
Implementation of Noise-Resistant Crowd
Equalisation in Optical Communication Systems

with Machine Learning DSP
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Abstract—We propose a solution to noisy neural networks
employed in future optical communication systems. The proposed
approach includes breaking down large networks into smaller
ones and forming ”crowds” using these elementary networks.

Index Terms—Artificial Neural Networks, Equalisation, Com-
putational Complexity, Noise Resilience.

I. INTRODUCTION

Machine learning techniques and in particular neural net-
works (NNs) have been extensively used for signal equali-
sation in modern optical communication systems. Although
the performance of some of these digital signal processing
(DSP) techniques is impressive in restoring the original state
of the received signal, these equalisers often require complex
architecture with complicated elements such as long short-
term memory nodes [1, 2]. This increases the computational
complexity (CC) of such solutions beyond what is acceptable
for real-time implementation, especially when compared to
alternatives such as digital backpropagation, and at odds
with the promise of low footprint solutions[3]. Moreover,
their architecture is fundamentally different from the one that
digital computers have, making this hardware not suitable for
them. A solution to the challenges posed by these equalisers
is an analogue implementation of them in the electrical or
optical domain [4, 5, 6]. Optical platforms enjoy the intrinsic
advantage of high bandwidth and low power consumption and
may play an important role in the future of computing. The
optical implementation of a structured NN consists of layers of
matrix multiplication followed by a nonlinear activation node.
This type of processors is capable of carrying out high-speed
complicated ML computations with potentially low power
consumption and noise floor [5]. However, this theoretical low-
noise floor is yet to be realised. Nonlinear activation nodes are
usually implemented using active devices that add noise to the
chain of computation and lead to a cascade effect that is now
the bottleneck of optical implementation of NNs [7, 6]. Thus,
different techniques have been developed to deal with the non-
idealities present in analogue hardware [8, 9]. In this work, we
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propose a simple solution to this problem by designing low-
rank NNs and using several of them to equalise the signal.
We demonstrate that independently trained NNs can be used to
make a better decision. We draw the analogy with the ”wisdom
of the crowd” principle where the collective decisions of a
diverse independent group of individuals outperform that of
an expert. We show that various configurations can be used
to take the opinion of the crowd into account and argue that
this impact can be explained by the eminent presence of a
random element and also the impact of additive noise at each
nonlinear node [10].

Fig. 1. Configurations of individual NNs considered in the training of
the crowd. A number of neurons in each layer of individual NNs changes
accordingly so that the CC equals that of the single NN divided by the crowd
size.

II. CROWD EQUALISATION

In optical communication, the task of the equaliser is
to reduce the dispersive effects (defining channel memory)
interfering with the nonlinearities present in the channel and/or
devices [11]. Thus, the equaliser must be able to solve a
regression problem where a block of consecutive symbols is
used to equalise the symbol in the middle of the block[12].
The information possessed by the crowd is often more than the
individuals it comprises. A famous example is when people are
asked to guess the weight of a prize-winning ox, the average of
all guesses is substantially more accurate than the accuracy of
individual estimates [13]. This is the case when random fluc-
tuation in independent estimates dominates bias [14]. Taking
inspiration from this example, we form a crowd of individual
equalisers as small NNs each capable of marginally improving



TABLE I
COMPLEXITY COMPARISON BETWEEN A SINGLE NN AND SUM OF THE CCS OF INDIVIDUAL NNS IN THE CROWD

Equaliser Configurations of individual NN equalisers total CC
Single NN [600, 600, 600, 600] 4.3 mil
individuals in crowd of 2 [900, 476, 223], [732, 732] 4.3 mil
individuals in crowd of 3 [746, 386, 174], [597, 597], [175, 389, 750] 4.3 mil
individuals in crowd of 4 [678, 335, 114], [517, 517], [119, 336, 684], [128, 236, 445, 236, 128] 4.3 mil

Fig. 2. Resulted BER for the cases of the single NN vs combined (crowd)
NNs, when SNR is between 40 and 70 dB.

the performance of the optical communication system through
equalising the received signal, see Fig. 1. This ”crowd of
equalizers” is supposed to tackle the ”randomness” factor of
the output of each of these individual equalisers. The weighted
average of the outputs of the members of the crowd will form
the final equalised symbol. Therefore, individuals are trained
to individually equalise the input symbols with no knowledge
about the further step of averaging their output. There are two
questions to answer: i) how can we make individual equalisers
linearly independent, and ii) how can we select the members
of the crowd? To answer i) we need to consider that the output
of a multilayer perceptron as our individual NN of choice, is
the result of a series of nonlinear transformations. This means
that to make two equalisers linearly independent, they need
to differ in their weights, architecture, or activation functions
somewhere before the last linear layer. The last activation
function of all these NNs is a linear function due to the
regression nature of the problem. This means that two NNs
with a different number of layers or neurons are probably
independent. Moreover, we guess that even a slight (but large
enough) random fluctuation in the values of the link weights
especially in the first layers (closer to the input layer) is enough
to make two identical NNs linearly independent. However,
in this work, we select NNs with different architectures as
will be explained below. Regarding ii) NNs with different
structures capture different features of the input data. This

is handy when dealing with complicated interactions between
temporal samples of the input such as in our case of an optical
communication signal. Therefore, here as an exercise, we train
a set of six NNs of various sizes and shapes. We do not
know which one will be suitable to solve the problem but
will train them and will pick the best ones to form a crowd of
various sizes, see Fig. 1. This is however only one possibility
to do so. An interesting alternative is to use different instances
of the same small NN during the process of training as
individual NNs. This speeds up the training and simplifies the
architecture. The goal of this work is to show that dividing a
large NN into smaller ones and using them as members of a
crowd where their output is used alongside others makes the
equaliser more resistant to noise. For this we consider NNs
with noisy implementation, i.e. when matrix multiplication or
activation function operation is noisy and reduces the SNR.
In this work, we only consider noisy activation functions
and assume that the matrix multiplication is ideal. The SNR
is defined as the ratio of the average of the output of the
activation function divided by the variance [10]. Considering
noise in the process of training has been shown to improve
resilience towards the ubiquitous noise and performance [8,
15, 16]. Furthermore, in any implementation of the NN noise
is present, therefore a more realistic assumption is to include it
in the training stage as well. We do so for training the members
of the crowd and the single large NN whose performance is
used as the benchmark. In all simulations, we limited the size
of each member of the crowd to keep the total CC (in terms of
the number of complex-valued multiplications) of the equaliser
fixed, see Table I.

III. RESULTS

In this work, we use complex-valued NNs for all the
simulations[17]. For the backpropagation we chose the Adam
optimiser with a learning rate of 0.001, which minimises the
complex-valued mean-squared error loss. The configuration
of a single large NN, as well as the structure of the input
feature vector to the each of NNs, is the same as in [18],
where several QAM symbols before and after the symbol of
interest are considered in each run. Our data set consists of
experimental data containing transmitted and received QAM
symbols in an optical communication system of length 400
km. The experimental setup consists of a polarisation division
multiplexing 28-Gbaud 64QAM transmitter, 4 spans of SSMF
(α = 0.2 dB/km, D = 17 ps/nm/km, γ = −1.3/W/km) and
a coherent receiver with no nonlinearity compensation DSP,
see [18] for details. We divide the whole data set into four
parts: training (70%), validation (10%), testing (10%) and



Fig. 3. Improvement in BER and constellations for a crowd of 4 NNs when averaging takes place over 1, 2, 3, 4 best individual NNs.

crowd testing (10%). The last crowd-testing set is only used
to test the performance of the crowd and is not included in
the training or testing stages of the NNs. After training six
individuals of Fig. 1, we select the bests two, three, and four, to
form crowds of sizes two, three, and four, respectively and save
the full models. We used batches of size 2000 and continued
training up to 300 epochs with typical provisions to prevent
overfitting. Then we use these models on a separate test set
(crowd test set) and combine the predicted output of them.
This combination is a weighted sum of the outputs according
to the competence of each individual, i.e. the more accurate
the individual is in acting on the testing set the more weight
its output will obtain. Therefore the output of the equaliser is
as below:

y =
1∑

i∈C BERi (xtest)

∑
i∈C

fi
(
xcrowd test

)
BERi (xtest)

(1)

where i is an individual in the crowd C, xtest and xcrowd test

are the input feature vector drawn from the test and crowd test
set, respectively, fi (x) is the output of the ith individual, and
BERi (x) is the BER of the ith individual. In Eq. (1), y is the
QAM symbol output of the equaliser attributed to the middle
symbol in xcrowd test. This y is then used in a minimum distance
detector to detect bits. The noise added to the output of each
neuron is a Gaussian random variable with zero mean and
different variance levels. Figure 2 shows the achieved BER
(calculated as the number of mismatches of the transmitted and
received bits) versus the SNR for a single equaliser, crowds
of two, three, and four. The single equaliser performance
significantly deteriorates as the noise power increases. As is
shown, the sensitivity of the performance of these equalisers
decreases as the size of the crowd increases. On the other hand,
CC is defined as the number of complex-valued multiplications
[3]:

CC=(1−s) · (nsnin1+

L−1∑
l=1

nlnl+1+nonL) (2)

The total CC of all these four equalisers (i.e. one single
and three crowds of different sizes) is the same, see Table. I.
On the left-hand side of Fig. 2, the resulting constellations
after equalisation are presented showing a clear improvement
in reducing noise from the received symbols. Also as can be
seen in Fig. 2, at high noise powers, increasing the size of the

crowd decreases the BER especially at SNR≤50 dB. In Fig. 3
the improvement in the separation of clouds in the received
constellation as a result of including more individuals in the
crowd for the case of the crowd of four is illustrated. This yet
again suggests that what is removed by means of averaging is
of a noise nature.

IV. CONCLUSION

We have demonstrated the power of crowd equalisation in
mitigating the problem of noise propagation and amplification
in the implementations of artificial NNs. Using experimental
samples from a 400 km 28-Gbaud 64QAM transmission, we
have shown that breaking down large NN equalisers into
smaller and less powerful ones and using them in a crowd
rather than a single NN makes them more powerful in tackling
the random factor of the NN implementations. Future works
include investigating the impact of different architecture of
the individual members and studying their impact on different
types of noise.
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