-STORM

with respect to satisfying the NFRs MinC and MaxP.

Moreover, the experiment results for the NI Trial also show that Pri-AwaRE is non-

inferior to RE-STORM in terms of satisfying MaxR as presented in Fig. F.2. The difference

of means between Pri-AwaRE and RE-STORM for satisfying MaxR is 36.05 active links

with the CI for difference of 29.204 - 42.896, as shown in Table F.2. The results show that

the Pri-AwaRE is non-inferior to RE-STORM but it represents a case of Assay Sensitivity

[140, 161]. In medical trials, having the case of Assay Sensitivity means that for some

disease experiments the existing treatment might not always show benefit in comparison

to a placebo [140]. As a result, the NI Trial would demonstrate non-inferiority of the new

treatment. This is similar to the case of MaxR where the case of Assay Sensitivity is shown.

The reason is that the RE-STORM (i.e. active control) shows an average satisfaction of

89.87 active links for MaxR which is lower than that of Random Adaptation Mechanism

(placebo) which exhibits 144.65 active links on average as shown in Fig. F.4. Hence, the RE-

STORM shows lower reliability level than the Random Adaptation. As the active control

is not performing better than the placebo in terms of satisfaction of MaxR, the results are

not considered as accurate and therefore possess Assay Sensitivity case. The NI Trial for

the case of MaxR also shows similar results under Scenario 2 as shown in Fig. F.3. In the
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Figure F.4: Comparison of RE-STORM and Random Adaptation under RDM Scenario 1

Figure F.5: Comparison of RE-STORM and Random Adaptation under RDM Scenario 2

case of the Assay Sensitivity, the results are inconclusive because the active control does not

perform better than placebo, but would likely hint non-inferiority of the Pri-AwaRE [140]

in some cases. Experimental evaluations for all of the RDM Scenarios show similar results

and are reported in [71].

Moreover, experimental evaluations for the case of DELTA-IoT have also been performed

using the NI Trial. The results for IoT case are also provided in [71]. In the DELTA-IoT

case, the experiment results for the NI Trial also show that Pri-AwaRE is non-inferior

to RE-STORM in terms of satisfying Minimization of Energy Consumption (MinEC) as

presented in Fig. F.6. The difference of means between Pri-AwaRE and RE-STORM for

satisfying MinEC is 6.016 coulombs with the CI for difference as 5.779 - 6.252, as shown in

Table F.3. The results show that the Pri-AwaRE is non-inferior to RE-STORM as shown

in Fig. F.6. Moreover, the experiment results for the case Minimization of Packet Loss

(MinPL) represents a case of Assay Sensitivity [140, 161]. This is similar to the case of

MaxR (in case of RDM) where the case of Assay Sensitivity is shown. The reason is that the

RE-STORM (i.e. active control) shows an average satisfaction of 0.1494 (i.e. 14.94 percent)
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Table F.2: RDM Case: CI for the difference of Means for NFR Satisfaction between Pri-AwaRE and
RE-STORM under Scenarios 1 and 2

Scenario NFR Mean Difference Confidence Interval NI Margin

1 MinC 866.874 685.486 – 1048.261 -767.314

MaxR 36.05 29.204 – 42.896 -30.853

MaxP 576.87 461.27 – 692.469 -472.027

2 MinC 14.258 -132.615 – 161.132 -778.565

MaxR 0.398 -5.168 – 5.964 -25.3014

MaxP 39.9507 -54.227 – 134.128 -454.005

Table F.3: IoT Case: CI for the difference of Means for NFRs Satisfaction between Pri-AwaRE and
RE-STORM

NFR Mean Difference Confidence Interval NI Margin
MinEC 6.0159 5.7794 – 6.2523 0.23643
MinPL -0.00756 -0.0132 – -0.0019 -0.00226

of packet loss which is higher than that of Random Adaptation Mechanism (placebo) which

exhibits 0.1454 (14.54 percent) of packet loss on average as shown in Fig. F.7. Hence, the

RE-STORM shows lower satisfaction of MinPL than the Random Adaptation. In the case

of the Assay Sensitivity, the results are inconclusive because the active control does not

perform better than placebo. Moreover, Pri-AwaRE shows an better satisfaction level for

MinPL on average in comparison to RE-STORM (as presented in Fig. 6.2). In case of

Pri-AwaRE, the average satisfaction for MinPL is 0.1418 (i.e. 14.18 percent) of total packet

loss which is lower than that of RE-STORM where the average satisfaction for MinPL is

0.1494 (14.94 percent). Moreover, the results are statistically significant by having a p-value

<= 0.05.

Figure F.6: IoT Case: Non-Inferiority Trial to assess the non-inferiority of Pri-AwaRE in comparison to
RE-STORM
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Figure F.7: IoT Case: Comparison of RE-STORM and Random Adaptation

F.4.5 Discussion and Research Outlook on Future Research

Results from the evaluations have shown that the NI Trial provides more insights about the

effectiveness of the new technique with respect to satisfying the NFRs. Moreover, it helps

us in assessing nuances of the NFRs’ trade-offs offered by decision-making techniques, and

to what extent they are complying to the acceptability envelope of good behavior indicated

by the NI margin dNI . In the experiments, the NI Trial has shown that Pri-AwaRE is

non-inferior to RE-STORM. In some cases, as probably expected, it has proven to be even

superior to the RE-STORM with respect to satisfying the NFRs.

In this report, an initial prototype for application of NI Trial in the domain of decision-

making in SASs for better exploitation of the decision-making techniques is presented. With

this initial prototype example, I have demonstrated that the NI Trial based approach can

be used for evaluation of decision-making techniques to provide further insights for decision-

making and satisfaction of the NFRs. To further evaluate the application of the NI approach

in the domain of decision-making for SASs, I intend to perform further experiments using

other decision-making techniques [26, 28, 172] in future.

Moreover, based on the results presented in the report, the work related to to the usage

of NI Trials for evaluation of decision-making techniques could be extended by targeting

the following main areas:

Selection of Placebo: In this report, random adaptation mechanism has been selected as

the placebo for the experiments. However, further investigation to study the effects of the

selection of the placebo technique is required. The plan is to further explore the different

approaches and mechanisms that are followed by the medical scientists for selection of the
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placebo [160] and apply those procedures in the domain of decision-making for SAS.

Different types of NI Margin selection methods: So far, the fixed margin approach

has been used for the selection of the NI margin (dNI). Further exploration with respect

to the application of different available techniques such as synthesis method for the margin

selection [66, 140] is required . Furthermore, I consider that the NI margin is relevant during

the specification of the stakeholders’ requirements while assessing the acceptability of the

satisfaction levels of the NFRs. As such, I would like to extend the application of the NI

Trial with respect to these aspects. Moreover, at the moment, the fixed margin approach

has been used as a way to set a local NI margin for each dynamic scenario for the RDM

system. However, it could also be the case that one global NI margin for an NFR could be

applied for the SAS working under all the dynamic situations, which would depend on the

requirements and context of the application and its domain.

F.5 Related Work

Efforts have been made to devise approaches to evaluate SAS and their NFRs [40, 60],

with whom I share similar goals around the evaluation of SAS to pursue new findings when

developing new techniques. The related work is divided into two parts as follows:

F.5.1 Evaluation of Decision-Making Techniques for SASs dealing with
trade-offs of NFR

Techniques have been developed to deal with the trade-off analysis of the NFRs. The

techniques are typically based on the multi-criteria-decision-making [94, 113], evolutionary

computation [25, 122], probabilistic models such as Dynamic Decision Networks [15, 67]

and different markov based approaches [28, 51, 112]. These techniques have been compared

with the existing state-of-the-art techniques using the Pareto Front [67] or using the Utility

Functions [122, 172] to evaluate the best trade-offs.

The approach presented in [44], provides a statistical approach to assess the degrees

of satisfaction of the NFRs during the decision-making in SAS. Specifically, the authors

presented an automated objective statistical approach, as opposed to relying on human

expertise, to quantifying the extent that an NFR is violated (or satisfied). As in my case,

the authors were motivated to further explore the trade-offs between NFRs in decision
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making of SAS.

Different from the work presented in this report, none of the approaches cited above

tackle the assessment of techniques and analysis of the trade-offs of the NFRs with respect

to the acceptability envelope of good behavior.

F.5.2 Approaches using NI Trial for evaluation of AI-based techniques

A number of studies have used the NI Trial for the evaluation of AI-based techniques or

intelligent software systems dealing with domains such as healthcare and diagnosis of dis-

eases [96, 105, 109]. In these studies, the purpose of the NI Trial has been to compare

the feasibility of the AI-based techniques against the diagnosis and practices of experts

in health care. Moreover, in [163], the NI approach has been used to evaluate the effec-

tiveness of setting the hyper-parameters to default values when compared to tuning of the

hyper-parameters for machine learning algorithms. The study shows that setting default

value for the hyper-parameters is considered non-inferior to the algorithm working with

tuned hyper-parameter values, and is also considered superior in some cases. The studies

presented in [42, 179] also evaluate the effectiveness of the hyper-parameters tuning using

the NI Trial. Furthermore, the study described in [101] also shows comparison of a meta-

heuristic optimization algorithm with the different optimization algorithms such as particle

swarm optimization, differential evolution and neural networks etc. However, the authors

of [42, 163, 179] and [101] show that their proposed technique is non-inferior to the existing

techniques, they don’t evaluate the effectiveness of their active control with respect to the

placebo for the selection of the NI margin dNI . Also, the studies don’t use a formal technique

for the selection of the dNI . Moreover, the NI Trial so far has been used as a technique to

offer validation of results for the approaches specified above. In contrast, in this report the

NI Trial is used to evaluate the effectiveness of one decision-making technique compared to

another with respect to satisfaction of the NFRs for SASs, and specifically about getting

further insights from quantifying the acceptable loss of an NFR against the benefits for

another NFR.

F.6 Conclusion

In this report, the NI Trial has been presented as a way to assess the decision-making

techniques for SAS. A mapping of the NI Trial from medical science to the domain of
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decision-making techniques for SAS is presented. As a proof of concept, experimental

evaluations for comparison of two SAS decision-making techniques: the Pri-AwaRE and

the RE-STORM are provided. With the initial prototype for the NI Trial, insights about

the effectiveness of the new technique with respect to satisfying the NFRs are provided.

Moreover, it has proven to be useful assessing the NFRs trade-offs offered by decision-

making techniques. It also helps in studying to what extent the NFRs are complying to

the acceptability envelope of good behavior indicated by the requirements and underpinned

by the NI margin dNI . From the results, it can be concluded that Pri-AwaRE is non-

inferior to RE-STORM in terms of complying to the requirements. Moreover, the results

are statistically significant (p<=0.05) in terms of complying to the requirements compared

to RE-STORM.

A research outlook on future research for the application of the NI Trial to the assessment

of decision-making techniques for SAS is also provided, which can be summarised as:

- Further exploration of the effects of the placebo.

- Evaluation of other decision-making techniques for SAS including [26].

- Compliance to margins/thresholds for the acceptability envelope of good behavior.
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