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ABSTRACT 

We demonstrate that mode-locked fiber laser polarization dynamics is characterized by switching between 
orthogonal states of polarization. We use injecting optical signal with a slowly evolving state of polarization to 

control the dwelling time nearby each state of polarization and so support regular rather than random switching 

between the quasi-equilibrium states. 
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1. INTRODUCTION 

The main challenge of manipulating the networks of coupled oscillators toward targeted collective patterns is the 
limited ability to conduct experiments with engineering (sensor and telecom) and biological (cortex, flocking 

birds) networks in a reasonably short time and under laboratory-controlled conditions [1]. The short pulse duration 

of hundred femtoseconds and repetition rates of tens–hundreds of megahertz make multimode mode-locked lasers 

(MLLs) a suitable model system for studying the synchronization-driven swarming in controllable laboratory 

conditions and short time scale of seconds [2-10]. The central concept underpinning the lasers' operation is the 

synchronization of longitudinal modes. The synchronization leads through short-range (covalent) and long-range 

(non-covalent) weak pulses' interactions toward swarming pulses into different soliton supramolecules [5-10]. The 

most effective approach for control is based on tailoring optoacoustic effects [6] and dispersive wave emission [5] 

by using the continuous wave (cw) signal injection that enables the self-assembly of large numbers of optical 

solitons into the supramolecular structures. However, there is a limited number of waveforms to be generated and 

a challenge for mapping the required soliton supramolecule vs the laser cavity parameters and the power of the 
injected signal. Also, the approach creates an obstacle to drawing meaningful insights on feasible approaches for 

controlling self-organization scenarios for systems beyond laser physics and engineering. 

   Our recent experimental data and theoretical analysis demonstrated that the mode-locked fiber laser presents a 

heteroclinic system where the laser's eigenstates – orthogonal states of polarization - are quasi-equilibrium points 

[3, 4, 9-11]. The heteroclinic orbit is a trajectory periodically evolving nearby the neighborhood of one of the 

orthogonal SOPs with further switching to the other SOP [3, 4, 9-11]. The dwelling time for the trajectory near 

each orthogonal state is adjustable with the help of the polarization controller for the pump wave [3, 4, 9-11]. As 

follows from the Shil'nikov theorem [12-14], the heteroclinic system produces a large number of attractors which 

are located near the heteroclinic orbit connecting the quasi-equilibrium states. Herein, for the first time, we 

demonstrate theoretically for Er-doped mode-locked fiber laser that the injected signal with the rotating state of 

polarization enables the selection of the attractor corresponding to the specific multi-pulsing dynamics.  

2. VECTOR MODEL OF MODE-LOCKED FIBER LASER WITH THE INJECTED SIGNAL 

For mapping the multi-soliton dynamics driven by the external optical signal, we used a vector model of Er-doped 

mode-locked fiber laser recently developed by Sergeyev and co-workers [9]. The model describes the evolution 

of the state of polarization (SOP) of the lasing averaged over the pulse width driven by injected signal with 

periodically evolving orthogonal states of polarization: 

𝐸𝑥 = 𝑎 ∙ cos(Ω𝑡 + 𝜙0) , 𝐸𝑦 = 𝑎 ∙ sin(Ω𝑡 + 𝜙0) ∙ 𝑒𝑥𝑝(i ∙ ∆𝜑)                                         (1) 

Here a is the amplitude of the injected optical signal,  is the frequency of oscillations, and  is the initial phase, ∆𝜑 is the 
phase difference between the orthogonal SOPs. With taking into account Eq. (1), the equations for evolution of the complex 

amplitudes of the lasing field and population inversion can be presented as follows: 
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Coefficients Dij  are found as follows: 
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Here time 𝑡 is  normalized to the photon lifetime in the cavity 𝜏𝑝, 𝐼𝑥 = |𝑢|
2,   𝐼𝑦 = |𝑣|

2,   are normalized to the saturation 

power 𝐼𝑠𝑠  and 𝐼𝑝 is normalized to the saturation power 𝐼𝑝𝑠; 𝛼1 the total absorption of erbium ions at the lasing wavelength; 𝛼2 

represents the normalized losses;  𝛼0 and 𝛼𝑠 are parameters describing  carbon nanotubes (CNT) saturable absorber;  𝛿 is the 

ellipticity of the pump wave, 휀 = 𝜏𝑝 𝜏𝐸𝑟⁄  is the ratio of the photon lifetime in the cavity 𝜏𝑝 to the lifetime of erbium ions at the 

first excited level 𝜏𝐸𝑟; 𝜒 = (𝜎𝑎 + 𝜎𝑒) 𝜎𝑎⁄  ,( 𝜎𝑎 and 𝜎𝑒  are absorption and emission cross-sections at the lasing wavelength); Δ 

is the detuning of the lasing wavelength with respect to the maximum of the gain spectrum (normalized to the gain spectral 

width), 𝛽 is the normalized linear birefringence strength (2𝛽 = 2𝜋𝐿𝑐 𝐿𝑏  ⁄ ,  𝐿𝑏 is the beat length and 𝐿𝑐 is the cavity length).    

We use an approximation in Eqs. (2) that the dipole moments of the absorption and emission transitions for erbium-doped 

silica are located in the plane orthogonal to the direction of the light propagation [3, 4, 9-11].  
   To obtain results shown in Fig. 1, we used the following parameters: a1)-c4)  𝛽𝐿 = 𝛽𝐶 = 0, 𝛼1 = 10.8, 𝛼2 = 1,𝛼𝑠 = 10

−3,
𝛼0 = 0.136, , 휀 = 10

−5, 𝜒 = 2.3, Ω = 2.5 ∙ 10−4, 𝜙0 = 𝜋 4⁄ ,Ψ = 𝜋 2⁄ . Also, a1)-c1) 𝛿 = 0.99, 𝑎 = 0; a2)-c2) 𝛿 =
0.92, 𝑎 = 0; a3)-c3) 𝛿 = 0.92, 𝑎 = 1; a4)-c4) 𝛿 = 0.92, 𝑎 = 1.5. To account for the output POC transformation caused by 

the patchcord connected to the polarimeter, we use the following 3D rotation matrix [15]: 
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 (5)   

The dynamics in terms of the Stokes parameters was extracted from the results of numerical solution of Eqs. (2) 

as follows: 
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The powers for the orthogonal x- and y- polarization components (Ix, Iy) , the total power I and the phase difference 

Δ𝜑 can be found as follows: 
𝐼𝑥 = |𝑢|

2,   𝐼𝑦 = |𝑣|
2, 𝑆3 𝑆2⁄ = tan(Δ𝜑). 

(7) 

3. RESULTS AND DISCUSSON 
 

 

Figure 1. Polarization dynamics of multi-pulsing in terms of a1), a2), a3), a4): powers of individual polarization 

components  Ix (red) and Iy (blue), the total output power  I; b1), b2) b3) b4): the phase difference  between 

orthogonally polarized SOPs, and c1, c2) c3), c4:) trajectories on Poincaré sphere.  

   As follows from Fig.1 (a1), when the pump wave ellipticity is close to one, and the injected signal is absent, e. 

g. 𝛿 = 0.99, 𝑎 = 0,  dynamics takes the form of antiphase oscillations for x and y polarization components and so 

the constant total output power. Given that the model explores slow dynamics averaged over the pulse width, such 

dynamics means cw mode-locking with the periodic switching between two orthogonal elliptic SOPs and spiral 

attractor shown (Fig.1 b1 and c1). Due to the extreme sensitivity to the perturbations and according to the 

Shil’nikov theorem [18, 19], with decreased ellipticity, i. e. 𝛿 = 0.92, 𝑎 = 0,   the spiral attractor is transformed 

into a hyperchaotic one, shown in Fig. 1 (c2). The hyperchaotic behavior takes the form of the random switching 

between the orthogonally polarized SOPs shown in Fig. 1 (a2 and b2). In the context of mode-locking, the random 

pulses in Fig. 1 (a2) are related to the slow dynamics, and so can comprise tenths of short pulses. With the injected 

signal, e, g. 𝛿 = 0.92, 𝑎 = 1, random pulses become sparser and more regular (Fig. 1 a3). Unlike the previous 

case, the phase difference in Fig. 1 (b3) has a longer duration of the time intervals with the constant value, which 
means dynamics with more extended synchronization between the orthogonal SOPs. Though trajectories on 

Poincaré sphere are not closed, they demonstrate more regular behavior (Fig. 1 c3). With a further increased 

amplitude of the injected signal to 𝑎 = 1.5, the dynamics takes the form of regular pulses shown in Fig. 1 (a4). 

Because the duration of pulses is of tenths of roundtrips, such dynamics correspond to multi-pulsing. Regular 

dynamics is justified in Fig. 1 (b4), demonstrating the periodic switching between the orthogonal SOPs and in Fig. 

1 (c4), showing polarization attractor with closed trajectories. 

 

4. CONCLUSIONS 

By using the vector model of Er-doped mode-locked fiber laser, we demonstrate theoretically that the injected 

signal with the rotating state of polarization enables control of the dwelling time nearby each orthogonal SOPs 

by adjusting its power, modulation frequency, and phase. As a result, mode-locking regimes take forms ranging 

from cw with switching between the orthogonal SOPs to chaotic (random multi-pulsing) and, finally, to periodic 

multi-pulsing. Beyond the fast manipulation of the optical waveforms for the controllable laser dynamics and 

encoding information in non-binary formats, the results can potentially unlock techniques for manipulating 
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synchronization and swarming in different biological, chemical and engineering systems with the heteroclinic 

dynamics.  
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