1	Process compatible desulfurization of NSP cement production: A novel
2	strategy for efficient capture of trace SO ₂ and the industrial trial
3	Tongsheng Zhang ^{a,b} , Hui Peng ^a , Chang Wu ^a , Yiqun Guo ^a , Jiawei Wang ^c , Xinzhi Chen ^d , Jiangxiong
4	Wei ^{a,b⊠} , Qijun Yu ^{a,b,e⊠}
5	^a School of Materials Science and Engineering, South China University of Technology, 510640,
6	Guangzhou, China
7	^b Guangdong Low Carbon Technology and Engineering Center for Building Materials, 510640,
8	Guangzhou, China
9 10	Birmingham, UK
11	^d Guangdong Wanyin Technology Development Co. Ltd, 510075, Guangzhou, China
12	^e College of Civil Engineering, Hefei University of Technology, 230009, Hefei, China
13	
14	Highlights
15	1. SO ₂ capture by calcium-based adsorbents in the preheater environment was studied.
16	2. Higher SO ₂ capture efficiency was obtained after introducing V ₂ O ₅ -based catalysts.
17	3. Catalyst-assisted SO_2 capture with de- SO_2 efficiency of 75.5% was first reported.
18	4. A novel process compatible FGD technology was proposed and designed.
19	5. SO ₂ in flue gas reduced from 1080 mg/Nm ³ to <100 mg/Nm ³ during industrial trial.
20	Abstract
21	Cement industry contributes to more and more SO ₂ emission due to utilization of
22	alternative raw materials and fuels, whereas the available calcium-based dry flue gas
23	desulfurization (FGD) technologies present low efficiency due to slow reversible de-

[∞] Corresponding author. Email address: jxwei@scut.edu.cn. (Jiangxiong Wei). Tel.: +86-020-87114137. ⊠ Corresponding author. Email address: concyuq@hfut.edu.cn. (Qijun Yu). Tel.: +86-020-

^{87114233.}

24	SO ₂ reactions and short gas-solid contact time in the preheater. In the present study, the
25	SO ₂ capture potentials of CaCO ₃ , CaO, and Ca(OH) ₂ in the preheater environment were
26	maximized by introducing V2O5-based catalyst and selecting optimal reaction
27	temperature, and the de-SO ₂ mechanism was extensively discussed. The results showed
28	that the de-SO ₂ efficiency of calcium-based adsorbents increased by 10-57 times as SO ₂
29	was effectively oxidized to SO_3 in the presence of V_2O_5 -based catalyst, then maximum
30	de-SO ₂ efficiency of 75.5% was achieved using Ca(OH) ₂ and V ₂ O ₅ -CeO ₂ at 600 °C.
31	Furthermore, CaCO ₃ assisted by V ₂ O ₅ -CeO ₂ also had a de-SO ₂ efficiency of 65.6%.
32	Subsequently, a novel process compatible FGD technology was designed to maximize
33	the de-SO ₂ ability of raw meal in the preheater by adding V_2O_5 -based catalyst and
34	humidification, the SO ₂ concentration of flue gas reduced from 1000 mg/Nm ³ to less
35	than 100 mg/Nm ³ in the industrial-scale trial, as more sulfur was solidified into clinker
36	in the form of alkali sulfate without reducing its properties. This novel process
37	compatible de-SO ₂ strategy is of real significance for reducing SO ₂ emission of cement
38	industry at low economic cost.

Keywords: Calcium-based adsorbents; Catalyst-assisted SO₂ capture; NSP cement
 production; Process compatible desulfurization; SO₂

41

42 **1 Introduction**

43 In the current cement industry, limestone (CaCO₃), clay (Al₂O₃·*x*SiO₂·*y*H₂O),
44 ferreous material, and corrective constituents are used to prepare raw meal (Bullerjahn)

45	et al., 2014; Shen et al., 2017; Shi et al., 2019), which consequently goes through milling,
46	pre-heating, pre-calcination, melting, reaction, and rapid cooling (Gao et al., 2016; Ige
47	et al., 2021). Then the clinker obtained, supplementary cementitious materials, and
48	gypsum are further ground to prepare different types of Portland cement (Juenger et al.,
49	2019; Peys et al., 2022; Snellings, 2016). To improve the production efficiency of
50	clinker, the new suspension preheater (NSP) cement production process, as shown in
51	Fig. 1, has been developed and widely applied since the 1980s. Since the pre-heating of
52	raw meal and the decomposition of carbonates are achieved in separate preheater and
53	pre-calciner rather than traditional rotary kiln, the energy efficiency is significantly
54	improved (Liu et al., 1995; Xu et al., 2015). This benefits from the rapid heat transfer
55	between hot gas and solid with contrary flow direction and direct heating for limestone
56	decomposition in a suspension state (Table 1). Additionally, the production capacity of
57	high-quality clinker is also significantly increased by rational arranging the temperature
58	distribution of the whole NSP cement production process.

60 Fig. 1. The whole process of cement clinker production. (a) Schematic diagram; (b)

61

59

Solid and gas flow (Zhang et al., 2019a).

62 Table 1

63 Physical and chemical changes of raw meal during NSP cement production process.

Equipment	Temperature	Process	Reaction equations
Raw mill	80-300 °C	Evaporation	$H_2O \rightarrow H_2O\uparrow$
Preheater	300-950 °C	Evaporation Dehydration of clay minerals Decomposition of partial carbonates	$\begin{array}{c} H_2O \rightarrow H_2O\uparrow\\ Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O \rightarrow Al_2O_3 \cdot 2SiO_2 + 2H_2O\uparrow\\ MgCO_3 \rightleftharpoons MgO + CO_2\uparrow \end{array}$
Pre-calciner	900-1000 °C	Decomposition of carbonates	$MgCO_3 \rightleftharpoons MgO + CO_2\uparrow \\CaCO_3 \rightleftharpoons CaO + CO_2\uparrow \\$
Rotary kiln	1000-1450 °C	Solid reaction Sintering of clinker	$2CaO + SiO_2 \rightarrow \beta - C_2S$ $3CaO + SiO_2 \rightarrow C_3S$ $\beta - C_2S + CaO \rightarrow C_3S$ $3CaO + Al_2O_3 \rightarrow C_3A$ $4CaO + Al_2O_2 + Fe_2O_2 \rightarrow C_4AF$
Clinker cooler	1000-300 °C	Cooling of clinker	

64

65	With the awareness enhancement of environmental protection, more and more
66	attention has been paid to the SO ₂ emission from NSP cement production. Extensive
67	studies (Hansen et al., 2003; Miller and Hansen, 2004; Mut et al., 2015; Rasmussen,
68	2012; Zhang et al., 2019a; Zhang et al., 2019b) have shown that about 80% SO ₂ is
69	attributed to the decomposition of sulfides (mainly pyrite, FeS ₂) in the C2-C3 cyclone,
70	and the rest SO ₂ is released from the combustion of fuel and the decomposition of partial
71	sulfates (mainly gypsum, CaSO ₄) in the rotary kiln. On the other hand, SO ₂ can be
72	captured by several approaches as shown in Fig. 2 as residual sulfate in the clinker and
73	discharged from the kiln head with it (Zhang et al., 2019b). Specifically, SO ₂ can react
74	with alkali oxides during clinkerization in the kiln to form K ₂ SO ₄ , Na ₂ SO ₄ , and even
75	CaSO ₄ , and most of SO ₂ released in the kiln can be effectively captured by massive
76	CaO in the pre-calciner and C5 cyclone. Thus, SO ₂ released from fuel and sulfates
77	cannot result in excessive SO ₂ emission in the flue gas. However, only a small
78	proportion of SO ₂ can be captured by CaCO ₃ when passing through the preheater and
79	raw mill, resulting in relatively high SO ₂ emission in the flue gas.

Theoretically, the reaction rate of SO₂ and CaCO₃ to form CaSO₃ is very slow, especially at high temperature and high CO₂ concentration environments (Czyzewski et al., 2013; I. Ávila et al., 2005; Rasmussen, 2012). Furthermore, most CaSO₃ decomposes easily and releases SO₂ again in the preheater, as the decomposition temperature of CaSO₃ is about 650 °C. Only a few of CaSO₃ can be oxidized to CaSO₄, which can be transferred into the kiln with raw meal. During clinkerization, most sulfurcontaining minerals in clinker are tend to decompose or volatilize as shown in **Table 2**. After numerous release-capture cycles of SO₂ as shown in **Fig. 2**, partial of sulfur is discharged with clinker in the form of CaSO₄, alkali sulfates, and trace CaO·3Al₂O₃·CaSO₄, otherwise the rest sulfur is emitted with flue gas in the form of SO₂. That is to say, although the NSP cement production system itself can capture SO₂, it is still difficult to meet the emission limits of SO₂ due to its extremely limited capture capacity.

- 93
- 94 Fig. 2. Schematic sulfur flow, SO₂ release and capture in a typical NSP cement
- 95 production system (Zhang et al., 2019b).
- 96
- 97 Table 2
- 98 Thermal stability of sulfur-containing phases in cement clinker.

Chemical formula	CaSO ₃	CaSO ₄	4CaO•2SiO ₂ •CaSO ₄
Change	Decomposition or oxidation to CaSO ₄	Partial decomposition	Complete decomposition
Reaction Temperature	650 °C	1300-1350 °C	~1200 °C
Content in clinker	Nil	Paucity	Nil

Chemical formula	K_2SO_4	NaSO ₄	CaO•3Al ₂ O ₃ •CaSO ₄
Change	Partial volatilization	Partial volatilization	Partial decomposition
Reaction Temperature	~1400 °C	~1300 °C	1350-1400 °C
Content in clinker	Trace	Trace	Trace

⁹⁹

In order to reduce SO₂ emissions of the cement industry, wet flue gas desulfurization (WFGD) technologies, such as limestone-gypsum and dual alkali methods, are introduced for tail-end flue gas purification (Chen et al., 2021; Poullikkas, 2015). Although with outstanding desulfurization (de-SO₂) efficiency, wet FGD technologies present large investments, high energy and water consumption, and easy corrosion of equipment, resulting in high maintenance cost to be accepted by the actual cement industry.

107 To reduce de-SO₂ cost, process compatible de-SO₂ conception has been proposed 108 to enhance SO₂ capture capability of the preheater section by injecting calcium-based 109 adsorbents (Han et al., 2015; Przepiorski et al., 2013; Yu et al., 2020), meanwhile, the 110 desulfurization product is combined into clinker without any liquid or solid wastes. For 111 instance, partial hot raw meal (or external CaO) is injected into C1 cyclone to achieve a de-SO₂ efficiency of 30~40% (Fig. 3a), as CaO is much more reactive than CaCO₃. 112 113 For advanced dry FGD technology (Fig. 3b), hot raw meal is preferentially slaked 114 before injecting into C1 cyclone, external Ca(OH)₂ or carbide slag are also be used 115 sometimes, which can achieve a maximum de-SO₂ efficiency of 50~60%. However, the

123

Fig. 3. Schematic diagrams of process compatible dry FGD technologies in cement
industry: (a) Hot raw meal injection; (b) Slaked raw meal injection.

126

127 Since the above dry FGD technologies present low de-SO₂ efficiency, they cannot 128 meet the increasingly higher requirement of SO₂ emission. The process compatible 129 FGD technology is regarded as the development trend of the cement industry in the 130 future, as de-SO₂ can be achieved using calcium-based adsorbents produced in the NSP 131 cement production process. Given that the reactions between SO₂ and calcium-based sorbents are typically slow and reversible gas-solid reactions (Li et al., 2012; Tullin and Ljungstroem, 1989) (Fig. 4a), it can be deduced that the de-SO₂ efficiency of current traditional FGD technologies are much less than expected. Therefore, the key to improving the efficiency of process compatible FGD technology is to accelerate chemical reactions during SO₂ capture.

137 Theoretically, SO₃ is much more reactive than SO₂, and the reactions between SO₃ 138 and calcium-based adsorbents are no longer reversible (He et al., 2019; Wang et al., 139 2018). The product (CaSO₄) is much more stable than CaSO₃ (Ingo et al., 2001; Ma et 140 al., 2022). Furthermore, SO₃ can react with moisture in the flue gas to form H₂SO₄, and 141 then be rapidly captured by massive CaCO₃ in raw meal. Therefore, once SO₂ is oxidized to SO₃, the consequent capture will be much easier and more efficient even by 142 143 the same calcium-based adsorbents (Fig. 4b). By introducing mineralizer, higher proportion of CaSO₄ reacts with CaO and Al₂O₃ to form calcium sulphoaluminate 144 145 (Idrissi et al., 2010; Simoni et al., 2021), which has superior thermal stability than other 146 sulfur-containing minerals during clinkerization (Cheng et al., 2003). Thus, more sulfur 147 can be solidified in clinker and then discharged out of the kiln system, and less sulfur is involved in the kiln-preheater cycle, thereby reducing the amount of SO₂ that needs to 148 149 be captured.

150

Fig. 4. Chemical reactions during SO₂ capture. (a) Traditional SO₂ capture by dry
calcium-based adsorbents; (b) Novel SO₂ capture by combination of catalysts and
calcium-based adsorbents.

154 Based on the above novel strategy for SO₂ capture, oxidation of trace SO₂ in the preheater environment has been achieved in our previous study by introducing V₂O₅-155 156 based catalysts, thus rapid capture gaseous SO₃ using calcium-based adsorbents (massive CaCO₃ in raw meal is preferred) is the critical step to develop high efficiency 157 158 process compatible FGD technology. The velocity of flue gas in preheater is as high as 8-10 m/s, the contact time between gas and raw meal is only 3-5 s, and a high 159 160 concentration of CO₂ (about 30-35%) in the flue gas can also react with adsorbents 161 competitively, all of which increase the difficulty of gaseous SO₃/SO₂ capture. Up to 162 now, the feasibility of rapid capture of trace SO₃/SO₂ in the preheater environment has 163 not been evaluated yet.

164 In the present study, CaCO₃, CaO, and Ca(OH)₂ were selected to verify their potential for rapid capture of SO₂ in the preheater environment, and the effects of V₂O₅-165 166 based catalysts on the de-SO₂ efficiency and the corresponding mechanism were further 167 studied. Subsequently, a novel process compatible FGD technology was designed for 168 NSP cement production process, and industrial-scale trial was conducted to validate its 169 feasibility and impacts on clinker properties. The results were of great significance to maximize the de-SO₂ potential of NSP cement production process and then improve the 170 171 efficiency of available calcium-based dry FGD technology for the cement industry.

172 2 SO₂ capture efficiency of calcium-based adsorbents in simulated 173 preheater environment

174 A fixed-bed reaction system, as shown in Fig. 5, was established to evaluate the 175 SO₂ capture performance of CaCO₃, CaO, and Ca(OH)₂ in a simulated preheater 176 environment (Table 3), and SiO₂ powder (inert material) was used as a reference. Pure 177 O₂, SO₂, N₂, CO₂, and H₂O (introduced by a separate N₂ source through a thermostatic 178 water bath) were mixed homogeneously in the gas mixer, and then simulated flue gas 179 with target composition was obtained by controlling the flow rate of each gas 180 component using separate mass flowmeters. It should be noted that a much higher SO₂ 181 concentration (1.0 Vol.%) was selected to amplify the differences in SO₂ capture ability 182 of the calcium-based absorbents, then de-SO₂ products in absorbents can be identified 183 to clarify the SO₂ capture mechanism. Subsequently, the simulated flue gas was inlet into the temperature-controlled fixed-bed reactor, where 2.0 g catalyst (if required) and 184

20 g absorbent with the BET surface area of $320 \pm 20 \text{ m}^2/\text{kg}$ were dispersed separately 185 186 in multilayer asbestos and then fixed in the quartz tube with size of φ 16 mm, as shown 187 in Fig. 5b. The simulated flue gas permeated through the catalyst and absorbent layers 188 in sequence at a flow rate of 1.0 L/min, in this case the time of flue gas passing through 189 the absorbent layer was 4.0 s, which was equal to the actual contact time of gas-solid in 190 the C1 and C2 cyclones of the industrial NSP process. Since part of SO2 in the inlet flue 191 gas was finally captured in the form of sulfate or sulfite, the SO₃ content of calcium-192 based absorbents after reaction for 5 min was tested to evaluate their SO₂ capture ability. 193 Specifically, 1.0 g of the reacted absorbent was added into 20 ml BaCl₂-HNO₃ solution 194 (100 g/L BaCl₂ and 4.0 mol/L HNO₃) with stirring for 30 min, and then the solution was 195 rested for 24 h to ensure a full reaction. Finally, the precipitate (BaSO₄) in the solution 196 was filtered and weighed after burning to constant weight at 850 ± 20 °C, and then the 197 SO₃ content of reacted absorbent was calculated according to Eq. 1. $\omega_{SO_3} = \frac{m_{BS} \times 0.343}{m_{ab}} \times 100\%$ 198 (1) Where, ω_{SO_3} is the SO₃ content of reacted absorbent, %; m_{BS} is the mass of BaSO₄, g; 199

200 m_{ab} is the mass of reacted absorbent, 1.0 g in this experiment; 0.343 is the mass ratio of
201 SO₃ to BaSO₄.

SiO ₂		Gas flow: 1.0 L/min	
CaCO ₃	1.0% SO ₂ + $4.0%$ O ₂ + $25.0%$		
		Volumetric space velocity: 2000/	
CaO	$CO_2 + N_2$ (Balance)	Temperature: 600±10 °C	
Ca(OH) ₂			

209

210 2.1 SO₂ capture performance of CaCO₃, CaO, and Ca(OH)₂

211 As shown in Fig. 6a, SiO₂ powder had no SO₂ capture ability, as the SO₃ content 212 was only 0.02% after the reaction. Similarly, the SO₃ content when CaCO₃ powder was 213 used after reaction was as low as 0.07%, suggesting that CaCO₃ had nearly no SO₂ 214 capture capability in a simulated preheater environment. That's why raw meal presented 215 neglectable SO₂ capture ability, when the flue gas passed through the whole preheater. 216 However, both CaO and Ca(OH)₂ powders showed relatively better SO₂ capture ability, 217 as the SO₃ contents of CaO and Ca(OH)₂ after reaction were 2.01% and 12.35%, respectively. Thus, external Ca(OH)₂ or CaO was added with raw meal to capture SO₂ 218 219 in the preheater in present dry FGD technologies, and Ca(OH)₂ generally had superior 220 SO₂ capture efficiency than CaO.

To identify the de-SO₂ products, X-ray diffraction (XRD) analysis of reacted absorbents was carried out on a Bruker D8 advanced instrument operating at 250 mA and 40 kV using Cu K α 1 radiation ($\lambda = 0.1789$ nm), and all tests were performed from 5° to 90° (2 θ) with a step size of 0.02° and a scan speed of 8°/min. It can be seen from **Fig. 6b** that no sulfur-containing mineral was identified in CaCO₃ and SiO₂ powders 226 after reaction, while CaSO3 and a small amount of CaSO4 were found in the XRD pattern of CaO powder after reaction. It can be concluded that SO₂ can be captured by 227 228 CaO in the form of sulfite, which partially be oxidized to sulfate. Furthermore, the 229 diffraction peaks of CaSO3 were more pronounced in the XRD pattern of Ca(OH)2 230 powder after the reaction, indicating more SO₂ was captured due to the high reactivity 231 of Ca(OH)₂. It should be noted that diffraction peaks assigned to CaO were also 232 identified, suggesting that a certain amount of Ca(OH)₂ was decomposed to CaO in the 233 simulated preheater environment, thereby reducing the efficiency of SO₂ capture due to 234 the relatively low reactivity of CaO. Moreover, CaSO4 was also detected due to the 235 oxidization of CaSO₃ particularly in reacted Ca(OH)₂ powder. Since most CaSO₃ decomposed and released SO₂ again when falling down to bottom cyclones (> 650 °C) 236 237 with raw meal, the SO₂ can only be effectively captured in the preheater in the form of 238 CaSO₄ after oxidation.

239 The morphological changes and element compositions of absorbents before and 240 after reaction were characterized by a scanning electron microscope (SEM, Nano 430) 241 under secondary electron (SE) imaging mode with an accelerating voltage of 10 kV and 242 energy dispersive spectrum (EDS) mode with accelerating voltage of 20 kV, 243 respectively. As shown in Fig. 6c and d, no morphological difference was found for 244 SiO₂ particles, and even very fine particles on the surface of large-sized grain had no S 245 element (only Si and O with a molar ratio of 2 was detected) after the reaction. Fig. 6e 246 presented the typical cubic grains with a smooth surface before the reaction, and the

247	surface was covered with numerous nanoscale protrusions after the reaction (Fig. 6f).
248	According to literatures (Bigham et al., 2005; Hu et al., 2007), the protrusion was
249	regarded as CaSO ₃ crystal generated by the reaction of CaCO ₃ and SO ₂ , although S
250	element wasn't identified after reaction due to its very low content. It can be deduced
251	that SO ₂ was captured by CaCO ₃ in a simulated preheater environment but with a very
252	slow reaction rate, resulting in extremely small CaSO3 protrusions in such a short
253	reaction time. No obvious morphological change was observed for CaO particles before
254	and after SO ₂ capture, but the S element contents of interest points after reaction were
255	in the range of 0.95-4.49%, indicating SO ₂ was indeed captured by CaO. In contrast, a
256	much loose surface of $Ca(OH)_2$ particles was observed after SO_2 capture and the S
257	element content of the dense zone (de- SO2 product layer) was as high as 16.49%, which
258	was significantly higher than that of the loose zone (the decomposed Ca(OH) ₂ , 4.86%).
259	It means that SO ₂ is primarily captured by Ca(OH) ₂ , rather than reacting with the CaO
260	generated from Ca(OH) ₂ decomposition However, the SO ₂ capture efficiency of
261	Ca(OH) ₂ was still not satisfied in the actual application (such as Ca(OH) ₂ dry FGD
262	method), due to the slow reaction rate and very short contract time.

264

Fig. 6. SO₂ capture performance of calcium-based adsorbents: (a) SO₃ content of
reacted adsorbents; (b) XRD patterns of reacted adsorbents; (c, d) SEM images of
SiO₂ before and after reaction; (e, f) SEM images of CaCO₃ before and after reaction;
(g, h) SEM images of CaO before and after reaction; (i, j) SEM images of Ca(OH)₂
before and after reaction; (k) EDS elemental compositions of interest points in SEM
images.

272 Since the homogeneous direct oxidation of SO₂ needs to cross an energy barrier of

273 161.9 kJ/mol (Eq. 2) (Cullis and Mulcahy, 1972; Jørgensen et al., 2007), almost no SO₂ 274 can be oxidized to SO3 in an industrial furnace environment. The mechanism of SO2 275 capture by calcium-based adsorbents can be classified into SO₂ adsorption, chemical 276 reaction, vacancy diffusion and grain growth (Cheng et al., 2003; Hu et al., 2008; Hu et 277 al., 2006; Jeong et al., 2015; Qiu and Lindqvist, 2000), in which the adsorption of SO₂ 278 is the rate-determining step as shown in Fig. 7. The adsorption behavior of SO_2 on CaCO₃, CaO, and Ca(OH)₂ surface presented wide difference, which can be attributed 279 280 to their adsorption site density and diffusion rate of vacancy (He et al., 2022; Hu et al., 281 2006; Malaga-Starzec et al., 2004). Specifically, SO₂(s) is firstly adsorbed on the 282 surface active sites of adsorbents to form SO₂(ad) via chemisorption (Eq. 3), and CaCO₃ grain has a small amount of surface CO_3^{2-} vacancies, which can adsorb SO₂ (Fig. 7b) 283 284 with an adsorption activation energy of 523.2 kJ/mol (Zhang et al., 2022). In contrast, 285 a larger amount of surface O sites of CaO grain can adsorb SO₂ (Fig. 7c), and the 286 adsorption activation energy reduces to 141.5 kJ/mol (Sasmaz and Wilcox, 2008). Furthermore, SO₂ is easily adsorbed by abundant surface OH sites of Ca(OH)₂ grain 287 288 (Fig. 7d), as the adsorption activation energy of SO₂ further reduces to only 52.9 kJ/mol 289 (He et al., 2022).

290
$$SO_2(ad) + O_2(g) \rightarrow SO_3(ad) + 161.9 \text{ kJ/mol}$$
 (2)

For the reaction step, $SO_2(ad)$ reacts with $CO_3^{2-}(s)$ of $CaCO_3$ grain to form SO_3^{2-} (s) with the regeneration of vacancy and CO_2 release (**Eq. 4**). Similarly, $SO_2(ad)$ also reacts with $O^{2-}(s)$ of CaO grain or OH⁻(s) of Ca(OH) grain to form $SO_3^{2-}(s)$ with the

294	regeneration of vacancy (Eq. 5 and 6). The presence of vacancies in ionic crystallin	ne
295	grain is known to be one of the basic preconditions for gas-solid reaction (Hu et a	ıl.,
296	2007), thus the density and diffusion rate of vacancies in absorbents also affect the SO	O_2
297	capture efficiency. CaCO3 grain with high crystallinity has a large anion radius an	nd
298	strong ion binding, which reduces the density and diffusion rate of vacancies. However,	er,
299	it is easier to form vacancies in the CaO and Ca(OH) ₂ grains, resulting in a relative	ly
300	faster diffusion rate of vacancies due to their loose microstructure. As a result, CaCo	O_3
301	presents neglectable SO ₂ capture ability in consideration of short contact time and tra-	ce
302	SO ₂ concentration. CaO and Ca(OH) ₂ also show low SO ₂ capture ability and efficience	су,
303	as the reaction of $SO_3^{2-}(s)$ with $Ca^{2+}(s)$ to form $CaSO_3(s)$ is a typical reversible reaction	on
304	(Eq. 7). Although a small amount of CaSO ₃ is oxidized to CaSO ₄ (Eq. 8), CaSO ₃ on the	he
305	surface of the calcium-based absorbents is the main de-SO ₂ product of the direct SO	O_2
306	capture process.	
307	Direct SO ₂ capture:	
308	$SO_2(g) + []_v(s) \rightarrow [SO_2]_v(ad)$ (3)

$$309 \quad CO_3^{2-}(s) + [SO_2]_v(ad) \to SO_3^{2-}(s) + CO_2(g) + []_v(s)$$
(4)

310
$$O^{2-}(s) + [SO_2]_v(ad) \to SO_3^{2-}(s) + []_v(s)$$
 (5)

311
$$2OH^{-}(s) + [SO_2]_v(ad) \rightarrow SO_3^{2-}(s) + H_2O(g) + []_v(s)$$
 (6)

312
$$Ca^{2+}(s) + SO_3^{2-}(s) \rightleftharpoons CaSO_3(s)$$
 (7)

313
$$CaSO_3(s) + 1/2 O_2(g/ad) \rightarrow CaSO_4(s)$$
 (8)

314

Fig. 7. Schematic illustration of SO₂ capture by calcium-based absorbents: (a) SO₂ capture process on the surface of calcium-based absorbent; (b) SO₂ adsorption on the active sites (CO_3^{2-} vacancy) of CaCO₃ grain; (c) SO₂ adsorption on the surface O sites of CaO grain; (d) SO₂ adsorption on the surface OH sites of Ca(OH)₂ grain.

320

321 2.2 Effect of V₂O₅-based catalysts and temperature on SO₂ capture capability

To improve the efficiency of SO₂ capture, V₂O₅-based catalysts were employed to catalyze the oxidation of SO₂ to SO₃, and the kinetics and mechanism of this reaction have been fully explored in our previous study (Wu, 2020). However, whether the synergism of V₂O₅-based catalysts and calcium-based adsorbents can improve the capture of SO₂ in the preheater remains to be investigated. Therefore, V₂O₅, V₂O₅-TiO₂, V₂O₅-MnO₂ and V₂O₅-CeO₂ (BET specific surface area of $173 \pm 4 \text{ m}^2/\text{g}$, pore volume of 0.41 ± 0.03 cm³/g, and an average pore diameter of 8.34 ± 0.09 nm.) were selected 329 as catalysts due to their excellent performance for catalytic oxidation of SO₂, and the 330 simulated flue gas of typical preheater environment with normal moisture and SO₂ 331 concentrations was used as shown in Table 4. The SO₂ in simulated flue gas contacted 332 with catalysts and then reacted with adsorbents within 4.0 s, and the reaction temperatures were selected as 300 °C, 400 °C, 500 °C, and 600 °C (corresponding to 333 334 outlet gas temperatures of C1, C2, C3, and C4 cyclones respectively). The SO₂ concentration of outlet flue gas was measured by a gas analyzer, and then SO₂ capture 335 336 efficiency (ϕ SO₂) was calculated by Eq. 9, which can provide a guideline for selecting 337 the optimal location of catalyst-assisted de-SO₂ in NSP cement production process. $\varphi SO_2 = \frac{[SO_2]_{in} - [SO_2]_{out}}{[SO_2]_{in}} \times 100\%$ (9) 338 339 where, [SO₂]_{in} and [SO₂]_{out} are the SO₂ concentrations of the inlet and outlet flue gas, 340 respectively.

341

342 Table 4

343 Calcium-based adsorbents and environmental parameters of catalyst-assisted SO₂
344 capture test.

Absorbent	Catalyst	Flue gas composition	Reaction conditions
CaCO ₃ CaO Ca(OH) ₂	V2O5 V2O5-TiO2 V2O5-MnO2 V2O5-CeO2	1000 ppm SO ₂ + 4.0% O ₂ + 25.0% CO ₂ + 10.0% H ₂ O + N ₂ (Balance)	Gas flow: 1.0 L/min Volumetric space velocity: 2000/h Temperature: 300, 400,500 and 600 °C

345

As shown in **Fig. 8a**, the SO₂ capture efficiency of CaCO₃ powder increased from 0% up to 1.6% when the temperature increased from 300 °C to 600 °C. After adding 348 V₂O₅-based catalysts, nearly no change in the SO₂ capture efficiency was observed at 349 low temperatures (<400 °C). However, the SO₂ capture efficiency increased 350 significantly when the temperature surpassed 500 °C. For instance, the SO₂ capture 351 efficiency of CaCO₃ powder with V₂O₅-CeO₂ at 600 °C was 65.6%, which was 41 times 352 higher than that of pure CaCO₃. More importantly, CaSO₄ was detected as the main de-353 SO₂ product rather than CaSO₃, indicating that SO₂ was firstly catalytic oxidized by V_2O_5 -CeO₂ and then captured by CaCO₃. For the same catalyst, CaO and Ca(OH)₂ 354 355 powders presented slightly higher SO₂ capture efficiency (Fig. 8c and e). For example, 356 the combination of Ca(OH)₂ and V₂O₅-CeO₂ achieved the maximum SO₂ capture 357 efficiency of 75.5% at 600 °C.

Notably, CaSO₃ was identified as the predominate de-SO₂ product in the XRD 358 359 patterns of CaO at 400 °C (Fig. 8d), and CaSO₄ became the predominate de-SO₂ product 360 at 500 °C and 600 °C. More obviously, CaSO3 was identified as the only de-SO2 product 361 in the XRD patterns of Ca(OH)₂ at 600 °C without catalyst (Fig. 8f), and the diffraction 362 peaks of CaSO₃ in Ca(OH)₂ powder reduced sharply with the increase of reaction 363 temperature, accompanying with more and more pronounced CaSO₄ diffraction peaks. It can be inferred that a small amount of SO₂ was directly captured by calcium-based 364 365 adsorbents (particularly for Ca(OH)₂), as the SO₂ in the flue gas was not effectively 366 catalytic oxidized over V₂O₅-based catalysts at low temperatures. In contrast, when the 367 reaction temperature surpassed 400 °C, more SO₂ was catalytically oxidized to SO₃, which was easily and rapidly captured in the form of CaSO₄ even by CaCO₃ powder. 368

369 Thus, the raw meal in the preheater can be potentially used as an absorbent to capture

370 SO₂ in the presence of V₂O₅-based catalysts.

Fig. 8. Catalyst-assisted SO₂ capture performance: (a) & (b) SO₂ capture efficiency

and XRD patterns of CaCO₃ powder; (c) & (d) SO₂ capture efficiency and XRD
 patterns of CaO powder; (e) & (f) SO₂ capture efficiency and XRD patterns of
 Ca(OH)₂ powder.

376

Based on the above experimental results, catalytic oxidation of SO₂ was the key

378 step to improving de-SO₂ efficiency. The mechanism of SO₂ capture by catalyst-assisted 379 calcium-based absorbents was summarized in Fig. 9. Gaseous SO2 and O2 were 380 adsorbed on the active sites (V=O or -O-V-O-) of the catalyst surface, and then most of 381 the SO₂ was preferentially catalytically oxidized by neighboring O₂(ads) or O· to form 382 SO_3 (Eq. 10) when passing through the V_2O_5 -based catalysts layer. Meanwhile, part of 383 SO₃ reacted with gaseous H₂O in the flue gas to form H₂SO₄ (Pei et al., 2023), which 384 was rapidly captured by calcium-based absorbents (Eq. 11-15). The rest of SO₃ was 385 also much easier captured (Eq. 16-18) compared to SO₂ (Eq. 3-7), as the reduction of 386 SO₃ adsorption activation energy on the adsorbent surface (He et al., 2022; Liu et al., 387 2022).

388 Notably, the reaction between SO₃ and calcium-based absorbents was no longer 389 reversible reactions (He et al., 2019; Kocaefe et al., 1985), and CaSO₄ had much higher 390 thermal stability in the preheater environment than CaSO₃ (Wang et al., 2019; Zhang et 391 al., 2013). All of these resulted in a much higher SO₂ capture efficiency. That is to say, 392 by inducing V₂O₅-based catalysts and humidification, the de-SO₂ process was 393 significantly accelerated by changing traditional slow reversible gas-solid reactions 394 between SO₂ and calcium-based absorbents to much more rapid irreversible gas-solid 395 reactions between H₂SO₄ droplets or even SO₃ and calcium-based absorbents, thereby 396 resulting in a significant higher de-SO₂ efficiency even for CaCO₃ powders.

397 Catalyst-assisted SO₂ capture:

398
$$SO_2(ad) + O_2(g) \xrightarrow{Catalyst} SO_3(ad)$$
 (10)

399
$$SO_3(g) + H_2O(g) \to H_2SO_4(g)$$
 (11)

$$400 \qquad H_2SO_4(g) \to H_2SO_4(ad) \tag{12}$$

401
$$H_2SO_4(ad) + CaCO_3(s) \rightarrow CaSO_4(s) + H_2O(g) + CO_2(g)$$
 (13)

402
$$H_2SO_4(ad) + CaO(s) \rightarrow CaSO_4(s) + H_2O(g)$$
 (14)

403
$$H_2SO_4(ad) + Ca(OH)_2(s) \rightarrow CaSO_4(s) + 2H_2O(g)$$
 (15)

$$404 \qquad SO_3 (ad) + CaCO_3 (s) \rightarrow CaSO_4 (s) + CO_2 (g) \tag{16}$$

$$405 \quad SO_3 (ad) + CaO (s) \rightarrow CaSO_4 (s) \tag{17}$$

406
$$SO_3(ad) + Ca(OH)_2(s) \rightarrow CaSO_4(s) + H_2O(g)$$
 (18)

Gas composition change

407

408 Fig. 9. Schematic illustration of catalyst-assisted SO₂ capture by calcium-based

409

absorbents.

410

411 **3 Design of process compatible FGD of NSP cement production**

As mentioned above, catalytic oxidation and then efficient capture of SO₂ have 412 413 been achieved in the simulated preheater environment, thus, how to realize these key 414 steps on an industrial scale becomes the primary challenge of process compatible FGD, 415 particularly in consideration of the characteristics of NSP production process. For solid 416 flow, the raw meal moves downward from C1 cyclone to C5 cyclone after adding into 417 the preheater, and the hot raw meal is clinkered in the rotary kiln after the decomposition 418 of limestone in the pre-calciner. Meanwhile, flue gas moves upward (contrary direction 419 with the solid flow) from cooler and rotary kiln to pre-calciner and then preheater. Since 420 SO₂ released from fuel combustion and sulfates decomposition can effectively be 421 captured by massive CaO in pre-calciner and C5 cyclone, technical route design focused 422 on capturing SO₂ released by the oxidation of sulfide (mainly FeS₂, Eq. 1 in Table 5) 423 in the preheater before flue gas discharge, specifically from C3 cyclone to C1 cyclone within only 3-5 s. 424

To achieve high de-SO₂ efficiency, the V₂O₅-based catalysts, calcium-based absorbent, and Ba-bearing mineralizer can be immediately suspended and completely dispersed by massive flue gas in C1 cyclone, after adding along with the raw meal as shown in **Fig. 10**. In this case, the catalysts can fully contact with flue gas in the whole process, and the SO₂ can be effectively oxidized to SO₃ immediately after being released in C3 cyclone or flowing up to C1 cyclone (**Eq. 2 in Table 5**). The newly formed SO₃ can react with massive fine limestone particles to form CaSO₄ directly in C3 and C2

432 cyclones (Eq. 4 in Table 5), and residual SO₃ is absorbed by liquid droplets to form 433 H₂SO₄ when passing the duct accompanied with atomized humidifier between C2 and 434 C1 cyclone (Eq. 5 in Table 5). Subsequently, the fine H_2SO_4 droplets are preferentially 435 adsorbed on the surface of raw meal particles, and then react with limestone (liquid-436 solid reaction) to form CaSO₄ (Eq. 6 in Table 5), which is much more rapid and efficient 437 compared with the original gas-solid reaction (Wang et al., 2015) (Eq. 3 in Table 5). Additionally, a small proportion of SO₂ and SO₃ escaped can be further captured by 438 439 high active calcium-based absorbent (mainly Ca(OH)₂) (Eq. 7 in Table 5), so as to 440 maximize the SO₂ capture capacity of the preheater section and then reduce the 441 desulfurizer consumption and maintenance cost.

443 Fig. 10. Schematic diagram of compatible FGD design for NSP cement production process.

444

Generally, about 40-60% of CaSO₄, the FGD product, tends to decompose after
entering the rotary kiln with hot raw meal (Eq. 11 in Table 5) (Li et al., 2014; Staněk,

447	2016), and the rest of CaSO ₄ , as well as alkali sulfates, are discharged out of the NSP
448	production process with clinker. Theoretically, CaSO4 can react directly with CaO and
449	Al ₂ O ₃ at 1250-1300 °C to form 3CaO·3Al ₂ O ₃ ·CaSO ₄ (Eq. 12 in Table 5), which
450	presents better thermal stability and lower decomposition ratio during clinkerization
451	(Wang et al., 2019). Furthermore, Ca ²⁺ in 3CaO·3Al ₂ O ₃ ·CaSO ₄ can be substituted by
452	Ba ²⁺ , and the generated Ba-bearing calcium sulphoaluminate (Eq. 13 in Table 5) had
453	superior thermal stability (Cheng et al., 2000; Zhu et al., 2021). Ba-bearing wastes are
454	also added with raw meals as mineralizer to stabilize the sulfur-containing minerals and
455	reduce the sulfur cycling, a higher proportion of sulfur is therefore solidified in clinker
456	and then discharged out of the rotary kiln rather than released as SO ₂ in the flue gas.

457 Table 5

458 Chemical reactions occurred during NSP cement production before and after compatible FGD design.

459	Reaction site Traditional NSP production I			Illustration	Compatible FGD NSP production		Illustration
	C3 cyclone (500-600 °C)	$2\text{FeS}_2 + 5.5\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 5\text{SO}_2$	(1)	SO ₂ release	$2FeS_2 + 5.5O_2 \rightarrow Fe_2O_3 + 5SO_2$ $2SO_2 + O_2 \rightarrow 2SO_3$	(1) (2)	SO ₂ release Catalytic oxidation
	C3-C2 cyclone (350-500 °C)	$SO_2 + CaCO_3 \rightarrow CaSO_3 + CO_2$	(3)	Very slow and	$SO_3 + CaCO_3 \rightarrow CaSO_4 + CO_2$	(4)	Fast SO ₃ capture
	C1 cyclone (300-400 °C)	$SO_2 + CaCO_3 \rightarrow CaSO_3 + CO_2$	(3)	capture SO2	$\begin{array}{l} \mathrm{SO}_3 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_2\mathrm{SO}_4 \\ \mathrm{H}_2\mathrm{SO}_4 + \mathrm{Ca}\mathrm{CO}_3 \rightarrow \mathrm{Ca}\mathrm{SO}_4 + \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \\ \mathrm{SO}_3 + \mathrm{Ca}(\mathrm{OH})_2 \rightarrow \mathrm{Ca}\mathrm{SO}_4 + \mathrm{H}_2\mathrm{O} \end{array}$	(5) (6) (7)	Faster liquid-solid reaction Efficient SO ₃ capture
	C5-precalciner (850-950 °C)	$SO_2 + CaO \rightleftharpoons CaSO_3$ $CaSO_3 + O_2 \rightarrow CaSO_4$	(8) (9)	Reversible Hard to react	$SO_3 + CaO \rightarrow CaSO_4$	(10)	More effective
	Rotary kiln (1000-1450 °C)	$\begin{aligned} CaSO_4 &\rightarrow CaO + SO_2 + O_2 \\ CaSO_4 + CaO + Al_2O_3 &\rightarrow 3CaO \cdot 3Al_2O_3 \cdot CaSO_4 \end{aligned}$	(11) (12)	Partially decomposed Solidification	$\begin{array}{l} CaSO_4 \rightarrow CaO + SO_2 + O_2 \\ CaSO_4 + CaO + Al_2O_3 \rightarrow 3CaO \cdot 3Al_2O_3 \cdot CaSO_4 \\ CaSO_4 + BaO + CaO + Al_2O_3 \rightarrow (4\text{-}x)CaO \cdot xBaO \cdot 3Al_2O_3 \cdot SO_3 \end{array}$	(11) (12) (13)	Partially decomposed Solidification Solidification of Ba- bearing minerals

460 4 Industrial trial of process compatible FGD

461 4.1 Process and de-SO₂ efficiency

462 In order to evaluate the feasibility of process compatible FGD designed, an 463 industrial trial was carried out on a 5000 t/d NSP production line in Huizhou, 464 Guangdong province, China. Details of the NSP production process and environmental 465 parameters of the connect duct between C2 cyclone and C1 cyclone for process compatible FGD are listed in Table 6. Since a small amount of FeS₂ was identified in 466 the limestone used (Fig. 11), the SO₃ content of raw meal was as high as 0.9%, leading 467 to a SO₂ emission of 800-1100 mg/Nm³. According to the national emission standard, 468 469 the upper limitation of SO₂ concentration in the flue gas of cement plants was 100 mg/Nm³ for Guangdong province. Thus, low-cost and high-efficiency process 470 471 compatible FGD is urgently needed to reduce SO₂ emissions. To reduce the cost of the 472 industrial trial, tailings containing V2O5 and CeO2 and industrial barium slag were used 473 as catalysts and mineralizer, respectively, and commercial Ca(OH)₂ was selected as an 474 external calcium-based absorbent. By changing the proportion of tailings, barium slag 475 and Ca(OH)₂, target components of desulfurizer were controlled in the range of 4-5% 476 V₂O₅, 2-3% CeO₂, 1-3% BaO, and 80-90% Ca(OH)₂. The chemical composition of a 477 typical desulfurizer used in the industrial trial is listed in Table 7. To evaluate the effect 478 of humidity of flue gas on the de-SO₂ efficiency, water was injected into the connect 479 duct between C2 cyclone and C1 cyclone. Four double-fluid spray nozzles with 0.3 MPa 480 high-pressure air were employed and uniformly arranged around the duct to ensure

- 481 homogeneous humidification (Fig. 12).
- 482 Table 6
- 483 Specification of the NSP production and environmental parameters of the connect duct

484	between C2	cyclone and	C1 cyclor	ne for process	s compatible FGD.
		2	2		1

Parameter	Value	Units
Kiln type	Preheater-precalciner- rotary kiln	-
Preheater	5 cyclone stages	-
Clinker production capacity	5000	t/d
Control index		
KH	0.9±0.1	-
SM	2.2±0.1	-
IM	1.5 ± 0.1	-
Raw materials	Limestone, clay, shale	-
Sulphur content of raw meal	0.898 ^a	%
Fuel	Coal	-
Sulphur content of fuel	1.23 ^a	%
Flue gas temperature and composition at	t connect duct between C2	and C1 cyclones
Temperature	420±20	°C
N_2	59.1±0.2	vol%
CO_2	32.0±1	vol%
CO	$0.02{\pm}0.002$	vol%
O ₂	3.2±0.1	vol%
H ₂ O	5.5±0.3	vol%
SO ₂	1500 ± 100	mg/Nm ³
NO _x	390±50	mg/Nm ³
SO ₂ concentration in exhaust flue gas	800-1100 ^b	mg/Nm ³

485 Note: ^a In terms of SO₃; ^b After raw mill captures

487 Fig. 11. Limestone collected from the 5000 t/d NSP production line. (a) XRD pattern;

488 (b) Optical image; (c) Polarized light image of pyrite; (d) Back Scattered Electron

489

image	and	distril	nutions	of Fe	and	S
mage	anu	uisuin	JULIONS	огге	anu	э.

- 490
- 491 Table 7

492 Chemical composition of desulfurizer used in the industrial trial (wt.%).

•	V_2O_5	CeO ₂	BaO	CaO	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	LOI*	Others
	4.68	2.31	1.93	64.10	2.37	1.48	1.18	19.13	2.82

493 Note: *, loss on ignition.

494

495

Fig. 12. Equipment for humidification and desulfurizer adding process. (a) Schematic
diagram of double-fluid spray nozzles and their locations; (b) Photograph of the spray
nozzles with the water and high-pressure air supplies; (c) Schematic diagram of
powder desulfurizer adding process; (d) Overview of desulfurizer silo and water tank.

501 During the industrial trial, a target amount of desulfurizer was added with raw meal, 502 and the SO₂ concentration in the exhaust flue gas was on-site measured in real time. As 503 shown in **Fig. 13a**, the SO₂ emission was in the range of 800-1100 mg/Nm³ before 504 adding desulfurizer, and then decreased significantly with the increase of desulfurizer 505 to raw meal mass ratio. When the addition of desulfurizer increased to 0.5%, the SO₂

506	emission reduced to 126 mg/Nm ³ and then stabilized for 2.0 h, which can meet the
507	general requirement of SO ₂ emission. Moreover, SO ₂ emission increased rapidly to
508	about 1000 mg/Nm ³ after discontinuing desulfurizer adding. In contrast, the SO_2
509	emission was only reduced to 400-500 mg/Nm ³ when the addition of external Ca(OH) ₂
510	of traditional dry FGD increased 3.0% relative to raw meal for the same NSP kiln,
511	indicating that the de-SO ₂ efficiency can be effectively promoted by adding catalyst. To
512	reduce FGD cost, the combination effect of desulfurizer and humidification on the de-
513	SO_2 efficiency was further evaluated. As shown in Fig. 13b, the SO_2 emission can be
514	reduced to about 600-700 mg/Nm ³ when only desulfurizer was added (the mass ratio of
515	desulfurizer to raw meal was 0.2 %). The SO ₂ emission can further be reduced to 50-
516	100 mg/Nm ³ after introducing 0.5 t/h water to humidify the flue gas, suggesting that the
517	humidification of flue gas can increase de-SO2 efficiency with a lower amount of
518	desulfurizer. This may be attributed to the formation of H ₂ SO ₄ , which can be captured
519	by the calcium-based absorbent or even limestone more rapidly. However, only a slight
520	decrease in SO ₂ emissions was observed when the injected water increased up to 1.0 t/h ,
521	and the SO ₂ emission quickly returned to its initial level once stopping powder
522	desulfurizer. It can be deduced that the powder desulfurizer plays a crucial role in the
523	de-SO ₂ process, and humidification can only promote the de-SO ₂ process in the
524	presence of desulfurizer. Furthermore, the process compatible FGD presented well-
525	adaptability to a large fluctuation of SO ₂ emission, because even if the SO ₂ emission
526	increased to 1100-1350 mg/Nm ³ due to the utilization of higher sulfur-containing

limestone, the SO₂ emission was still reduced to <100 mg/Nm³ by a combination of
desulfurizer and humidification. Additionally, a visually clean exhaust gas after process
compatible FGD was observed, while that after wet FGD (limestone-gypsum method)
had a long white smog (Fig. 13c) due to the presence of gypsum droplets (Liu et al.,
2013; Lv et al., 2011; Pan et al., 2017; Shi et al., 2017).

Fig. 13. SO₂ emission of the 5000 t/d NSP production line during industrial trial. (a)
Influence of desulfurizer addition; (b) Influence of humidification; (c) Visual exhaust
gas emission comparison of process compatible FGD and traditional wet FGD.

536

The properties of cement clinker before and after process compatible FGD were also compared to evaluate the influence of de-SO₂. XRF analysis showed that SO₃ content in the clinker after de-SO₂ reached 1.27%, which was higher than the initial value (0.98%). It can be seen from **Fig. 14a**, the S element was evenly dispersed in the

541	intermediate phase of the clinker before de-SO ₂ , while more S element was found in the
542	form of alkali sulfates (mainly 3K2SO4 Na2SO4), trace calcium sulphoaluminate and
543	barium sulfoaluminate, which were enwrapped by intermediate phase after de-SO ₂ (Fig.
544	14b and c). The XPS spectra (S $2p_{3/2}$) of the intermediate phase in the clinker also
545	confirmed the presence of sulfates (Qiu et al., 2013) (Fig. 14d). After process
546	compatible FGD, no obvious change in water requirement for normal consistency and
547	setting times was observed for Portland cements with same specific surface area, but
548	the 3-day and 28-day compressive strengths increased by 1.2 MPa and 1.5 MPa,
549	respectively (Table 8). The phenomenon can be illustrated by the fact that calcium
550	sulphoaluminate, one of desulfurization products, results in relatively higher early and
551	later strengths due to rapid hydration and more ettringite generation (Bullerjahn et al.,
552	2019; Gastaldi et al., 2016; Ma et al., 2021; Padilla-Encinas et al., 2021).

Before	349	25.1	145	228	33.1±0.8	55.3±1.1	7.0±0.3	9.6±0.4
After	352	25.1	139	226	34.3±0.6	56.8±1.3	7.2±0.3	9.8±0.3

563 4.2 Sulfur balance calculation before and after process compatible FGD

564 The sulfur in the NSP cement production system was only introduced by raw meal 565 and coal, then SO₂ in the flue gas was captured as solid sulfates by process compatible 566 FGD. Part of the solid sulfates decomposed to release SO₂ when the temperature was 567 higher than 1250 °C, and the rest solid sulfates were discharged out with clinker. Meanwhile, most of SO₂ in the flue gas was then captured when pasting through pre-568 569 calciner, preheater, and raw mill, and trace SO₂ was emitted out with flue gas. That is 570 to say, the input sulfur was only discharged out as solid sulfates in clinker or gaseous 571 SO₂ in the flue gas. Theoretically, the amount of SO₃ introduced by raw meal and coal 572 equaled to the total SO₃ amount in clinker and flue gas. In order to clarify the changes of sulfur pathway and validate the SO₂ capture efficiency, sulfur input and output of the 573 574 NSP production system before and after process compatible FGD were calculated according to the SO₃ contents of limestone, raw meal, coal, and clinker (Table 9) and 575 576 SO₂ concentration in the flue gas.

- 577
- 578 Table 9

579 The SO₃ contents and consumptions of raw meal, fuel, and clinker and SO₂ emission
580 before and after process compatible FGD.

	$\frac{\text{Raw meal}^{\text{a}}}{(\text{C}_{\text{rm}}/ \%)}$	Coal ^a (C _c / %)	Clinker ^a (C _{cl} / %)	SO ₂ emission (Eg/ mg/Nm ³)
Before	0.90	1.23	1.34	1080±50

	After	0.90	1.23	1.52	200±30	
	Consumption or discharging	380 t/h	33 t/h	245 t/h	400000 Nm ³ /ł	1
581	Note: ^a In terr	ns of SO ₃				
582	Sulfur inputs					
583	The amounts	of SO ₃ introdu	uced by raw m	neal (m _{rm}) and c	oal (m _c) were calcu	ulated
584	as follows:					
585	$m_{rm} = C_{rm} \times M_{rm} =$	0.90% × 380	t/h = 3.420 t/h	1		(19)
586	$m_c = C_c \times M_c = 1.2$	23% × 33 t/h =	= 0.406 t/h			(20)
587	Sulfur outputs					
588	The amounts	of SO ₃ discl	harged with c	elinker (Before:	mcl-b, After: mcl-a) and
589	exhaust gas (Befor	e: m _{g-b} , After:	m _{g-a}) were cal	lculated:		
590	Before:					
591	$m_{cl-b} = C_{cl-b} \times M_{cl} =$	= 1.34% × 245	5 t/h = 3.283 t/	ĥ		(21)
592	$m_{g-b} = E_{g-b} \times V_g \times m_{g-b}$	(SO ₃)/m(SO ₂) =	= 1080 mg/Nm ³	×400000 Nm ³ /h	\times 80/64 = 0.540 t/h	(22)
593	After:					
594	$m_{cl-a} = C_{cl-a} \times M_{cl} =$	= 1.52% × 245	5 t/h = 3.724 t/s	h		(23)
595	$m_{g-a} = E_{g-a} \times V_g \times m_g$	(SO ₃)/m(SO ₂) =	= 200 mg/Nm ³ >	< 400000 Nm ³ /h >	< 80/64 = 0.100 t/h	(24)
596	As shown in l	Fig.15, the sul	fur balance of	the cement kilr	system before and	l after
597	process compatible	e FGD were e	established. O	bviously, the su	lfur input of the co	ement
598	kiln system equale	ed to the sulfu	ur output for t	the two situatio	ns, but more sulfu	r was
599	solidified into clinl	ker rather than	SO ₂ emission	n after process c	ompatible FGD.	

Fig. 15. Sulfur inputs and outputs of cement kiln system before and after processcompatible FGD.

603 4.3 Economic analysis and efficiency comparison

600

According to large-scale industrial trials and available literatures (Chang et al., 604 2011; Duque et al., 2010; Yu et al., 2020), economic analysis and efficiency 605 comparisons among traditional dry FGD (hot raw meal or slaked raw meal injections), 606 wet limestone-gypsum FGD, and the process compatible FGD developed were listed in 607 608 Table 10. Traditional dry FGDs had simplified equipment, low investment and maintaining cost by using CaO or Ca(OH)₂ from the cement kiln system, but generally 609 610 presented low de-SO₂ efficiency (30-50%) and then only applied to cement plants with 611 low SO₂ emission (<300 mg/Nm³) Wet limestone-gypsum FGD was mainly applied in 612 cement plants with high SO₂ emission (> 1500 mg/Nm³), as higher de-SO₂ efficiency

613	(>95%) was achieved through multi-circulation of limestone slurry. However, complex
614	equipment and high water and electricity consumptions were needed, leading to much
615	higher investment and maintenance cost. In contrast, the equipment and investment of
616	process compatible FGD were similar to those of traditional dry FGD, but the de-SO ₂
617	efficiency was as high as that of wet FGD by introducing catalysts. Furthermore, the
618	maintaining cost of process compatible FGD was about 5-20% of that of wet FGD or
619	slight lower than that of traditional FGD, as most of SO ₂ was captured by limestone in
620	raw meal rather than external calcium-based absorbent, and most of catalysts
621	components were introduced by solid wastes or tailings. Therefore, the process
622	compatible FGD can be regarded as an efficient, low-cost, and adaptable technology for
623	the cement industry, particularly for SO ₂ emissions less than 2500 mg/Nm ³ .

624

625 Table 10

626 Characteristics and efficiency comparison of traditional dry FGDs, wet FGD and627 process compatible dry FGD.

De-SO ₂ technology	Hot raw meal (or external CaO) injection	Slaked raw meal (or external Ca(OH) ₂) injection	Wet limestone- gypsum FGD	Process compatible dry FGD
Desulfurizer	CaO	Ca(OH) ₂	Limestone slurry	Catalyst, Ca(OH) ₂ and mineralizer
De-SO ₂ efficiency	30-40%	50-60%	>95%	>95%
Influences on NSP process	Poor burnability	Increasing total heat consumption	Increasing gas flow resistance; De-SO ₂ equipment pipe blockage	Reducing outlet gas temperature from C1 about 3-5 °C

Maintenance costVery lowMiddleHighLowMain advantagesNo absorbent consumptionSelf-availability of absorbentHigh adaptability and maturityLow energy ar water consumptionMain disadvantagesPoor adaptability; Reducing clinker production capacityPoor adaptability Complex systemLarge and complex system; High water and electricity consumptionsReducing hea recovery from waste gas	Investment	About 1 million RMB	About 2 million RMB	About 15-20 million RMB	About 1 million RMB
Main advantagesNo absorbent consumptionSelf-availability of absorbentHigh adaptability and maturityLow energy an water consumptionMain disadvantagesPoor adaptability; Reducing clinker production capacityPoor adaptability Complex systemHigh adaptability and maturityLarge and complex system; High water and electricity 	Maintenance cost	Very low	Middle	High	Low
Main disadvantages Poor adaptability; Reducing clinker production capacity Poor adaptability Complex system Large and complex system; High water and electricity consumptions Reducing heat recovery from waste gas Economic SO2 <200 mg/Nm ³ >1500 mg/Nm ³ >2500 mg/Nm ³	Main advantages	No absorbent consumption	Self-availability of absorbent	High adaptability and maturity	Low energy and water consumptions
Economic SO ₂ $< 200 \text{ mg/Nm}^3$ $> 1500 \text{ mg/Nm}^3$ $> 2500 \text{ mg/Nm}^3$	Main disadvantages	Poor adaptability; Reducing clinker production capacity	Poor adaptability Complex system	Large and complex system; High water and electricity consumptions	Reducing heat recovery from waste gas
emission source <a>200 mg/Nm² <300 mg/Nm² <1300 mg/Nm² <2300 mg/Nm²	Economic SO ₂ emission source	<200 mg/Nm ³	<300 mg/Nm ³	>1500 mg/Nm ³	<2500 mg/Nm ³

628

629 **5 Conclusions and prospect**

630 The following conclusions can be drawn from the present study:

631 1. CaCO₃ had nearly no SO₂ capture ability in the typical preheater environment, 632 both Ca(OH)₂ and CaO presented a low de-SO₂ efficiency. Moreover, the main de-SO₂ 633 product of calcium-based absorbents was CaSO3 through reversible gas-solid reactions 634 in such a short contact time and trace SO₂ concentration, and only a small amount of 635 CaSO₃ was oxidized to CaSO₄ at preheater environment to finish SO₂ capture. After introducing V2O5-based catalysts, SO2 was effectively oxidized to SO3, which was more 636 637 rapidly and efficiently captured by calcium-based absorbents to form CaSO₄ directly 638 following irreversible gas-solid reactions. Finally, a maximum de-SO₂ efficiency of 639 75.5% was achieved at 600 °C using Ca(OH)₂ in the presence of V₂O₅-CeO₂ catalyst.

640 2. A novel process compatible FGD was proposed according to the characteristics of NSP cement klin system. The V2O5-based catalysts, calcium-based absorbent and 641 642 Ba-bearing mineralizer were added with raw meal, and then completely suspended and 643 dispersed by the massive flue gas from C1 cyclone to rotary kiln. As a result, the SO₂ 644 released from decomposition of FeS₂ was effectively oxidized and then captured by 645 massive limestone in the raw meal particularly when humidification at the duct between 646 C2 and C1 cyclones. Finally, the de-SO₂ product (CaSO₄) took part in clinkerization to 647 form sulfur-containing minerals with high thermal stability, then a larger amount of 648 sulfur was discharged out with clinker.

649 3. In the industrial trial of process compatible FGD, the SO₂ concentration in the 650 flue gas decreased rapidly from 1100-1350 mg/Nm³ to <100 mg/Nm³ after adding 0.2% 651 desulfurizer (relative to raw meal) and 0.5 t/h H₂O, as more sulfur was solidified into 652 clinker rather than emitted with flue gas as SO₂. Thus process compatible FGD can 653 provide an efficient and economical approach to reducing SO₂ emission from the 654 cement industry, and the results are of great significance in improving the efficiency of 655 available calcium-based dry FGD technologies.

656

657 CRediT authorship contribution statement

Tongsheng Zhang: Conceptualization, Validation, Writing - original draft, review
& editing, Supervision, Funding acquisition. Hui Peng: Data curation, Writing original draft, Visualization, Investigation. Chang Wu: Validation, Data curation,
Formal analysis. Yiqun Guo & Jiawei Wang: Validation, Modification, Visualization,

662 Writing - review. Xinzhi Chen: Investigation. Jiangxiong Wei & Qijun Yu:
663 Supervision, Writing - review & editing.

664

665 **Declaration of Competing Interest**

666 The authors declare that they have no known competing financial interests or 667 personal relationships that could have appeared to influence the work reported in this 668 paper.

669

670 Acknowledgements

671 This work was funded by the National Natural Science Foundation of China (No.

672 51872096 & 52122201) and the Guangdong Science and Technology Program

673 (2016A020221009 & 2021A0505030008). Their financial supports are gratefully674 acknowledged.

675

676 **References**

677	Emission standard of air pollutants for cement industry, Chinese standard GB 4915,
678	2013.
679	Bigham, J.M., Kost, D.A., Stehouwer, R.C., Beeghly, J.H., Fowler, R., Traina, S.J.,
680	Wolfe, W.E., Dick, W.A., 2005. Mineralogical and engineering characteristics of dry
681	flue gas desulfurization products. Fuel 84(14-15), 1839-1848.
682	Borgwardt, R.H., 1970. Kinetics of the reaction of sulfur dioxide with calcined
683	limestone. Environmental Science & Technology 4(1), 59-63.
684	Bueno-Lopez, A., Garcia-Garcia, A., 2005. Combined SO ₂ and NO _x removal at
685	moderate temperature by a dual bed of potassium-containing coal-pellets and calcium-
686	containing pellets. Fuel Processing Technology 86(16), 1745-1759.
687	Bullerjahn, F., Boehm-Courjault, E., Zajac, M., Ben Haha, M., Scrivener, K., 2019.
688	Hydration reactions and stages of clinker composed mainly of stoichiometric ye'elimite.
689	Cement and Concrete Research 116, 120-133.
690	Bullerjahn, F., Schmitt, D., Ben Haha, M., 2014. Effect of raw mix design and of
691	clinkering process on the formation and mineralogical composition of (ternesite) belite
692	calcium sulphoaluminate ferrite clinker. Cement and Concrete Research 59, 87-95.

693 Chang, G.Q., Song, C.Y., Wang, L., 2011. A modeling and experimental study of

694 flue gas desulfurization in a dense phase tower. Journal of Hazardous Materials 189(1-695 2), 134-140. 696 Chen, R., Zhang, T.S., Guo, Y.Q., Wang, J.W., Wei, J.X., Yu, Q.J., 2021. Recent 697 advances in simultaneous removal of SO₂ and NO_x from exhaust gases: Removal 698 process, mechanism and kinetics. Chemical Engineering Journal 420. 699 Cheng, J., Zhou, J.H., Liu, J.Z., Zhou, Z.J., Huang, Z.Y., Cao, X.Y., Zhao, X., Cen, 700 K.F., 2003. Sulfur removal at high temperature during coal combustion in furnaces: a 701 review. Progress in Energy and Combustion Science 29(5), 381-405. 702 Cheng, X., Chang, J., Lu, L.C., Liu, F.T., Teng, B., 2000. Study of Ba-bearing 703 calcium sulphoaluminate minerals and cement. Cement and Concrete Research 30(1), 704 77-81. 705 Cullis, C.F., Mulcahy, M.F.R., 1972. The kinetics of combustion of gaseous 706 sulphur compounds. Combustion and Flame 18(2), 225-292. 707 Czyzewski, A., Kapica, J., Moszynski, D., Pietrzak, R., Przepiorski, J., 2013. On 708 competitive uptake of SO₂ and CO₂ from air by porous containing CaO and MgO carbon. 709 Chemical Engineering Journal 226, 348-356. 710 Duque, C., Montes, C., Bustamante, F., Ortiz, A., 2010. Simulation of two 711 alternatives for SO₂ removal from wet cement kiln exhaust gases. Revista Facultad De 712 Ingenieria-Universidad De Antioquia(56), 49-57. 713 Gao, T.M., Shen, L., Shen, M., Liu, L.T., Chen, F.N., 2016. Analysis of material 714 flow and consumption in cement production process. Journal of Cleaner Production 112, 715 553-565. 716 Gastaldi, D., Paul, G., Marchese, L., Irico, S., Boccaleri, E., Mutke, S., Buzzi, L., 717 Canonico, F., 2016. Hydration products in sulfoaluminate cements: Evaluation of 718 amorphous phases by XRD/solid-state NMR. Cement and Concrete Research 90, 162-719 173. Han, Y., Hwang, G., Kim, D., Park, S., Kim, H., 2015. Porous Ca-based bead 720 721 sorbents for simultaneous removal of SO₂, fine particulate matters, and heavy metals 722 from pilot plant sewage sludge incineration. Journal of Hazardous Materials 283, 44-723 52. 724 Hansen, J.P., Jensen, L.S., Wedel, S., Dam-Johansen, K., 2003. Decomposition and 725 oxidation of pyrite in a fixed-bed reactor. Industrial & Engineering Chemistry Research 726 42(19), 4290-4295. 727 He, K., Tang, Z., Song, Q., Yao, Q., 2022. Process analysis of SO₃ removal by 728 Ca(OH)₂ particles from flue gas. Chemical Engineering Science 247, 117054. 729 He, K.J., Song, Q., Yan, Z.N., Zheng, N., Yao, Q., 2019. Study on competitive 730 absorption of SO₃ and SO₂ by calcium hydroxide. Fuel 242, 355-361. 731 Hu, G., Dam-Johansen, K., Wedel, S., 2008. Oriented nucleation and growth of 732 anhydrite during direct sulfation of limestone. Crystal Growth & Design 8(4), 1181-733 1185. 734 Hu, G., Dam-Johansen, K., Wedel, S., Hansen, J.P., 2007. Enhancement of the 735 direct sulfation of limestone by alkali metal salts, calcium chloride, and hydrogen

chloride. Industrial & Engineering Chemistry Research 46(16), 5295-5303.

Hu, G.L., Dam-Johansen, K., Wedel, S., Hansen, J.P., 2006. Review of the direct
sulfation reaction of limestone. Progress in Energy and Combustion Science 32(4), 386407.

I. Ávila, F.E. Milioli, Crnkovic, P.M., 2005. A kinetics study on the sorption of SO₂
by limestone through thermogravimetry, 18th International Congress of Mechanical
Engineering. Ouro Preto, Brazil.

Idrissi, M., Diouri, A., Damidot, D., Greneche, J.M., Talbi, M.A., Taibi, M., 2010.
Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase.
Cement and Concrete Research 40(8), 1314-1319.

Ige, O.E., Olanrewaju, O.A., Duffy, K.J., Obiora, C., 2021. A review of the
effectiveness of Life Cycle Assessment for gauging environmental impacts from cement
production. Journal of Cleaner Production 324.

Ingo, G.M., Riccucci, C., Bultrini, G., Chiozzini, G., 2001. Correlation between
the surface acid-base nature of solid metal oxides and temperature of CaSO₄
decomposition. Journal of Thermal Analysis and Calorimetry 66(1), 27-35.

Jeong, S., Lee, K.S., Keel, S.I., Yun, J.H., Kim, Y.J., Kim, S.S., 2015. Mechanisms
of direct and in-direct sulfation of limestone. Fuel 161, 1-11.

Jørgensen, T.L., Livbjerg, H., Glarborg, P., 2007. Homogeneous and
heterogeneously catalyzed oxidation of SO₂. Chemical Engineering Science 62(16),
4496-4499.

Juenger, M.C.G., Snellings, R., Bernal, S.A., 2019. Supplementary cementitious
materials: New sources, characterization, and performance insights. Cement and
Concrete Research 122, 257-273.

Kocaefe, D., Karman, D., Steward, F.R., 1985. Comparison of the sulfation rates
of calcium, magnesium and zinc oxides with SO₂ and SO₃. The Canadian Journal of
Chemical Engineering 63(6), 971-977.

Li, X., Xu, W., Wang, S., Tang, M., Shen, X., 2014. Effect of SO₃ and MgO on
Portland cement clinker: Formation of clinker phases and alite polymorphism.
Construction and Building Materials 58, 182-192.

Li, Y.R., Li, F., Qi, H.Y., 2012. Numerical and experimental investigation of the
effects of impinging streams to enhance Ca-based sorbent capture of SO₂. Chemical
Engineering Journal 204, 188-197.

Liu, F., Ross, M., Wang, S., 1995. Energy efficiency of China's cement industry.
Energy 20(7), 669-681.

Liu, L., Shao, G.C., Gong, P., Wu, Z.W., Chu, J.M., Hu, Y.G., Wang, J.F., Wang,
S., Zheng, C.H., Gao, X., De Geyter, N., Morent, R., 2022. Density functional theory
studies on ortho-position adsorption of SO₃ at step sites of a CaO surface with SO₂ and
CO₂. Fuel 310, 122174.

Liu, Q., Sun, Y., Sun, Y., 2013. Cause analysis and countermeasure of gypsum rain
in coal-fired power plants. Journal of Environmental Protection 4(1B), 1-4.

777 Lv, T., Lu, K., Song, L.J., 2011. Analysis and settlement of gypsum rain issue in

the wet-type FGD. Advanced Materials Research 347-353, 3396-3399.

Ma, S.H., Snellings, R., Li, X.R., Shen, X.D., Scrivener, K.L., 2021. Aliteye'elimite clinker: Hydration kinetics, products and microstructure. Construction and
Building Materials 266, 121062.

Ma, X.L., Tan, H.B., Dong, F.Q., Yang, F.H., 2022. Influence of carbon and pyrite
on desulfurization behavior of red gypsum at high temperature. Journal of Sustainable
Metallurgy 8(1), 409-418.

Malaga-Starzec, K., Panas, I., Lindqvist, O., 2004. Model study of initial
adsorption of SO₂ on calcite and dolomite. Applied Surface Science 222(1), 82-88.

Miller, S.W., Hansen, J.P., 2004. Methods for reducing SO₂ emissions, IEEEIAS/PCA 2004 Cement Industry Technical Conference. pp. 79-92.

Mut, M.D.M.C., Norskov, L.K., Frandsen, F.J., Glarborg, P., Dam-Johansen, K.,
2015. Review: Circulation of inorganic elements in combustion of alternative fuels in
cement plants. Energy & Fuels 29(7), 4076-4099.

Padilla-Encinas, P., Palomo, A., Blanco-Varela, M.T., Fernández-Carrasco, L.,
Fernández-Jiménez, A., 2021. Monitoring early hydration of calcium sulfoaluminate
clinker. Construction and Building Materials 295, 123578.

Pan, D.P., Wu, H., Yang, L.J., 2017. Investigation on the relationship between the
fine particle emission and crystallization characteristics of gypsum during wet flue gas
desulfurization process. Journal of Environmental Sciences 55, 303-310.

Pei, J., Pan, Y., Wu, Q., 2023. Performance and mechanism of sub-ppm SO₂
adsorption on the alkali modified activated carbon under different humidity level.
Journal of Cleaner Production 382, 135400.

Peys, A., Isteri, V., Yliniemi, J., Yorkshire, A.S., Lemougna, P.N., Utton, C., Provis,
J.L., Snellings, R., Hanein, T., 2022. Sustainable iron-rich cements: Raw material
sources and binder types. Cement and Concrete Research 157, 106834.

Poullikkas, A., 2015. Review of design, operating, and financial considerations in
flue gas desulfurization systems. Energy Technology & Policy 2(1), 92-103.

Przepiorski, J., Czyzewski, A., Pietrzak, R., Toyoda, M., Morawski, A.W., 2013.
Porous carbon material containing CaO for acidic gas capture: Preparation and
properties. Journal of Hazardous Materials 263, 353-360.

Qiu, K.R., Lindqvist, O., 2000. Direct sulfation of limestone at elevated pressures.
Chemical Engineering Science 55(16), 3091-3100.

Qiu, L.M., Zou, K., Xu, G.T., 2013. Investigation on the sulfur state and phase
transformation of spent and regenerated S zorb sorbents using XPS and XRD. Applied
Surface Science 266, 230-234.

Rasmussen, M.H., 2012. Low SO₂ emission preheaters for cement production.
Technical University of Denmark.

816 Sasmaz, E., Wilcox, J., 2008. Mercury species and SO₂ adsorption on CaO(100).
817 The Journal of Physical Chemistry C 112(42), 16484-16490.

Shen, W.G., Liu, Y., Yan, B.L., Wang, J., He, P.T., Zhou, C.C., Huo, X.J., Zhang,
W.Z., Xu, G.L., Ding, Q.J., 2017. Cement industry of China: Driving force,

820 environment impact and sustainable development. Renewable & Sustainable Energy821 Reviews 75, 618-628.

Shi, W.X., Lin, C., Chen, W., Hong, J.L., Chang, J.C., Dong, Y., Zhang, Y.L., 2017.
Environmental effect of current desulfurization technology on fly dust emission in
China. Renewable & Sustainable Energy Reviews 72, 1-9.

Shi, Z.G., Ferreiro, S., Lothenbach, B., Geiker, M.R., Kunther, W., Kaufmann, J.,
Herfort, D., Skibsted, J., 2019. Sulfate resistance of calcined clay-limestone-Portland
cements. Cement and Concrete Research 116, 238-251.

Simoni, M., Hanein, T., Duvallet, T.Y., Jewell, R.B., Provis, J.L., Kinoshita, H.,
2021. Producing cement clinker assemblages in the system: CaO-SiO₂-Al₂O₃-SO₃-

830 CaCl₂-MgO. Cement and Concrete Research 144, 106418.

831 Snellings, R., 2016. Assessing, understanding and unlocking supplementary
832 cementitious materials. RILEM Technical Letters 1(0), 50-55.

833 Staněk, T., 2016. The influence of SO₃ and MgO on kinetics of alite formation.
834 Procedia Engineering 151, 26-33.

Tullin, C., Ljungstroem, E., 1989. Reaction between calcium carbonate and sulfur
dioxide. Energy & Fuels 3(3), 284-287.

Wang, X., Li, Y.J., Zhu, T.Y., Jing, P.F., Wang, J.S., 2015. Simulation of the
heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid
model. Chemical Engineering Journal 264, 479-486.

Wang, Z., Yang, W., Liu, H., Jin, H., Chen, H.Q., Su, K., Tu, Y.J., Wang, W.L.,
2019. Thermochemical behavior of three sulfates (CaSO₄, K₂SO4 and Na₂SO₄) blended
with cement raw materials (CaO-SiO₂-Al₂O₃-Fe₂O₃) at high temperature. Journal of
Analytical and Applied Pyrolysis 142, 104617.

Wang, Z.Q., Hu, Y.J., Cheng, X.X., Ma, C.Y., 2018. Study of adsorption
characteristics of calcium-based sorbents with SO₃. Energy Procedia 144, 43-49.

Wu, C., 2020. Catalytic oxidation of SO₂ via vanadium-based catalysts in
simulated preheater environment and consequent effect on SO₂ capture by calciumbased desulfurizer. South China University of Technology. (In Chinese).

Xu, D., Cui, Y.S., Li, H., Yang, K., Xu, W., Chen, Y.X., 2015. On the future of
Chinese cement industry. Cement and Concrete Research 78, 2-13.

Yu, Q.J., Chen, R., Zhang, T.S., Wei, J.X., 2020. Recent development of flue gas
de-SO₂ and de-NO_x technology for cement industry. Bulletin of the Chinese Society 39,
2015-2032. (In Chinese).

Zhang, H.P., Zhang, R., Ni, Y.X., Chen, M., Sun, C.H., Dong, F.Q., 2022. SO₂
adsorption and conversion on pristine and defected calcite {104} surface: A density
functional theory study. Applied Surface Science 596, 153575.

Zhang, T.S., Wu, C., Li, B., Wang, C., Chen, X.Z., Wei, J.X., Yu, Q.J., 2019a.
Clarifying the decomposition process of pyrite and SO₂ release in the cyclone preheater
of a dry rotary cement kiln system. Journal of Cleaner Production 241, 118422.

Zhang, T.S., Wu, C., Li, B., Wang, J.W., Ravat, R., Chen, X.Z., Wei, J.X., Yu, Q.J.,
2019b. Linking the SO₂ emission of cement plants to the sulfur characteristics of their

862 limestones: A study of 80 NSP cement lines in China. Journal of Cleaner Production863 220, 200-211.

Zhang, X.M., Song, X.F., Sun, Z., Li, P., Yu, J.G., 2013. Density functional theory
study on the mechanism of calcium sulfate reductive decomposition by methane. Fuel
110, 204-211.

Zhu, J.P., Chen, Y.X., Zhang, L., Guo, B.K., Fan, G.X., Guan, X.M., Zhao, R.Q.,
2021. Revealing the doping mechanism of barium in sulfoaluminate cement clinker
phases. Journal of Cleaner Production 295, 126405.

870