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Abstract: Ion–conducting ceramic membranes, such as mixed oxygen ionic and electronic conducting
(MIEC) membranes and mixed proton–electron conducting (MPEC) membranes, have the potential
for absolute selectivity for specific gases at high temperatures. By utilizing these membranes in
membrane reactors, it is possible to combine reaction and separation processes into one unit, leading
to a reduction in by–product formation and enabling the use of thermal effects to achieve efficient
and sustainable chemical production. As a result, membrane reactors show great promise in the
production of various chemicals and fuels. This paper provides an overview of recent developments
in dense ceramic catalytic membrane reactors and their potential for chemical production. This review
covers different types of membrane reactors and their principles, advantages, disadvantages, and key
issues. The paper also discusses the configuration and design of catalytic membrane reactors. Finally,
the paper offers insights into the challenges of scaling up membrane reactors from experimental
stages to practical applications.

Keywords: mixed conducting membranes; inorganic membranes; catalytic membrane reactors;
heterogeneous reaction

1. Introduction

The chemical and petrochemical industries are vital to the global economy, but tradi-
tional reaction processes often require significant energy and additional facilities for the
separation of mixtures of products, by–products, or raw materials. Advanced membrane
reactor technology provides a solution by integrating separation and reaction processes.
This means that the energy required to maintain the reaction, or the energy generated by
the reaction can be harnessed to separate pure substances, including intermediate or final
products. Membrane reactor technology offers a more efficient and sustainable approach to
chemical and petrochemical production, making it an attractive option for reducing energy
consumption and minimizing environmental impact.

The concept of catalytic membrane reactors (CMRs) was first introduced in the
1960s [1], and since then, significant progress has been made, particularly in the past
two decades, as advancements in membrane processes have been made [2–6]. This progress
has been facilitated by the development of new membrane materials, enabling membrane
technology to be applied to a much broader range of operating conditions [7–10]. New
configurations of membrane reactors and innovative reaction routes have also contributed
to the development of membrane reactors. Inorganic membranes, including metals, ceram-
ics, zeolites, glasses, and carbon, are commonly used in CMRs [11–14]. These membranes
typically consist of multiple layers of single–phase or composite materials. Inorganic mem-
branes offer a significant advantage over organic membranes because of their ability to
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operate at high temperatures and can be applied to more reactions. Inorganic membranes
that possess high–temperature structural and chemical stability are potential candidates
for CMRs.

Among the inorganic membranes, dense mixed conducting membranes are particu-
larly noteworthy. These membranes include mixed oxygen ionic and electronic conducting
(MIEC) and mixed proton–electron conducting (MPEC) membranes, which operate through
a unique separation mechanism in which oxygen or hydrogen diffuses through the mem-
brane in a dissociated or ionized form, rather than through conventional molecular diffusion
or molecular sieve [15]. The most attractive feature of MIEC and MPEC membranes is their
exceptional selectivity to oxygen and hydrogen, which makes them highly promising for
applications in high–purity gas separation and CMRs.

MIEC membranes operate by dissociating oxygen molecules into oxygen ions, which
are transported from the permeate side to the sweep side by receiving electrons. Oxygen
ions then release electrons and regenerate oxygen molecules. Since the lattice can only
contain and transfer oxygen ions, MIEC membranes can achieve high selectivity (up
to 100%) without an external circuit [4,16,17]. On the other hand, MPEC membranes
operate differently. Hydrogen molecules diffuse to and adsorb on the membrane surface,
dissociating into hydrogen atoms. These atoms, easily losing their electrons, become
protonic defects in the oxide lattice. Driven by the chemical potential gradient, the defects
diffuse in the lattice from the feed side to the permeate side of the membrane and then
recombine with electrons to form hydrogen molecules. The selectivity of MPEC membranes
can theoretically reach 100%, but the presence of water vapor in the feed gas can lead to
oxygen co–transportation, resulting in the permeated gas containing water vapor [18,19].
Ceramic MPEC membranes offer the advantage of being less expensive than Pd–based
membranes, with relatively high durability and stability in CO–, CO2–, and H2S–containing
water vapor environments [20].

In the past two decades, research on mixed conducting membranes has been driven
by efforts to promote efficient energy utilization and reduce emissions, leading to the
production of potential products such as oxygen, hydrogen, syngas, methane, ammonia,
and higher hydrocarbons (mainly C2) [21–26] (Figure 1). Several major initiatives have
made significant advances in bringing the technology closer to commercial readiness.
Currently, research in this field is focused on identifying materials that combine high
permeability with reliable chemical and thermal stability, optimizing step economy and
atom economy reactions for membrane reactors, and developing new reaction routes to
directly produce advanced chemicals, such as olefins and aromatics, in a membrane reactor.
We realized that attempting a comprehensive review of this rapidly expanding and diverse
field exceeds the scope of this article. Our objective is not to provide an exhaustive overview
of all applications, and therefore, materials, theories, and modeling research will not be
extensively discussed. Furthermore, a review of the many new developments in the field
of solid electrolyte electrocatalytic reactors based on ion–conducting ceramic membranes
is beyond the scope of this contribution. CMRs have been extensively reviewed in the
past few years, including notable examples such as the review by Wang and Caro in
2013 [27], Sunarso and Liu in 2018 [28], and Yang in 2019 [29]. While previous reviews have
typically focused on either MIEC or MPEC membranes, it is important to discuss these
two membranes together. By considering their common features, such as the functions of
the membrane, architectures, fabrication and scaling up strategies, readers can obtain a
more comprehensive understanding of their potential applications and the design of new
membrane reactors. Exploring these aspects collectively will provide valuable insights and
foster innovation in the field.
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Figure 1. The main application of dense mixed conducting membranes.

2. Fundamentals

The performance of mixed conducting ceramic membranes is highly dependent on the
properties of their constituent materials, which are mainly determined by their composition
and structure. Among the various mixed conducting materials, perovskite oxides have
been extensively studied due to their high–temperature stability and unique cubic or
orthorhombic structure. Figure 2a illustrates the coordination environment of the A–site and
B–site cations in a simple cubic perovskite structure, where the A–site cation coordinates
with 12 oxygen ions to form a cubic octahedral coordination environment, while the B–site
cation coordinates with six oxygen ions in an octahedral geometry. Typically, the A–site
cation is larger than the B–site cation in perovskite, which helps to maintain the lattice
stability. The perovskite structure provides a framework for preparing mixed conducting
materials with desired chemical composition and structural characteristics. In addition to
perovskite–type oxides, K2NiF4–type oxides (Figure 2b) and Brownmillerite–type oxides
(Figure 2c) are also commonly employed for oxygen and hydrogen separations, as well as
membrane reactions. Perovskite oxides are extensively studied as membrane materials,
and therefore the review primarily delves into the exploration and analysis of perovskite
oxides as a prominent category of materials for dense ceramic membranes.
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The ideal perovskite structure is composed of ABO3 units, but its chemical compo-
sition can vary depending on the valence state of the A– and B–site cations. Common
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combinations include A1+B5+O3, A2+B4+O3, and A3+B3+O3. The A–site is typically occupied
by large alkali earth metals like Ba, La, or Sr with a valence of 2+, and the B–site is occupied
by first–row transition elements like Ce, Co, or Fe, with a valence of 4+. Despite their
shared structure, perovskites with different compositions can exhibit distinct properties.
For instance, BaCoO3 and SrCoO3 conduct oxygen, whereas BaCeO3 and SrCeO3 conduct
protons. A stable perovskite structure relies on the existence of a stable BO3 skeletal sub–
lattice [31], with the radius of the oxygen ion at 0.140 nm. To maintain a stable octahedral
perovskite structure, the ionic radius of the B–site cation must be greater than 0.051 nm. A
large A–site cation can further stabilize the BO3 skeletal sub–lattice by occupying the center
of the eight BO6 octahedra. Although the presence of the A–site cation distorts the BO3
skeletal sub–lattice, it attempts to achieve optimal A metal cation–oxygen ion bond length,
with a minimum radius of 0.09 nm for the A cation. Increased distortion can cause cubic
crystal geometries to become orthorhombic or rhombohedral.

The tolerance factor t is used to analyze the relationship between ionic radius and crys-
tal system, and is defined as (RA+RB)√

2RO
, where RA, RB, and RO represent the ionic radii of the

A–site cation (12–coordination), B–site cation (6–coordination), and oxygen ion, respectively.
Cubic structures might exist between the limits of 0.75 < t < 1.0. For 0.75 < t < 0.9, the corner
shared octahedra buckle cooperatively, leading to orthorhombic distortion. Orthorhombic
distortion occurs when the BO6 octahedra are tilted, causing the A ions to be displaced
along the (110) pseudo–cubic or (010) directions. For 0.75 < t < 0.9, a small deformation
from cubic to rhombohedral symmetry may occur, without any octahedral buckling. The
difference in the ionic radii of dopants and the outer electronic structure can easily cause
distortion from the ideal cubic structure in perovskite oxides [32].

Mixed conducting materials are highly valued due to their ability to conduct both ions
(or protons) and electrons, which enables the transport of oxygen or hydrogen through the
material. To achieve optimal performance, it is important for the conductivity of both ions
and electrons to be well matched. In many perovskite materials, electron conductivity is
much greater than ion conductivity, whereas in many fluorite materials, the opposite is
true. When electron conductivity is insufficient, an external circuit may be necessary to
assist electronic conduction for effective ion transmission.

Ion doping is a common strategy for adjusting the physicochemical properties and
improving both ion and electron conductivity. By introducing a lower valence dopant B’
on the B site of perovskite–structured oxides ABO3, AB1−xB’xO3−δ can be formed, creating
oxygen vacancies at high temperatures (represented by the symbol δ) that allow for ion
transport [33]. Additionally, a wide range of perovskite–structured compounds can be
produced by substituting A or B ions, or both, to form a structure of AxA’1−xByB’1−yO3−δ.

The mobility of oxygen ions in the bulk phase is strongly influenced by A–site
cations [34], while the nature of B–site cations determines the catalytic activity for re-
actions. Materials containing both types of cations can be used as membrane reactors that
simultaneously serve as membranes for separating oxygen and catalysts for oxidation
processes, eliminating the need for additional catalysts [35]. However, materials with high
oxygen permeability but low catalytic activity can also be used for building membrane
reactors, but additional catalysts are required [36–39].

3. Classification of Mixed Conducting Membranes

MIEC and MPEC materials are categories of mixed conducting materials that can
conduct both oxygen ions and electrons (Figure 3a), and protons and electrons (Figure 3b),
respectively. These materials can be used to create membranes for oxygen or hydrogen sep-
aration and production, fuel cells, and gas or hydrogen sensors, among other applications.
In the following sections, we will discuss typical materials used for oxygen–permeable and
hydrogen–permeable membranes in greater detail.
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3.1. Single–Phase Oxygen–Permeable Membranes

Fluorite–type oxides are the most commonly used materials for oxygen ionic conduc-
tors, with Yttria–stabilized zirconia (YSZ) being a well–known example that has been used
for solid oxide fuel cells (SOFCs), sensors, and structural ceramics. However, the elec-
tron conductivity of YSZ is insufficient for oxygen permeation without an external circuit,
leading to increased complexity and instability of the membrane reactor [40]. Therefore,
fluorite–type oxides are typically used as oxygen ion–conducting materials in dual–phase
membranes rather than as membranes alone.

K2NiF4–type oxides, on the other hand, are a type of mixed conducting material
that has been studied for their potential use in oxygen–permeable membranes [41,42].
These materials have a unique structure that is composed of layers of edge–sharing MO6
octahedra and layers of corner–sharing MO6 octahedra, where M is a metal cation. The
oxygen ions can move through the channels between these layers, allowing for high oxygen
ionic conductivity. These K2NiF4–type composites do not contain alkaline–earth metal
elements, which tend to react with CO2 to produce carbonates, and therefore have excellent
stability against CO2 in comparison with perovskite oxides such as Pr2NiO4+δ (PNO) and
Pr2Ni0.9Mo0.1O4+δ (PNM). With the doping of Mo, the oxygen permeability of the PNM
hollow–fiber membrane is higher [43].

Perovskite oxides have been reported as highly ionic and electronic conducting materi-
als for oxygen–permeable membranes, as firstly reported by Teraoka et al. [44]. These oxides
possess a unique crystal structure that provides desirable transport properties, such as high
ionic and electron conductivity. Furthermore, they can be easily synthesized with various
compositions, allowing for tailoring of their properties to meet specific requirements for
different applications. Additionally, perovskite oxides exhibit good chemical and thermal
stability under harsh, high–temperature conditions, which is crucial for their long–term
operation in various applications [33,45–49]. Researchers are continuing to develop new
perovskite oxide compositions with enhanced properties, and to optimize synthesis and
processing methods to improve the stability and reliability of the resulting membranes.
Additionally, they are exploring new membrane architectures and configurations to further
improve the performance and capabilities of perovskite oxide membranes for a range of
applications. These will be discussed in detail in the following sections.

3.2. Dual–Phase Oxygen–Permeable membranes

A mixed conducting material with both high ionic conductivity and well–matched
electronic conductivity is desirable but challenging to achieve in a single–component
material. To overcome this challenge, Mazanec et al. [50] proposed a dual–phase membrane
concept for methane conversion. The earliest dual–phase membrane consisted of a metal
phase, such as Ag or Pt, and a fluorite phase, such as YSZ (as shown in Figure 4a). The
former was used for electronic conduction, while the latter was used for oxygen ion
conduction, enabling the omission of external circuits. In ideal dual–phase membranes,
the ionic conductor is the continuous phase, and the electronic conductor is uniformly
dispersed throughout the membrane network. The concept of dual–phase membranes
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provides additional opportunities in material selection, but also presents challenges in
terms of fabrication methods.
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Figure 4. Permeation routes for dual–phase membranes consisting of (a) an oxygen ionic conducting
and electronic conducting phase, and (b) an oxygen ionic conducting and mixed conducting phase.

In a dual–phase membrane, the electronic conductor phase is used to compensate
for the low conductivity of the ionic conductor phase (Figure 4b). Perovskite is a good
candidate for the electronic conductor phase due to its relatively low cost and compatibility
with fluorite–type oxides. The combination of these two phases allows for simultaneous
oxygen ionic and electronic transport in the membrane, extending the oxygen surface
exchange reaction to the overall dual–phase membrane surface. This increases the surface
exchange reaction rate and bulk diffusion for oxygen permeation, resulting in higher oxygen
permeability. Therefore, the total oxygen conductivity of ceramic dual–phase membranes
is larger than that of metal–ceramic dual–phase membranes, which further contributes to
the higher permeability of ceramic dual–phase membranes [51,52].

Dual–phase membranes are generally more stable than single–phase perovskite mem-
branes in the presence of CO2. This is because dual–phase membranes have a fluorite–type
oxide phase that is predominantly oxygen ionic conducting and is stable in CO2–containing
environments. Fang et al. [53,54] prepared a dual–phase membrane with a predominantly
ionic conducting fluorite–type MIEC oxide (Ce0.85Gd0.1Cu0.02O2−δ(CGCO)) and a pre-
dominantly electronic conducting perovskite–type MIEC oxide (La0.6Ca0.4FeO3−δ(LCF)).
With pure CO2 sweeping, a maximum oxygen permeation flux of 0.70 mLcm−2min−1

was obtained with a 0.5 mm thick membrane at 950 ◦C. It is worth mentioning that the
membrane is stable in the presence of CO2, even at low temperatures (800 ◦C) during
long–term operation, which is a characteristic not possessed by a single–phase perovskite
membrane.

The flux of different typical oxygen–permeable membranes is summarized in Table 1.
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Table 1. Comparison of oxygen permeation fluxes of membranes with various materials.

Material Membrane Type Thickness
(mm) Feed Gas Sweep Gas Temperature

(◦C)
Oxygen Flux

(mL·min−1cm−2)
Stability Ref.

SrCo0.8Fe0.2O3−δ disk 1.0 Air He 877 3.1 / [44]

SrCo0.4Fe0.6O3−δ disk 1.0 Air He 877 2.4 / [44]

La0.2Sr0.8Co0.4Fe0.6O3−δ disk 1.0 Air He 877 0.6 / [44]

La0.6Sr0.4CoO3−δ disk 1.5 Air He 860 1.0 / [55]

La0.6Sr0.4Co0.8Fe0.2O3−δ disk 1.5 Air He 860 0.62 / [55]

La0.6Sr0.4Co0.8Mn0.2O3−δ disk 1.5 Air He 860 0.50 / [55]

La0.6Sr0.4Co0.8Ni0.2O3−δ disk 1.5 Air He 860 1.44 / [55]

La0.2Sr0.8Co0.2Fe0.8O3−δ disk 2 Air He 850 0.32 / [56]

SrCo0.8Fe0.2O3−δ disk 1 Air Inert gas 900 4.24 / [57]

Ba0.5Sr0.5Co0.8Fe0.2O3−δ
hollow

fiber 0.22 Air He 900 3.80 / [58]

BaCe0.15Fe0.85O3−δ disk 1 Air He 900 0.418 / [59]

BaCe0.15Fe0.85O3−δ disk
1.4

Air He 940
0.47

1 h in 5% H2 + Ar [60]
0.56 0.81

BaBi0.3Co0.2Fe0.5O3−δ disk
1.5

Air He 900
0.5

/ [61]
0.66 0.85

SrCo0.9Nb0.1O3−δ disk 1 21% oxygen−He Ar 900 4.24 200 days [62]

SrCo0.9Ta0.1O3−δ disk 0.65 Air He 900 1.83 520 h [63]

Ba0.5Sr0.5Co0.8Fe0.2O3−δ disk 0.9
(0.07 dense) Air Ar 900 10.0 / [64]

SrCo0.8Fe0.2O3−δ
+0.5%wt Nb2O5

4−channel hollow fiber 0.2
(0.01 dense) Air He 900 1.6 500 h [65]

SrFe0.8Nb0.2O3−δ disk 1 Air CO2 900 0.25 210 h [2]

SrFe0.9Ta0.1O3−δ disk 1 Air CO2 900 0.30 130 h [66]

SrFe0.9Ta0.1O3−δ 4−channel hollow fiber 0.25 Air CO2 900 1.15 130 h [66]

BaCo0.7Fe0.22Nb0.08O3−δ 4−channel hollow fiber
0.13

Air He
900 8.1 / [67]

0.13 650 1.15 300 h [67]
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3.3. Hydrogen–Permeable Membranes

In addition to their oxygen ion conductivity and mixed ionic and electronic conduc-
tivity, perovskite materials can also exhibit proton conductivity, making them useful for
hydrogen–permeable membrane applications. For example, SrCeO3 doped with 5% Ce
replaced by Yb shows protonic conduction in a hydrogen–containing atmosphere at high
temperatures [68,69]. The presence of oxygen vacancies, which are created by doping,
is believed to play a critical role in the formation and transport of protons in perovskite
materials. Ln6WO12 is another promising material for hydrogen–permeable membranes.
Ln6WO12 (Ln = La, Pr, Nd, Sm, Eu, and Gd) belongs to the family of double perovskite
oxides, which have shown potential for various applications due to their unique electronic
and ionic transport properties [70–73]. In particular, the oxygen vacancy concentration in
Ln6WO12 can be significantly increased by doping of niobium and molybdenum, which
enhances proton conduction at high temperatures in a hydrogen–containing atmosphere.
This makes it a promising candidate for hydrogen–permeable membranes. Moreover,
Ln6WO12 is also stable in CO2–containing atmospheres, which makes it an even more
attractive option for industrial applications.

The interfacial resistance is the resistance to mass transfer across the interface between
the two phases, which can limit the overall permeation rate of the membrane. In one study, a
dual–phase membrane was prepared by mixing different amounts of Ni in the BaCe1−xYxO3
ceramic phase [74]. The addition of nickel affected the surface properties of the membrane,
but the interfacial resistance between the two phases was found to be much higher than
the bulk resistance. This suggests that reducing the interfacial resistance between the
two phases of a dual–phase membrane is important for improving its performance in
hydrogen permeation [75]. A novel dual–phase SrCe0.9Y0.1O3–Ce0.8Sm0.2O2 (SCY–SDC)–
laminated membrane was prepared, which consisted of alternating films of SCY and
SDC phases (as shown in Figure 5) [76]. This laminated membrane was found to exhibit
higher hydrogen (H2) flux than a conventional SCY–SDC dual–phase membrane, due to the
shortened bulk diffusion distance for protons and electrons. The alternating films of the two
phases allowed for more efficient proton and electron transport between the two phases,
reducing the interfacial resistance and improving the overall hydrogen permeation rate.
This approach of using laminated dual–phase membranes could have potential applications
in fuel cells, where efficient proton and electron transport is critical for optimal performance.
Further research is needed to optimize the composition and microstructure of the laminated
membrane, as well as to evaluate its long–term stability and durability.
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The flux of different typical hydrogen–permeable membranes is summarized in Table 2.
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Table 2. Comparison of hydrogen–permeable fluxes of membranes with various materials.

Material Membrane Type Thickness
(mm) Feed Gas Sweep Gas Temperature

(◦C)
Oxygen Flux

(mL·min−1cm−2) Stability Ref.

Ba(Ce0.7Zr0.1Y0.1Yb0.1)0.95Ni0.05O3−δ disk
0.45

10% H2−N2 Ar 800
0.42

Stable at 700 ◦C for 200 h [77]
0.6 0.24

SrCe0.9Y0.1O3−δ disk 0.8 40% H2−N2 Ar 900 0.10 / [78]

BaCe0.9Y0.1O3−δ disk 0.8 40% H2−N2 Ar 900 0.75 / [78]

Ba0.5Sr0.5Ce0.9Y0.1O3−δ disk 0.8 40% H2−N2 Ar 900 1.60 / [78]

LaCe0.9Y0.1O3−δ disk 0.8 40% H2−N2 Ar 900 0.02 / [78]

Pd modified−BaCe0.95Tb0.05O3−δ hollow fiber 0.26 50% H2−Ne N2 900 0.27 / [79]

BaCe0.85Tb0.05Co0.1O3−δ hollow fiber 0.75 50% H2−Ne N2 1000 0.38 / [80]

BaCe0.95Nd0.05O3−δ disk 0.7 80% H2+He+H2O Ar 925 0.026 / [81]

BaZr0.1Ce0.2Y0.7O3−δ disk 50% H2−N2 Ar 900 0.018 Stable at 850 ◦C for 2 h [82]

BaZr0.3Ce0.6Y0.1Zn0.05 O3−δ disk 50% H2−N2 Ar 900 0.012 Stable at 850 ◦C for 4 h [82]
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4. Membrane Architecture

The architecture of a catalytic membrane reactor is an important factor that can influ-
ence its performance, and it can be considered from different standpoints. One important
aspect of the architecture is the membrane configuration. There are several types of mem-
brane configurations that can be used in CMRs, including planar, tubular, and hollow-fiber
membranes (Figure 6) [30]. Another important aspect of the architecture is the membrane
symmetry. Membranes can be symmetrical or asymmetrical. Asymmetrical membranes
can be achieved by having a single dense layer with no porous support layers, or by having
porous support layers on both sides of the dense layer, whereas an asymmetrical membrane
typically has a gradient in pore size across the membrane thickness, and it has a dense layer
on one side and a porous support layer on the other side.
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The thickness of a membrane plays an important role in determining its mass transfer
resistance and overall performance. In general, reducing the thickness of the membrane can
decrease the mass transfer resistance and improve the efficiency of separation or reaction
processes. A thin and dense separation layer with a porous support layer (a supported
membrane) is considered a promising configuration for achieving high selectivity and
permeance. However, preparing a supported dense membrane with a thin separation layer
and good interfacial bonding can be challenging. Thermal and chemical compatibility
between the membrane and the support, as well as the formation of a fully dense and
defect–free top layer, are critical factors that must be addressed.

Jin et al. [83] proposed a versatile co–sintering technique to prepare a crack–free
supported membrane, which involves directly coating a thin membrane precursor on the
surface of a green support and sintering the two layers together in one step. This technique
has been widely used by many researchers to prepare both planar and tubular ceramic
membranes [84–86]. A study proposed a novel supported membrane structure that includes
a catalytic activation layer, a gastight layer, and a porous substrate with 34% open porosity.
The catalytic activation layer has a thickness of 17 µm, the gastight layer is 70 µm thick,
and the porous substrate is 830 µm thick. The oxygen flux achieved by this membrane is
impressive, reaching 10.0 mL (STP) min−1 cm−2 at 900 ◦C, which is 3 to 10 times higher
than other membranes under similar conditions [64]. This structure showcases the potential
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of supported ceramic membranes to achieve high fluxes and highlights the importance of
proper membrane design and optimization.

A tubular membrane is a type of membrane that has a cylindrical shape. Tubular
membranes have several features. For example, large surface area: it can be made with
a large surface area, allowing for efficient separation of fluids; high packing density: it
can be packed tightly together, allowing for a large number of membranes to be used in
a small space; and easy sealing at high temperatures: it can be directly inserted into a
high–temperature reactor and sealed at the cold ends outside the furnace. Other important
features of tubular membranes are their scalability, and they can be bundled together to
form membrane modules with a larger surface area, which increases their efficiency in
separating [87].

Hollow–fiber ceramic membranes have attracted significant attention in the last decade
due to their unique asymmetric structure, which is formed by a phase inversion spin-
ning/sintering technique [88–92]. It has a similar structure to tubular membranes, with
both being cylindrical in shape. Compared to conventional planar or tubular membranes,
hollow–fiber ceramic membranes offer several advantages. Firstly, they have a much
larger membrane area per unit volume, which makes them more efficient at separating
gases or filtering water. Secondly, the thin dense layer in the center (or at one side) of
the fiber reduces bulk diffusion resistance, allowing faster and more efficient transport
through the membrane. Finally, the integrated porous layers on either side or both sides
of the membrane create large gas–membrane interfaces, resulting in enhanced gas surface
exchange rates.

The current research direction in hollow–fiber membranes is focused on developing
membranes with enhanced properties that can meet the specific requirements of industrial
applications. One approach is to develop multilayered hollow–fiber membranes that
combine different materials with complementary properties. Wu et al. [93] developed
a highly compact multifunctional hollow–fiber membrane reactor with a unique dual–
layer structure for methane conversion using a single–step co–extrusion and co–sintering
technique (Figure 7a). The membrane consists of a thin outer oxygen separation layer of
approximately 75 µm and a porous inner support layer of a Ni–based catalytic substrate.
The inner layer turns into a highly porous structure and becomes catalytically active for
methane conversion after reduction. This membrane reactor has a high surface area/volume
ratio and a great adhesion between the separation layer and the catalytic layer.
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Figure 7. SEM images of (a) a single–channel hollow fiber with a dual–layer structure, reprinted
with permission from Ref. [93], copyright 2010 Elsevier; and SEM images of different types of multi–
channel hollow fibers: (b) 4–channel, reprinted with permission from Ref. [94], copyright 2015
John Wiley and Sons, (c) seven–channel (The yellow box are the morphology of the cross section of
membranes), reprinted with permission from Ref. [95], copyright 2017 John Wiley and Sons, and
(d) 19–channel. reprinted with permission from Ref. [96], copyright 2020 Elsevier.

While improving the mechanical strength of hollow–fiber membranes is an important
research direction, multi–channel hollow–fiber membranes consist of multiple channels
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or lumens within a single hollow fiber, which can provide higher mechanical strength
compared to conventional single–channel hollow fibers. This design for oxygen–permeable
membranes was proposed by Jin et al. [65,95,96]. A Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) four–
channel hollow–fiber membrane was successfully fabricated (Figure 7b). Its breaking load
and oxygen flux were several times those of conventional single–channel hollow–fiber
membranes [65]. The high mechanical strength of the four–channel hollow–fiber membrane
was helpful in overcoming some drawbacks of single–channel hollow–fiber membranes
and ensuring the proper performance of the reaction process [94]. Subsequently, the
researchers also proposed developing more complex hollow–fiber structures with even
more channels and higher mechanical strength. The breaking loads of the BSCF seven– and
19–channel hollow–fiber membranes are significantly higher than those of single–channel
hollow fibers, with the seven–channel membrane having a breaking load of 17 times [95]
and the 19–channel membrane having a breaking load of 60 times [96] that of a single–
channel hollow fiber (Figure 7c,d). This demonstrates the potential of multi–channel
hollow–fiber membranes to provide improved mechanical strength and durability, making
them a promising approach for enhancing the performance and reliability of membrane
technology in various industrial applications.

5. Functions of the Membrane in CMR

In a dense ion–conducting membrane reactor, the membrane plays a crucial role in
keeping oxidants and reductants separate, as well as selectively separating one of the
substances. The specific functions of the membrane can be roughly divided into the
following three categories (Figure 8).
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Figure 8. Basic functions of dense perovskite oxygen–permeable membranes in CMRs: (a) distribution
of reactants; (b) preferential removal of products (c) coupling of multiple reactions. Where A is the
reactant on one side of the membrane, B and C are the reaction products on that side. D is the reactant
or product permeable through the membrane. E is the reactant on the other side of the membrane. F
is the decomposition product of E.

Distribution of reactants: In some oxidation reactions, direct mixing of reactants
can reduce reaction selectivity or increase explosion risk. In such cases, a membrane
can act as a reactant distributor, increasing selectivity, minimizing risk, and utilizing the
heat generated by exothermic reactions to heat reactants. As shown in Figure 8a, the
reactant D was distributed by the membrane and reacted with reactant A to generate
products B and C at one side of the membrane. This type of membrane reactor can be
used for consecutive reactions or parallel reactions. Typical examples include partial
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oxidation of methane [97–102], oxidative coupling [26], and oxidative dehydrogenation of
hydrocarbons [103,104]. By controlling the addition of reactant, the consecutive reaction
can be controlled in the middle step or the desired reaction in the parallel reaction can
be carried out preferentially, thus improving the yield of the target product. Typically,
MIEC membranes are used for oxygen distribution, while MPEC membranes are used for
hydrogen distribution.

Removal of products: In equilibrium–limited reactions, removing the products can
shift the chemical equilibrium and increase the single–pass conversion. This can be achieved
by using a membrane to selectively remove one of the products. As shown in Figure 8b,
where A is a reactant and B and D are products, removing D via the membrane process
shifts the equilibrium towards the desired direction. Mixed conducting membranes can
be used to selectively remove oxygen or hydrogen from the reaction mixture, depending
on the specific reaction and application. For example, perovskite membranes have been
used for the CO2 thermal decomposition [105], where the removal of oxygen can enhance
the selectivity towards CO production, other reactions were also reported, such as water
spitting [106] and NOx decomposition [107]. Similarly, perovskite membranes have been
used for hydrogenation and dehydrogenation reactions, where the removal of hydrogen can
improve the yield of the target product. Example reactions are water gas shift reaction [108],
ammonia decomposition reaction [109], alkane to olefin reaction [110], methane steam
reforming reaction [111] and methane to aromatic reaction [112,113].

Coupling of multiple reactions: A new function has been developed that combines
the functions of dense ceramic membranes for reactant distribution and product removal
on both sides of the membrane. In this design, reactant E decomposes to D and F on one
side of the membrane, with D permeating through the membrane to react with A and
produce B and C on the other side (Figure 8c). For example, a membrane reactor can be
used to couple the decomposition reactions (such as CO2, H2O and NOX decomposition)
with the preferential reaction (such as partial oxidation of methane [98,99,114,115] or
hydrogen oxidation [116]) to consume the oxygen or hydrogen and increase the conversion
of decomposition. Particularly, a membrane reactor can be used to couple exothermic
and endothermic reactions to achieve an autothermic condition. In this case, the heat
generated by the exothermic reaction is used to drive the endothermic reaction, resulting in
a self–sustaining process [117,118].

Reactions that can be performed in ion–conducting ceramic membrane reactors are
summarized in Table 3.

Table 3. Reactions that can be performed in ion–conducting ceramic membrane reactors.

Reaction Reaction Equation ∆H0

(kJ·mol−1)
Membrane
Transport

Temperature
(◦C)

Partial oxidation of methane CH4 +
1
2 O2 → CO + 2H2 −36 O2−/e− 850–900

Oxidative coupling of methane 2CH4 + O2 → C2H4 + 2H2O
2CH4 +

1
2 O2 → C2H6 + H2O

−177
−282 O2−/e− 688–955

Oxidative dehydrogenation of
hydrocarbons

C2H6 +
1
2 O2 → C2H4 + H2O

C3H8 +
1
2 O2 → C3H6 + H2O

−105 O2−/e− 700–850

Water splitting reaction H2O→ H2 +
1
2 O2 −242 O2−/e−

H+/e−
900

Alkane to olefin reaction 2CH4 → C2H6 + H2
2CH4 → C2H4 + H2

71.1
57.2 H+/e− 750–900

Carbon dioxide decomposition 2CO2 → 2CO + O2 552 O2−/e− >900

Steam reforming CH4 + H2O→ CO + 3H2
C2H5OH + H2O→ 2CO + 4H2

210
256 O2−/e− 800

Dry reforming CH4 + CO2 → 2CO + 2H2 260.5 O2−/e− 700–1000

Dehydroaromation of methane CH4 → C6H6 + 2H2
CH4 + O2 → C6H6 + 2H2O

531
−1846

H+/e−

O2−/e− 700–750
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6. Applications of CMRs
6.1. Partial Oxidation of Methane

Partial oxidation of methane is a chemical reaction in which methane is reacted
with a limited amount of oxygen to produce a mixture of carbon monoxide and hydro-
gen gas, known as syngas. The produced syngas can then be converted into liquid fuel
(methanol) and hydrogen using Fischer–Tropsch synthesis and water gas shift reactions,
respectively [10,99]. The partial oxidation of methane is an exothermic reaction that re-
leases heat as the reaction proceeds. If the heat generated by the reaction is not effectively
dissipated, the temperature of the reaction mixture can increase rapidly, leading to a phe-
nomenon known as temperature runaway [98]. Temperature runaway can cause several
problems, including reduced product selectivity, increased energy consumption, and po-
tential damage to the reactor. To prevent temperature runaway in the partial oxidation of
methane, one approach is to control the oxygen flow rate and the reaction temperature to
maintain a steady–state condition.

Perovskite oxygen–permeable membranes have been developed for use in partial
oxidation reactions, including the partial oxidation of methane. These materials have the
ability to selectively transport oxygen ions across the membrane, which can be used to
regulate the rate of oxygen supply to the reaction zone and help prevent temperature
runaway. The use of mixed conducting membranes enables the separation of oxygen from
air as the oxidant without introducing nitrogen into the reaction compartment, simplifying
the purification of product streams and reducing syngas production costs [38]. Efforts have
been made to improve the oxygen permeability and chemical stability of the membrane
materials, resulting in the development of materials such as Ba–Sr–Co–Fe by Shao et al. [119]
and Ba–Co Fe–Zr by Tong et al. [120].

The stability of perovskite materials in methane partial oxidation reactions is a sig-
nificant challenge that limits their further application. The harsh operating conditions of
methane partial oxidation can cause perovskite materials to undergo structural changes,
which can lead to a decrease in oxygen permeability [121]. One potential solution to this
problem is the use of K2NiF4–type materials or dual–phase materials. Dong et al. pro-
posed a self–catalytic membrane reactor for POM reactions based on an asymmetric MIEC
membrane [122,123]. La2NiO4+δ, which has catalytic activity for CH4 reforming, is used
as both the porous support and the catalyst precursor. In the initial reaction stage of the
POM reaction, CH4 reacts with La2NiO4+δ to form CO and H2, and simultaneously, part of
La2NiO4+δ on the surface of the support is reduced to nickel metal and La2O3.

Zhu et al. [24] investigated oxygen permeation and partial oxidation of methane (POM)
in 75 wt% Ce0.85Sm0.15O1.925-25 wt% Sm0.6Sr0.4FeO3−δ (SDC–SSF) dual–phase composite
membrane reactors. The dual–phase membrane consists of a fluorite–type oxide ionic
conductor (SDC) for oxide ion transport and a perovskite–type mixed conductor (SSF) for
both oxide ion and electron transport. The permeation flux remained constant during the
investigated period (>500 h) once a steady state was reached. The dual–phase membrane
reactors achieved successful long–term operation of POM with methane conversion and CO
selectivity >98% when pure methane was used as the feed. Characterization revealed good
structural stability for the dual–phase membrane even after long–term operation under
syngas production conditions. Jin’s group modified a single hollow–fiber membrane into a
multi–channel hollow–fiber membrane to increase its mechanical strength and build a more
robust membrane reactor [94–96]. The reactor’s capacity increases with more membrane
channels. Table 4 provides further performance comparisons.
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Table 4. Different membrane reactors for POM reaction.

Material Membrane
Type

Thickness
(mm) Feed Gas Reaction Gas Temp. (◦C) Oxygen Flux

(mL min−1cm−2)
CH4

Conversion (%)
CO

Selectivity (%) Stability Reference

Ba0.5Sr0.5Co0.8Fe0.2O3−δ disk 1.50 Air 50% CH4+He 875 11.50 98.2 96.0 500 h [39]

BaCo0.4Fe0.4Zr0.2O3−δ disk 1.0 Air 50% CH4+He 850 5.7 97.5 98.5 2200 h [120]

Ba0.5Sr0.5Zn0.2Fe0.8O3−δ disk 1.25 Air 50% CH4+He 950 2.55 60.0 98.3 65 h [124]

BaCe0.1Co0.4Fe0.5O3−δ disk 1.0 Air CH4 875 8.9 >97.0 >97.0 1000 h [125]

75wt.% Ce 0.85Sm 0.15O1.925 –25
wt.% Sm0.6Sr0.4FeO3−δ

disk 0.6 Air CH4 950 4.2 >98.0 >98.0 650 h [24]

La0.4Ba0.6Fe1−xZnxO3−δ disk 0.5 Air
17.5% CH4+He 950 7.80 100 72 500 h [126]

100% CH4 950 11.8 55 100 180 h [126]

Ba0.9Co0.7Fe0.2Nb0.1O3−δ disk 1 Air 30% CH4+He 875 7.10 93.4 94.5 400 h [127]

Ba0.5Sr0.5Co0.8Fe0.1Ni0.1O3−δ disk Not Air 50% CH4+He 850 12.00 98.0 97.5 120 h [100]

SrCo0.8Fe0.2NbO3−δ
(Ba0.3Sr0.7Fe0.9Mo0.1O3−δ) disk 1.0 Air 13%

CH4+He 850 13.0 80.0 98.84 1500 h [128]

BaCo0.7Fe0.2Ta0.1O3−δ
hollow

fiber 0.23 Air 55.8%
CH4+He 875 20.0 96 99 83 h [129]

(Pr0.9La0.1)2
(Ni0.74Cu0.21Ga0.05)O4+δ

hollow
fiber 0.19 Air 20.3%

CH4+He 900 10.5 97 99.5 140 h [101]

Ba0.9Co0.7Fe0.2Nb0.1O3−δ disk 0.12 Air 30%
CH4+Ar 875 16.00 96.66 78.7 100 h [130]

SrFe0.8Nb0.2O3−δ

4−channel
hollow

fiber
0.08 Air 17% CH4+He 900 19.2 94.6 99 120 h [94]

SrCo0.8Fe0.1Ga0.1O3−δ
hollow

fiber 0.21 Air 20%
CH4+He 800 4.14 100 33 220 h [131]

BaBi0.05Co0.8Nb0.15O3−δ
hollow

fiber 0.13 Air 50%
CH4+He 730 15.05 80 85 5 h [132]
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6.2. Oxidative Coupling of Methane

Methane oxidative coupling (OCM) to produce ethylene or ethane is a promising
process for converting methane into more valuable C2 products. However, the oxidation
rate of desired C2 products is higher than that of methane, leading to a limited yield of
products [35]. In addition, the formation of COx in the gas phase reaction and the 25%
equilibrium conversion rate of OCM reaction are also problematic.

To address these issues, researchers have focused on using dense oxygen–permeable
ceramic membranes for oxidative methane coupling. One promising approach involves the
use of mixed conducting oxides, such as La0.2Sr0.8CoO3−δ, Ba0.5Sr0.5Co0.8Fe0.2O3−δ, and
BaCe0.8Gd0.2O3−δ, which have shown good OCM catalytic properties with C2 yields rang-
ing from 14% to 16% and C2 selectivity from 40% to over 80% [34]. The BaCe0.8Gd0.2O3−δ–
based membrane/catalyst system in particular has demonstrated excellent carbon resis-
tance at low O2/CH4 ratios and high and stable selectivity to C2+ products.

Compared to perovskite and fluoride materials, other materials such as Bi1.5Y0.3Sm0.2O3−δ
(BYS) have also exhibited good performance in methane coupling reactions. A BYS mem-
brane reactor achieved a 35% yield of C2 product, which is higher than the commercial
consideration threshold of C2 at around 30% [133]. The BYS material is highly oxygen
permeable and catalytically active for OCM, with good chemical and mechanical stability
under OCM conditions. When BYS is deposited as the OCM catalyst, a micro–structured
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) hollow–fiber membrane can achieve higher oxygen perme-
ation rate and methane conversion, provided the BYS particles are small and uniformly
dispersed [134]. Furthermore, the distributed feed of oxygen in the form of dissociated
or ionized oxygen can react with methane on the surface of the membrane or the catalyst,
minimizing the formation of COx and increasing the selectivity of C2 hydrocarbons.

6.3. Oxidative Dehydrogenation of Hydrocarbons

The demand for olefins, particularly ethylene and propylene, is expected to increase
significantly. One potential route to produce these compounds is through the oxidative
dehydrogenation (ODH) of alkanes. This method offers advantages such as being exother-
mic and having the presence of oxygen limit coke formation [135]. However, the yields of
ethylene or propylene in the existing catalytic reaction are too low for commercial appli-
cations. One of the main challenges is the fact that the desired products are more readily
oxidized to COx. By using dense ceramic membranes as oxygen distributors, the contact of
the catalyst with oxygen can be minimized, leading to improved target product yield.

Many researchers have confirmed this general expectation [102,103,136]. Wang et al. [102]
used a BaCoxFeyZrzO3−δ (BCFZ) hollow fiber for oxidative dehydrogenation of the ethane
to ethylene reaction. However, the best ethylene selectivity of 64% was lower than the
79% obtained with the BCFZ disk membrane. This difference was mainly attributed to the
different contact time on the two membrane configurations. To further study this problem,
researchers divided a hollow fiber into several segments along the axial direction [103,104].
As shown in Figure 9, oxygen permeation zones and inert zones coated with gold paste are
arranged alternately. The highest propene selectivity of 75% was observed at a propane
conversion of 26% and 625 ◦C (88% total olefin selectivity), while the best propene yield of
36% was achieved at 725 ◦C (69% total olefin selectivity).

The oxidative dehydrogenation of the propane reaction was investigated using a
catalytic BaBi0.05Co0.8Nb0.15O3−δ perovskite hollow–fiber membrane reactor. The results
showed that high C3H6 yield (~50%) and selectivity (~74%) can be achieved, which are more
than double the yield and selectivity obtained in a conventional co–feed mode reactor [137].
In a study using parametric modeling, the oxidative dehydrogenation of propane was
investigated in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) hollow–fiber membrane reactor. The
oxygen permeation flux was found to be dependent on temperature, gas atmosphere, and
membrane thickness. The highest projected flux of 10.2 mL (STP) cm−2min−1 was achieved
through a 0.2 mm thick fiber at 1100 ◦C. Simulation results showed that the optimum
C3H6 selectivity of 91% was achieved at 1000 ◦C when C3H8 conversion reached 58% [138].
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However, the high operating temperature and oxygen flux may cause excessive oxidation
in practical experiments, which can ultimately reduce performance [137].

Membranes 2023, 13, x FOR PEER REVIEW 18 of 32 
 

 

 
Figure 9. Schematic drawing of the reactor set−up and an incorporated multi−step BCFZ hollow 
fiber with five active zones for oxidative dehydrogenation of propane. Except for the five oxygen 
permeable zones, the membrane is coated with gold. Each permeation zone is 2 cm long. The dehy-
drogenation catalyst was dispersed outside the hollow fiber. Reprinted with permission from Ref. 
[104]. Copyright 2010 John Wiley and Sons. 

The oxidative dehydrogenation of the propane reaction was investigated using a cat-
alytic BaBi0.05Co0.8Nb0.15O3−δ perovskite hollow−fiber membrane reactor. The results 
showed that high C3H6 yield (~50%) and selectivity (~74%) can be achieved, which are 
more than double the yield and selectivity obtained in a conventional co−feed mode reac-
tor [137]. In a study using parametric modeling, the oxidative dehydrogenation of pro-
pane was investigated in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) hollow−fiber membrane reactor. 
The oxygen permeation flux was found to be dependent on temperature, gas atmosphere, 
and membrane thickness. The highest projected flux of 10.2 mL (STP) cm−2min−1 was 
achieved through a 0.2 mm thick fiber at 1100 °C. Simulation results showed that the op-
timum C3H6 selectivity of 91% was achieved at 1000 °C when C3H8 conversion reached 
58% [138]. However, the high operating temperature and oxygen flux may cause excessive 
oxidation in practical experiments, which can ultimately reduce performance [137]. 

Table 5 provides additional performance comparisons of OCM and ODH reactions. 

Figure 9. Schematic drawing of the reactor set–up and an incorporated multi–step BCFZ hollow
fiber with five active zones for oxidative dehydrogenation of propane. Except for the five oxygen
permeable zones, the membrane is coated with gold. Each permeation zone is 2 cm long. The
dehydrogenation catalyst was dispersed outside the hollow fiber. Reprinted with permission from
Ref. [104]. Copyright 2010 John Wiley and Sons.

Table 5 provides additional performance comparisons of OCM and ODH reactions.
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Table 5. Performance comparisons of OCM and ODH reactions.

Material Membrane
Type

Thickness
(mm) Feed Gas Reaction Gas Temp.

(◦C)
Oxygen Flux

(mL min−1cm−2)
Conversion

(%)
Selectivity

(%) Yield (%) Reaction &
Stability Ref.

BaCe0.8Gd0.2O3−δ tube 0.7 Air 3% CH4+He 780 0.1 26 (CH4) 62 (C2) >16 (C2) OCM [35]

Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube 1.7 Air 10% CH4+He 850 1.50 5 (CH4) 62 (C2) 15 (C2) OCM [139]

Ba0.5Sr0.5Co0.8Fe0.2O3−δ disk 1.0 Air 34% CH4+He 900 7.0 25 (CH4) 70 (C2) 18 (C2) OCM [25]

Ba0.5Sr0.5Co0.8Fe0.2O3−δ disk 1.0 Air 11% CH4+He 900 2.00 23 (CH4) 63 (C2) 15 (C2) OCM [25]

Ba0.5Ce0.4Gd0.1Co0.8Fe0.2O3−δ tube 3.0 Air 50% CH4+He 850 1.40 51.6 (CH4) 67.4 (C2) 34.7 (C2) OCM [140]

La0.6Sr0.4Co0.2Fe0.8O3−δ
hollow

fiber 0.25 Air 75% CH4+Ar 900 8.73 49 (CH4) 79.5 (C2) 39 (C2) OCM (18 h) [134]

BaCe0.8Gd0.2O3−δ disk 0.5 Air 95% CH4+He 880 2.1 / 80 (C2) / OCM (25 h) [141]

Ni–La0.8Sr0.2Ga0.8Mg0.2O3−δ disk 0.5 Air 95% CH4+He 880 0.9 / 30 (C2) / OCM (25 h) [141]

Ba0.5Sr0.5Co0.8Fe0.2O3−δ planar 1.0 Air 10% C2H6+He 800 1.75 84 (C2H6) 80 (C2) / ODH (100 h) [142]

BaCoxFeyZrzO3−δ
hollow

fiber 0.1 Air 10% C2H6+He 800 1.15 89.6 (C2H6) 39.9 (C2) / ODH [143]

BaCoxFeyZrzO3−δ
hollow

fiber 0.14 Air 10% C3H8+
20% H2O+He 675 / 48 (C3H8) 59 (C3H6) 28 (C2) ODH [104]

Ce0.9Gd0.1O2−δ–
BaFe0.9Mg0.05Ce0.05O3−δ

disk 0.5 Air 5% C2H6+He 725 / 74 (C2H6) 82 (C2H4) 63 (C2) ODH
(200 h) [144]

BaBi0.05Co0.8Nb0.15O3−δ
hollow

fiber 0.12 Air C3H8 650 / 62–75 (C3H8) 68–74 (C3H6) 46–51 (C3H6) ODH (50 h) [137]
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6.4. Water Splitting Reaction

Water is an inexpensive industrial material, so it has been considered for producing hy-
drogen by splitting it into oxygen and hydrogen at high temperatures (H2O(g) = H2 +

1
2 O2).

However, the equilibrium constant of the water dissociation reaction is very small, resulting
in only 0.1% of hydrogen and 0.042% of oxygen being generated at 1600 ◦C. In comparison
with the steam electrolysis process, the application of oxygen or hydrogen–permeable
mixed conduction membranes can disrupt the balance and shift it towards the product
side, without the need for extra power or circuit [145–147]. For instance, a 0.13 mm thick
dual–phase membrane, composed of 60% Gadolinia–Doped Ceria (GDC) and 40% metal
by volume, was used for directly separating hydrogen from water splitting [145]. The
production rate of hydrogen is 0.6 cm3cm−2·min−1 at 900 ◦C.

6.5. Alkane to Olefin Reaction

In the non–oxidative coupling of methane to C2 products, hydrogen removal via a
mixed proton–electronic membrane reactor can significantly improve the C2 yield [148].
This reactor continuously removes hydrogen from the dehydrogenation reaction of methane,
thus shifting the reaction equilibrium towards the product side. In contrast to the oxygen
distributor membrane reactor, the hydrogen removal membrane reactor can restrict COx
by–products, since no oxygen is introduced, and thus the selectivity is likely higher. Further
research on applying mixed electronic protonic conducting ceramic membranes in direct
coupling of methane into C2 products has been focused on preparing ultrathin separation
layers and achieving a large ratio of membrane area to volume of membrane module, as
well as improving the catalytic properties of the membranes through catalyst loading by
various methods [149]. So far, the preparation of ultrathin ceramic membranes remains a
significant challenge in membrane fabrication technology.

In a product removal reactor, dense ceramic membranes are typically employed to
eliminate hydrogen generated during the decomposition process. In traditional chemical
processes such as methane partial oxidation (CH4 +

1
2 O2 = CO + 2H2), steam reforming of

natural gas (CH4 + H2O = CO + 3H2), water gas shift reaction (CO + H2O = CO2 + H2),
or gasification of heavy carbonaceous materials, dense membranes can be used to separate
hydrogen from the resulting high–temperature hydrogen mixtures. By recovering hydrogen
from high–temperature and high–pressure streams without cooling or depressurizing, the
system’s efficiency and performance can be enhanced. Recovered hydrogen is 100% pure,
thereby reducing the cost of producing pure hydrogen.

6.6. Coupling of Reactions

The coupling of two or more reactions in one membrane reactor has been proposed as
a sustainable process for the future. This approach allows for the integration of different
reaction steps into a single system, and for simultaneous execution of multiple reactions
with different requirements for reactant addition and product removal, which can lead
to improved reaction efficiency, reduced energy consumption, and lower greenhouse gas
emissions. Some thermodynamically unfavorable reactions (such as CO2 decomposition or
water splitting) may be promoted by introducing an active reaction (such as the POM) on
the other side of the membrane (Figure 8).

6.6.1. CO2 Decomposition

One example of such a reactor is the thermal decomposition of carbon dioxide (TDCD)
to CO and O2. This reaction is limited by thermodynamic equilibrium and is challenging
to realize in a conventional fixed–bed reactor. However, with a membrane reactor, this
problem can be solved [150]. In the work of Jin et al. [150–152], an MIEC membrane reactor
was used to integrate the TDCD and POM processes into a single unit. TDCD occurred
on one side of the membrane, and the POM occurred simultaneously on the other side.
This process produced H2 and CO through the reaction of methane with oxygen, which
permeated through the membrane from CO2 decomposition, over supported transition
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metal catalysts. This work indicates that MIEC membrane reactors may play a crucial role
in effectively utilizing fossil energy and greenhouse gases. However, the MIEC membrane
reactor’s stability was found to be no longer than 60 h, and the membrane broke significantly
due to erosion by CO2 and reducing atmospheres. Future research may focus on developing
MIEC materials with high stability in both CO2 and reducing atmospheres. It is worth
noting that the proposed catalytic process can also be extended to the decomposition of
other oxygen–containing molecules (such as NOx and H2O) and the oxidation of light
alkanes (such as ethane and propane).

6.6.2. NOx Decomposition

Nitrogen oxide (NOx) is an important atmospheric pollutant that has attracted signif-
icant attention. Direct catalytic decomposition of NOx to N2 and O2 is an attractive and
economical route for NOx reduction. Jiang et al. [153] proposed an interesting process that
combined the decomposition of nitrous oxide (N2O) with the oxidation steam reforming of
methane in a BCFZ hollow–fiber membrane reactor. N2O was catalytically decomposed
on the membrane surface of the core side to produce N2 and surface oxygen species (O*),
which were removed as oxygen ions (O2−) through the membrane. Meanwhile, methane
and water were fed to the permeate side of the membrane to react with the permeated
oxygen and produce syngas. By using the MIEC membrane for in situ oxygen removal, the
N2O decomposition was promoted, overcoming the equilibrium limitation. At 875 ◦C, a
nearly 100% N2O conversion was achieved when the N2O concentration was in the range
of 5% to 50% in the feed gas. The same group further studied a similar process in which NO
was used instead of N2O as the feed gas in the membrane reactor [154]. An almost 100%
NO conversion and 95% N2 yield were achieved at 875 ◦C, even with 3% O2 coexisting in
the feed.

6.6.3. Water Splitting

Direct thermochemical water splitting is highly endothermic, so coupling it with
an exothermic reaction is preferable. Jiang et al. [155] studied this concept first. They
combined water splitting with POM in a BCFZ hollow–fiber membrane reactor with a
Ni–based catalyst on the membrane surface. At high temperature, water decomposed
into hydrogen and oxygen on the membrane surface of the core side. Oxygen permeated
from the core to the shell side of the hollow fiber, where it was consumed by the POM
reaction to form syngas. The advantage of this process is the continuous production of
pure hydrogen as well as syngas. Furthermore, the highly endothermic property of water
splitting can be partially compensated by the exothermic POM reaction. Cao et al. [156]
achieved the combination of thermal water splitting with oxidative coupling of methane
(OCM) to produce ethane and ethylene using an asymmetric Ba0.5Sr0.5Co0.8Fe0.2O3−δ disc
membrane with a 2wt% Mn–5wt% Na2WO4 catalyst. Oxygen generated from thermal
water splitting was transported through the dense BSCF membrane and consumed during
the coupling of methane. At 950 ◦C, approximately 9% of the injected H2O was converted
to hydrogen, with a production rate of about 3.3 mL cm−2min−1 with 26% CH4 conversion
and 6.5% C2 selectivity.

Another innovative approach to obtain purified hydrogen is the combination of water
splitting with oxidative steam reforming of ethanol, developed by Zhu et al. [118]. They
used a tubular SrCo0.4Fe0.5Zr0.1O3−δ membrane reactor packed with Ni catalyst to achieve
a highly effective and sustainable route for H2 production. Water splitting occurred at
the tube side of the membrane, while the oxidative steam reforming of ethanol occurred
at the shell side. Ethanol and water reacted with oxygen, which permeated through the
membrane upon water dissociation, to produce H2 and CO2 over supported transition
metal catalysts. These two reactions were coupled to the opposite sides of the oxygen–
permeable membrane. At 750 ◦C, the hydrogen production rates on the ethanol side and
the water side were 6.8 and 1.8 mLcm−2min−1, respectively (Figure 10).



Membranes 2023, 13, 621 21 of 31

Membranes 2023, 13, x FOR PEER REVIEW 22 of 32 
 

 

oxygen−permeable membrane. At 750 °C, the hydrogen production rates on the ethanol 
side and the water side were 6.8 and 1.8 mLcm−2min−1, respectively (Figure 10). 

 
Figure 10. Schematic diagram of the water splitting and oxidative steam reforming coupling mem-
brane reactor. Reprinted with permission from Ref. [118]. Copyright 2012 Royal Society of Chemis-
try. 

A membrane reactor can also be used for gas purification. Li et al. proposed using 
MIEC oxygen−permeable membranes to obtain high−purity hydrogen via the water split-
ting reaction [116]. To achieve this, low−purity hydrogen was fed to one side of the mem-
brane (side I) and steam was fed to the other side (side II) (Figure 11). Oxygen produced 
from water splitting on side II permeates through the membrane, driven by an oxygen 
chemical potential gradient across the membrane, to react with the low−purity hydrogen 
on side I. High−purity hydrogen is then acquired after condensation and drying. A high 
hydrogen separation rate of up to 16.3 mL cm−2 min−1 was achieved on an asymmetric 
dual−phase membrane at 900 °C. 

 
Figure 11. Oxygen−permeable membrane reactor for hydrogen purification. Reprinted with permis-
sion from Ref.  [116]. Copyright 2016 John Wiley and Sons. 

7. Challenges 
Dense ceramic membrane reactors have shown significant potential for various en-

ergy and environment−related applications, such as hydrogen production, methane con-
version, CO2 capture and utilization, and harmful gas treatment. However, despite their 
potential, the commercialization of dense ceramic membrane reactors has been slow, and 
there are several challenges that need to be addressed before their widespread use can be 
realized. 

One of the major challenges with perovskite membrane reactors is their high energy 
demand, which is required to maintain the operating temperature, generally above 700 

Figure 10. Schematic diagram of the water splitting and oxidative steam reforming coupling mem-
brane reactor. Reprinted with permission from Ref. [118]. Copyright 2012 Royal Society of Chemistry.

A membrane reactor can also be used for gas purification. Li et al. proposed us-
ing MIEC oxygen–permeable membranes to obtain high–purity hydrogen via the water
splitting reaction [116]. To achieve this, low–purity hydrogen was fed to one side of the
membrane (side I) and steam was fed to the other side (side II) (Figure 11). Oxygen pro-
duced from water splitting on side II permeates through the membrane, driven by an
oxygen chemical potential gradient across the membrane, to react with the low–purity
hydrogen on side I. High–purity hydrogen is then acquired after condensation and dry-
ing. A high hydrogen separation rate of up to 16.3 mL cm−2 min−1 was achieved on an
asymmetric dual–phase membrane at 900 ◦C.
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7. Challenges

Dense ceramic membrane reactors have shown significant potential for various energy
and environment–related applications, such as hydrogen production, methane conversion,
CO2 capture and utilization, and harmful gas treatment. However, despite their potential,
the commercialization of dense ceramic membrane reactors has been slow, and there are
several challenges that need to be addressed before their widespread use can be realized.

One of the major challenges with perovskite membrane reactors is their high energy
demand, which is required to maintain the operating temperature, generally above 700 ◦C.
The use of electric heating results in high energy consumption and a large carbon emis-
sion load. Solar thermo processes have been proposed as a promising solution to this
challenge. For example, the current dish–type solar thermal system can achieve a thermal–
to–electric conversion efficiency of 75%; however, the average photoelectric conversion
efficiency of current commercial photovoltaic components is only about 15% [157]. Addi-
tionally, using solar thermal energy to drive the hydrogen production process can store
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low–energy–density solar energy in high–energy–density and green hydrogen. Thus, solar
thermal–driven hydrogen production processes have been widely implemented world-
wide, including solar–driven chemical chain hydrogen production [158], steam reforming
gasification [159], and thermal cracking gasification hydrogen production [160]. Research
on using concentrated solar energy with CMRs is currently a hot and frontier topic, includ-
ing high–temperature water decomposition hydrogen production [161], carbon dioxide
decomposition [162], and non–oxidative methane dehydroaromatization [163]. For in-
stance, Tou et al. [164] used a solar concentrating system to heat a catalytic membrane
reactor, generating 3500 suns of irradiance and heating the reactor to 1600 ◦C, with a carbon
dioxide decomposition rate greater than 1.44 µmol·cm−2·min−1. Liang et al. [165] used a
Ce0.9Pr0.1O2−δ–Pr0.6Sr0.4FeO3−δ dual–phase oxygen transport membrane reactor with a
solar oven (as shown in Figure 12). The reactor produced synthesis gas with a production
rate of 1.3 mL min−1cm−2, H2O conversion above 1.7%, and CO2 conversion above 4.2%
(930 ◦C, H2O/CO2 feed ratio of 5:1).
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Another challenge is the need for efficient and selective catalysts that can work ef-
fectively with ceramic membranes. The choice of catalyst can significantly impact the
efficiency and selectivity of the reactions, and the cost and stability of the catalysts can also
be a significant factor. Metal catalysts (iron, nickel, copper, palladium, etc.) are widely
used in ceramic membrane reactors [118,151]. People usually disperse metal particles on a
substrate to maximize the accessible specific surface area of the catalyst and thus improve
the catalytic activity. However, the metal particles loaded on the surface of the substrate by
conventional preparation methods, including impregnation, co–precipitation and deposi-
tion, often tend to sinter and grow after high–temperature annealing (>700 ◦C), resulting
in a severe loss of their catalytic activity. Balancing the two main requirements of stability
and activity has proven to be a difficult goal. In recent years, perovskite oxides have at-
tracted much attention as cost–effective catalysts. Previous studies have demonstrated that
the B–site active transition metals in perovskite oxides have the potential to grow in situ
into metal nanoparticles and anchor on the surface after treatment with a reducing atmo-
sphere (Figure 13a,b) [166–168]. These surface–anchored nanoparticles exhibit high stability
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against agglomeration and poisoning, as well as superior catalytic activity across multi-
ple areas of application [169–171]. Jin et al. [172] first proposed employing homogenous
Sr0.9(Fe0.81Ta0.09Ni0.1)O3−δ perovskite catalysts with well–anchored FeNi3 nanoparticles in
a ceramic membrane reactor for methane partial oxidation reaction (Figure 13c). A great
leap forward in the performance of catalytic membrane reactors has been achieved. The
methane conversion, carbon monoxide selectivity and hydrogen selectivity reached 98%,
97% and 98%, respectively. The membrane severs in order to distribute oxygen, control the
oxygen partial pressure and effectively prevent the dissolution of metal particles during
oxidation reactions.
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Furthermore, there are also challenges related to scaling up the membrane fabrication
from the laboratory to the industrial scale. Hollow–fiber membranes have been demon-
strated to be preferable for practical applications. Typically, the fabrication process for
perovskite hollow–fiber membranes involves multiple steps, including high–temperature
synthesis of perovskite powder, phase inversion for spinning the hollow fiber precursor,
and high–temperature sintering. These processes are not only labor, energy, and time
consuming, they are also environmentally unfriendly and it is difficult to precisely con-
trol the cation stoichiometry of the perovskite oxides. The development of more efficient
and sustainable methods for preparing perovskite hollow–fiber membranes could greatly
facilitate the scaling up of membrane reactor technology for industrial use. Zhu et al.
developed a one–step thermal processing approach for the fabrication of perovskite hollow
fibers [173]. Unlike traditional methods, which require multiple steps and high temper-
atures, this approach directly introduces raw chemicals (such as oxides or carbonates)
into the phase inversion process, and then converts them in situ into perovskite oxides
during a single thermal processing step. This approach also successfully avoids the reaction
of perovskite oxide with solvent or non–solvent used in HF fabrication and achieved a
controlled stoichiometry. For example, Ba0.5Sr0.5Co0.8Fe0.2O3−δ hollow–fiber membranes
have been successfully fabricated using this approach, and exhibit high oxygen permeation
flux values that exceed the desired commercial targets (Figure 14).
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8. Conclusions and Outlook

In conclusion, the utilization of ion–conducting ceramic membranes, specifically MIEC
and MPEC membranes, in membrane reactors offers a promising opportunity for sustain-
able chemical production. These membranes possess the ability for selective gas separation
at elevated temperatures, ultimately reducing by–product formation and facilitating the uti-
lization of thermal effects to promote chemical reactions. The integration of CMRs provides
a plethora of benefits, including partial oxidation of methane to syngas, steam reforming
for hydrogen production, and thermal decomposition of carbon dioxide. In addition to
the production of high–value chemicals and hydrogen from natural gas, the utilization of
biomass is a crucial area for the future development of CMRs. Biomass fermentation offers
a significant advantage as a renewable energy source, enabling the production of biofuels
such as bioethanol and biomethane. One distinguishing feature of biomass–based systems
is their CO2 neutrality. During the biofuel production process, the CO2 emitted is absorbed
by biomass growth, resulting in a closed carbon cycle and a reduced carbon footprint.
The application of a membrane reactor for the oxidation steam reforming of bioethanol
or biomethane shows great potential for efficient hydrogen production. Additionally, an
intriguing area for future research involves integrating the oxidation steam reforming of
biofuels with water splitting in a dense ceramic membrane reactor. This integration would
enable high hydrogen productivity on both sides of the membrane, further enhancing the
overall system efficiency.

Despite their significant potential in various reactions, the commercialization of dense
ceramic membrane reactors remains sluggish due to several challenges that require address-
ing before their widespread use can be realized. One significant challenge is reducing the
energy required for these processes by integrating renewable energy sources such as solar
thermal energy. Furthermore, the development of efficient catalytic structures with stable
nanostructures at high temperatures is critical to the success of these processes. Lastly,
large–scale membrane fabrication strategies must be developed to enable the commercial-
ization of these membranes. Overall, this review provides a comprehensive overview of
the various types of membrane reactors, their principles, advantages, disadvantages, and
key issues. Additionally, the paper discusses the configuration and design of catalytic
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membrane reactors and provides insights into the challenges of scaling up membrane
reactors from experimental stages to practical applications. The future of dense ceramic
catalytic membrane reactors is promising, and further research and development can lead
to significant advancements in the field of sustainable chemical production.
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