
Automated Feature Detection in Dental Periapical Radiographs using Deep Learning 

 

 

Abstract 

Objectives: To investigate automated feature detection, segmentation, and quantification of 

common periapical findings in periapical radiographs (PAs) using deep learning (DL)-based 

computer vision techniques.  

Methods: Caries, alveolar bone recession, and interradicular radiolucencies were labelled on 

206 digital PAs by 3 specialist clinicians (2 oral pathologists and an endodontist). This 

dataset was divided into ‘Training and Validation’ and ‘Test’ datasets consisting of 176 and 

30 PAs, respectively. Multiple transformations of image data were used as input to deep 

neural networks during training. Outcomes of existing and purpose-built DL architectures 

were compared to identify the most suitable architecture for automated analysis.  

Results: The U-Net architecture and its variant outperformed other DL algorithms in all 

performance metrics. The overall best performing architecture on the validation dataset 

was ‘U-Net+Densenet121’ (mIoU = 0.501, Dice coefficient = 0.569). Performance of all 

architectures degraded on the ‘Test’ dataset; ‘U-Net’ delivered the best performance (mIoU 

= 0.402, Dice coefficient = 0.453). Interradicular radiolucencies were the most difficult to 

segment.  

Conclusions: DL has potential for automated analysis of PAs but warrants further research. 

Among existing, off-the-shelf, architectures, U-Net and its variants delivered the best 

performance. Further performance gains can be obtained via purpose-built architectures 

and a larger multi-centric cohort. 

 

Keywords: Medical Image Segmentation, Caries, Bone Recession, Interradicular 

Radiolucency, Deep Learning, Dental Radiography, Artificial Intelligence. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Introduction: 

 

Digital radiographs are routinely employed by dentists to assess the extent of caries; 

examine root morphology; evaluate status of alveolar bone; determine the need for 

orthodontic treatment; and evaluate dental, jaw and sinus diseases[1-4]. Common 

radiographs used in clinical practice include periapicals, bitewings, and orthopantomograms 

(OPT) [5].  

 

Periapical radiographs (PAs) are a very commonly used in intraoral radiography. They 

provide localized information on the presence and extent of caries, restorations, 

interradicular radiolucencies, root and root canal morphology, the length and adequacy of 

endodontic obturation, the level of alveolar bone, and the periodontal ligament space. 

Although all dentists are well trained in interpreting these images, factors such as variation 

in contrast, angulation, and magnification can result in faulty diagnoses. Other factors that 

can influence interpretation include the experience and knowledge of the dentist as well as 

fatigue during the examination of radiographs[6].  

 

Furthermore, interpretation of conventional radiographs is subjective and creates the 

potential for inconsistencies between dentists [7, 8]. Despite this limitation, the easy 

accessibility and clinical reliability of PAs make them a preferred choice for diagnosing 

common dental problems [9].   

 

These challenges make the use of automated and more objective analysis an attractive 

option for aiding in diagnosis and improving patient care. Deep learning (DL) encompasses a 

set of techniques inspired from the anatomy of the brain that have become quite popular in 

artificial intelligence and computer vision. These techniques have improved our ability to 

build software for automated analysis and evaluation of images with widespread application 

in medical image analysis. Recent advances in DL have shown the potential for automated 

identification and quantification of radiological and pathological features to improve 

consistency of diagnosis and standardization of care as well as provide quantifiable 

outcomes [10, 11]. However, application of DL in dental radiology remains poorly explored.  
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There have been limited attempts at automated analysis of dental radiographs using DL with 

reported studies mostly exploring caries detection and tooth identification, with no attempt 

at shape segmentation that would guide treatment [12-15]. Furthermore, the accuracy of 

reported detection has been variable and somewhat suboptimal, highlighting the need for 

further research in this area.   

 

The objective of the research was to compare the diagnostic efficacy of 4 segmentation 

architectures in computer-based deep learning in the diagnosis of caries, alveolar bone 

recession (ABR), and interradicular radiolucencies (IRR). The null hypothesis stated that 

there would be no significant differences between the 4 architectures in diagnosing these 

abnormalities. 

 

Materials and Methods 

Dataset 

The initial data used for training and validation in this study contained PAs collected from a 

single dental practice over a 6-month period between January and July 2019. This ‘Training 

and Validation’ dataset was selected out of an original total of 200 periapical radiographs 

and comprised 176 PAs that contained 135 instances of caries, 149 instances of alveolar 

bone recession (ABR), and 57 instances of interradicular radiolucency (IRR). Using data from 

only a single source is not ideal because the performance of AI algorithms tends to degrade 

when tested on data from sources to which they have not been exposed before. This 

degradation can be due to factors such as variation in the physical properties of data 

acquisition devices/instruments at different sources. Consequently, we also evaluated the 

performance of our approach on a smaller ‘Testing’ dataset of 30 PAs collected from 2 more 

dental practices that were different from the one that provided the initial ‘Training and 

Validation’ data. For both datasets, diagnostically acceptable PAs acquired by using a 

standard paralleling technique were selected. The radiographs were anonymized by the 

source practices prior to being shared with the research team.  

   Step 1 in our protocol was data labeling. Data on the ‘Training and Validation” radiographs 

was labeled by 3 experienced clinicians including an American board certified oral 

pathologist (AK), a specialist in endodontics (MM) with extensive experience in diagnosis 
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and interpretation of dental radiology, and a consultant specialist in oral and maxillofacial 

pathology from the UK (SAK) with expertise in both oral and maxillofacial radiology and 

surgery. During the labeling process one examiner (AK) meticulously annotated caries, ABR, 

and IRR, ensuring that the shape of the annotated region overlapped with the boundary of 

the underlying region of interest. Three colors were employed to label the three distinct 

regions of interest; red was used to label caries, blue for ABR, and green for IRR. The 

remaining two examiners (MM and SAK) examined the labels drawn by the first examiner 

and accepted or rejected them. Radiographs on which at least 2 out of 3 examiners did not 

agree were excluded from the dataset. Out of the 200 original radiographs, 176 were 

retained in the ‘Training and Validation’ set, while from 31 additional radiographs, 30 were 

selected for the ‘Testing’ data set, as listed above. 

 

   The data labeling process is illustrated in Figure 1. The output of this process consisted of 

the color-coded labeled images (‘Reference’ label masks) of exactly the same size as the 

input periapical images indicating the shape of the three features of interest (caries, ABR, 

and IRR). During training, the reference label masks were used to locate and learn the 

visually distinct characteristics of each feature of interest. A trained network was able to 

take an unseen image and output a ‘Predicted’ label mask containing the (estimated) shape 

of any caries, ABR, and IRR in the image. Prediction performance was evaluated by 

comparing the Predicted label mask with the corresponding Reference label mask.  

   Step 2 in our approach was training and validation, in which the labeled dataset was first 

augmented (see ‘Data Augmentation’ below) and then employed to train and evaluate the 

performance of different DL architectures. Given the relatively small size of the dataset, we 

employed 4-fold cross-validation to measure the performance of different neural network 

architectures in this step. More specifically, the training and validation dataset was 

partitioned into 4 sets of approximately equal size. At any one time, 3 out of these 4 sets 

were used for training whereas the 4th set was used for performance evaluation or testing. 

This process was repeated until performance had been evaluated on each of the 4 partitions 

of the training and validation dataset. A graphic illustration of 4-fold cross-validation is 

provided in Figure 2.  

   Finally, during step 3 (testing), the entire validation dataset was used to train the network 

and performance was evaluated on the unseen test dataset. As explained earlier, this was 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



done to gauge the degradation in performance usually seen when a trained network is 

exposed to data from unfamiliar sources.    

 

Data Augmentation 

Data augmentation is a common pre-processing technique employed prior to feeding data 

samples to a neural network during training. It entails increasing the number of cases (or 

features) in the original dataset set by applying realistic transformations (i.e., mock 

computer-generated images) that are representative of variations expected to occur in real 

life. For example, the same radiograph may be flipped or rotated to generate multiple 

copies that could represent different viewing angles. Data augmentation also mitigates the 

adverse impact of class imbalance (the predominance of one feature) by generating a 

relatively large number of images for features with low prevalence in the original dataset. 

We experimented with different types of transformations and found that magnification, 

vertical flip, translation, rotation, horizontal flip, shear, crop, and elastic transformations 

were the most useful and delivered the largest gains in performance (when compared to 

non-augmented data).  Sample images resulting from application of some of these 

transformations are shown in the data augmentation block of Figure 2.  

 

Segmentation Architectures and Training   

The primary objective of our algorithm was to assign a class label or identity (caries, ABR, 

IRR, or background) to every pixel of an input periapical radiographic image. In computer 

vision, this process of labeling all pixels in an image is known as semantic segmentation and 

a large number of available DL architectures can be employed for this purpose. We explored 

a few of the existing as well as some novel architectures for semantic segmentation of the 3 

features that were of interest to us. Most deep neural network-based semantic 

segmentation algorithms employ an Encoder-Decoder architecture constructed by using 

convolutional neural networks (CNNs). Every layer of a CNN consists of a set of kernels or 

filters. A single kernel is a feature extractor that can be used to find the location(s) of a 

feature (or geometric shape) in an image. The presence of a feature in an image can be 

detected by first dividing it into small, equal-sized patches and then multiplying each patch 

with a kernel that is similar in size to the image patches. Patches containing features that 
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are similar in shape to the kernel result in high values whereas patches containing different 

shapes result in values close to zero.  

 

This process of using a kernel as a template to search for shapes in images is known as 

‘convolution’ and is illustrated in Figure 3. The output of a convolution operation is also an 

image; however, it is generally referred to as a ‘feature map’ since it highlights image 

patches that contain shapes similar to the kernel used, and filters out patches that are 

different. For example, feature map-1 in Figure 3 is obtained by convolution of the input 

image with a circular kernel (Kernel-1); it highlights regions containing only circular features. 

Similarly, Kernel-2 is cylindrical and convolving it with the image highlights regions 

containing cylindrical shapes.  

 

The encoder of a typical segmentation architecture consists of successive blocks of CNNs 

that are employed to extract different shapes in the input image. For example, the U-Net 

segmentation architecture is shown in Figure 4, in which the number of feature maps in 

every block is indicated by the value written across it. The size of the image/feature maps 

input to any block is indicated by the value written below it (all images/feature maps are 

square in size, with an equal number of X and Y pixels). For example, the second block of the 

encoder comprises 128 feature maps which are obtained after application of convolution to 

feature maps of size (284 x 284) pixels that are input to it.  

 

In general, the application of convolution reduces the size of images. Therefore, the size of 

feature maps decreases as we pass through blocks of the encoder. The first block of the 

encoder extracts simple geometric features (such as horizontal and vertical lines) from the 

input image. The subsequent layers learn to extract more complex features by combining 

simpler features input to them by the preceding layers. For example, lines and curves can be 

combined to construct shapes like polygons and circles that can be further combined to 

construct more complex shapes like objects. Consequently, the final block of the encoder 

consists of a large number of feature maps, each of which describes the approximate 

location of a complex shape or object within the image. However, successive application of 

convolution operations means that the size of the feature maps is significantly smaller than 

the size of the input image. A decoder is then applied to upsample the encoder feature 
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maps in a step-by-step manner using the up-convolution operation. In the U-Net 

architecture, each block of the decoder combines information it receives from its preceding 

decoder block with its corresponding peer block in the encoder. At every block of the 

decoder, the size of the feature maps is increased whereas the number of feature maps is 

halved. This is repeated until we are left with a single feature map that describes the shape 

and location of the objects/regions of interest in the original input image. During training, a 

network uses input images and reference label masks to learn kernels and other parameters 

of the network that enable it to output predicted label masks that are similar to the 

reference label masks. Once trained, the learned kernels and network parameters are used 

to generate predicted label masks for unseen images that are input to the network. 

 

Semantic segmentation is being widely applied in computer vision and there are numerous 

architectures available for this purpose. For our experiments, we selected 4 neural network 

architectures, of which 3 were existing architectures (U-net [16], XNet [17] and SegNet [18] 

and 1 was a custom-built architecture constructed by replacing the encoder layer of U-net 

with the Densenet121 architecture[19]. Among the three existing architectures, U-Net and 

XNet were purpose-built for medical image segmentation. U-Net has a proven track record 

of delivering good results in medical imaging applications where training data is limited in 

size [20]. Periapical radiographs are X-ray images. Therefore, the XNet architecture, which 

was purpose-built for radiological image segmentation, was also selected for evaluation on 

our dataset. The third segmentation architecture used was SegNet, which is a popular 

architecture for segmentation of natural images. The primary purpose of including SegNet in 

our evaluation was to gauge the performance difference between architectures designed 

for natural images and architectures built specifically for medical/dental images. The fourth 

architecture was a variant of U-net and was constructed by replacing its encoder with a 

more recent encoder architecture, Densenet121 [18]. The fourth (custom-built) architecture 

was tested primarily because since U-net’s inception in 2015 a number of new encoder 

architectures have been proposed. Therefore, substituting its encoder with a relatively 

recent encoder architecture could potentially deliver an improvement in performance. 

 

All architectures employed were implemented using the Keras and Tensorflow frameworks, 

and trained using graphic processing unit (GPU) instances on the Amazon Web Services 
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cloud platform. The process was started by training original (unmodified) versions of U-net, 

XNet, and SegNet. Results demonstrated that U-Net delivered the best performance. 

Consequently, we experimented further with U-Net by replacing its encoder layers with 

other popular encoder architectures and investigating whether doing so resulted in 

additional performance gains. All images were resized to 256 × 256 pixels for 

standardization before being input to the network for training or testing.   

 

3.4. Evaluation Metrics 

Three distinct metrics were employed to evaluate the performance of different approaches. 

The first metric employed was the Intersection over Union (IoU) which is the ratio of the 

number of pixels that are in common (or overlap) between the reference label mask and the 

predicted label mask output by the network to the total number of pixels in both masks. The 

IoU is calculated using the following equation: 

 

𝐼𝑜𝑈 =  
𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ  ∩  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑈 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃          (1) 

TP denotes true positives and is the number of pixels that are correctly predicted as 

belonging to the target class. Similarly, FP and FN denote the number of false positive and 

false negative pixels, respectively. Performance was evaluated using the mean IoU (mIoU), 

which is the mean value of the individual IoU values observed on the test/validation images. 

 

The second evaluation metric we employed was the Dice coefficient, which is defined as: 

 

𝐷𝑖𝑐𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃          (2) 

While both the above metrics are quite similar, the IoU penalizes single instances of bad 

segmentation much more than the Dice coefficient. Consequently, an algorithm which is 

correct for the vast majority of instances but makes incorrect decisions in a few instances 

may result in an IoU that is much lower than the corresponding Dice coefficient, which is 

better at reflecting average performance and not overly sensitive to a few instances of bad 

performance. Just like the IoU, performance evaluation was conducted using the mean Dice 

coefficient, which is the mean value of the individual Dice coefficients observed on the 
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test/validation images. An ideal segmentation algorithm that perfectly matches the 

reference label maps will result in mIoU and Dice coefficient values of 1, whereas an 

algorithm that results in no overlap between reference and predicted label mask will 

generate mIoU and Dice coefficient values equal to 0. 

 

Results 

 

Performance evaluation of different architectures was done using two different approaches: 

(1) 4-fold cross-validation on the validation dataset and (2) testing on an independent test 

dataset collected from sources not included in the validation data, as described above.  

 

Validation Dataset  

The mIoU and Dice Coefficient values obtained for the validation dataset are shown in Table 

I. In 4-fold cross-validation the data was divided into four partitions which were then used 

as test sets one-by-one. Therefore, every value in Table I was obtained by averaging over 

the values observed for the 4 partitions of the dataset. It can be observed that for the 3 off-

the-shelf architectures (U-Net, XNet, and SegNet), the best segmentation performance was 

obtained for the U-Net architecture (average mIoU = 0.466; average Dice coefficient = 

0.534).  The U-Net+Densenet121 architecture gave the overall best performance on the 

validation dataset with average mIoU and Dice coefficient values of 0.501 and 0.569 

respectively. Among the three features studied, segmentation of ABR was the easiest to 

identify, with the highest mIoU = 0.440 obtained by the U-Net+Densenet121 architecture.  

An mIoU of 0.440 implies that, on average, there is 44% percent overlap between regions 

identified as ABR in reference and predicted label masks. Similarly, the Dice coefficient for 

ABR was also highest with U-Net+Densenet121 (0.556). 

 

Segmentation of caries resulted in similar performance, generating an mIoU of 0.428 with 

U-Net+Densenet121 (Dice coefficient = 0.532). However, segmentation of IRR seemed more 

challenging, with mIoU = 0.173 and the Dice coefficient = 0.206. This was most likely due to 

the relatively small number of instances of IRR in the validation dataset compared with the 

other two features. Segmentation of background, which includes everything that is not a 

part of one of the 3 studied features, appeared to be easier and the performance metrics 
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were quite high. However, it is worth noting that most regions in a radiographic image can 

be a part of the background. Therefore, these numbers were somewhat biased by the high 

prevalence of the background class. Overall, the mIoU and Dice coefficient values exhibited 

similar trends regarding performance of the 4 architectures and relative ease of 

segmentation of the 3 disease conditions. On average, SegNet produced the poorest mIoU 

and Dice coefficient values. 

 

Test Dataset 

The performance metrics observed for the test dataset are presented in Table II. The 

networks were trained on the entire validation dataset and then tested on the unseen test 

dataset. Overall performance was worse as compared to the validation dataset. However, 

this was expected since most DL approaches exhibit performance degradation when tested 

on data from sources different from those in the training data. We could have improved the 

performance on the test dataset by mixing examples of all 3 sources in the validation and 

test datasets. We chose not to do so because we wanted to keep the testing conditions 

challenging and as close to real life deployment scenarios as possible. In terms of overall 

average performance, the best network architecture was U-Net instead of U-

Net+Densenet121 for both mIoU and the Dice coefficient. The average mIoU for U-Net 

decreased from 0.466 (for the validation dataset) to 0.402 (for the test dataset), a 

degradation of 13.8%. For the Dice coefficient, there was a decrease from 0.534 to 0.453 

(15.2%). U-Net+Densenet121 yielded the second-best performance on the test dataset with 

an average mIoU of 0.383, representing a degradation of 23.5% from the validation dataset 

value of 0.501. The Dice coefficient for the test dataset was 0.434 compared to 0.569 in the 

validation dataset, or a degradation of 23.7%. This could be due to the larger number of 

parameters in U-Net+DensetNet121 (25 million compared to 5 million for U-Net). 

Segmentation of individual features exhibited trends similar to those observed in the 

validation dataset for both mIoU and the Dice coefficient. ABR was the easiest to segment, 

followed by caries and IRR. Segmentation performance of IRR was quite low. However, the 

test dataset only had one radiograph which contained any instances of IRR. The low mIoU 

and Dice coefficient can be attributed to the low prevalence of IRR in the dataset and may 

not be truly reflective of algorithm performance. The SegNet architecture had the lowest 

average mIoU and Dice coefficient values. 
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   In order to better understand the actual performance, a comparison of reference and 

predicted label masks of six images from the test dataset is presented in Figure 5, in which 

56 images (A through F) are presented in columns (a) through (f), respectively. Due to the 

naturally low occurrence of IRR, the test dataset contained only a single image with IRR. This 

image and its corresponding reference and prediction label masks are shown in Figure 5 as 

image E. The other 5 images shown in Figure 5 were randomly selected from the test 

dataset. It can be observed that ABR was the easiest to segment and almost all network 

architectures did a reasonable job at this task. U-Net was the best performing architecture 

on the test dataset and was able to correctly detect the location of all 13 instances of ABR in 

the six sample images in Figure 5. However, the estimation of the shape of each instance of 

ABR was not perfect and could be improved further. Among U-Net predictions there were 5 

instances of false positives, the largest of which can be observed in Image A. Segmentation 

of caries was more difficult. The performance of U-Net at this task returned the lower mIoU 

value of 0.166 and Dice coefficient of 0.202 (listed in Table II) compared with the values of 

0.291 and 0.376, respectively, in the validation dataset, a degradation of 43.0% for mIoU 

and 46.3% for the Dice coefficient. Out of the 8 instances of caries in the images, U-Net was 

able to correctly locate only 3 in image A. Table II indicates that U-Net+Densenet121 was 

marginally better at segmenting caries (mIoU = 0.194, Dice coefficient = 0.239). The images 

in Figure 5 seem to corroborate this since U-Net+Densenet121 did not make any false 

predictions of caries in image A. Furthermore, visually it seemed that the shape of caries 

predicted by U-Net+Densenet121 (in image C and image F) were marginally better estimates 

than those produced by U-Net. Performance evaluation of IRR segmentation was 

challenging on the test dataset since it contained only a single image with IRR.  However, 

visual inspection of the images indicated that U-Net outperformed the other architectures, 

giving the best estimate of the shape of the IRR in image E. It also gave the smallest number 

of false positives. 

   An independent t-test was employed to compare the mIoU values of U-Net with those of 

Xnet, SegNet, and U-Net+Densenet121. A p-value of less than 0.05 was considered 

significant. Significantly different results were obtained for U-Net vs. Xnet (p = 0.006) and U-

Net vs. SegNet (p < 0.002). Despite U-Net+Densenet121 outperforming U-net in mIoU 

values, no statistically significant difference was noted between U-Net and U-

Net+Densenet121 (p = 0.198). 
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  Similarly, the Dice coefficients of U-Net were compared with Xnet, SegNet, and U-

Net+Densenet121 using independent t-tests. These tests yielded significantly different 

values for comparisons between U-Net and Xnet (p = 0.012), and U-Net and SegNet (p < 

0.02). However, no statistical difference was noted between the Dice coefficients of U-Net 

and U-Net+Densenet121 (p=0.198). 

 

Discussion 

 

Our findings show that DL has the potential to automatically detect the presence (detection) 

and shape (segmentation) of caries, ABR, and IRR in dental periapical radiographs. However, 

the performance evaluation metrics indicate that this is a challenging problem with 

significant room for improvement building upon existing work. Furthermore, performance 

degrades further when the algorithms are tested on data acquired from different sources. 

DL application to dental radiology has been limited and to the best of our knowledge there 

have been no prior attempts to segment ABR and IRR using these methods. Recently, deep 

CNNs were used to detect ABR on OPTs and cystic lesions on cone beam computed 

tomography scans.  However, no attempt was made to segment shapes of the features of 

interest [14, 15]. In another study, different teeth were localized and classified using a faster 

R-CNN (where R-CNN stands for Region-based CNN) [21], but faster R-CNNs can only 

perform an estimation of the approximate shape and size of objects by putting rectangular 

bounding boxes around them. 

 

The U-Net and XNet architectures were specifically designed for medical images and 

therefore outperformed the SegNet architecture, which was built primarily for natural 

images. Although the XNet architecture was designed for radiographic images, it was 

significantly outperformed by U-Net (P = 0.006 for mIoU, P = 0.012 for the Dice coefficient), 

which was somewhat unexpected. Both performance evaluation metrics, mIoU and the Dice 

coefficient, demonstrated similar trends. On the validation set, the overall highest average 

mIoU (0.501) was exhibited by the U-Net+Densenet121 architecture. This means that on 

average there was approximately 50% overlap between the corresponding features/classes 

(background, caries, ABR, and IRR) on predicted and reference label masks. Although 

seemingly low, these performance values cannot be dismissed outright for the following 
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reasons: (1) Semantic segmentation is a challenging task and algorithm performance varies 

widely depending on the complexity and size of the image dataset. For example, state-of-

the-art segmentation algorithms have been shown to achieve mIoUs of around 0.80 on the 

Cityscapes dataset but degrade to 0.45 on the more challenging ADE20K dataset [22]. It is 

also worth highlighting that the Cityscapes and ADE20K datasets contain 5000 and 25,000 

labelled images, respectively, which are significantly larger than the number of images in 

our datasets. (2) The highest average mIoU on the test dataset was seemingly low but visual 

inspection of the results in Figure 5 demonstrated that actual results were reasonable, as a 

value of > 0.5 is considered a good prediction on complex datasets of limited size. Although 

the estimation of feature shapes is not very precise, the best performing architecture (U-

Net) was able to correctly locate a number of occurrences of caries, ABR, and IRR. 

Furthermore, it seems that it was also able to learn that caries is found in the coronal 

portion of teeth, ABR between teeth, and IRR around the roots. Therefore, although 

semantic segmentation in its current form cannot accurately estimate shapes of the 

features of interest, it could possibly be employed to highlight their approximate locations.  

 

One of our limitations was that we used the interpretation of three experts as ground truth. 

While a consensus of all three examiners was required to accept the annotations, radiologic 

interpretation is subjective. Other limitations included a small size of our training and 

testing data, and acquisition of training radiographs from a single source. 

 

In summary, our results are promising and acceptable but not outstanding. This can be 

attributed to two factors: (1) limited training data and (2) complexity of the segmentation 

task. To further improve, diversify, and clinically deploy our algorithms, we are currently 

working on extending our training dataset to include more radiographs from multiple 

sources. Furthermore, for the clinically relevant features assessed in our current study and 

for additional features (such as subtle tooth decay and periapical radiolucency), we plan to 

undertake research that will include determining diagnostic measures of accuracy such as 

sensitivity and specificity, plus performing receiver operating characteristic analyses to 

determine area under the curve (AUC) values as a measure of accuracy. 

 

Conclusion 
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Findings from our pilot study show that DL can be a viable option for segmentation of caries, 

ABR, and IRR in dental radiographs. Our results demonstrated that a reasonable 

performance can be obtained by training existing deep neural networks provided that 

labelled training data is available. In terms of performance, the approaches based on the U-

Net architecture and its variants delivered the best results. Furthermore, replacing the 

encoder layers of U-Net with other architectures also resulted in performance gains, in 

controlled settings. However, performance of the custom-built architecture degraded when 

tested on data from different sources. This sensitivity to data from varied sources was most 

likely due to the significant increase in the number of parameters when the smaller U-Net 

encoder was replaced with the larger Densenet121 encoder. Further research is required to 

conclusively establish whether replacing encoders can deliver noticeable performance gains. 
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Figure Legends 

 

Figure 1: Illustration of the data labeling process. An unlabeled image was examined by the 

pathologists. The three regions of interest were highlighted using distinct color codes. The 

labeled image was the ‘Reference’ image mask that was extracted by the computer vision 

team for training the deep neural network.  

Figure 2: Block diagram illustrating the various steps involved in building a deep learning 

based tool for automated analysis of dental pathoses. Step 2 involved training and 

validation, in which the labeled images (‘Reference’ masks) went through data 

augmentation, which involved changes in orientation of the images. The training and 

validation dataset was divided into 4 sets for 4-fold cross validation. At any one time, 3 out 

of these 4 sets were used for training and the 4th set was used for performance evaluation 

or testing. This process was repeated until performance had been evaluated on each of the 

4 partitions of the training and validation dataset. In step 3 (testing), the entire validation 
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dataset was used to train the network and performance was evaluated on the unseen test 

dataset.  

Figure 3: Illustration of how convolution can be used to extract features from images. The 

white shade in the feature maps indicates the presence of features that are similar to the 

kernel applied (kernel = computer program acting as a filter). 

Figure 4: Block diagram of the U-Net architecture used for segmentation. The colored 

arrows represent convolution operations and activation functions. The number below each 

block indicates the x-y size of the block, e.g., the second block of the encoder is (284 x 284) 

pixels. The number along the side of each block represents the number of channels, e.g., the 

second block of the encoder contains 128 channels. 

Figure 5: Sample comparisons of reference and predicted label masks of six images from the 

test dataset. The top row displays unlabeled images; the second row displays radiographs 

with reference label masks superimposed on top of them; rows 3 through 6 display the 

radiographs with predicted label masks of the 4 different architectures superimposed on top 

of them. Images in columns (a) through (f) are referred to as images A through F, 

respectively. All images except image E were picked randomly from the ‘Test’ dataset. 
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