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A B S T R A C T   

Construction equipment operations that require high levels of attention can cause mental fatigue, which can lead 
to inefficiencies and accidents. Previous studies classified mental fatigue using single-modal data with acceptable 
accuracy. However, mental fatigue is a multimodal problem, and no single modality is superior. Moreover, none 
of the previous studies in construction industry have investigated multimodal data fusion for classifying mental 
fatigue and whether such an approach would improve mental fatigue detection. This study proposes a novel 
approach using three machine learning models and multimodal data fusion to classify mental fatigue states. 
Electroencephalography, electrodermal activity, and video signals were acquired during an excavation opera-
tion, and the decision tree model using multimodal sensor data fusion outperformed other models with 96.2% 
accuracy and 96.175%–98.231% F1 scores. Multimodal sensor data fusion can aid in the development of a real- 
time system to classify mental fatigue and improve safety management at construction sites.   

1. Introduction 

Over 350 million people are employed by the construction industry 
worldwide, which has made significant contributions to the economic 
growth of many countries (Birhane et al., 2022). Regardless of their 
significance in boosting the economy, the health and safety on con-
struction sites should not be underestimated (Jaafar et al., 2018). Owing 
to its poor safety performance, the construction industry is considered to 
be of the most hazardous industries (Khalid et al., 2021; Kines et al., 
2010). It should also be noted, however, that the safety of workers is in a 
perilous state as they are three to six times more vulnerable to accidents 
in the construction industry than in other industries (Choi et al., 2020). 
Accidents occur frequently because of the unique and dynamic envi-
ronment of construction projects (Koc and Gurgun, 2022), causing in-
juries and fatalities at construction sites (Sarkar et al., 2020). Among 

these, the equipment-related accidents are unarguably one of the most 
prevalent types of construction accidents and constitute a significant 
proportion (Li et al., 2021). For instance, according to construction in-
dustry statistics in the United Kingdom, “struck by moving equipment” 
accidents were the fourth leading cause of worker injuries (HSE, 2020). 
Furthermore, according to Vahdatikhaki et al. (2019), equipment is also 
a major cause of work-related fatalities and injuries in the United States 
construction industry. For this reason, it is imperative to eliminate 
equipment-related events at construction sites by addressing the un-
derlying causes. One of the major contributors to these events is mental 
fatigue (Yang et al., 2021a), which is human behavior (Ma et al., 2021). 
The reason is that the equipment operations are cognitively demanding 
and require operators to maintain a significant level of sustained 
attentiveness (Li et al., 2020b), thus leading the operators to mental 
fatigue (Wagstaff and Sigstad Lie, 2011). Consequently, the operators’ 
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ability to concentrate and make sound decisions is compromised (Das 
et al., 2020). This increases the likelihood of accidents involving the 
equipment being operated, which can lead to serious injuries or even 
fatalities at construction sites. Because of this, it is crucial to monitor the 
operators of construction equipment to ensure that they pay appropriate 
attention. To do this, construction equipment operators’ mental fatigue 
levels must be tracked automatically. As a result, monitoring construc-
tion equipment operators for signs of attention deficit will be an efficient 
means of preventing accidents that cause property loss. 

1.1. Mental fatigue monitoring and challenges in construction industry 

It is challenging to directly quantify mental fatigue because it de-
pends on a wide variety of factors, including the characteristics of the 
task, operator, and setting in which the work is being carried out 
(Hancock and Matthews, 2019; Li et al., 2018; Young et al., 2015). 
Previously, many researchers have attempted to monitor mental fatigue, 
for example, using questionnaires, physiological signals, and facial 
features. Initially, operators’ mental fatigue was conventionally evalu-
ated subjectively using questionnaires, with NASA-TLX being the most 
extensively used evaluation tool. However, it lacks precision because it 
is susceptible to individual bias (Han et al., 2019). This prompted a 
search for a more quantitative method. Consequently, researchers have 
been encouraged to establish objective measures of mental fatigue. In 
recent years, wearable sensors have attracted considerable interest from 
researchers because of the technological advancements that enable more 
objective monitoring of mental fatigue at construction sites. Therefore, 
research has been conducted to assess mental fatigue by studying 
physiological signals of workers. Examples include electroencephalog-
raphy (Wang et al., 2023; Mehmood et al., 2023; Jeon and Cai, 2022; Ke 
et al., 2021a), electrodermal activity (Lee et al., 2021; Choi et al., 2019), 
eye-tracking (Noghabaei et al., 2021; Li et al., 2019b), and electrocar-
diography (ECG) (Umer, 2022). Compared to questionnaires, physio-
logical indicators have better performance in terms of sensitivity, 
diagnostic ability, and non-intrusiveness (Zhao et al., 2018). It has been 
shown that physiological signals can be used to reliably identify worker 
fatigue because of their strong correlation with workers’ mental fatigue 
states. However, the use of physiological technologies requires workers 
to wear sensors on their bodies, which hinders their routine work. 
Therefore, researchers have been particularly interested in and moti-
vated towards a non-invasive method for detecting mental fatigue in 
construction site workers and operators. Recently, Mehmood et al. 
(2022) validated the geometric measurements of facial features and 
stated that they can be effectively utilized to detect mental fatigue in 
construction equipment operators on real construction sites. The find-
ings of this study indicate a significant correlation between the geo-
metric measurement of facial features and changes in brain activity 
during prolonged excavation operation. Moreover, Liu et al. (2021a) 
identified mental fatigue in crane operators using facial expressions in a 
stimulated environment. 

1.2. Study aims and objective 

Addressing mental fatigue in construction workers is a multifaceted 
challenge (Ding et al., 2020). This is due to the fact that the unregulated 
nature of the labor-intensive construction industry poses a significant 
threat to workers’ well-being (Ojha et al., 2023). While previous studies 
in the construction sector have attempted to address this problem, 
recent advancements in wearable sensing technology have opened up 
new possibilities for the continuous and accurate monitoring of mental 
fatigue. However, determining the physiological indicator that yields 
the most reliable assessment of mental fatigue for workers at construc-
tion sites remains an important question to be answered by safety ex-
perts. Moreover, previous studies have assessed workers’ mental states 
by individually investigating various physiological indicators. In 
contrast, Tao et al. (2019), Charles and Nixon (2019) and Young et al. 

(2015), have reported, no single approach has proven to be superior to 
others when it comes to assessing mental fatigue using physiological 
indicators. The same uncertainty applies to the geometric measurements 
of the facial features. Consequently, it remains unclear whether one 
physiological indicator is superior to another, or whether geometric 
measurements of facial features are more dependable than physiological 
indicators in determining a construction worker’s level of mental fa-
tigue. In light of this uncertainty, the objective of the current research is 
to investigate the feasibility of a multimodal data fusion approach to 
recognize mental fatigue in equipment operators during prolonged 
excavation operations, which has two major contributions. 

First, the present study is the first to attempt to investigate a novel 
approach of integrating data from multiple sensors, such as electroen-
cephalography, electrodermal activity, and geometric measurements of 
facial features, and machine learning techniques to classify various 
levels of mental fatigue. Although the concept of merging data streams 
from multiple sources may seem straightforward, combining data from 
different sensors has proven to be more accurate in predicting outcomes 
(Walambe et al., 2021). Each of the aforementioned unimodal measures 
has its strengths and limitations in terms of accuracy and suitability for 
detecting worker fatigue. Hence, the integration of multiple sensor data 
is intended to enhance mental fatigue recognition accuracy and reduce 
false warnings, facilitating comprehensive and holistic monitoring of 
mental fatigue. The literature also supports the effectiveness of 
combining data from multiple sensors to assess outcomes (Zhao et al., 
2022). While research on multimodal approaches is ongoing in other 
industrial domains, studies investigating the classification of equipment 
operators’ mental fatigue through the integration of multimodal sensor 
data, such as physiological indicators and facial features’ geometric 
measurement, are scarce within the construction industry (Hu et al., 
2023). 

Second, the current study acquired multimodal data in a natural 
settings, which provided a more realistic and authentic perspective for 
research. This aspect is crucial, as it enhances the study’s external val-
idity, which refers to the extent to which the findings can be generalized. 
Previous investigations of mental fatigue have primarily relied on 
controlled laboratory settings, for instance by Liu et al. (2021a), Li et al. 
(2020b), and Li et al. (2019b). However, conducting experiments in 
laboratory environments presents challenges in terms of generalization 
and validity, mainly because they lack the dynamic nature and 
complexity of construction sites (Xing et al., 2020). To address this 
limitation, this study collected multimodal sensor data directly from 
construction equipment operators during on-site excavation operations. 
By capturing data in a realistic environment, the study’s outcomes are 
more likely to reflect the complexities and nuances associated with 
mental fatigue in construction settings, and also hold practical relevance 
for understanding and managing mental fatigue among construction 
workers. Therefore, the current research is motivated by the need to 
learn more about how to recognize the mental fatigue of equipment 
operators holistically. This paper is organized as follows: Section 2 will 
provide a literature review on mental fatigue detection in the con-
struction industry. Section 3 will discuss the methodologies adopted in 
this research. Section 4 discusses the findings and results for mental 
fatigue classification along with performance of different machine 
learning algorithms. Section 5, 6 and 7, provide discussion of findings, 
implication of current research, limitations and future research, 
respectively. Lastly, section 8 will present conclusions. 

2. Related work 

In this section, we provide a literature review of general fatigue 
detection in the construction industry, which can serve as a foundation 
for the implementation of a fatigue detection system based on multi-
modal sensor data. Considering that mental fatigue has such excruci-
ating consequences, several researchers have previously attempted to 
detect its existence using multiple techniques, including (a) subjective 
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assessment through questionnaires, e.g., NASA-TLX score, FAS, etc.; (b) 
physiological measures, e.g., electroencephalogram (EEG), electro-
dermal activity, electrocardiography, electrooculograms, electromyog-
raphy, etc.; and (c) video signal-based facial feature detection, e.g., eye 
aspect ratio, mouth aspect ratio, and head motion. 

2.1. Conventional assessment method 

Historically, operators’ mental fatigue has been measured using self- 
report questionnaires, with the NASA-TLX being the most widely uti-
lized assessment tool (Li et al., 2019b). Such an assessment involves 
measuring mental fatigue using assessment scales that rely on subjective 
responses to a set of questions relating to mental states (Hart, 2006). 
These assessments usually lack accuracy and are prone to biased infor-
mation (Han et al., 2019). Moreover, the time and effort required to 
answer questions carefully and precisely can disrupt ongoing work when 
a survey-based approach is used for continuous assessment (Hwang 
et al., 2018). Due to their subjective nature, fatigue questionnaires have 
scientific limitations in terms of reliability and construct validity 
(Techera et al., 2018). Consequently, this underlined the necessity for 
objective technologies that can continuously monitor and detect mental 
weariness without interfering with construction operations. 

2.2. Physiological measures 

In recent years, researchers have paid more attention to wearable 
sensors because of technical advancements that enable more objective 
monitoring of mental fatigue at construction sites. As a result, efforts 
have been made to detect mental fatigue by analyzing the physiological 
signals of workers. Using data from the worker’s brain, eyes, muscles, 
and heart, physiological measurements monitor the worker’s attention 
and can detect indications of fatigue before it negatively affects per-
formance (Zhao et al., 2022; Doudou et al., 2020). In construction in-
dustry, several researchers have attempted to evaluate mental condition 
based on physiological information gathered through wearable sensors 
e.g., electrooculogram (Zhang and Etemad, 2021), electroencephalo-
gram (Wang et al., 2019b, 2022; Lee and Lee, 2022; Jeon and Cai, 2022; 
Tehrani et al., 2021; Ke et al., 2021a, 2021b; Xing et al., 2019, 2020; Li 
et al., 2019a; Jebelli et al., 2018b, 2019a, 2019b; Hwang et al., 2018), 
electrocardiograph (Umer, 2022), eye-tracking (Noghabaei et al., 2021; 
Bitkina et al., 2021; Li et al., 2019b, 2020b; Han et al., 2020; Das et al., 
2020; Jeelani et al., 2019; Hasanzadeh et al., 2018), and electrodermal 
activity (Lee et al., 2021; Choi et al., 2019; Jebelli et al., 2018a). It has 
been shown that physiological indicators can be employed to detect 
construction worker fatigue at construction sites because of their strong 
association with workers’ mental states. However, Zhang et al. (2019) 
concluded that EEG is one of the fastest-growing technologies that re-
searchers use to assess workers’ cognitive and mental states under dy-
namic construction site conditions. Furthermore, Saedi et al. (2022) 
described it as a potent approach in the field of construction research 
because it measures brain activity quickly, cost-effectively, with high 
temporal resolution, and in a portable manner. The researchers assessed 
the mental state of construction workers by analyzing their captured 
brainwaves using statistical techniques and machine learning. For 
instance, Aryal et al. (2017) predicted the fatigue of construction 
workers with 82% accuracy using a boosted tree classifier. Previous 
studies have achieved sufficient results, for example, Chae et al. (2021) 
and Jeon and Cai (2022). In addition, physiological indicators demon-
strate good individual performance. However, it is still an unsolved 
problem as to which physiological signal should be employed for a 
preeminent assessment of workers’ mental fatigue states during con-
struction operations. 

2.3. Video based indicators 

In this research area, workers’ activities on construction sites are 

tracked through their facial videos, and their mental fatigue levels are 
subsequently detected by extracting useful features from their facial 
videos or images (Mehmood et al., 2022). When an individual feels 
fatigued, observable indications of fatigue can be identified by 
measuring their atypical behaviors (Zhao et al., 2022). Similarly, Cheng 
et al. (2019) concluded that studying a person’s facial indications could 
provide information about their fatigue levels. In addition, Dziuda et al. 
(2021) observed that continuous analysis of face cues captured while 
performing activities allowed for effective and contactless detection of 
fatigue. Although this method has been thoroughly researched in other 
sectors of the industry, its application to the construction industry is still 
in its adolescence, with very few studies. Recently, Li et al. (2022) 
presented a decentralized deep learning solution to monitor operator 
fatigue without privacy exposure risks and reached an accuracy of 
approximately 86%. Furthermore, Liu et al. (2021a) proposed a com-
bined deep-learning architecture and achieved an average accuracy of 
approximately 79%. Both researchers achieved acceptable accuracy. 
Mehmood et al. (2022) also conducted a construction site procedure on 
excavator operators and acquired facial videos as well as brain waves. 
Facial features were then extracted in the form of Euclidean distances, 
and temporal variations in the facial features were compared with the 
corresponding changes in brain activity. This study opens opportunities 
for future research in this field because the data were acquired from real 
construction. Despite these studies, it is still unclear whether 
video-based signals are better, worse or preferable than physiological 
measures. This is due to the fact that the quality of video-based measures 
is subject to or dependent on ambient and operator factors, as well as 
constraints including unbalanced lighting, camera angle, face pose, head 
movement, and personality factors e.g., size of an eye (Zhao et al., 2022; 
Zhu et al., 2021; Maior et al., 2020; Gromer et al., 2019; Jabbar et al., 
2018). For instance, in a simulated setting, utilizing blink detection 
metrics, such as the % of eyelid closure over the pupil at a particular 
time, has been reported to have a high detection rate (You et al., 2019; 
Soares et al., 2019). However, as reported by Ji et al. (2019), the 
detection rate was significantly reduced when experiments were con-
ducted in controlled settings. This was the case in the study by Liu et al. 
(2021a), in which data from crane operators were acquired in a simu-
lated environment. Therefore, according to Doudou et al. (2020), 
video-based measurements are less precise and more unstable than 
physiological measurements are. However, researchers in the case of 
physiological measures are also not sure which physiological measure is 
preferred (Ding et al., 2020) to assess mental fatigue in construction 
workers. 

2.4. Integration of physiological measures and facial indicators 

Extant research on mental fatigue assessment in the construction 
industry primarily consists of studies that employ a single assessment 
modality, such as the studies by Mehmood et al. (2022), Tehrani et al. 
(2021) and Li et al. (2020b). Nonetheless, the literature suggests that 
identifying mental fatigue is a difficult task because of the multiple 
implicated factors (Ding et al., 2020). Therefore, researchers have paid 
increasing attention to the integration of data gathered from various 
sensors in recent years. Consequently, it has been extensively used in 
numerous fields, including medical applications for computer-assisted 
patient diagnosis based on a combination of different types of data 
(Cai et al., 2019). In comparison to traditional unimodal data analysis, it 
seems to perform better, according to previous studies (Zhu et al., 2020; 
Vidya et al., 2015). In addition, the integration of physiological in-
dicators and facial features to complement each other’s strengths for 
mental fatigue monitoring has been developed in recent years. For 
instance, a multimodal emotion recognition system based on a combi-
nation of facial movements and physiological measures was proposed by 
Wang et al. (2020). In addition, Utomo et al. (2019) introduced a fatigue 
prediction system that integrates heart rate variations and PERCLOS 
characteristics to efficiently detect fatigue. Although its usage is 
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widespread in other fields (Yang et al., 2021b; Doudou et al., 2020; 
Wang et al., 2019c), its performance is better to that of single-modality 
analysis, and no preferential of one measure over others, scant prior 
research has focused on employing multimodal sensor data for moni-
toring mental fatigue in construction equipment operators. Therefore, 
this study proposes a machine learning-based multimodal analysis 
employing electroencephalography (EEG), electrodermal activity 
(EDA), and geometric measurement of facial features (FF) to recognize 
mental fatigue in construction equipment operators. Electroencepha-
lography (EEG), electrodermal activity (EDA), and geometric measure-
ments of facial features reflect fluctuations in mental fatigue in a distinct 
way and are affected by constant attention (Mehmood et al., 2022; Wan 
et al., 2021; Posada-Quintero et al., 2018; Giannakakis et al., 2017). 
Considering that mental fatigue monitoring is a complicated problem, 
integrating the data acquired from multiple modalities will assist in 
recognizing mental fatigue from multiple perspectives. Furthermore, we 
have proposed a geometrical measurement of facial features to be in-
tegrated with physiological features, rather than video measures such as 
blinking rate and PERCLOS. This is because the blink rate increases 
when a person is in a stressful situation (Giannakakis et al., 2017), 
whereas it tends to decrease with prolonged attention (Zhao et al., 
2022), which is the case for construction equipment operators during 
construction operations. This could lead to an incorrect fatigue detection 
result. In summary, the contribution of this research is the imple-
mentation of multimodal integration using machine learning to recog-
nize the mental fatigue levels of equipment operators at real 
construction sites, given three specific modalities: electroencephalog-
raphy (EEG), electrodermal activity (EDA), and geometric measurement 
of facial features. 

3. Methodology 

Fig. 1 presents an outline of the research process, which details the 
proposed approach for detecting mental fatigue in construction equip-
ment operators through the integration of physiological and facial 
feature data obtained from EEG, EDA sensors, and video cameras. The 
research methodology comprises of four distinct steps. The initial step 
entailed conducting an excavation operation at the construction site to 
gather pertinent data. This involved mounting a headband on the heads 
of construction equipment operators to capture EEG data, positioning an 
E4 watch on the wrists of operators to collect EDA data, mounting a 
video camera on the inside of the front screen of the excavator to capture 
facial feature data, and administering a questionnaire to elicit data 
related to subjective feelings of mental fatigue. In the second stage, data 
acquired from multiple sensors were analyzed, and mental fatigue levels 
were designated using subjective scores. The data was then subjected to 
artifact removal, and relevant features were extracted. The third stage 

involved the use of supervised machine-learning techniques to detect 
multiple levels of mental fatigue in construction equipment operators. 
Each machine learning technique was trained using features extracted 
from multiple sensors as input data. Finally, in the last step, the per-
formance of each supervised machine learning technique was evaluated 
using metrics. 

3.1. Experiment procedure and data collection 

The experiment was conducted at a construction site to gather data 
on the mental fatigue of construction equipment operators, as shown in 
Fig. 2. The study was conducted at a construction site where a time-on- 
task approach was employed to induce mental fatigue in operators. Li 
et al. (2020b) and Morales et al. (2017) indicated that time-on-task is a 
common approach to induce mental fatigue. The experiment was con-
ducted on multiple days, at the same time in the morning, in consistent 
weather, with clear skies on each day of data collection. It involves re-
petitive and time-consuming excavation and discharge tasks carried out 
by excavator operators over the course of an hour. The repetitive task 
was an excavation operation that involved excavating the ground and 
transporting excavated material from pits to vehicles. All excavator 
operators were subjected to the same conditions, which involved the 
continuous operation of the equipment in a cyclical manner. As this was 
a time-on-task experiment, the amount of earth excavated or moved, and 
the number of vehicles filled were not predetermined. In addition, no 
practice session was arranged for the operators because they already had 
prior experience with excavation operations. During the experiment, the 
excavator operators wore an E4 watch on their wrist and a 
headband-based wearable EEG device to record electrodermal activity 
and brain waves, respectively. Moreover, a video camera was attached 
to the excavator’s windscreen to capture the operators’ facial expres-
sions while operating the equipment. The video footage was later con-
verted into frames and analyzed to extract geometric measurements of 
the facial features. To evaluate the operators’ mental fatigue levels, the 
NASA-TLX score was used, which was recorded every 20 min during the 
1-h experiment. The collected data was then transferred to a desktop 
computer, where noise removal techniques were applied to eliminate 
any artifacts. The electrodermal activity, EEG data, and geometric 
measurements of facial features were labeled according to subjective 
measurements into three mental fatigue states: alert, mild fatigue, and 
fatigue (Prabaswari et al., 2019; Grier, 2015). The duration of the 
experiment was not disclosed to the operators to avoid reactivation of 
the end-spurt effect that could occur when participants realized the 
experiment is approaching towards the end. 

Fig. 1. Outline of research process.  
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3.2. Participants 

Sixteen male construction equipment operators with a mean age of 
32.65 years (SD = 3.02) were recruited voluntarily to participate in this 
study. This study focused on excavator operators because excavation 
operation tasks, such as ground excavation and material transport, are 
repetitive, cognitively demanding, and often involve prolonged working 
hours that require operators to maintain sustained attention (Li et al., 
2020b). All participants were experienced excavator operators with 
prior experience in excavator operations at construction sites, as shown 
in Table 1. The operators were required to report directly to the 
experiment on their designated days and were not involved in any other 
tasks or activities before the start of the experiment. Furthermore, we 
ensured that each operator remained fully engaged during the length of 
the task. They had slept for at least 8 h the previous night and abstained 
from alcoholic drinks for at least 24 h before the experiment. The 
experimental protocol was reviewed and approved by the ethics sub-
committee of Hong Kong Polytechnic University (Reference Number: 
HSEARS20210927008) and conducted in accordance with the Declara-
tion of Helsinki. Written consent was obtained from each participant 
after verbal explanation of the experimental procedures. Table 1 pro-
vides demographic information on the construction equipment opera-
tors who participated in this study. 

3.3. Apparatus and measurement 

3.3.1. Subjective assessment 
The NASA-TLX score was used to evaluate the construction equip-

ment operators’ subjective feelings of mental fatigue and to provide a 
ground truth for their mental fatigue levels. Since its inception, the 
NASA-TLX has been widely utilized in numerous research studies, and 
its reliability and sensitivity have been established through a significant 
number of independent assessments. Moreover, a growing body of 
research has demonstrated that an increase in the NASA-TLX score over 
time during the same task can reliably indicate mental fatigue, as re-
ported by Kaduk et al. (2021), Bitkina et al. (2021), Das et al. (2020), Li 
et al. (2019b), and Chen et al. (2017). Additionally, Mehmood et al. 
(2022), Li et al. (2020b), and Li et al. (2019b) utilized the increase in the 

NASA-TLX score for the same task as a subjective indicator of mental 
fatigue in construction equipment operators. In line with these findings, 
the current study considered a temporal increase in the NASA-TLX score 
to be a reliable indicator of an increase in mental fatigue. 

3.3.2. Electroencephalogram (EEG) recording 
In this study, EEG signals were acquired using the Muse headband, 

which is a flexible and user-friendly recording system. The Muse head-
band has four channels with dry electrodes positioned at the AF7, AF8, 
TP9, and TP10 sites, while the reference electrode FPz is located at the 
forehead position. The electrodes were made of silver, and the sampling 
rate of the Muse headband for the EEG signal acquisition was 256 Hz. 
The Muse headband was worn by all excavator operators during the 
excavation operation for an hour. The EEG data was transmitted in real 
time from the Muse headband to a smartphone via Bluetooth, where the 
“Mind Monitor” app was used to record the EEG signals. After recording, 
the data in the form of a comma-separated value file was transferred to a 
PC for further processing, as described by Mehmood et al. (2022) and 
Arsalan et al. (2019) and shown in Fig. 3. 

3.3.3. Electrodermal activity (EDA) recording 
The study utilized a photoplethysmography (PPG) wristwatch, spe-

cifically Empatica E4, to measure the electrodermal activity (EDA) in 
excavator operators to assess their mental fatigue. The Empatica E4 
wristwatch includes four light-emitting diodes and four photoreceptors 
that automatically monitor the changes in the electrical properties of the 
skin to derive the EDA. The Empatica E4 watch was worn by all oper-
ators for an hour during the excavation operation. EDA data was 
collected in real-time and transmitted from the Empatica E4 to a 
smartphone via Bluetooth, where the “E4 Realtime” app was utilized to 
record the EDA signals. The recorded data was subsequently down-
loaded and transferred to a PC for further processing. The EDA datasheet 
includes a single column that indicates the EDA data in MicroSiemens 
sampled at 4 Hz. These methods are consistent with the approaches 
adopted by Milstein and Gordon (2020). Fig. 3 shows an example of an 
Empatica E4 PPG wristwatch. 

3.3.4. Camera-based video signals 
This study recorded the operators’ facial behavior using a color video 

camera placed inside the equipment cabin. The camera was positioned 
on the interior side and was approximately 0.6 m away from the oper-
ator. The placement of the camera was carefully chosen so that it would 
not interfere with the operator’s routine work. It was mounted on the 
windscreen of the equipment, with no chance of visual obstruction. The 
color video camera had a sampling frequency of 30 fps, capturing 24-bit 
RGB with three channels or 8-bit RGB per channel. It had a resolution of 
1440 х 1440 pixels, providing an intricate view of the operator’s facial 
behavior for the study. 

Fig. 2. Experimental design and procedure.  

Table 1 
Demographic information of operators.   

Mean (Standard 
Deviation) 

Range (Minimum- 
Maximum) 

Height (cm) 171.47 (5.32) 15 (165–180) 
Age (Years) 32.65 (3.02) 15 (26–41) 
Weight (kg) 76.41 (7.66) 27 (65–92) 
Job Experience (Years) 6.24 (3.49) 10 (2–12) 
Body Mass Index (kg/ 

m2) 
25.96 (2.05) 7.61 (21.80–29.41)  
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3.4. Feature extraction 

3.4.1. Electroencephalogram (EEG) 
In the current study, ten distinct EEG metrics from each channel, 

including theta, alpha, and beta, were computed and analyzed to eval-
uate and classify mental fatigue in construction equipment operators. 
The investigation did not include Delta and Gamma activities because 
they were not expected to exhibit any activity during the mental fatigue 
assessment. Previous studies, such as that of Eoh et al. (2005), have 
reported that delta activity corresponds to a person’s sleeping state. 
Therefore, the current study concentrated on generating EEG metrics for 
the other three EEG bands, as an indication of mental fatigue. The 
process involved generating band ratios from EEG channels over time 
following the methodology used by Dasari et al. (2013) and Borghini 
et al. (2012). For example, the θ/α EEG metric was computed as the ratio 
of the average power spectral density value from the theta band with the 
average power spectral density value from the alpha band. Table 2 
outlines all the computed EEG metrics used in this study. 

3.4.2. Geometric measurement of facial features 
When performing excavation operations at the construction site, all 

operators were video recorded for 1 h on the camera. OpenCV, a freely 
available open-source computer vision toolkit developed in Python, was 
initially utilized to convert the video footage of each operator into 
frames. Subsequently, face recognition was performed on each frame of 

the video recording using a locally constrained neural field model 
(Baltrušaitis et al., 2016). The operator’s face was detected in each 
frame using this model, and the results were expressed as a vector M =

[l1, l2, l3,………, li]F, representing 68 landmarks identified on the oper-
ator’s face in each frame via Dlib (King, 2009). In this case, l represents a 
detected facial landmark at position (xi, yi) in any frame F, F is the 
number of any frame, and i is the index of the detected landmarks at any 
frame, with values ranging from one to 68. Then, Eq. (1) was used to 
compute the Euclidean distance between any two desirable points. This 
Euclidean distance was used to compute the geometric measurements of 
eleven facial features investigated in this study (Mehmood et al., 2022). 
The proposed eleven facial features were retrieved separately from each 
individual frame and are described in Table 3 and presented in Fig. 4. 

3.4.3. Electrodermal activity (EDA) 
Initially, EDA was separated into two components: tonic (EDL) and 

phasic (EDR). The former signifies differences in sympathetic arousal 
among individuals, while the latter represents the dynamic component 
of EDA, which reflects rapid changes in response to external stimuli 
(Greco et al., 2015; Braithwaite, 2013). In this research, we utilized the 
electrodermal response as a reliable indicator of mental fatigue. Ac-
cording to Poh et al. (2010), attention-demanding tasks can elicit elec-
trodermal responses. Moreover, Collet et al. (2014) found that 
electrodermal response is a useful tool for detecting mental fatigue. 
Subsequently, five distinct features were extracted from the phasic 
component of electrodermal activity of each construction equipment 
operator. These features are mean (μ), standard deviation (σ), coefficient 
of variance (CV), variance (σ2) and kurtosis (β2). Kurtosis is a statistical 
measure describing the shape or peakedness of a probability distribu-
tion. It is typically measured using the standardized fourth moment of a 
distribution, which is the fourth central moment divided by the variance 
of the distribution. Similarly, variance is a statistical measure used to 
quantify the degree of variability or dispersion in a data sample, such as 
the electrodermal response of the operators. 

3.5. Artifacts removal 

Artifacts and unwanted fluctuations in data due to external sources 
are present in experimental data (Sweeney et al., 2012). Because of their 
potential for misinterpretation and skewness in analysis, these artifacts 
need to be cleaned from the data (Jebelli et al., 2018b; Hwang et al., 

Fig. 3. Overview of apparatus utilized to collect and transfer the acquired data.  

Table 2 
Description of extracted EEG features.  

EEG Metric Previous Research 

(i) θ, (ii) α, (iii) β, 
Liu et al. (2021b), Li et al. (2020a), Jap et al. 
(2009) 

(iv) θ/α, (v) β/ α, (vi) θ/ β, (vii) 
α/β Raufi and Longo (2022), Dissanayake et al. 

(2022), Stancin et al. (2021), Fan et al. (2015),  
Jap et al. (2009), Eoh et al. (2005) 

(viii) (θ + α)/ β, (ix) θ/ (θ + α), 
(x) α/(θ + α), (xi) θ/ (α + β) Dissanayake et al. (2022), Wu et al. (2021),  

Wang et al. (2019a), Fan et al. (2015), Eoh et al. 
(2005) 

(xii) (θ + α)/ (α + β), (xiii) (θ +

α)/(θ + β) Mehmood et al. (2022), Stancin et al. (2021),  
Tyas et al. (2020),  
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2018). In the construction industry, excavator operators are subjected to 
persistent and strenuous movements during excavation operations. 
These movements are caused by the vibrations of the equipment and the 
operator’s movements as they track the bucket to excavate and deposit 
material (Mehmood et al., 2022). Unfortunately, these movements 
generate artifacts that must be eliminated from the collected data. 

The study employed a Muse headband to acquire EEG data from 
construction-equipment operators. This device has its own on-board 
noise-cancellation mechanism, which is based on the statistical prop-
erties of the data, such as amplitude, variance, and kurtosis, to filter out 
the noise. If the statistical properties of an EEG signal exceed a pre-
determined threshold, the signal is deemed noisy and discarded, 
whereas if it falls below the threshold, the signal is considered clean 
(Cannard et al., 2021; Arsalan et al., 2019). Considering the constant 
movement of operators during excavation operations, the third-order 
one-dimensional median filter and the Savitzky-Golay (SG) filter 
(Orfanidis, 1995; Krauss et al., 1994) were further applied to the ac-
quired EEG data for artifact removal. The principle of least-squares 
polynomial approximation is the foundation of the SG filter, making it 

a good choice for data smoothing (Savitzky and Golay, 1964). In the 
construction industry, Mehmood et al. (2022) and Aryal et al. (2017) 
used this noise cancellation method to smooth data while preserving the 
quality of EEG data. 

In the current study, freely available MATLAB-based software, 
Ledalab, was used to obtain clean, scaled, and meaningful EDA data. 
EDA recording is susceptible to various forms of noise such as electrode 
noise and operator movement. To minimize the most common artifacts 
in EDA signals, a low-pass filter was applied (Taylor et al., 2015). A 
high-pass filter with a cut frequency of 0.5 Hz was also used to smooth 
the EDA signals (Braithwaite, 2013). However, large-magnitude arti-
facts, such as excessive electrode pressure and body motion, have not 
been adequately filtered by these methods (Taylor et al., 2015). To 
address this, a rolling filter was applied to the EDA signals with a rolling 
filter of 500 data points (Posada-Quintero and Chon, 2020), and the EDA 
was estimated every 500 ms in Micro Siemens. 

Facial feature data of the construction equipment operators was 
carefully analyzed to eliminate artifacts. The process involves identi-
fying stable facial regions during the extraction of features from every 
frame. Geometric measurements of facial features were then divided by 
the Euclidean distance of these stable regions to remove artifacts. A 
previous study in the construction industry by Mehmood et al. (2022) 
revealed that the length of the nose line, formed by connecting nose 
landmarks represented by the vector D = [‖l32 − l28‖]

F, was effective in 
eliminating artifacts, as shown in Fig. 4(m). Specifically, the landmarks 
indicated by vector D were used to calculate the Euclidean distance of 
the nose line, as stated by the equation d(l32, l28) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x32 − x28)
2
+ (y32 − y28)

2
√

. Subsequently, all facial features were 
normalized by dividing them by D, resulting in normalized facial fea-
tures for each frame. 

3.6. Machine learning-based mental fatigue classification 

In this study, multiple sensor data points were integrated to classify 
mental fatigue in construction equipment operators using machine 
learning. This study utilized three types of input data: EEG, EDA, and 
geometric measurements of facial features. A wearable Muse headband 
at 256 Hz per second provided the EEG data, and a wearable E4 watch at 
4 Hz per second acquired the EDA data. Similarly, geometric measure-
ments of facial features were extracted from video recordings of 
equipment operators at a frequency of 30 fps. A sliding window 
approach was utilized with a window size segmentation of 16 s to split 
the multimodal data, and the overlapping of consecutive windows was 
then employed to ensure that no relevant data was missing. A 50% 
overlap of adjacent data segment lengths was used in this study (Liu 
et al., 2021c). Consequently, a dataset of 3,600 samples for 16 con-
struction equipment operators was generated. In addition, this dataset 
was split into two parts, with 70% (2520 samples) designated for 
training and 30% (1080 samples) designated for testing. Subsequently, 
to accurately classify mental fatigue using data acquired from multiple 
sensors, we utilized three supervised machine learning classifiers: 
k-nearest neighbor (KNN), decision tree (DT), and artificial neural 
network (ANN). Although we cannot provide an in-depth introduction 
to these algorithms because of the length of this paper, the relevant 
machine learning literature can be consulted for more information 
(Umer et al., 2020; Aryal et al., 2017; Murphy, 2012; Witten and Frank, 
2002). We chose these algorithms because prior research has demon-
strated their efficacy in classifying mental fatigue. For instance, Ding 
et al. (2020) and Hu and Min (2018) compared various machine learning 
classifiers, including decision tree, k-nearest neighbor, support vector 
machine, and artificial neural network, for detecting fatigue in drivers. 
Considering these studies, three supervised machine-learning algo-
rithms were trained on the acquired multimodal sensor data to classify 
mental fatigue in construction equipment operators. 

Table 3 
Description of extracted facial features.  

Facial 
Feature 

Description and Computation 

Eye Area 
Average 
(EAA) 

The average area of a closed polygon formed by joining the external 
landmarks on the eyes. 
EAA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sa[Sa − d(l37, l38)][Sa − d(l37, l42)][Sa − d(l38 , l42)]

√
+ [(l38,

l39 + l42, l41) /2][(l38, l42 + l39 , l41) /2] +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sb[Sb − d(l39, l41)][Sb − d(l39 , l40)][Sb − d(l41, l40)]

√

∴Sa = [d(l37, l38) + d(l38 , l42) + d(l37, l42)]

/2 

∴Sb = [d(l39, l41) + d(l39, l40) + d(l41 , l40)]

/2 

Eye Distance 
Sum (SED) 

The distance between the anchor and eye landmarks summed 
together. 
SED = ‖l31 − l43‖+ ‖l31 − l44‖+ ‖l31 − l45‖+ ‖l31 − l46‖+ ‖l31 −

l47‖+ ‖l31 − l48‖

Head Motion 
(HMO) 

The computation of total distance between the anchor point and 
external landmarks of the face, per frame. 

HMO =
1
Q

∑F
i=1

|lF1 − lF2 |

Eyebrow 
Sum (SEB) 

The total distance between the anchor and eyebrow landmarks, 
computed as the sum of the Euclidean distances between 
corresponding points. 
SEB = ‖l31 − l18‖+ ‖l31 − l19‖+ ‖l31 − l20‖+ ‖l31 − l21‖+ ‖l31 −

l22‖

Nose to Chin 
Ratio 
(NTC) 

The distance from the anchor landmark to the chin. 

NTC =
2‖l9 − l31‖

‖l8 − l22‖ − ‖l10 − l23‖

Face Area 
(FAA) 

The facial area enclosed by connecting the outermost landmarks on 
the face to form a closed polygon. 

FAA =

1
Q

∑N=27
i=1

(S(S − d(l31, l12))
2
(S − d(l31 , l13))

2
(S − d(l12, l13))

2
),∴S =

d(l31, l12) + d(l31, l13) + d(l12 , l13)

2 
Eye Aspect 

Ratio 
(EAR) 

The ratio of the height to the width of an operators’ eye. 

EAR =
‖l44 − l48‖ + ‖l45 − l47‖

2‖l43 − l46‖

Mouth 
Corner 
(MCR) 

The sum of distance between the anchor and mouth corner 
landmarks. 
MCR = (‖l31 − l49‖ + ‖l31 − l55‖)

Mouth Outer 
(MOR) 

The total distance between the anchor landmark and the external 
landmarks, located around the mouth. 
MOR = (‖l31 − l50‖ + ‖l31 − l51‖ + ‖l31 − l52‖ + ‖l31 − l53‖ +

‖l31 − l54‖ + ‖l31 − l55‖ + ‖l31 − l56‖ + ‖l31 − l57‖ + ‖l31 − l58‖ +

‖l31 − l59‖ + ‖l31 − l60‖ + ‖l31 − l49‖)

Mouth 
Aspect 
Ratio 
(MAR) 

The ratio of the height to the width of an operators’ mouth. 

MAR =
‖l64 − l66‖ + ‖l62 − l68‖ + ‖l63 − l67‖

3‖l49 − l55‖

Nose to Jaw 
Ratio 
(NTJ) 

The distance from the anchor landmark to the jaws. 

NTJ =
‖l3 − l31‖

‖l3 − l15‖
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3.7. Training and performance evaluation of machine learning models 

To evaluate the accuracy of the models, we employed k-fold cross- 
validation, which involved dividing the original training set into k 
subsets. The value of k was set to 10 and each subset was approximately 
equal in size. The models were trained using k-1 subsets and validated 
using the remaining subset. By repeating this process for each subset, 
each sample was used to train and validate the models, allowing for a 
comprehensive assessment of their performance. This method ensures 
that the models are tested on a diverse range of data and minimizes the 
risk of overfitting (Antwi-Afari et al., 2023; Özdemir and Barshan, 
2014). To evaluate the performance of the three machine learning 
models, we used accuracy, precision, recall, specificity, and the F1-score 
(Attal et al., 2015). Table 4 presents a detailed breakdown of each 
metric. Accuracy is the most commonly used metric for assessing clas-
sification performance across all classes. It is calculated as the ratio of 
instances that are correctly labeled to the total number of instances. 
Precision measures the rate at which positive cases are correctly 

identified, which is the ratio of positive instances correctly labeled to the 
total number of positive instances classified. Recall (sensitivity) is a 
measure of how accurately positive examples are identified and is 
defined as the percentage of all positive instances that were correctly 
classified. Specificity, on the other hand, measures the rate at which 
negative examples are correctly identified as negative and is calculated 
as the ratio of correctly identified false negatives to the total number of 
false negatives. Precision and recall are combined into the F1-score, 
which is used to evaluate the effectiveness of the classification model 
without introducing any systematic bias (Antwi-Afari et al., 2023). 
Additionally, we plotted the confusion matrix to evaluate each model’s 
performance in specific classes, and accuracy and loss curves were used 
to determine the best-performing model. The confusion matrix displays 
the differences between the true labels of the data and model-generated 
labels. The elements on the diagonal represent correctly classified fa-
tigue states, whereas those on the diagonal represent incorrectly clas-
sified fatigue states. 

In this study, an orange data mining tool, Python-based open-source 
software (Version 3.33.0, Bioinformatics Lab, the University of Ljubl-
jana, Slovenia), was used to compare and assess various classification 
algorithms (Demšar et al., 2013). The canvas interface of the orange 
software enables users to design data analysis workflows by dragging 
and dropping widgets, which perform various functions such as reading 
data, displaying tables, selecting features, training predictors, contrast-
ing learning methods, and visualizing data items. Additionally, users can 
interact with the program to examine visuals and transfer them to other 
widgets (Kukasvadiya and Divecha, 2017; Naik and Samant, 2016). 

Fig. 4. Extraction of facial features; (a) eye area, (b) eye distance, (c) head motion, (d) eyebrow, (e) nose-to-chin ratio, (f) face area, (h) eye aspect ratio, (i) mouth 
corner (j) mouth outer, (k) mouth aspect ratio, (l) nose-to-jaw ratio, and (m) 68 landmarks detection. 

Table 4 
Performance assessment metrics for machine learning models.  

Performance metric Equation 

Accuracy (
(TN + TP)/(TN + TP + FN + FP)

)

X 100 

Precision (
(TP)/(FP + TP)

)

X 100 

Recall (
(TP)/(FN + TP)

)

X 100 

Specificity (
(TN)/(FP + TN)

)

X 100 

F1-Score (
2 х

Recall х Precision
Recall + Precision

)
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4. Experimental results 

4.1. Analysis of ground truth data 

In this study, the NASA-TLX score was used as a reliable measure to 
identify mental fatigue states. The findings presented in Table 5 
demonstrate the descriptive statistics derived from the ground-truth 
analysis. Notably, subjective mental fatigue was significantly higher at 
the end of the experiment than at the beginning, exhibiting an increase 
from 11.25 (SD = 2.77) to 65.25 (SD = 4.85). Additionally, the results 
listed in Table 5 indicate that the operators experienced progressively 
higher levels of mental fatigue as the excavation operation continued. 

4.2. Machine learning-based classification results for multimodal data 

This study utilized a novel approach to identify and classify mental 
fatigue states in construction equipment operators by integrating input 
data from multiple sensors and employing machine learning techniques. 
Three machine learning models (ANN, k-NN, and DT) were used to 
classify mental fatigue into alert, mild, and fatigue states. In addition to 
the EEG data, the input data included electrodermal activity (EDA) and 
geometric measurements of facial features. The data was fused as inputs 
for the machine-learning models used in the study. Furthermore, input 
data from multiple sensors was fused into various combinations, 
including (a) EEG and EDA, (b) EEG and FF, (c) EDA and FF, and (d) 
EEG, EDA, and FF. The results, as shown in Tables 5–7, indicated that the 
machine learning models achieved classification accuracies ranging 
from 56.5% to 97.1%. However, the decision tree models achieved the 
highest accuracies for all input data combinations, ranging from 85.0% 
to 97.1%. The findings of this study indicate that the decision models 
outperformed the other machine learning models investigated in terms 
of accuracy when trained on input data from multiple sensors of oper-
ators over three increasingly demanding phases of work. 

4.2.1. Neural network (NN) 
The evaluation metrics and confusion matrix presented in Table 6 

and Fig. 5 indicate the performance of an Artificial Neural Network 
(ANN) model for identifying different levels of mental fatigue in con-
struction equipment operators. Overall, the evaluation metrics demon-
strated the good performance of the model for different input data 
fusions. However, the performance of the model was slightly lower than 
that of Decision Tree (DT) models. The ANN model achieved an accuracy 
ranging from 73.5% to 96.6% for all input data combinations, with the 
highest accuracy of 96.6% achieved using FF and EDA as the input data. 
The model’s classification performance ranged from 93.96% to 98.347% 
in terms of precision, with FS and MDS representing the highest values of 
the correctly identified fatigue levels. Additionally, higher recall and 
precision indicate that the model yielded fewer false negatives and false 
positives, respectively. Specificity and F1-score measures ranged be-
tween 96.783% and 99.168%, and 95.979% and 98.892%, respectively. 
In addition, a confusion matrix was utilized to determine whether the 
classes were misclassified or confused with others. As demonstrated in 
Fig. 5, the high values of the diagonal elements imply that the model 
correctly distinguished between the three mental fatigue classifications. 
The other cells indicated incidents that were incorrectly classified. Alert 
states were more often misclassified than mild and fatigue states. It was confused with MFS in 23 instances, as shown in Fig. 5(a). However, the 

misclassification rate remains remarkably low compared with the 
number of classified instances. In addition, the results were similar for 
the combination of all three sensor datasets (EEG, EDA, and FF), with an 
overall classification accuracy of 94.7%. MFS was the most misclassified 
state, being confused with AS and FS in 14 and 10 instances, respec-
tively. Moreover, the combination of EEG and FF exhibited slightly less 
accuracy than the above-mentioned two combinations, with an overall 
accuracy of 87.8%. The fourth combination, with EEG and EDA as input 
data, attained the lowest overall accuracy (73.8%) among the four 

Table 5 
Ground truth of mental fatigue.   

Baseline Mental Fatigue States 

Alert State Mild Fatigue 
State 

Fatigue 
State 

Subjective Assessment 
NASA-TLX Score 

(0–100) 
11.25 
(2.77) 

30.81 
(2.99) 

45.00 (4.27) 65.25 
(4.85)  

Table 6 
Performance assessment metrics for ANN models.  

Indicator Testing     

Alert State Mild Fatigue State Fatigue State 

FF-EDA 
Accuracy 96.6 97.222 96.667 99.259 
Precision  93.963 97.619 98.347 
Recall  98.082 92.134 99.443 
Specificity  96.783 98.895 99.168 
F1-score  95.979 94.798 98.892 

EEG-EDA 
Accuracy 73.8 85.093 78.519 83.981 
Precision  76.289 67.514 77.515 
Recall  81.096 67.135 72.981 
Specificity  87.133 84.116 89.459 
F1-score  78.619 67.324 75.179 

EEG-FF 
Accuracy 87.8 93.981 88.426 93.148 
Precision  91.667 84.894 86.632 
Recall  90.411 78.932 93.871 
Specificity  95.804 93.093 92.788 
F1-score  91.034 81.805 90.107 

EEG-EDA-FF 
Accuracy 94.7 96.481 95.093 97.870 
Precision  94.550 93.162 96.409 
Recall  95.068 91.854 97.214 
Specificity  97.203 96.685 98.197 
F1-score  94.809 92.504 96.810  

Table 7 
Performance assessment metrics for k-NN models.  

Indicator Testing     

Alert State Mild Fatigue State Fatigue State 

FF-EDA 
Accuracy 94.4 97.037 94.537 97.130 
Precision  92.802 96.552 94.086 
Recall  98.904 86.517 97.493 
Specificity  96.084 98.481 96.949 
F1-score  95.756 91.259 95.759 

EEG-EDA 
Accuracy 56.5 67.778 70.000 75.185 
Precision  51.731 56.061 64.000 
Recall  69.589 41.573 57.939 
Specificity  66.853 83.978 83.773 
F1-score  59.346 47.742 60.819 

EEG-FF 
Accuracy 87.5 93.889 88.241 92.873 
Precision  86.553 87.055 88.950 
Recall  96.986 75.562 89.694 
Specificity  92.308 94.475 94.452 
F1-score  91.473 80.902 89.320 

EEG-EDA-FF 
Accuracy 85.8 92.685 86.389 92.593 
Precision  84.048 85.185 88.430 
Recall  96.712 71.067 89.415 
Specificity  90.629 93.923 94.175 
F1-score  89.936 77.489 88.920  
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combinations. This combination also exhibited the highest number of 
misclassified classes among all combinations, with MFS being confused 
with AS and FS in 53 and 62 instances, respectively. 

4.2.2. K-nearest neighbors (kNN) 
Table 7 presents the evaluation matrix, and Fig. 6 shows the confu-

sion matrix of the k-nearest neighbor model. When used on all possible 
combinations of input data, k-NN performed inferior to ANN and DT in 
determining different levels of mental fatigue in construction equipment 

operators. Nonetheless, the overall accuracy, except for one combina-
tion of input data, was greater than 80%. The k-NN model attained 
overall performance accuracy values ranging from 56.5% to 94.4% for 
all input data combinations. The model attained an overall accuracy of 
94.4% when FF and EDA were employed as the input data. Conse-
quently, the MFS indicated higher instances of correctly identified fa-
tigue levels with a precision of slightly above 96.5%. However, AS and 
FS exhibited slightly less effect on the k-NN model with a precision of 
92.802% and 94.086%, respectively, as shown in Table 2. The model 

Fig. 5. Confusion matrix (a) FF-EDA, (b) EEG-EDA, (c) EEG-FF, and (d) EEG-EDA-FF.  

Fig. 6. Confusion matrix (a) FF-EDA, (b) EEG-EDA, (c) EEG-FF, and (d) EEG-EDA-FF.  
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attained the highest values of precision and recall for the aforemen-
tioned combination, indicating that it yielded fewer false positives and 
negatives. Similarly, specificity and F1-score measures had values 
ranging between 96.084% and 98.481% and 91.259% and 95.759%, 
respectively, indicating that an operator identified as being in a partic-
ular fatigue state was, in fact, in that fatigue state. Furthermore, using 
EEG and FF as input data, the model achieved an overall accuracy of 
87.5%, with classification precision values ranging from 86.553% to 
88.950%. Interestingly, the model attained higher specificity values 
ranging between 92.308% and 94.452%, indicating that the operator 
who identified any fatigue state actually experienced that state. Simi-
larly, a comparable overall accuracy of 85.8% was achieved when the 
input data from all the three sensors were combined. Consequently, the 
classification performance in terms of precision was between 84.048% 
and 88.430%. According to the confusion matrix in Fig. 6, it can be 
observed that the confusion among the mental fatigue states was modest 
except for the combination of EEG and EDA. The misclassification rate 
for this combination is exceptionally high, as shown in Fig. 6(b). 
Notably, AS and FS were the most recognized states, as shown in Fig. 6 
(a), (c), and 6(d). AS was recognized in 361 (FF and EDA), 354 (EEG and 
FF), and 353 (EEG, EDA, and FF) positive cases, respectively. Further-
more, when we see the confusion matrix demonstrated in Fig. 6(b), AS 
was confused 136 and 101 times with MFS and FS, respectively. 

4.2.3. Decision tree (DT) 
Table 8 and Fig. 7 present the evaluation metrics and confusion 

matrix for the decision tree (DT) model, which includes the correct 
classifications displayed in the diagonal cells for a more detailed eval-
uation of the classification performance. Compared to the ANN and k- 
NN models, the DT model achieved the highest overall accuracy, ranging 
between 85.0% and 97.1% for all input data combinations. It is impor-
tant to note that using EEG and EDA as input data resulted in an accu-
racy of 85.0%, whereas all other input data combinations achieved an 
accuracy above 96.0%. When using data from all sensors as inputs, AS 
had the most accurately classified instances at 97.568%. In contrast, FS 
had the lowest percentage of accurately classified instances compared to 
AS and MFS (94.370%). Additionally, the model produced a high 
number of false negatives and false positives for FS compared to other 

fatigue stages, with 21 instances of confusion with MFS. However, this 
confusion number is modest compared with other combinations of input 
data. The specificity and F1-score measures ranged between 97.087% 
and 98.741%, and 94.084% and 98.231%, respectively, indicating that 
an operator identified as being in a particular fatigue state was indeed in 
that fatigue state. Moreover, the FF and EDA, and EEG and FF input data 
combinations also resulted in higher instances of correctly identified 
fatigue levels, with modest confusion among mental fatigue states. 
However, using EEG and EDA as input data resulted in higher confusion 
among mental fatigue states. Nonetheless, the confusion among the 
states was still modest compared to the findings indicated by the ANN 
and k-NN models, as shown in Tables 6 and 7, respectively. Fig. 7(a)–(d) 
show that AS and FS were recognized with 364 and 352 (FF and EDA), 
331 and 294 (EEG and FF), 363 and 347 (EEG and FF), and 361 and 352 
(EEG, EDA, and FF) positive instances, respectively. 

5. Discussion 

Construction equipment operations demand a high level of attention 
and cognitive effort from the operators. These operations are complex 
and often require multitasking, quick decision making, and precise 
control. Operators should remain alert and focused for extended periods, 
which can lead to mental fatigue. Mental fatigue is a state of reduced 
mental performance that results from prolonged cognitive activity. This 
can impair an operator’s ability to perform tasks, react to stimuli, and 
make decisions, which increases the risk of accidents and injuries on 
construction sites. Therefore, it is crucial to noninvasively monitor the 
mental fatigue of construction equipment operators to minimize 
equipment-related incidents and ensure safe working conditions. Pre-
vious studies used a single-modal data approach to detect and classify 
mental fatigue. However, it is unclear which physiological measure is 
the best indicator of mental fatigue. Thus, the objective of this study is to 
evaluate a new approach that uses machine learning and multimodal 
sensor data collected from equipment operators to recognize and classify 
different types of mental fatigue states during equipment operation. 
Three types of data from operators-electroencephalography, electro-
dermal activity, and geometric measurement of facial features-were 
gathered during an onsite operation on actual construction sites. The 
study then compared the performance of three types of machine learning 
models, artificial neural networks (ANN), k-nearest neighbors (k-NN), 
and decision trees (DT), for training the input data collected from 
multiple sensors. Furthermore, this study is the first to propose a ma-
chine learning-based approach for recognizing and classifying mental 
fatigue states, including alert, mild fatigue, and fatigue states, in con-
struction equipment operators under sustained attention by integrating 
of multiple sensor data. The results showed that mental fatigue can be 
accurately classified in construction equipment operators with varying 
levels of mental fatigue, that is, alert, mild fatigue, and fatigue states, 
while integrating the acquired data from multiple sensors. 

5.1. Multimodal data integration and machine learning-based models 

In the current study, the performances of the three machine learning 
models were compared, and it was found that the decision tree (DT) 
model outperformed the other two models, with an overall accuracy 
ranging from 85.0% to 97.1% when using different combinations of 
input data. The precision, recall specificity, and F1-score of the DT 
model ranged from 94.370% to 97.568%, 91.573%–98.904%, 
97.087%–98.741%, and 94.084%–98.231%, respectively, when inte-
grating data from all sensors. The other two input combinations, EDA 
and FF, and EEG and FF, also showed high values of assessment metrics, 
with overall accuracies of 96.9% and 97.1%, respectively. Based on the 
analysis of the confusion matrix, the alert state (AS), mild fatigue state 
(MFS), and fatigue state (FS) had a relatively small number of instances 
that were misclassified. For example, when using a combination of FF 
and EDA as inputs, the number of misclassified instances for AS, MFS, 

Table 8 
Performance assessment metrics for DT models.  

Indicator Testing     

Alert State Mild Fatigue State Fatigue State 

FF-EDA 
Accuracy 96.9 99.538 96.944 97.407 
Precision  98.913 97.640 94.370 
Recall  99.726 92.978 98.050 
Specificity  99.441 98.895 97.087 
F1-score  99.318 95.252 96.175 

EEG-EDA 
Accuracy 85.0 92.037 88.426 89.537 
Precision  86.423 82.535 85.965 
Recall  90.685 82.303 81.894 
Specificity  92.727 91.436 93.343 
F1-score  88.503 82.419 83.880 

EEG-FF 
Accuracy 97.1 98.796 97.778 97.685 
Precision  97.059 97.977 96.389 
Recall  99.452 95.225 96.657 
Specificity  98.462 99.033 98.197 
F1-score  98.241 96.581 96.523 

EEG-EDA-FF 
Accuracy 96.2 98.796 96.204 97.407 
Precision  97.568 96.736 94.370 
Recall  98.904 91.573 98.050 
Specificity  98.741 98.481 97.087 
F1-score  98.231 94.084 96.175  
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and FS were 4, 8, and 21, respectively. When EEG and FF were used as 
inputs, the misclassified instances for AS, MFS, and FS were 11, 7, and 
13, respectively. Similarly, when EEG, EDA, and FF were used as inputs, 
the misclassified instances for AS, MFS, and FS were 9, 11, and 21, 
respectively. However, the confusion matrix revealed that the EEG and 
EDA combination had a larger number of misclassified instances than 
the other three combinations. Nonetheless, the misclassification rate 
was still lower than that of the ANN and k-NN models. The findings 
indicate that the integration of multiple measures can be utilized to 
identify and categorize mental fatigue in equipment operators. 

5.2. Comparison with studies in non-construction domain 

In this study, machine learning was utilized for the first time to 
recognize and categorize mental fatigue in equipment operators by 
integrating multiple types of data. The findings indicate that similar to 
previous studies in other fields, combining data from various sources can 
be used to identify mental fatigue. However, the current study per-
formed better than studies in other domains in terms of performance 
metrics. For instance, Ding et al. (2020) achieved an accuracy of 58.5% 
when using a fusion of ECG and EDA for classifying mental workload 
with neural networks; however, combining all physiological measures as 
input data increased the accuracy to 78.3%. In another study by Xu et al. 
(2015), a combination of ECG, GSR, SpO2, electroencephalography, and 
electromyography was used to differentiate cognitive tasks, and ach-
ieved an accuracy of 73.0% with support vector machines. Similarly, 
Hirachan et al. (2022) fused data from four sensors, including ECG and 
EDA, to distinguish cognitive workloads, and achieved an accuracy of 
74.0% with DT models. The DT model achieved an accuracy of 68.0% 
when using single-modal data. Majid et al. (2022) found that combining 
data from multiple physiological modalities, such as electroencepha-
lography, galvanic skin response, and photoplethysmography, increased 
the perceived stress classification accuracy to 95.0% for two stress 
classes and 77.5% for three classes. Similarly, Jaiswal et al. (2022) 
utilized a fusion of input data from four sensors, namely EEG, ECG, EDA, 
and EMG, to detect cognitive fatigue, and achieved an accuracy of 
77.2% using a random forest model. While the current study achieved 

higher accuracy than previous studies in other domains, making an 
exact comparison is challenging because of differences in experimental 
protocols and the nature of tasks performed. Nevertheless, the findings 
suggest that the current approach has significant potential for improving 
mental fatigue assessment for construction operators and workers, 
which could help reduce the occurrence of injuries and accidents at 
construction sites. 

5.3. Comparison with studies in construction industry 

The integration of data from multiple sensors yielded a higher clas-
sification accuracy compared to previous studies in the construction 
domain that only used single-modal data. Table 9 shows a comparison of 
the results of the current study with other relevant methods in the 
literature. Prior studies in construction have focused on classifying stress 
or fatigue using machine learning with single-modal data, achieving 
acceptable accuracy. In contrast, the current approach is significantly 
different because it integrates the input data from multiple sensors in 
various combinations for mental fatigue classification. For example, 
Jeon and Cai (2022) used a two-step ensemble approach to classify 
hazard recognition and cognitive states using single-modal EEG data, 
and achieved 82.3% accuracy with the LightGBM classifier. Jebelli et al. 
(2019a) used the OMTL-Von Neumann method for stress recognition in 
construction workers and achieved 77.61% accuracy, while another 
study by Jebelli et al. (2018c) used non-linear support vector machines 
to classify construction worker stress with 71.1% accuracy using 
single-modal EEG data on a construction site. However, these studies 
differed from the current approach because they did not focus on pro-
longed tasks or mental fatigue in construction equipment operators. 
Additionally, direct comparison with these studies may be challenging 
owing to variations in experimental setups, task nature, number of 
subjects, and subject differences. 

6. Practical implications 

The findings of this study have important implications in improving 
the health and safety of construction operators at construction sites. 

Fig. 7. Confusion matrix (a) FF-EDA, (b) EEG-EDA, (c) EEG-FF, and (d) EEG-EDA-FF.  
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First, unlike previous studies that used single-modal data to detect 
mental stress or fatigue, this study demonstrated that it is possible to 
fuse data from multiple sensors to classify the mental fatigue levels of 
construction operators accurately. This suggests that practitioners and 
researchers can use a single system with multiple sensors to detect 
mental fatigue in equipment operators. Second, the findings of this study 
show that wearable electroencephalography, electrodermal activity 
sensors, and a mobile camera can be used to collect onsite experimental 
data for detecting mental fatigue, which has practical implications for 
real-time fatigue management of construction workers. Third, con-
struction managers can use the insights from this study to develop a 
framework for managing worker shifts by observing equipment opera-
tors every 30–45 min and introducing breaks between shifts to allow 
them to recuperate from mental fatigue. Moreover, the findings of this 
study can be applied to other cognitive failures such as mental stress, 
mental workload, hazard identification, and emotions, which can aid in 
better incident management for construction workers experiencing 
cognitive issues. 

7. Limitations and future research 

The proposed study is the first to classify mental fatigue in con-
struction equipment operators using machine-learning-based models 
and multimodal sensor data. While this study’s findings have extended 
the understanding of mental fatigue monitoring by utilizing multimodal 
data as input, there remain caveats that should be addressed in subse-
quent studies. Second, this study did not use multimodal data to estab-
lish thresholds for the different levels of mental fatigue. Future research 
may leverage these thresholds to recognize and classify mental fatigue 
states, depending on whether they can be established and applied to all 
construction equipment operators. Second, the study used machine- 
learning models and multimodal sensor data to categorize mental fa-
tigue in equipment operators, but the features were manually crafted 
from various sensors and then combined for classification purposes. 
Future research should utilize deep learning techniques or a combina-
tion of multiple deep learning techniques and raw multimodal data to 
identify mental fatigue in operators without the manual crafting of 
features. Unsupervised learning may also be employed in future studies 
to learn the features related to operators’ mental fatigue on unlabeled 
multimodal sensor data. Third, the sample size was small, with only 
sixteen equipment operators and three levels of mental fatigue. 
Although the sample size was based on previous research, it may restrict 
the application of the proposed approach in the construction industry. 
To make the results more generalizable to the entire population of op-
erators, future research should gather extensive datasets that represent a 
range of mental fatigue states. Fourth, this study evaluated mental fa-
tigue using only three levels. Future studies should assess performance 
using more classes of mental fatigue for a better understanding of mental 
fatigue in real time. Fifth, the ground truth of mental fatigue was based 

on operators’ subjective assessment, which may have been influenced by 
personal biases. Although the operators were familiar with the evalua-
tion method of mental fatigue level, subjective assessment can still be 
considered a limitation owing to its lack of objectivity. However, it is a 
reliable technique for annotating data, despite its potential shortcom-
ings. Sixth, this study focused solely on excavation operators as equip-
ment operators. Subsequent research should replicate these results for 
operators of different types of construction equipment, such as cranes, 
dozer, and grader operators. In general, it is crucial to collect a large 
dataset with sufficient samples from various groups of equipment op-
erators to identify additional mental fatigue states that are essential for 
training, testing, and constructing a comprehensive model for con-
struction operations. Lastly, privacy concerns are valid and real con-
cerns when implementing a system for mental fatigue recognition 
among construction workers. While the system proposed in the current 
study holds the potential to revolutionize occupational health by 
enabling real-time monitoring and proactive interventions, there are 
also inherent risks related to device hacking, data breaches, privacy is-
sues, and data mismanagement. However, addressing such concerns is 
beyond the scope of this study. Future studies should focus on evaluating 
and mitigating these risks to ensure the successful on-field deployment 
of such a system. This involves carefully assessing the system architec-
ture and hardware to ensure robustness against privacy and data secu-
rity concerns. Measures should be implemented to secure the collected 
data, including encryption during transmission and storage, to prevent 
unauthorized access. Obtaining informed consent from the construction 
workers is essential. They should be informed of the purpose of data 
collection and how it will be used solely for on-site safety management. 
Transparency in the process helps build trust and confidence among 
workers regarding the protection and security of their data. 

8. Conclusions 

This study introduced a novel approach for classifying mental fatigue 
in construction equipment operators using supervised machine learning 
and multimodal sensor data fusion. Sixteen equipment operators 
participated in an excavation operation on a construction site, with 
subjective assessment using NASA-TLX as the ground truth for mental 
fatigue. Simultaneous measurement of EEG and EDA using wearable 
Muse headbands and E4 watches, respectively, and video recording for 
the geometric measurement of facial features were conducted during the 
experiment. Mental fatigue was induced by a monotonous and pro-
longed excavation task. After the experiment, the features were 
extracted and integrated as the input data from multiple sensors. Three 
supervised machine-learning models, including an artificial neural 
network (ANN), k-nearest neighbors (k-NN), and a decision tree (DT), 
and four combinations of multimodal data were used to classify three 
levels of mental fatigue: alert, mild fatigue, and fatigue. Additionally, 
the performance of these models was evaluated using assessment 

Table 9 
Comparison of classification accuracies in construction industry studies.  

Reference No. of 
subjects 

Mode(s) Stress or Fatigue 
(Levels) 

Stimulus (Data collection settings) Classification Method Accuracy 
(%) 

Jeon and Cai 
(2022) 

30 EEG Hazard (3) Simulated environment. (Laboratory 
setting) 

LightGBM 82.3 

Jebelli et al. 
(2018b) 

11 EEG Stress (2) Working on ladder (Construction site) Fully connected NN 79.26 

Jebelli et al. 
(2018c) 

8 EEG Stress (2) Working on ladder (Construction site) Non-linear support vector 
machine 

71.1 

Aryal et al. (2017) 12 Beta 1 channel Fatigue (4) Psychomotor Vigilance Task (indoor 
simulated) 

Boosted trees 82.60 

Jebelli et al. 
(2019a) 

5 EEG Stress (2) Working on ladder (construction site) OMTL-VonNeuman 77.61 

Current study 16 EEG, EDA and 
FF 

Fatigue (3) Excavation Operation (Construction Site) ANN k-NN 
DT 

94.7 
85.8 
96.2  
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metrics, such as accuracy, precision, recall, specificity, and F1-score. 
The experimental findings indicate that the DT model outperformed 
the other models for all combinations of multimodal data, achieving an 
overall accuracy of 96.9% (FF and EDA), 85.0% (EEG and EDA), 97.1% 
(EEG and EDA), and 96.2% (EEG, EDA, and FF). Although the overall 
accuracy of the ANN and k-NN models was inferior to that of the DT 
model, their performance was still better than that of previous studies 
conducted with single-modal data. These findings support the use of the 
DT model and the fusion of data from multiple sensors to classify mental 
fatigue states during construction equipment operations, aiding in the 
development of a single real-time system of multiple sensors and ma-
chine learning to classify mental fatigue in operators. Additionally, the 
system will improve safety and health management at construction sites 
by enabling safety managers to track the mental fatigue level of opera-
tors in real-time, thereby reducing injuries and accidents at construction 
sites. 
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Polajnar, M., Toplak, M., Starič, A., 2013. Orange: data mining toolbox in Python. 
J. Mach. Learn. Res. 14, 2349–2353. 

Ding, Y., Cao, Y., Duffy, V.G., Wang, Y., Zhang, X., 2020. Measurement and identification 
of mental workload during simulated computer tasks with multimodal methods and 
machine learning. Ergonomics 63, 896–908. 

Dissanayake, U.C., Steuber, V., Amirabdollahian, F., 2022. EEG spectral feature 
modulations associated with fatigue in robot-mediated upper limb gross and fine 
motor interactions. Front. Neurorob. 15, 192. 

Doudou, M., Bouabdallah, A., Berge-Cherfaoui, V., 2020. Driver drowsiness 
measurement technologies: current research, market solutions, and challenges. Int. 
J. Intell. Trans. Syst. Res. 18, 297–319. 
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Electrodermal activity is sensitive to cognitive stress under water. Front. Physiol. 8. 
Prabaswari, A.D., Basumerda, C., Utomo, B.W., 2019. The mental workload analysis of 

staff in study program of private educational organization. In: IOP Conference Series: 
Materials Science and Engineering. IOP Publishing, 012018. 

Raufi, B., Longo, L., 2022. An evaluation of the EEG alpha-to-theta and theta-to-alpha 
band ratios as indexes of mental workload. Front. Neuroinf. 16. 

Saedi, S., Fini, A.A.F., Khanzadi, M., Wong, J., Sheikhkhoshkar, M., Banaei, M., 2022. 
Applications of electroencephalography in construction. Autom. ConStruct. 133, 
103985. 

Sarkar, S., Pramanik, A., Maiti, J., Reniers, G., 2020. Predicting and analyzing injury 
severity: a machine learning-based approach using class-imbalanced proactive and 
reactive data. Saf. Sci. 125, 104616. 

Savitzky, A., Golay, M.J., 1964. Smoothing and differentiation of data by simplified least 
squares procedures. Anal. Chem. 36, 1627–1639. 

Soares, G., De Lima, D., Neto, A.M., 2019. A mobile application for driver’s drowsiness 
monitoring based on PERCLOS estimation. IEEE Ltin America Transact. 17, 193–202. 

Stancin, I., Frid, N., Cifrek, M., Jovic, A., 2021. EEG signal multichannel frequency- 
domain ratio indices for drowsiness detection based on multicriteria optimization. 
Sensors 21, 6932. 

Sweeney, K.T., Ward, T.E., Mcloone, S.F., 2012. Artifact removal in physiological 
signals—Practices and possibilities. IEEE Trans. Inf. Technol. Biomed. 16, 488–500. 

Tao, D., Tan, H., Wang, H., Zhang, X., Qu, X., Zhang, T., 2019. A systematic review of 
physiological measures of mental workload. Int. J. Environ. Res. Publ. Health 16, 
2716. 

Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., Picard, R., 2015. Automatic 
identification of artifacts in electrodermal activity data. In: 2015 37th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC). IEEE, pp. 1934–1937. 

Techera, U., Hallowell, M., Littlejohn, R., Rajendran, S., 2018. Measuring and predicting 
fatigue in construction: empirical field study. J. Construct. Eng. Manag. 144, 
04018062. 

Tehrani, B.M., Wang, J., Truax, D., 2021. Assessment of Mental Fatigue Using 
Electroencephalography (EEG) and Virtual Reality (VR) for Construction Fall Hazard 
Prevention. Construction and Architectural Management, Engineering (ahead-of- 
print).  

I. Mehmood et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S2666-1659(23)00080-7/sref43
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref43
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref43
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref44
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref44
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref44
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref45
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref45
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref46
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref46
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref46
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref47
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref47
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref48
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref48
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref48
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref49
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref49
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref49
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref49
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref50
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref50
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref50
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref50
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref51
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref51
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref51
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref52
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref52
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref53
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref53
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref54
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref54
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref54
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref54
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref55
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref55
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref55
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref56
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref56
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref56
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref57
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref57
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref57
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref58
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref58
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref58
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref59
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref59
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref60
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref60
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref61
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref61
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref62
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref62
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref63
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref63
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref63
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref64
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref64
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref65
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref65
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref65
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref66
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref66
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref66
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref67
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref67
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref67
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref68
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref68
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref68
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref68
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref69
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref69
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref69
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref70
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref70
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref71
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref71
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref71
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref72
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref72
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref72
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref73
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref73
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref73
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref74
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref74
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref74
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref75
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref75
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref75
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref76
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref76
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref76
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref77
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref77
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref78
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref78
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref78
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref78
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref79
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref79
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref79
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref80
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref80
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref80
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref81
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref81
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref81
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref81
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref82
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref83
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref83
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref83
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref84
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref84
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref84
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref84
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref85
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref85
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref85
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref85
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref85
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref85
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref86
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref87
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref87
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref88
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref88
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref89
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref89
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref90
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref90
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref91
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref91
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref91
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref92
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref92
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref93
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref93
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref93
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref94
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref94
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref94
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref95
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref95
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref96
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref96
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref97
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref97
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref97
http://refhub.elsevier.com/S2666-1659(23)00080-7/optEa5BpRnXn8
http://refhub.elsevier.com/S2666-1659(23)00080-7/optEa5BpRnXn8
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref98
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref98
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref98
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref99
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref99
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref99
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref99
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref100
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref100
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref100
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref101
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref101
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref101
http://refhub.elsevier.com/S2666-1659(23)00080-7/sref101


Developments in the Built Environment 15 (2023) 100198

16

Tyas, A.E., Wibawa, A.D., Purnomo, M.H., 2020. Theta, alpha and beta activity in the 
occipital based on EEG signals for mental fatigue in high school students. In: 2020 
International Conference on Smart Technology and Applications (ICoSTA), pp. 1–7, 
20-20 Feb. 2020.  

Umer, W., 2022. Simultaneous monitoring of physical and mental stress for construction 
tasks using physiological measures. J. Build. Eng. 46, 103777. 

Umer, W., Li, H., Yantao, Y., Antwi-Afari, M.F., Anwer, S., Luo, X., 2020. Physical 
exertion modeling for construction tasks using combined cardiorespiratory and 
thermoregulatory measures. Autom. ConStruct. 112, 103079. 

Utomo, D., Yang, T.-H., Thanh, D.T., Hsiung, P.-A., 2019. Driver fatigue prediction using 
different sensor data with deep learning. In: 2019 IEEE International Conference on 
Industrial Cyber Physical Systems (ICPS). IEEE, pp. 242–247. 

Vahdatikhaki, F., El Ammari, K., Langroodi, A.K., Miller, S., Hammad, A., Doree, A., 
2019. Beyond data visualization: a context-realistic construction equipment training 
simulators. Autom. ConStruct. 106, 102853. 

Vidya, K.S., Ng, E., Acharya, U.R., Chou, S.M., San Tan, R., Ghista, D.N., 2015. 
Computer-aided diagnosis of myocardial infarction using ultrasound images with 
DWT, GLCM and HOS methods: a comparative study. Comput. Biol. Med. 62, 86–93. 

Wagstaff, A.S., Sigstad Lie, J.-A., 2011. Shift and night work and long working hours – a 
systematic review of safety implications. Scand. J. Work. Environ. Health 173–185. 

Walambe, R., Nayak, P., Bhardwaj, A., Kotecha, K., 2021. Employing multimodal 
machine learning for stress detection. J. Healthc Eng. 2021, 9356452. 

Wan, W., Cui, X., Gao, Z., Gu, Z., 2021. Frontal EEG-based multi-level attention states 
recognition using dynamical complexity and extreme gradient boosting. Front. Hum. 
Neurosci. 15. 

Wang, C., Guragain, B., Verma, A.K., Archer, L., Majumder, S., Mohamud, A., Flaherty- 
Woods, E., Shapiro, G., Almashor, M., Lenné, M., 2019a. Spectral analysis of EEG 
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