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Abstract: Machine learning, especially deep learning, has been highly successful in data-intensive applica-
tions; however, the performance of these models will drop significantly when the amount of the training data
amount does not meet the requirement. This leads to the so-called few-shot learning (FSL) problem, which
requires the model rapidly generalize to new tasks that containing only a few labeled samples. In this paper, we
proposed a new deep model, called deep convolutional meta-learning networks, to address the low performance of
generalization under limited data for bearing fault diagnosis. The essential of our approach is to learn a base model
from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks
before it can adapt to the new learning task based on limited training data. The proposed method was compared to
several FSL methods, including methods with and without pre-training the embedding mapping, and methods
with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain. The
comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing
dataset and a cylindrical roller bearing dataset. The experimental result illustrates that our method has good
performance on the bearing fault diagnosis across various few-shot conditions. In addition, we found that the pre-
training process does not always improve the prediction accuracy.
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I. INTRODUCTION
With the advancement in technology, the structure of
modern machinery and equipment is becoming increasingly
complex; meanwhile, the high requirements of reliability
and increased precision must be met. In recent years, deep
learning-based intelligent fault diagnosis techniques have
attracted a lot of attention due to their merits, such as robust
feature extraction capability, effective processing models,
cost-effective in calculation, and analysis [1–5]. However,
the excellent performance of these deep models is based on
massive amounts of labeled data [6,7]. However, in prac-
tice, industrial equipment and systems, especially the criti-
cal ones, are usually not allowed to work in a severe fault
state due to safety reasons and maintenance cost considera-
tions. Therefore, in many cases, it is difficult or even
impossible to obtain sufficient labeled training samples
to make the classifier robust for every fault type.

The capability of these deep models may be degraded
significantly when the amount of training data does not
meet the requirement. This is referred to a few-shot learning
(FSL) problem [8], in which a model is required to be
trained and generalized well even using one or a few data
samples. The history of FSL can be traced back to the early
2000s [9,10]. The early FSL approaches, for example,
congealing algorithm by Miller et al. [9] and variational

Bayesian framework by Fei-Fei et al. [11], are non-deep
models, and these models are mainly based on the genera-
tive model. By applying labeled data in the source domain,
this kind of model tries to estimate the joint distribution
PðX,YÞ or the conditional distribution PðXjYÞ. The model
can make predictions for test samples using Bayesian
theory, based on very few observed samples for training.
In 2015, Koch et al. [12] firstly applied deep learning for
FSL problems by proposing a Siamese convolutional neural
network (CNN) to learn a class-irrelevant similarity metric
on pairwise samples. This symbols a new era for FSL [10].

Apart from the aforementioned generative model, the
discriminative model-based FSL approach is getting increas-
ingly popular recently. Two main approaches in the discrim-
inative model are metric learning and meta-learning [10].
Metric learning tries to learn a pairwise similarity metric
Sð· , ·Þ. It will give a high score if a sample pair is similar, and
a low score if the pair is dissimilar. Meta-learning aims at
training a model based on a variety of learning tasks and
adapting a new different but related task with very limited
labeled data sample. A typical model is the model agnostic
meta-learning (MAML) proposed by Finn et al. [13]. The
model trains a set of initial parameters and then carries out
gradient adjustment in one or more steps to achieve the
purpose of quickly adapting to new tasks with only a small
amount of data. However, the MAML is quite sensitive to
neural network structure and requires time-consuming
hyperparameters search to stabilize training and improve
model generalization capability [14]. Antoniou et al [15]Corresponding author: Ming Zhang (e-mail: m.zhang21@aston.ac.uk).
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and Nichol et al. [16] optimized MAML’s robustness,
training stability, and efficiency. Li et al. [17] proposed a
meta-learning fault diagnosis method based on the MAML
model, and the results show that this method has certain
advantages in solving small sample fault classification pro-
blems under complex working conditions.

Although the metric learning methods are effective
for the few-shot fault diagnosis tasks to a certain degree,
when being taught, the models only focus on the relative
similarity information from sample groups while the
attribute information of each specific category is ignored,
hence resulting the labeled source data not being fully
exploited. To better transfer the knowledge learnt from the
source domain to deal with problems in the target domain,
in this paper, we prefer to solve the few-shot fault diag-
nosis problem using the meta-learning method. Besides,
considering that the deep CNN model is proven to be
robust and efficient in feature extraction, a hybrid method
that combines the merit of deep CNN supervised learning
and meta-learning is proposed. In the hybrid model, the
first several layers are the same as supervised learning that
is trained by source data and extracts features to recognize
different fault types. These layers are fixed after training
process and then worked as a feature extractor that trans-
forms raw data to the basic feature space. Finally, meta-
learning is employed to train the rest of the model with the
extracted features. In this way, not only the relative
information between data pairs but also the supervision
information from the source domain will be well exploited
by the proposed model.

In this paper, a meta-learning-based deep convolu-
tional meta-learning networks (DCMLN) is proposed and
presented for few-shot fault diagnosis tasks using the
Case Western Reserve University (CWRU) dataset and
a cylindrical roller bearing dataset. The background and
framework are introduced and explained in Sections II
and III, respectively. In Section IV, experiments using the
CWRU dataset and a cylinder bearing dataset are dem-
onstrated, the bearing fault prediction accuracy is listed,
confusion matrix of the prediction results is illustrated,
and t-SNE technique is employed to visualize the feature
embedding. Finally, Section V presents the conclusions
and discussions.

II. BACKGROUND
A. FEW-SHOT LEARNING

Traditional supervised learning has achieved significant
performance when there are sufficient data. However, it
often fails to make the correct prediction under the circum-
stances when only limited data are available. The FSL
method is assigned to address such problem of identifying
the unobserved categories under little support information
without the certainly necessary process of retuning the
model, since recollecting the data may be too expensive
or sometimes even not possible.

As shown in Fig. 1, the training and test data are drawn
from the same domain, and the unlabeled samples all belong
to the categories already known. On the contrary, the test
mission in the FSL derived from the different domains, in
which only very few labeled data of each category can be
used. The categories of the target domain are certainly unseen
in the source domain and all the unlabeled samples should be
part of these unfamiliar categories.

To be more specific, FSL with k-shot and N-class
occupy k labeled data samples of each N category in the
supporting dataset and there is no explicit limitation of
sample number in the test dataset which aims at accessing
the performance of the trained model. In the typical FSL
setting, k usually equals 1 or 5 and N is regarded with the
specific tasks.

B. META-LEARNING

Meta-learning is one of the effective methods for overcom-
ing the few-shot challenge and it aims at training a model
based on a variety of learning tasks and then quickly
adapting a new different but related task with a very limited
labeled data sample, where is the few-shot learning setting.
In a meta-learning setting, there are three different metasets,
which are Dmeta train, Dmeta validate, and Dmeta test, each of
them is a specific few-shot task. The meta-learner can be
trained by using the Dmeta train and then test it on the
Dmeta test; meanwhile, the hyperparameter will be tuned
with the Dmeta validate. In this paper, we concentrate on
the FSL circumstance of different categories by utilizing
the meta-learning strategy.

The metric-based meta-learning uses a set-to-set
approach [10,18] to address the fault diagnosis problem with
limited available labeled data. Suppose S = fðxi,yiÞgki=1 is a
support set with k labeled samples, the model can be regarded
as a probability distribution that maps Pðbyjbx,SÞ from the
input samples bx to the output labels by. Assuming there is a
newsupportsetS 0 for thefew-shotproblem,withapplicationof
thenewsetS 0, themodelcandirectlyoutput the labelby for each
test sample bx∶Pðbyjbx,S 0Þ. The meta-learning model based on
metric can be expressed as:

by =
Xk
i=1

aðbx,xiÞyi (1)

where xi, yi is from the support set S = fðxi,yiÞgki=1, and a is
the metric-based attention kernel. The metric-based meta-
learning outperforms typical supervised learning models in
that it is a non-parametric method and it can swiftly adapt to
any new support set.

Fig. 1. Few-shot learning problem: (a) traditional supervised
learning method and (b) FSL method.
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C. MATCHING NETWORKS

In the initial method of metric-based meta-learning method,
a conditional classification model with the support set is
defined by Matching Networks [19], which explicitly
choose the Softmax over the cosine distance as the similar-
ity function α for the few-shot test sample bx and the support
sample xi. The similarity kernel function is given by:

αðbx,xi; θÞ = exp½dðfðbxÞ,fðxiÞÞ�P
k
i=1 exp½dðfðbxÞ,fðxiÞÞ� (2)

where θ denotes the embedding function in an appropriate
neural network f; d refers to the cosine distance function.

Since the Matching Networks will directly perform on
a new support set S 0 which has never been seen in the period
of training, the training process of which needs to be
carefully designed to match inference for testing unseen
few-shot tasks. Firstly, we define a few-shot task T from the
labeled training dataset Dmeta train. Then, the support set S
and a test batch B need to be sampled from T in order to
shape an episode to update the model. The goal of the
Matching Network is to minimize the predicted error for the
test batch B under the assistance of the support set S. More
precisely, the objective function of theMatching Network is
as follows:

maximize
0

E
T ∼pðT Þ

�
E

S,B∼pðT ÞA
�

(3)

A =
X

ðx,yÞ∈B
logðPðyjx,S; θÞÞ (4)

where θ is the parameters of the embedding neural network
optimized by the stochastic gradient descent approach.
After the training procedure, the trained model will work
on the new few-shot task T 0. The essential of a Matching
Network is related to metric learning, and since such
method is to minimize the loss function based on learns
to learn from the support set over the batch set, which is
considered as one of the meta-learning methods.

III. PROPOSED DCMLN MODEL
FRAMEWORK

Within this paper, we focus on a FSL problem in the bearing
fault diagnosis under a variety of limited data conditions.
The bearing fault diagnosis is usually regarded as a super-
vised learning problem, the goal of which is to identify the
different fault locations, including inner race, outer race,
and the rolling element. With sufficient training data, such
problem can be easily solved. However, in real-world
applications, it is difficult to collect a large amount of
data samples for each category, where the FSL problem
happens. Note that in our works, the number of categories
may be different following certain FSL tasks of fault
diagnosis, so we use a non-parameters metric-based
meta-learning method, Matching Networks, to overcome
the challenge in few-shot fault diagnosis.

The framework of the proposed DCMLN model is
presented in Fig. 2, which consists of three parts, includ-
ing embedding network, pre-train term, and matching
term. Firstly, the supervised learning method is utilized
to initiate the embedding network with the pre-train
dataset Xs = ðxsi ,ysi Þn

s

i=1. Then, the metric-based meta-

learning method is employed to train the embedding
network. Different from the typical pre-train dataset,
the proposed DCMLN approach needs to extract the
amount of few-shot tasks, each of which owns a support
set Si and a test batch set Bi. When training process is
completed, few-shot tasks are tested directly using
embedding networks and the matching term on datasets
from the unseen target domain.

A. EMBEDDING MAPPING FUNCTION

The vibration signal is widely employed for the diagnosis of
the mechanical fault. It is a typical one-dimensional signal,
and hence, the embedding mapping plays a critical part in
the proposed method, which is composed of several one-
dimensional convolution layers and a fully connected layer.
More specifically, the one-dimensional convolutional layer
is defined by Equation (5):

C1
ij = ϕðkjn×1 · xii∶iþn þ bijÞ (5)

where kjn×1 is the jth kernel belonging to the kernels K
l
j with

size n×1×j of the l-th convolution layer; xii∶iþn is the ith
input segment; bij refers to the bias; ϕ represents the
activation function; and Cl

ij is the i-th feature point of the
j-th kernel in the l-th convolution layer.

Following the convolutional layer, it is the fully con-
nected layer, which can be expressed as:

Fig. 2. Framework of the proposed DCMLN model.

Fig. 3. CWRU testbed.

104 Xiaoxia Liang et al.

JDMD Vol. 2, No. 2, 2023



yl = ϕðWlyl−1 þ blÞ (6)

where yl−1 is the feature map of the upper layer; bl is the bias
for the current layer; and Wl is the weight matrix between
the upper layer and the current layer.

B. PRE-TRAIN TERM

In our method, we firstly use the supervised learning
method to pre-train the embedding mapping with enough
training dataset with labels. In order to implement this step,
an output layer of K categories with the Softmax activation

Table I. Few-shot fault diagnosis scenarios for each load condition of the CWRU bearing dataset

Scenarios Source domain (7 categories) Target domain (3 categories)

1 – Inner race fault Healthy; outer race fault (0.007, 0.014 and 0.021
in.); ball fault (0.007, 0.014 and 0.021 in.)

Inner race fault (0.007, 0.014 and 0.021 in.)

2 – Outer race fault Healthy; inner race fault (0.007, 0.014 and 0.021
in.); ball fault (0.007, 0.014 and 0.021 in.)

Outer race fault (0.007, 0.014 and 0.021 in.)

3 – Ball fault Healthy; inner race fault (0.007, 0.014 and 0.021
in.); outer race fault (0.007, 0.014 and 0.021 in.)

Ball fault (0.007, 0.014 and 0.021 in.)

4 – Worst IOB Healthy; inner race fault (0.007, 0.014 in.); outer
race fault (0.007, 0.014 in.); ball fault (0.007, 0.014
in.)

Inner race fault (0.021 in.); outer race fault (0.021
in.); ball race fault (0.021 in.)

Table II. Prediction accuracy (%) by DCMLN on 1-shot learning tasks for bearing fault classification using CWRU
dataset

Load 0

Inner race Outer race Ball Worst IOB

Finetune Last 86.373 ± 1.124 56.149 ± 1.291 72.400 ± 0.785 73.158 ± 1.452

Finetune Whole 97.340 ± 0.450 61.776 ± 0.922 88.613 ± 0.624 91.693 ± 0.742

Feature Knn 99.931 ± 0.024 70.484 ± 0.967 72.662 ± 0.493 96.149 ± 0.218

DSMN 100.000 ± 0.000 68.176 ± 0.731 96.249 ± 0.374 98.198 ± 0.200

DSMN-Pre 99.947 ± 0.062 70.309 ± 0.890 83.831 ± 0.753 99.082 ± 0.122

DCMLN(ours) 100.000 ± 0.000 71.720 ± 0.976 96.760 ± 0.293 99.580 ± 0.074

Load 1

Inner race Outer race Ball Worst IOB

Finetune Last 81.191 ± 1.321 58.498 ± 1.444 91.129 ± 0.814 84.511 ± 1.356

Finetune Whole 99.067 ± 0.246 79.742 ± 1.023 93.058 ± 0.943 96.351 ± 0.486

Feature Knn 100.000 ± 0.000 82.844 ± 0.806 99.431 ± 0.097 99.284 ± 0.091

DSMN 100.000 ± 0.000 77.836 ± 0.974 99.162 ± 0.128 99.438 ± 0.073

DSMN-Pre 99.993 ± 0.010 82.433 ± 0.850 85.036 ± 0.680 97.629 ± 0.241

DCMLN (ours) 100.000 ± 0.000 91.160 ± 0.528 99.967 ± 0.017 99.696 ± 0.057

Load 2

Inner race Outer race Ball Worst IOB

Finetune Last 78.958 ± 1.556 66.573 ± 1.688 66.431 ± 1.360 70.593 ± 1.582

Finetune Whole 97.929 ± 0.394 84.329 ± 0.753 92.184 ± 0.758 95.278 ± 0.571

Feature Knn 100.000 ± 0.000 93.456 ± 0.508 93.147 ± 0.545 99.993 ± 0.008

DSMN 99.909 ± 0.028 94.204 ± 0.417 98.887 ± 0.144 100.000 ± 0.000

DSMN-Pre 100.000 ± 0.000 84.442 ± 0.542 98.662 ± 0.196 99.556 ± 0.072

DCMLN(ours) 100.000 ± 0.000 84.562 ± 0.772 99.856 ± 0.044 99.996 ± 0.006

Load 3

Inner race Outer race Ball Worst IOB

Finetune Last 80.029 ± 1.433 70.989 ± 1.534 70.567 ± 1.111 78.929 ± 1.536

Finetune Whole 97.536 ± 0.424 86.453 ± 0.801 85.096 ± 0.852 80.838 ± 0.910

Feature Knn 99.004 ± 0.109 73.809 ± 0.693 95.576 ± 0.355 92.700 ± 0.510

DSMN 99.424 ± 0.072 78.071 ± 0.685 99.253 ± 0.110 99.664 ± 0.070

DSMN-Pre 99.996 ± 0.006 88.469 ± 0.677 95.120 ± 0.488 99.991 ± 0.009

DCMLN(ours) 99.764 ± 0.050 89.324 ± 0.733 94.342 ± 0.368 99.971 ± 0.018
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function needs to be attached to the embedding network.
The objective function Lc of the pre-train model is the cross-
entropy which is defined as follows:

Lc =
1
ns
Xns
i=1

XK
k=1

Iyi = k · log
ewfðxiÞþbP
K
j=1 e

wfðxiÞþb
(7)

where I is the indicator function; f is the embedding neural
network; and K is the number of categories.

C. MATCHING TERM

The main loss function to overcome the few-shot challenge
in the fault diagnosis circumstance is the matching loss, the
essential of which is to learn the invariant distance represen-
tation in each class. In our proposed method, we train the
embedding mapping based on the pre-trained parameters and
then minimize the matching loss to obtain the shared

embedding representation of feature distance in each cate-
gory. The objective function of this term is defined as
follows:

L =
1

NCNQ

XK
k=1

½dðfðbxÞ,gðxiÞÞ − log
Xk
i=1

edðfðxÞ,gðxiÞÞ� (8)

where NC is the number of categories per episode; NQ is the
number of query samples per category; f is the embedding
networks; g is the alternative mapping which is equal to f in
Matching Networks; and d is the distance function. The first
item of the objection function is the distance between the
current class and its corresponding class in the support set,
while the second represents the sum of the distance between
the current class and the other class in the support set. Based
on the above, we can understand this objective loss is to
minimize the distance between the samples in the same
category, at the same time, maximize the distance between

Table III. Prediction accuracy (%) by DCMLN on 10-shot learning tasks for bearing fault classification using CWRU
dataset

Load 0

Inner race Outer race Ball Worst IOB

Finetune Last 84.227 ± 1.292 61.433 ± 1.016 67.218 ± 0.690 84.067 ± 1.391

Finetune Whole 99.869 ± 0.046 87.818 ± 0.368 99.853 ± 0.043 98.660 ± 0.148

Feature Knn 100.000 ± 0.000 86.944 ± 0.329 95.976 ± 0.211 99.453 ± 0.076

DSMN 100.000 ± 0.000 80.933 ± 0.411 100.000 ± 0.000 99.776 ± 0.046

DSMN-Pre 100.000 ± 0.000 88.938 ± 0.313 98.642 ± 0.110 98.487 ± 0.143

DCMLN(ours) 100.000 ± 0.000 86.671 ± 0.333 99.996 ± 0.006 99.298 ± 0.087

Load 1

Inner race Outer race Ball Worst IOB

Finetune Last 85.347 ± 1.257 70.756 ± 1.144 76.833 ± 1.249 87.038 ± 1.031

Finetune Whole 99.880 ± 0.048 92.458 ± 0.313 98.513 ± 0.167 99.151 ± 0.111

Feature Knn 100.000 ± 0.000 94.867 ± 0.243 99.962 ± 0.018 98.947 ± 0.121

DSMN 100.000 ± 0.000 85.456 ± 0.397 100.000 ± 0.000 98.220 ± 0.145

DSMN-Pre 100.000 ± 0.000 94.147 ± 0.229 99.960 ± 0.018 99.782 ± 0.048

DCMLN(ours) 100.000 ± 0.000 94.318 ± 0.241 99.991 ± 0.009 100.000 ± 0.000

Load 2

Inner race Outer race Ball Worst IOB

Finetune Last 89.827 ± 1.077 72.302 ± 1.602 87.689 ± 0.956 83.629 ± 1.192

Finetune Whole 99.951 ± 0.026 97.951 ± 0.196 99.011 ± 0.128 99.887 ± 0.040

Feature Knn 99.987 ± 0.011 98.702 ± 0.114 98.296 ± 0.128 100.000 ± 0.000

DSMN 99.980 ± 0.017 95.078 ± 0.237 97.171 ± 0.175 100.000 ± 0.000

DSMN-Pre 100.000 ± 0.000 97.818 ± 0.155 99.804 ± 0.044 100.000 ± 0.000

DCMLN(ours) 100.000 ± 0.000 91.498 ± 0.308 99.073 ± 0.097 100.000 ± 0.000

Load 3

Inner race Outer race Ball Worst IOB

Finetune Last 82.953 ± 1.192 77.240 ± 1.370 94.544 ± 0.790 82.402 ± 1.248

Finetune Whole 99.684 ± 0.167 98.469 ± 0.183 99.640 ± 0.076 98.556 ± 0.164

Feature Knn 99.687 ± 0.053 89.493 ± 0.312 98.920 ± 0.105 96.458 ± 0.192

DSMN 99.956 ± 0.019 91.582 ± 0.289 95.767 ± 0.226 100.000 ± 0.000

DSMN-Pre 99.931 ± 0.024 97.311 ± 0.173 99.122 ± 0.083 100.000 ± 0.000

DCMLN(ours) 99.996 ± 0.022 98.493 ± 0.154 95.244 ± 0.230 99.982 ± 0.012
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different categories. The ultimate goal is to acquire
the invariant feature mapping in each class, which also has
the mapping ability of large divergence between different
classes.

D. MODEL IMPLEMENTATION

In this section, the implementation of the proposed model
for the fault diagnosis task is detailed as follows.

Step 1. Data preparation
Divide the collected data into two parts. One part is the

source domain XS and one part is the target domain XT.
Since the model needs to be pre-trained on the source
domain, the data in the source domain require enough
labels and sufficient data volume.

Step 2. Supervised training using deep CNN in source
domain
This step aims to train a feature extractor in a super-
vised way using deep CNN with the fully labeled
dataset XS from the source domain. After training,
the structure and parameters of the learned feature
extractor were fixed.

Fig. 4. t-SNE visualization of bearing diagnosis feature embedding derived from DCMLN (1-shot) under load 0. (a), (c), (e), and
(g) denote the results of the inner race fault, outer race fault, ball fault, and worst IOB from the task source domain, respectively; (b), (d),
(f), and (h) denote the results of the inner race fault, outer race fault, ball fault, and worst IOB from the task target domain.
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Step 3. Episodic training in source domain
Reform the data samples of source domain XS as the
FSL tasks fSSi ,QS

i gni=1, which has similar data structure
with target C-way, K-shotM-test fault diagnosis tasks.

Then, the basic features extracted by feature extractor
in the second step are collected and applied to train the
metric embedding module to get metric features. Following
this, fault classification of the query samples is conducted
by matching metric features to the support ones.

Step 4. Test in target domain
In this step, the feature extractor, which is fixed after step

2, and the metric embedding module, which is trained in
step 3, are applied for target fault diagnosis tasks. All the
samples from target tasks are transferred into basic
feature space, and a similar matching operation is con-
ducted to predict the fault types of query data based on the
provided limited support data with target domain data.

IV. EXPERIMENT
In this section, two bearing datasets, with one provided by
the CWRU and one collected by our group, are applied to

Fig. 5. t-SNE visualization of bearing diagnosis feature embedding derived from DSMN (1-shot) under load 0. (a), (c), (e), and
(g) denote the results of the inner race fault, outer race fault, ball fault, and worst IOB from the task source domain, respectively; (b), (d),
(f), and (h) denote the results of the inner race fault, outer race fault, ball fault, and worst IOB from the task target domain.
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evaluate the proposed DCMLN fault diagnosis method.
Each dataset is divided into source domain and target
domain. Note that sufficient labeled data are provided in
the source domain to extract prior knowledge while very
limited training data are included in the target domain. In

this way, a scenario is provided for the few-shot fault
diagnosis task.

Both cases share the same experimental settings.
Adam [20] is applied for the optimizer. For the pre-training
process, the learning rate is 0.001 [20], batch size is 16, the
maximum epoch is set as 50, and early stop duration epoch
is set as 15. The number of finetune steps is 100. In the
episodic training process, the learning rate is 0.0001 [21],
the distance metric uses Cosine function [19], the scale
factors are set as 100, and the maximum epochs are set as
80. We consider 1-shot or 10-shot tasks, so that the support
samples per class (K) equal to 1 or 10. The number of query
samples for each class is 25, and 600 evaluation tasks are
tested.

To better assess the hybrid DCMLN method, we
compare it with other five baseline FSLmethods, which are:

(1) Finetune Last [22];

(2) Finetune Whole [22];

(3) Feature Knn [23];

(4) Data Space Matching Network (DSMN) [19];

Fig. 6. The prediction accuracy of each class for outer race fault by DCMLN. (a) Confusion matrix of 1-shot prediction and
(b) confusion matrix of 10-shot prediction

Fig. 7. The cylindrical roller bearing fault test bench

Table V. Prediction accuracy (%) by DCMLN on 10-shot learning tasks for case 2 bearing fault classification

Inner race Outer race Ball Worst IOB

Finetune Last 67.604 ± 0.668 63.151 ± 0.787 47.031 ± 0.705 46.560 ± 0.682

Finetune Whole 85.771 ± 0.504 77.411 ± 0.605 61.018 ± 0.599 58.047 ± 0.553

Feature Knn 98.738 ± 0.107 84.491 ± 0.313 67.620 ± 0.492 57.533 ± 0.421

DSMN 99.416 ± 0.073 96.396 ± 0.180 68.558 ± 0.488 65.251 ± 0.385

DSMN-Pre 97.531 ± 0.156 87.996 ± 0.327 65.631 ± 0.500 61.742 ± 0.401

DCMLN (ours) 90.004 ± 0.289 91.093 ± 0.267 67.349 ± 0.482 64.864 ± 0.374

Table IV. Prediction accuracy (%) by DCMLN on 1-shot learning tasks for case 2 bearing fault classification

Inner race Outer race Ball Worst IOB

Finetune Last 51.953 ± 1.146 54.156 ± 1.236 42.209 ± 0.971 40.518 ± 0.768

Finetune Whole 62.833 ± 0.979 60.998 ± 0.958 51.378 ± 0.938 42.818 ± 0.822

Feature Knn 81.204 ± 0.629 80.102 ± 0.746 59.124 ± 0.740 59.960 ± 0.531

DSMN 96.340 ± 0.340 92.764 ± 0.503 68.416 ± 0.998 61.973 ± 0.474

DSMN-Pre 93.520 ± 0.542 81.940 ± 0.738 48.087 ± 0.864 64.664 ± 0.436

DCMLN(ours) 90.227 ± 0.646 78.816 ± 0.811 54.207 ± 0.873 63.107 ± 0.397
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(5) Data Space Matching Network with Pre-training
(DSMN-Pre) [19];

(6) Deep convolutional meta-learning networks
(DCMLN, ours).

A. CASE STUDY 1: CWRU BEARING
DATASET

1) DATADESCRIPTION. In this case, a publicly available
bearing dataset provided by the bearing center of CWRU
was applied to test the performance of the proposed fault

diagnosis method. The testbed, as shown in Fig. 3, is
composed of a motor, accelerometer, torque transducer,
dynamometer, and rolling bearings. The rolling bearings
were deep groove ball bearing (type SKF6205-2RSJEM)
which were installed at the drive end and the fan end of the
motor, respectively. The electrical discharge machining
(EDM) technique was applied to set up three degrees of
faults on the inner ring, outer ring, and roller of the bearing
with fault diameters of 0.007, 0.014, and 0.021 in., respec-
tively. The vibration data were gathered on four different
loads (0, 1, 2, and 3 hp) with the sampling frequency of

Fig. 8. t-SNE visualization of cylindrical roller bearing data feature embedding derived from DCMLN. (a), (c), (e), and (g) denote the
results of the inner race fault, outer race fault, ball fault, and worst IOB from the task source domain, respectively; (b), (d), (f), and
(h) denote the results of the inner race fault, outer race fault, ball fault, and worst IOB from the task target domain.
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12 kH. Each fault category contains 500 samples and each
sample has 2048 points.

Table I shows the few-shot fault diagnosis scenarios for
each load condition of the CWRUbearing dataset. There are
four different load conditions (0, 1, 2, 3 hp), and each load
condition contains four scenarios, with seven categories in
the source domain and three in the target domain.

2) RESULTS AND ANALYSIS. The classification accu-
racy on 1-shot and 10-shot learning tasks for bearing fault
with different types under four different load conditions
(0, 1, 2, 3 hp) is presented in Tables II and III, respectively.

As can be seen, the proposed DCMLN fault diagnosis model
achieves the best performance among all six models for both
1-shot and 10-shot learning tasks. In addition, the prediction
accuracy is apparently improved when the number of shots
increased from 1-shot to 10-shot. The proposed DCMLN
fault diagnostic method has very good performance on the
scenarios, including inner race fault, ball fault, and the worst
IOB. Besides, all the MNmethods and Feature Knn perform
very well in these tasks, and there are no obvious differences
between the MNmethods. However, the prediction accuracy
for the outer race fault scenario is lower compared to those of
other three scenarios.

Fig. 9. t-SNE visualization of cylindrical roller bearing data feature embedding derived from DSMN. (a), (c), (e), and (g) denote the
results of the inner race fault, outer race fault, ball fault, and worst IOB from the task source domain, respectively; (b), (d), (f), and
(h) denote the results of the inner race fault, outer race fault, ball fault, and worst IOB from the task target domain.
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t-SNE is applied to visualize the feature embedding of
the source and target domain in two dimensions. Figure 4
presents the t-SNE visualization of the bearing data feature
embedding derived from DCMLN, where (a), (c), (e), and
(g) denote the results of the inner race fault, outer race fault,
ball fault, and the worst inner race, outer race and ball faults
from the task source domain, respectively; (b), (d), (f), and
(h) denote the results of four scenarios from the task target
domain. As a comparison, Fig. 5 shows the t-SNE visuali-
zation of bearing data feature embedding derived from
DSMN. In both figures, different colors denote different
fault categories. From both figures, it can be seen that in the
source domain, the embedding feature of a same fault
category gathers in a cluster, while features from a different
category are apart from each other, showing the DSMN
model is well trained in the source domain. Meanwhile, in
the target domain, the different categories for the inner race
fault scenario in Figs. 4(b) and 5(b), the ball fault scenario in
Figs. 4(f) and 5(f), and the worst IOB scenario in Figs. 4(h)
and 5(h) are placed at a close area and are notably separated.
However, in Figs. 4(d) and 5(d), at least two degrees of
outer race fault scenario in the target domain are interfered
with each other.

Considering that the accuracy for the outer race fault
classification scenario is generally lower than that for the
other three ones, the confusion matrix provided shows the
prediction accuracy of each class for the outer race fault
scenario by DCMLN. Fig. 6(a) and (b) shows confusion
matrices of 1-shot and 10-shot fault classification, respec-
tively, for the outer race fault classification scenario. As can
be seen, the prediction accuracy is apparently improved
when the number of shots increased. Moreover, the fault
with size 0.007 in. can be clearly recognized, while the
model was confused with fault size 0.014 and 0.021 in.

B. CASE STUDY 2: CYLINDRICAL ROLLER
BEARING DATASET

1) DATA DESCRIPTION AND EXPERIMENTAL SETUP.
The cylindrical roller bearing fault test bench was set up as
shown in Fig. 7, which consisted of an electric generator,
couplings, an AC motor, an intermediate shaft, bearing
supports, and cylindrical roller bearings. In this case, 10
cylindrical roller bearings (N406), with a pitch diameter of
59 mm, bore diameter of 30 mm, roller diameter of 14 mm,

and 9 rollers, were utilized to produce 9 types of faults. One of
the bearings was left with no fault and was considered as a
reference bearing. Three kinds of faults, which were roller
(ball), inner race, and outrace faults were simulated by EDM
to create certain degrees of scratches 100%, 60%, and 30% in
length from the edge, respectively, each bearing had one fault,
and all faults were 1 mm in depth and 0.18 mm in width.

Data collection approximately took a month starting on
26/09/2010 and finishing on 29/10/2010. The bearing rig
ran for 5 minutes for warming up before starting data
collection. Each case of bearing conditions was tested three
times to ensure that the signals obtained are consistent. All
experiments were conducted under full speed and 50% of
torsion load; however, the radial load varied between 0, 1, 2,
3, 4, and 5, respectively, in every test, the sampling rate was
96 kHz, and data length was 960000 points with a duration
of 10 seconds.

2) RESULTS AND ANALYSIS. The few-shot setup and
detailed experimental settings are the same as those in
case 1. The results of 1-shot and 10-shot learning fault
diagnosis tasks are presented in Tables IV and V, respec-
tively. The proposed method, DCMLN, is compared with
the other five models, including Finetune Last, Finetune
Whole, Feature Knn, DSMN, and DSMN-Pre.

In Tables IV and V, all models perform better in 10-
shot tasks than those in 1-shot tasks. Comparing the accu-
racy values of the six models, it is clear that the last three
methods (DSMN, DSMN-Pre, and DCMLN) perform
much better than the first three ones (Finetune Last, Fine-
tune Whole, Feature Knn). An interesting result is that
DSMN shows the best performance in both 1-shot and 10-
shot tasks. Furthermore, the models (DSMN-Pre and
DCMLN) that have pre-training process work not as well
as the ones without pre-training.

From Tables IV and V, all models have relatively lower
accuracy in classifying the ball fault and worst IOB. Hence,
t-SNE is applied to visualize the feature embedding for
these two scenarios. Figure 8 visualizes the t-SNE results
derived from the DCMLN method, where (a), (c), (e), and
(g) denote the results of the inner race fault, outer race fault,
ball fault, and worst IOB from the task source domain,
respectively; (b), (d), (f), and (h) denote those of the four
scenarios from the task target domain. As a comparison,
Fig. 9 visualizes the t-SNE result derived from the DSMN
method, where (a), (c), (e), and (g) denote the results of the

Fig. 10. The prediction accuracy for each class by DCMLN. (a) Confusion matrix of worst IOB prediction and (b) confusion matrix of
ball faults prediction.
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inner race fault, outer race fault, ball fault, and worst IOB
from the task source domain, respectively; (b), (d), (f), and
(h) denote the results of the four scenarios from the task
target domain. Comparing these two figures, there exists
some intersection between the features of both source and
target with the DCMLN method, while most classes can be
clearly separated by DSMN.

To better understand the prediction results by DCMLN,
the confusion matrix is employed to show the classification
accuracy for each class. As the ball fault and the worst IOB
have the worst classification accuracy in all four scenarios,
we present the confusion matrix of these two scenarios in
Fig. 10(a) and 10(b), respectively. In the worst IOB scenario,
the ball fault is clearly recognized while the model is
confused with the inner and outer race fault. In the ball fault
scenario, all three classes are not clearly distinguished.

V. CONCLUSION AND DISCUSSION
To deal with fault diagnosis problems with limited labeled
data, a hybrid method (DCMLN) that combines the merit of
deep CNN supervised learning and meta-learning is pro-
posed. The model is able to transfer the knowledge learnt
from the source domain to deal with problems in the target
domain. Experimental verifications are carried out on 1-
shot and 10-shot tasks using the CWRU bearing dataset and
a cylindrical roller bearing dataset. We compared our model
with the other five models, which are “Finetune Last,”
“Finetune Whole,” “Feature Knn,” “Data Space Matching
Network,” and “Data Space Matching Network with Pre-
training.” The proposed DCMLN fault diagnostic method
has very good performance on the CWRU dataset. Besides,
diagnosis methods with pre-training have better perfor-
mance than those without. However, from our experiment,
pre-training does not always bring better results. When
tested on the cylindrical roller bearing dataset in case 2,
models with pre-training do not as good as those without
pre-training. We believe it is because this task is more
challenging to tackle. The weak performance of pre-training
might be because the pre-training is not aware of the task of
interest, resulting it fails to adapt. Google Brain Team [24]
compared pre-training and self-training in the application of
computer vision. Their experimental results demonstrated
the limitation of pre-training and highlight the important
advantages of self-training. Therefore, a future work is to
replace pre-training with self-training.
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