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ABSTRACT
With smart sensors and embedded drivers, today’s automotive industry has taken a giant leap in
emerging technologies like Machine learning, Artificial intelligence, and the Internet of things and
started to build data-driven decision-making strategies to compete in global smart manufacturing.
This paper proposes a novel design framework that uses Federated learning-Artificial intelligence (FAI)
for decision-making and Smart Contract (SC) policies for process execution and control in a com-
pletely automated smart automobile manufacturing industry. The proposed design introduces a
novel element called Trust Threshold Limit (TTL) that helps moderate the excess usage of embedded
equipment, tools, energy, and cost functions, limitingwastages in themanufacturing processes. This
research highlights the use cases of AI in decentralised Blockchain with smart contracts, the com-
pany’s trading policies, and its advantages for effectively handling market risk assessments during
socio-economic crisis. The developed model supported by real-time cases incorporated cost func-
tions, delivery time and energy evaluations. Results spotlight the use of FAI in decision accuracy for
thedeveloped smart contract-basedAutomobileAssemblyModel (AAM), therebyqualitatively limiting
the threshold level of cost, energy and other control functions in procurement assembly andmanu-
facturing. Customisation and graphical user interface with cloud integration are some challenges of
this model.
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1. Introduction

Digital transformation and technology adoption tend to
enhance the quality and quantity of assembly, distribu-
tion, andmanufacturing in a fully automated smart man-
ufacturing enterprise (Manimuthu et al. 2021). All these
technology-driven approaches require smart infrastruc-
ture and customised business plans with market strate-
gies to boost the production line-ups, thereby enhancing
their manufacturing capabilities (Jain, Shao, and Shin
2017). Smart manufacturing involves domain-related
technology adoptions that target an achievable decision
in the manufacturing ecosystem (Elverum and Welo
2016). Some smart technologies that are actively used in
today’s modern and fully automated industries include
Artificial Intelligence, Bigdata, Blockchain, Robotics, and
Machine Learning (Koh, Dolgui, and Sarkis 2020; Singh,
Rathore, and Park 2020).

These technologies assist in collecting, processing, and
assembly to polishing, fitting, and distributing data to
the commercial and industrial markets. Smart sensors,

CONTACT S. C. Lenny Koh S.C.L.Koh@sheffield.ac.uk

electronic controller units, actuators, and embedded soft-
ware are critical in handling the generated data resources
from individual equipment and processes. Industries
widely use artificial intelligence and machine learning
mainly for data processing and analysis, and decision
making (O’Leary 2013), whereas big data and the Internet
of Things (IoT) for decision analytics and data collec-
tion, respectively. Data-driven decision-making provides
solid evidence in improving productivity and enhancing
themanufacturing and assembly processes, thereby helps
in monetary gain and accountability in real-time (The-
orin et al. 2017). Many convolutional methodologies of
today’s industrial practices are getting a smarter trans-
formation due to these technological advancements and
digital adoption, in particular the increasingly prominent
role of blockchain, artificial intelligence and machine
learning (Liao et al. 2017; Xu, Xu, and Li 2018; Dolgui
et al. 2020; Koh, Orzes, and Jia 2019; Pournader et al.
2020; Koh, Dolgui, and Sarkis 2020). All the processes
are fully automated, sophisticated software tools and cus-
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tomised control methodologies help industries achieve
efficiency (Gupta et al. 2020).

Based on the infrastructure andmanufacturing capac-
ity, technologies can be incubated and handled effectively
during every transformation stage available in the assem-
bly and testing process(Manimuthu andRamadoss 2019).
Rather than investing inmachinery and goods, industries
focus more on technology adoption. It helps them miti-
gate the market risks that directly affect their profits in
a competitive industrial environment (Khan and Byun
2020). Besides, skilled labour and smart infrastructure
design prove that digital adoption can make technology-
oriented process enhancements profitable, forecasting
the market trends and investment capabilities. Such
transformation plays a critical role in enhancing sustain-
ability and quality assurance besides trustmanagement in
the production and manufacturing processes(Yu Zhang
and Wen 2017).

Besides, contractual formalities and guaranteed return
of investment using smart control and operational strate-
gies help industries sustain global markets. Apart from
market risk, the small and medium enterprises (SMEs)
concentrate more on curtailing the production andman-
ufacturing cost and energy consumption. Such envi-
ronments involve consistent investment plans and flex-
ible return policies with suppliers and developers. Now
the focus is on leveraging smart contracts (SCs), a self-
executing decentralised blockchain-based procurement
mechanism towards data transparency. It helps monitor
and control third-party interventions, hidden broker-
ages, real-time consumption, and unauthorised activities
(Wang et al. 2019; De Giovanni 2020). Thus, from pro-
curement to design and from processing to control, all
the critical elements involved in supply chains need to
be closely monitored before deploying and testing the
latest digital technologies relying on a data-driven and
collaborative model (Xu and Dang 2020). This cooper-
ative mode allows sharing the datasets from a centralised
data repository, often referred to as a federated learning
system, which handles product movement, energy con-
sumption, and other real-time data through embedded
systems (Treleaven, Brown, and Yang 2017; Zheng et al.
2020). However, the deliberation on its (federated system)
relevance to practice is still at the nascent stage though it
leaves scope for diversified objectives.

Against this background, this study recognises a few
research gaps to explore the integration of manufactur-
ing processes with smart systems at process and module
levels. First, the current models do not consider thresh-
old levels for key parameters such as energy consumption
and individual component/module manufacturing costs.
Under market eventualities, these values will assist the

industries in predicting and projecting their target pro-
duction and manufacturing procedures not to be any
loss to initial investments of sectors. Second, to our
best knowledge, the literature lacks a deliberation on
integrating smart contracts for controlling parameters
such as energy and cost values of different components,
especially for complex environments such as automobile
manufacturing, which warrants the assistance of smart-
decision framework. Third, the literature remains far
from reporting the application of federated learning sys-
tems in a real-time manufacturing systems perspective,
though the domain receives some focus only in recent
times (Lu et al. 2020; Pokhrel and Choi 2020). To address
these gaps, the study proposes the research question:How
to design and deploy Federated Learning-Artificial intel-
ligence (FAI) assisted smart decision-making system for
automobile manufacturing environments?

The main objective of this federated learning model is
to introduce a nominal range calledTrust Threshold Limit
(TTL) that helps the system sustain any business pro-
cess/method with minimum freedom from excess usage
in terms of energy and cost without facing losses. Our
work defines TTL as a maximum limit that industrial
processes use to minimise process losses. It provides the
functional entity value, including the permitted level of
purchase and energy usage compared with their max-
imum risk through the smart-decision framework. All
these available attributes are modelled and deployed in
the developed design, unique to production industries.

The study is a pioneering one for the automotiveman-
ufacturing industry in multiple aspects. First, it deliber-
ates how the smart contract is involved in the control,
execution, and legalisation of manufacturing and distri-
bution of spare parts and components required for the
automobile manufacturing process (Magazzeni, McBur-
ney, and Nash 2017). Second, the study deliberates the
effectiveness of using machine learning, especially feder-
ated learning, for computing suitable TTL values for each
tool, method, and component inmanufacturing environ-
ments. Third, the study developed an AI-enabled Auto-
mobile Assembly Model (AAM) that stresses the need and
importance of IoT and ML-based data-driven decision-
making. Thus, it offers a perspective on the role of nego-
tiable entities such as smart contracts in processing real-
time purchase and demand information (Yuanyu Zhang
et al. 2019). Use cases of AAM include analyzing the pro-
ductivity and distribution when SC and TTL are in place.
Critical elements like energy, cost function, time, and
productivity are remarkably improved using AAM as a
reference framework in the industry.

The remainder of this paper is organised as follows.
Section 2 reviews the recent literature on blockchain
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and smart manufacturing processes. Section 3 dis-
cusses model components and control parameters.
Section 4 explains the modelling and design method-
ologies. Experimental study and use case analysis are
shown in section 5. Next, section 6 elaborates the sim-
ulation and experimental analysis. Section 7 discusses
the findings, and Section 8 deliberates both theoretical
andmanagerial implications. Finally, Section 9 concludes
with limitations and future scope.

2. Literature background

The review process adopted a systematic exercise
by retrieving the relevant publications from differ-
ent repositories through the following search strings:
(TITLE-ABS-KEY (blockchain) OR TITLE-ABS-KEY
(smart AND contracts) OR TITLE-ABS-KEY (federated
AND artificial AND intelligence) OR TITLE-ABS-KEY
(machine AND learning) OR TITLE-ABS-KEY (artifi-
cial AND intelligence) AND TITLE-ABS-KEY (automo-
tive AND assembly) OR TITLE-ABS-KEY (automobile
ANDassembly)) AND (LIMIT-TO (DOCTYPE, ‘ar’) OR
LIMIT-TO (DOCTYPE, ‘re’)) AND (LIMIT-TO (LAN-
GUAGE, ‘English’)) AND (LIMIT-TO (SRCTYPE, ‘j’)).
The below sub-sections summarise the recent literature
around blockchain, artificial intelligence in manufactur-
ing, and federated learning systems.

2.1. Blockchain inmanufacturing

Manufacturers are actively involved in developing and
deploying blockchain in their industrial practices due to
many functional aspects: operations control, risk man-
agement, active process control, and additive manu-
facturing supply chain(Macrinici, Cartofeanu, and Gao
2018). These factors help them gain more visibility
in market risk and obtain asset tracking availabil-
ity throughout their market venture capitalisation of
investments in real-time. It can influence the design,
control, process, assessment, and delivery of products
at both ends of the industry. With global supply-
demand forecasting, auditing the control strategies and
cost function are critically important, thereby foster-
ing customers’ trust and market sustainability(Allam
and Dhunny 2019). All these key scaling factors will
adversely affect the system performance (Yuanyu Zhang
et al. 2019). Some of the industrial impacts of using
blockchain include supply-chain monitoring, data-driven
decision making, asset tracking, control, process manage-
ment, trust validation, quality and quantity assurance,
market risk forecasting, energy and cost management, pol-
icy formation, and risk management.Thus, from procure-
ment to delivery, all the raw materials to finished goods

can bemapped andmodelled using suitable policy-based
blockchain applications. The application allows manu-
facturers to track their productmovements and traceabil-
ity on the supply of goods and equipment among com-
panies, vendors, and suppliers (Gonçalves et al. 2021).
Risk accessibility, especially on large-scale production
andmanufacturingwith suitable network and blockchain
aided supply help ease the system-centric smart automa-
tion environment (Manimuthu et al. 2019; Manimuthu
and Dharshini 2021; Mohanta et al. 2020)). SC and
market policy aims to showcase component and fin-
ished product-wide deliverables. Industries also encour-
age legitimate and legally available SC, especially for risk-
prone industries (Baryannis et al. 2019). Thus, companies
need to functionally incubate, implement and plan suit-
able infrastructure design in manufacturing and supply
chains to effectively utilise the blockchain in investment,
retail, export-import, and pre-and post-processing of raw
materials in real-time (Min 2010).

Enterprise resource management and control system
strategies need to have long upgrades. In few cases, these
strategies require infrastructure and automation invest-
ments to utilise the blockchain primitives in their work-
place efficiently. As a nascent technology, blockchainwith
other smart technologies needs to be effectively han-
dled and efficiently used in today’s modern manufac-
turing industries. The reliable and smart manufacturing
process requires a focus on product reception to sup-
ply (Manimuthu et al. 2021). Customer markets need to
be studied to ensure a sustainable market index in the
growing global trade environment. According to agile
and smart manufacturing companies’ market valuation
and customer index, reliable and quality assured prod-
uct delivery between manufacturers and consumers is
very narrow. This gap requires substantial steps that war-
rant long-term business trend forecasting and market
investments (Manimuthu et al. 2021).

Blockchain has proven potential in influencing man-
ufacturing and supply chain practices. Critical elements
such as energy consumption, cost, processing, and con-
trol strategies are integrated towards sustaining the prod-
uct supply under the required specifications. Policy for-
mulation, government regulations, and legal advisories
become part of industrial practices; blockchain with
operational and trade policies help in guiding and pro-
liferating these regulatory gaps (Andoni et al. 2019).
Recently, Venkatesh et al. (2020) propose a blockchain
environment to track the social sustainability dimen-
sion of manufacturing industries. Thus, the objectives of
supply chain transparency, effectivemanagement of tech-
nologies, and deploying smart innovation tools together
offer a win-win situation to all participating industries
of a blockchain-enabled automation environment. In



114 A. MANIMUTHU ET AL.

addition to the supply-chain practices and operations,
fostering the state-of-the-art design that helps to get
maximum potential with available resources becomes
instrumental (Ivanov, Sokolov, and Dolgui 2014; Saberi
et al. 2019). Summing up all the critical elements for the
design, a novel smart and comprehensive operations and
business model is developed.

2.2. AI in automotive industries

Processing capabilities and error detection/identification
are a few critical elements in the smart manufacturing
industries. A highly reliable smart system needs to be
deployed for automated and completely robotic control
units in assembly, control, and movements (Min 2010;
Yuanyu Zhang et al. 2019; Fenwick and Vermeulen 2019;
Cioffi et al. 2020). Due to the enormous range of data
computing and fast processing capabilities, AI is being
implemented in industries and other smart technologies
(Refer to Table 1). A wide range of customised AI algo-
rithms is readily available in the market to do various
operations such that algorithms can mimic the actions

and processing techniques performed by labours. Thus,
transforming the workplace with manual process into
a robust and customisable AI-driven operation tends
to prove their betterment in areas like pre-and post-
processing, control and application delivery, and other
supply chain practices in real-time(Allam and Dhunny
2019; Kolvart, Poola, and Rull 2016; Singh, Rathore, and
Park 2020).

As a core component for Industry 4.0 and smart IoT
systems, AI never stops enhancing the business model
where it helps to transform the industry to compete
in the global market (Omohundro 2014; Parunak 1996;
Wang et al. 2018). Thus, in today’s businessmodel, indus-
tries aim to incorporate AI in their designs and offer
smart solutions to data-driven decision-making proce-
dures. Due to the advent of developing smart technolo-
gies, the transformation of sectors to adopt industrial 4.0
and industrial IoT standards is getting linear growth. Pro-
duction, control, processing, and manufacturing are vital
areas that get boosted with these smart techniques of
operations (Rane and Narvel 2021). AI provides an inde-
pendent and stand-alone solution to numerous inventory

Table 1. Studies related to emerging technology from the automotive industry.

S.no Authors & Year Domain Focus Methods Applications

1 Gonçalves et al. (2021) Automotive Industry Decision-Making Multivariate approach Forecasting Assembly
process

2 Guo and Ryan (2021) Auto Assembly Line Risk-Averse Optimisation Mixed-Integer Programming Large Vehicles Assembly
3 Kong et al. 2021 Mobility Services Decision-Making Bloom Filter Driver Performance

Evaluation
4 Mishra, Mahanty, and

Thakkar (2021)
Automotive Industry Servitisation Graph-Theoretic Approach Quality Concerns

5 Loading et al. (2021) Automotive Industry Judgment Analysis Discrete Event Simulation Manufacturing systems
6 Raj Kumar Reddy et al.

2021
Automotive Industry State Of the Art Clustering Analysis Vuca World

7 Shahbazi and Byun 2021 Automotive Industry Data Analytics Hybrid Prediction Models Smart Manufacturing
8 Alavian et al. (2020) Automotive Industry Continuous Improvement Industry 4.0 Production Systems
9 Dutta et al. 2020 Blockchain Technology State Of the Art Literature Review Business Visibility
10 Gupta et al. 2020 Autonomous Vehicle State Of the Art Literature Review Cybersecurity
11 Hadian et al. (2020) Automotive Industry Decision-Making Vikor – MCDM Outsourcing
12 Jabbar et al. 2020 Automotive Industry Decentralized Platform Internet Of Vehicles Vehicle Communication
13 Kim, Jung, and Hu 2020 Automotive Industry Smart Contracts Deep Learning Dashcam Application
14 Xia et al. 2020 Vehicle Technology Blockchain Transactions Bayesian Game Electronic Trading
15 Xu and Dang (2020) Automotive Industry Causal Analysis Digital Cause & effect Diagram Knowledge Management
16 Copeland et al. 2019 Vehicle Sourcing Edge Communication Network Function Virtualization Essential Services
17 Samarakoon et al. (2020) Automotive Industry Decision-Making Federated Learning Vehicular communications
18 Sharma, Kumar, and Park

2019
Automotive Industry Distributed Framework Node Selection Algorithm Smart City

19 Erfurth and Bendul (2018) Automotive Industry Manufacturing networks Cross Case Study Global Manufacturing
20 Kumar et al. (2018) Integrated Planning Production control Modeling And Simulation Production Scheduling
21 Sharma, Kumar, and Park

(2019)
Vehicle Technology Distributed framework Blockchain Smart Environment

22 Jain, Shao, and Shin (2017) Automotive Industry Data Analytics Performance Analysis Process Modelling
23 Wei et al. (2017) Auto Part Manufacturer Optimization Algorithm Support Vector Machines Manufacturing Process

Quality
24 Keivanpour, Ait-Kadi, and

Mascle (2017)
Automotive Industry Decision-Making Fuzzy Logic End-Of-Life Vehicle

25 Theorin et al. (2017) Agile Manufacturing Information Systems Event-Driven Architecture Manufacturing Systems
26 Elverum and Welo (2016) Automotive Industry Innovation Management New Product Development Rapid Prototyping
27 Gupta and Vardhan (2016) Automotive Industry Equipment Effectiveness Production Cost Equipment effectiveness
28 Lacerda, Xambre, and

Alvelos (2016)
Automotive Industry Continuous Improvement Value-StreamMapping Component Manufacturing

Note: MCDM –Multi-criteria decision making.
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and supply-chain problems existing within the indus-
trial environment. All these fully automated frameworks
run with the help of customised AI-IoT algorithms with
potential risk assessment features. Thus, manufacturing
and supply chain industries are constantly looking for
these robust and customisable smart innovations to be
adopted in their workplace (Bhamra, Dani, and Burnard
2011; Gupta et al. 2020; Macrinici, Cartofeanu, and Gao
2018; Singh, Rathore, and Park 2020).

2.3. Federated learning

The collaborative learning mode of machine learning
helps iteratively train vast amounts of data from each
of the embedded sensors and devices installed inside
every manufacturing equipment. Data from the vendors,
suppliers, and stockholders are collected and processed
before transferring to the following sections for further
operations. IoT plays a significant role in the instant
delivery of accumulated data from the devices. Such data
have critically been used in training to obtain functional
insights on different goods and commodities in real-
time. One of the key factors that assist in designing and
modelling accumulated sensory data is standard console
built-up, where data can be stored as packets with times-
tamps (O’Leary 2013). Thus, centralised federated learn-
ing is performed whenever the data is obtained using
IoT-enabled smart sensors that tend to get accumulated
on an arbitrary basis and logged based on a specific cus-
tomised AI algorithm. The majority of reported studies
were conceptualised and developed using conventional
techniques and approaches. The review confirms that the
literature remains far from using a federated-learning sys-
tem in manufacturing to improve efficiency, even though
there is a growing interest in recent times. This provides
an opportunity to study the application of FAI as a smart
decision-making framework in an automotive assembly
process. Apart from the consummate design and plan-
ning features, using federated models provides lot of
managerial insights for effective operations and business
practices in real-time. Some of the obsoletedmodels exit-
ing in current practices can be easily tuned, restructure
or replaced using the learning models. A detailed lit-
erature studies about design elements, decision models
and operation support entities are tabulated (Table 1) to
give broader insights AI, and Blockchain in industrial use
cases.

3. Model design background and key
parameters

Federated Learning with AI (FAI) algorithms helps in
bringing different steps of algorithms and codes along

with sensory data in a single window for Grouping-
>Processing->Analysis-> Interpretation->Mapping->
Modelling->Training->Feature Extraction->Decision
Making. Data are stored after all these processes in a
local data repository or data centre (based on industry
infrastructure and data generated).

In the developed FAI model, regression methods
are used a few data processing sections for data nor-
malisation and probability on error identification/rec-
tification during sampling and training. This training
model depends on few critical parameters as follows:

(1) Batch size or Repository sampling values (B)
(2) Number of data entries/iteration (D)
(3) Total number of nodes or components (N)
(4) Deployed FAI models (M)
(5) Training range (R)
(6) Data sampling rate (S)

Depending on the data obtained from vendors, sup-
pliers, and stocks, values are modelled and trained. If
datasets are generated from a single period, sampling
rate needs are assigned for training and processing to a
separate FAI model. In such cases, training values must
be correlated and normalised to avoid sampling errors
affecting the overall outcome for a particular component
in the systemmodel(Gupta et al. 2020; Treleaven, Brown,
and Yang 2017; Zheng et al. 2020). Thus, to avoid such
discrepancies at the output, further modelling is done
using batch processing. Each batch consists of compo-
nents of the same type obtained from multiple vendors
at the same frequency for processing. Each of the tools
and features is identified and grouped with specific iden-
tification (ID) numbers. Consider an item ‘A’ obtained
from vendor ‘X’ at a time ‘t’. Then following notations
are provided by the user to retrieve a particular A at any
time instance ‘ti’.

(1) Total number of components fromparticular vendor
= ∑

X = X1+X2+ . . . ..+Xn
(2) Total number of samples recorded at the time ‘t’= Y
(3) Number of clients involved in the same process = Z
(4) Training dataset value for X at any time ‘t’ = W (R,

B) where W is the weight of a particular dataset.
(5) Error accumulated during training=E

Thus, during the training and while applying FAI,

Tested sampling rate for component X =
n∑

t=1

Y(Z)

W(Rn,Bn)

+ E
W(Rn,Bn)

+ S′ (1)
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Where S′ =
n∑

t=1

[
S

B + N
+ D

S

]
(2)

Samples tested correction and modelling using FAI at
time ‘t’ is obtained using the equation (1). Similarly, the
dataset for all the components is modelled and stored
in a shared data repository. This data repository can
be revoked using their unique packet identifier (PID).
Thus, using suitable PID and sampling test results, the
correct proportion of tools and components from pro-
cessing to production can be revoked from the storage.
These capabilities are provided with every section until
the final product is delivered to the clients(Parunak 1996;
Allam and Dhunny 2019;). Apart from the information
handling and data processing, FAI helps to handle the
stock comparison and pricing values. This helps monitor
volatile market share and commodity pricing options of
components or raw materials subjected to market invest-
ment risk and economic crisis. Thus, their cost of pro-
duction, usage, wastages, and energy involved in utilising
them are critically modelled and planned at each section
(O’Leary 2013; Wang et al. 2018).

3.1. AI and Smart contract

Algorithms and learning methodologies involved in
smart manufacturing entities vary with time. Thus, this
basic featurization endorses the smart contract (SC)
usage that extends the production process visibility to
engineer and train the functions and standard oper-
ating procedures. SC is framed between the suppliers
and the manufacturers (mutual agreement) on the risk
of raw materials, processing, testing, and validation of
goods(Baryannis et al. 2019; Magazzeni, McBurney, and
Nash 2017; Min 2010). SC has provisions to include the
insurance schemes available for the assembly, inventory,
and product delivery. Since the entire operation is han-
dled using FAI and SC, the arbitration of data obtained
from all the market shareholders is modelled for effec-
tive management in real-time. Some of the segments that
involve SC in the production and manufacturing in the
industry include:

(1) Raw Materials
(2) Financing and Stock valuation
(3) Insurance and market risk
(4) Delivery and Transportation

All these four SCs are actively enabled during theman-
ufacturing and assembly process. AI models help find
suitable negotiation factors for cost, energy, market risk
by predicting and forecasting the feasibility of SC poli-
cies before the commencement of works in the industries.

Both regulatory and technical policies can be bundled
together using SC as FAI helps in foreseeing the risk
factors in prediction, planning, procurement, purchase,
manufacturing, assembly, and delivery(Cioffi et al. 2020;
Khan and Byun 2020). Thus, to validate this blockchain
during the loading, unloading, and distribution of com-
ponents and tools in and out of the industry and to study
SC’s limitations, functionalities, and features, FAI helps
manage the potential risk in the manufacturing process.
Data with the least possible error values help fetch the
desired benefits of utilising AI and SC in the workplace.
A new normalisation phenomenon is introduced in the
manufacturing process to cut off accumulated errors,
and data mismatch from obtained datasheets to pro-
cessed data (Nofer et al. 2017; Sayeed, Marco-Gisbert,
and Caira 2020). This method is data-centric, and nor-
malisation helps mitigate the system’s accumulated data
errors without affecting the policy to a greater extent.
This novel error limiting factor is called Trust Threshold
Limit (TTL).

3.2. Trust Threshold Limit (TTL)

TTL refers to the maximum limit that any goods and
components involved in assembly, manufacturing, and
delivery can be experimentally utilised with minimum
wastage or losses. Thus, as the name indicates, TTL sets
the threshold limit for all the tools and devices actively
participating in product delivery. SC depends on the
permitted TTL limit for each entry in the data socket,
exceeding which the chance of loss in the product market
is high. With TTL value, the responsibility of the policy-
maker and FAI function is to optimise the scaling factor
for the component within that particular limit(Mohanta
et al. 2020; Sayeed, Marco-Gisbert, and Caira 2020; Yu
Zhang and Wen 2017; Yuanyu Zhang et al. 2019). The
novel decision aid model and the threshold limit values
helps the operations, production and logistics in their
purchase, procurement, distribution, and delivery. Apart
from the normal supply-chain and logistics operations
(Ivanov et al. 2016, 2019), the developed state-of-the-art
TTL values helps the existing business model to incubate
them for better component and product movements in
their real-time industrial environment.

Example: Consider equation (1) where testing sam-
ples for product X are obtained by FAI and weights of X.
When it comes toTTL, themaximum limit value needs to
be obtained using the sameweights and data distribution.
Thus TTL (X) can be modelled as follows:

TTL(X) =
n∑

t=1

W(R,B)

Y
+

n∑
t=1

E
(B + D) ∗ 1

R+Z ∗ X′

(3)
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Where X′ = 1
B
D + R

+
∑ X

W(R,B)

+ Z ∗ W(R,B)/
∑

X + E (4)

For a manufacturing and production unit to operate
with full potential both in terms of benefits from sup-
ply and process/procurement/purchase, equations 3 and
4 will significantly help. Design testing and analysis fall
under the sameumbrella of TTL. Timestamp and compo-
nent ID are used as a reference entity to model the FAI at
different sections with other industrial procedures (Min
2010; Nofer et al. 2017).

4. Methods

The model framework is structured under four stages
of sequential processes, as shown in Figure 1. The pro-
cess gets started with data collection, followed by data
normalisation. The processed data is tested and analyzed
using suitable testing and validation methods (support
vector machine learning). All these segmented and nor-
malised datasets are thenmodelled and trained using FAI

for decision-making and validation in real-time. SC is
provided with the market risk knowledge and resource
utilisation metrics during all the stages of data accu-
mulation, processing, and control, thereby ensuring the
market standards for better product delivery. Policymak-
ers and standard decision-making units critically evalu-
ate the outcomes at every stage. Finally, the end prod-
uct is delivered with the same features to the consumer
market(Gupta et al. 2020; Min 2010).

4.1. Stage 1: Data collection and classification

The entire process of product design and delivery relies
solely on the accuracy of data gathered from each of
the available components in the system. Discrete datasets
from each supplier, vendor, and stockholder are actively
collected along with their market risk policy to frame
their suitable SC. As these data are entirely obtained from
the IoT-enabled smart sensors, these data require a lot
of pre-and post-processing functions to be performed.
Information about manufacturing, warranty, composi-
tion, maker’s policy, structural details are logged and

Figure 1. Research Flow.
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modleled during the collection process. Sensors, actua-
tors, and other embedded electronic equipment collect
the data and efficiently hand them to the central data
repository for further processing and analysis. After the
data collection, the accumulated data are modelled and
mapped with their unique ID. The equipment data are
stored in their respective local data repositories for long-
term referencing and policy formulation. These data are
then retrieved for the 1st stage of processing, called Trust
validation. The data obtained and stored from the sup-
pliers and stockholders are cross-referenced and verified
to prove confidence and originality regarding measure-
ments, validity, defects, or other deformities. If any flaws
are identified during this stage of trust validation, SC will
immediately help manufacturers raise a replacement or
refund the stocks. This blockchain feature needs to be
mentioned at the time of policy formation. This can be
materialised and followed as a standard defect identifi-
cation and originality check of goods and commodities
covered under the same risk assessment policy(Khan and
Byun 2020). In addition to the existing literature (Ivanov,
Sokolov, and Dolgui 2014, 2019), the impact of engag-
ing smart technologies are explained in detail with the
help of AI and blockchain. This sheds lights for new
research and design perspectives of altering the indus-
trial design for performance enhancement andmonetary
benefits.

The datasets are modelled using the support vec-
tor machine learning model (SVML) in the post-trust-
validation phase. During this unsupervised ML train-
ing, the dataset is provided with classifiers where each
classifier offers the information on the source of goods,
timestamp, and purchase details. All these data are mod-
elled and mapped under SC group policy intended to
avoid the market risk practice. Depending on the sup-
plier’s datasheets and procedures, the manufacturer has
the freedom to plan additional policies if the system’s per-
formance predicts a better ratio than expected during the
policy formation(Mohanta et al. 2020; YuZhang andWen
2017).

Each support vector is identified and mapped with
their classifiers and logged in the same database for each
reference and identification. All the mapped dataset is
logged in a customised database for easy and smooth
identification and utilisation. During the end-product
delivery, these classifiers and the support vectors are
invoked from the system database for final checking and
clearance. In case of any contradiction to the proposed
details, S and FAI values, will be cross-checked andmod-
ified as per the risk assessment SC in the system (Mag-
azzeni, McBurney, and Nash 2017; Yuanyu Zhang et al.
2019).

4.2. Stage 2: Grouping and normalisation

All the logged data and support vectors are moved to the
next section of data normalisation. The data with errors
are identified and removed/correlated with the next least
possible error values required for processing the tools.
Thus, error rectification is completely done during this
process of data normalisation. In someworst-case scenar-
ios, if the schematic of a particular component consec-
utively fails to meet the expectations, then the financial
blockchain is invoked using the SC. One of the most
prominent examples of today’s automotiveworld for such
financial SC and their smart policy is recalling Honda
Model cars due to their faulty airbags. Under such cir-
cumstances, group policies are shared between all the
involved parties, from suppliers to manufacturers. Due
to these unexpected circumstances, the loss incurred is
equally shared by all the commodity vendors and compa-
nies (Sayeed,Marco-Gisbert, andCaira 2020; Zheng et al.
2020). If the defect is identified in the product (Airbag
as in Honda cars), then the faulty product id is revoked
from the database for vendor identification. If the ven-
dor SC is not assigned under such financial blockchain,
then the company is entirely liable for the incidents. If
SC is derived in favour of the manufacturer, then the
vendors will take the whole responsibility and address
the incidents with compensation or replacement of the
entire automobile itself. Thus, data error normalisation
and schematic verification play a major role in training
and SC formation.

4.3. Stage 3: Control, verification, and analysis

Two of the critical stages in the manufacturing and
assembly in the fully automated smart manufacturing
industry are verification and analysis. In this stage, the
component datasets are evaluated for fixing their TTL
range. This range plays a significant role in energy usage,
supply-demand management, cost, and flawless product
delivery. Normalised data obtained after verifying the
schematics is shared with the assembly and verifica-
tion section. TTL of the component is set before start-
ing the process (Magazzeni, McBurney, and Nash 2017;
Yu Zhang and Wen 2017). Once the process is initi-
ated, TTL for that tool is picked from the data model
for fitting and assembly. During the assembly and fit-
ting schemes, the dataset is verified for TTL; thereby,
the reference limit for the whole processing mecha-
nism solely depends on the limit set by TTL. In this
system driven control and processing, all the accumu-
lated datasets are going through series of processes as
follows:
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(1) Fitting
(2) Assembly
(3) Verification
(4) Analysis
(5) Testing
(6) Polishing under the same TTL value from the SVML

training used for deriving SC.

All the SC under this stage is assigned under the insur-
ance and market risk blockchain category. SC associated
with insurance blockchain helps the retail business ven-
tures to take part in the investment procedures, thereby
helps in boosting their market share and business devel-
opment processes (Yuanyu Zhang et al. 2019).Market lia-
bility is insured, and the IoT devices closely monitor the
actions performed at each section. As the data generated
from embedded devices are a continuous process, classi-
fiers and the support vectors are assigned instantly irre-
spective of the functionality and operations performed at
different stages of the assembly and delivery process.

If any mismatch occurs during the production and
delivery stages, the dataset is retrieved from the local
database, and their TTL is critically examined with their
support vectors. Thus, errors are eliminated. Compar-
ing with the existing industrial setup, engaging smart
technologies will give maximum insights about the cru-
cial designs and process automation. Joining up with the
available resources, the operations and control schemes
can be modelled for maximum benefits. For every stage
of product design and fitting, the SC can be provided
with suitable regulatory primitives, thereby bringing all
the datasets under a single database (Zheng et al. 2020).
Insurance companies offer higher flexibility in share
exchanges for policymaking and production strategy
analysis subjected to market risk and investment returns.
For investment returns, the predicted performance by the
FAI schemes holds a high hand in the market demand
with a better supply chain ratio. At the same time, all
the involved third-party vendors and suppliers try to
seek more capital investors. To ensure assured returns
from the entitled policies, commonly available risk fac-
tors include:

(1) Raw material cost
(2) Supply-demand ratio
(3) Goods quality
(4) Delivery time
(5) Economic crisis
(6) Market credibility

Thus, this stage involves a high risk-high return if the
expected product reaches the target audience within the
stipulated time. Thereby effectively balances operational

credibility in real-time(O’Leary 2013; Wang et al. 2018).
Working performance and service satisfaction from the
end-users play a vital role in framing and fixing the SC
once the product is available for usage. A Timeline for the
next bulk production relies entirely on the target audi-
ence’s satisfactory report analysis, which takes time to
obtain in real-time.

4.4. Stage 4: Decisionmaking, FAI, and product
dispatch

The next critical and most crucial stage of AAM design
is the decision-making by which the real-time testing is
evaluated. Data obtained from this stage is used as a ref-
erence for all SC forms considered a baseline scheme
for identifying the TTL values. The convolutional data
processing method offers more error functions than the
FAI scheme (Giancaspro 2017; Macrinici, Cartofeanu,
and Gao 2018). Apart from the analysis and training, the
SC and training datasets are arbitrarily cross-referenced
for smooth data interpretation and model evaluation.
From the study, key findings includemarket valuation for
each product, cost and distribution quantity to individ-
ual shareholders, profit-loss margin and transportation
and insurance coverage, quantity, and quality of goods
delivery, etc. By doing this model evaluation using TTL
and FAI, the decision can be obtained for the AAM
design that includes energy usage, cost, and components
quantity(Allam and Dhunny 2019).

5. Case study

Implementation of the developedmodel in a smart indus-
trial environment helps to understand the benefits of
using TTL and FAI in real-time. As the company can
incubate the necessary blockchain techniques, the infras-
tructure requirement has diversified requirements. The
operations and control scheme of the developed AAM
are thoroughly evaluated in real-time. Implementing the
SC in the workplace without halting the operations in
the industry is quite challenging, but the time taken to
implement is significantly less than any other existing
conventional models.

5.1. Company background

Small and Medium Enterprises (SMEs) are actively
involved in emerging the latest technologies in their
working strategies. One such SME is situated in Europe,
where it assembles various automotive parts manufac-
tured across the globe. They have an automated assem-
bly, distribution, and small-scale manufacturing unit
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(locally develop few components). As a new commer-
cialisation strategy in 2020, they started implementing
the SC Blockchain technique in their vehicle assem-
bly and distribution process. Initially, they tested the
scheme for their domestic warehouse operations, which
assembles embedded components essential for product
delivery, as their concentration was only on transporta-
tion blockchain. Step-by-step, they have expanded their
market to neighbouring countries like Malaysia, India,
and few others (Baryannis et al. 2019; Yuanyu Zhang
et al. 2019). Since the company is about eight years
old, the global response index for testing and emerg-
ing new techniques in their design is quite challeng-
ing in the beginning. However, their initiative is rela-
tively new to the commercial vehicle market. Due to
confidentiality and workplace design ethics, the com-
pany name is kept anonymously as XYZ company. The
company’s goal is to deliver commercial trucks to var-
ious customers across the world. The company aims to
implement AI models, IoT, and other ML techniques
are driven decision-making. There are three stages in
the vehicle assembly and delivery process. Each stage
involves new technologies and standards AI methodolo-
gies that aim to bring a solid result-oriented profitable
design. The developed design helps the company com-
pete effectively in the local and global market for the
long term.

The other objective of implementing SC and AI is to
provide a hassle-free and risk-less automobile delivery
environment that facilitates desirable profit. This leads
to less impact due to socio-economic crises or any other
strategies from existing competitors. The trucks assem-
bled from this factory vary from 10–18 wheels, and each
truck goes through the same assembling stages using AI
and Blockchain(Nofer et al. 2017). Stage 1 consists of

component classification and analysis. Data aremodelled
and associated with the Raw Material Blockchain. Stage
2 comprises embedded equipment and machinery data
that helps in the investigation, grouping, and classifi-
cation of data. This section is closely associated with
financial and insurance blockchain. The final stage in the
design of AAM for XZY company is the final assembly of
the product, where all the sections and stages are involved
in achieving the desired outcome. In this stage, 3, TTL,
and SC help finalise the FAI values by which the company
stakeholders will plan and execute their business plans in
real-time.

The vehicle design has many smart embedded com-
ponents. Thus their working conditions, testing, and
field assembly values need to be processed and modelled
(Yuanyu Zhang et al. 2019). Depending on the indus-
trial standards, market needs, and commercial value, the
quality and quantity of tools, software, and devices are
mapped and installed. Figure 2 exhibits details of com-
mercial vehicles assembled in the plant. The vehicle con-
sists of much electronic equipment that acts as embed-
ded agents and assists the IoT system in data collection,
distribution„ and storage.

5.2. Business case

Component procurement, vendor selection, equipment
identification and market valuations, and the best com-
mercial value for the product are critical zones focused
in the design. Data collection, processing, and analy-
sis based on various factors like energy usage, product
loss/damages, and cost of production are critically consid-
ered in themodelling, evaluation, and implementation of
them in the workplace. Implementing the AAM helps to
improve productivity, competitive market pricing for the

Figure 2. Components involved in Industry Grade Commercial Truck.
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vehicle delivered, and security for all the investors. Fur-
ther investigation includes 1. Component classification
based on loading and unloading time and market cost. 2.
Analyse the pricing values fromall the vendors, suppliers,
and stockholders. 3. It assists in arranging the compo-
nents with their respective logistic sections. 4. Processing
and evaluating the datasheets received from all the com-
ponent delivery members. 5. Identify the component’s
originality, insurance policy, and smart contract details
for practical usage at different sections in the XYZ com-
pany. This helps effective utilisation of IoT devices and
smart components on the manufacturing floor. Data col-
lected are transferred to different processing and control
zones for interpretation, classification, and analysis. For
this purpose, AAMuses support vectormachine learning
and classifiers.

Thus, data are modelled, mapped, and processed
based on industrial requirements and product’s commer-
cial standards in real-time. Required data statistics are
immediately processed andmodelled using FAI to obtain
the TTL value for any individual component involved in
the system design. Stock availability, component usage
metrics, energy consumption at the workplace, and cost
of production are modelled individually in the AAM
design. Thus, the final product assembly and delivery
involves a lot of complex data processing and training
mechanism that assures better market value for the vehi-
cle without any losses in per capita investment for each
investor. As all the schemes modelling are done through
a smart contract, the AAM framework requires stage-
by-stage data processing that uses IoT, machine learning
models that significantly assist in curtailing losses at var-
ious stages of the assembly process. Table 2 shows the
project charter carried out for AAM design and deploy-
ment in the XYZ company.

5.3. Data collection and vector classification

In this design stage, goods, software, tools, and com-
ponents from all the parties are unloaded and verified
for their originality and standards in real-time. All stock
values, component lists and specifications are labelled,
tagged, and received at the unloading section. Stock-
list, storage requirements, processing features, marking
details like time and validity of the contract are mapped
and stored with their respective suppliers (Guo and Ryan
2021). This stage uses a unique identifier for easy recov-
ery in case of loss, damage, or faulty components. Data
about the suppliers are kept confidential throughout the
process as the SC policy will give additional safety and
security details from the manufacturer. Cross functional
embedded equipment can be combined together for data
collection and processing. Energy reading is obtained

Table 2. Project charter.

Business Case: Statistical modelling and efficient cost reduction and
energy consumption in stages like loading, transportation, procurement,
production, and assembly. Sensor-based embedded application processes
are fully automated. Modelling and design evaluation is done using R
programming. Industry-grade simulation software helps to derive the
required values and thresh limits for each component involved in the
design. Market procurement with minimum gain margin will provide
better scaling values when all the components are modelled using the
same procedures. This helps reduce the stock pricing andmarket valuation
by attracting many investors without the risk of the vehicle’s monetary
loss and commercial value.

ProblemStatement: Implementing cost-effective procurement, processing,
and product delivery strategy using FAI and SC. Effectively utilise IoT and
Machine Learning functions for data collection, analysis, estimation, and
performance evaluation in a fully automated assembly and delivery unit
in the automobile industry.

Goal Statement:Minimising excess resource utilisation, cost, and energy
in all the critical areas covered under the smart contract. Introducing a
novel performance measurement index helps the industry maintain a
permitted level of profit-safe margin during purchase and holdings called
Trust Threshold Level (TTL).

Team Requirement: Since the industry is fully automated, only 6–10 skilled
labourers are sufficient to assist the devices, data processing centres,
and robotic platforms. Skillset includes troubleshooting in embedded
software tools, design testing, and high-level experience handling
machine learning algorithms and R models.

Period: 13 months (Full Time) Jan 2020 to Feb 2021 for implementation,
modelling, testing, and deployment of developed AAM in the workplace
with fully established FAI-TTL assistance with Smart Contract.

Equipment used: Sensors, Actuators, Electronic Controller Units, Near Field
Communication Devices, RFID (Radio Frequency Identification) tags, and
IoT enabled smart Transceiver units.

Software and Data Repository used: Local Data storage and processing
unit, Automotive Grade Design software like MATLAB and R modelling
tool.

from a coordinated andmodelled central controlling unit
where all the federated models are deployed for process-
ing and calculation in real-time.

Once the details about the tools, components, and
other miscellaneous elements involved in the design,
assembly, and production process are received, they were
labelled, and tagged for easy classification, identification,
and storage. The stocks are stored in the local reposi-
tory, and the same is modelled using Support vector ML.
In this process, each vendor ID is mapped and logged
with their devices and tools. This information is cat-
egorised and provided as samples for the ML model
for training and feature extraction purposes. Once their
detailed analysis is obtained, the stockpile is provided
with classifiers. The stockpile and their unique compo-
nent ID can be invoked and identified at any stage of their
requirement in real-time. For this analysis and categori-
sation, AAM uses R packages, and the dataset is analyzed
for feature extraction using automotive software tools
(Manimuthu et al. 2021). Key findings from this stage
include:

(1) Fault identification
(2) Component Classification
(3) Mapping of tools and Devices with their suppliers
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(4) Product policy identification
(5) Stocks and Storage range and capacity index
(6) Market cost and Energy consumed during Unload-

ing and storage in dedicated facilities

From this stage, the raw materials are assigned and
model with their specific SC type based on com-
pany requirement, market trend, and investors inter-
est. Some primary SC types include Smart Legal con-
tract, Decentralized Autonomous Organization (DAO)
contract, Application logic Contract (ALC). In this AAM,
components are categorised in the production process
using only two SC: Smart Legal and ALC(Parunak
1996).

5.4. Smart legal contract (SLC)

One of the commonly used blockchain elements where
all the elements, tools, and software investors and stake-
holders are legally merged under one common agree-
ment says profit or loss needs to be shared legally under
accepted terms and conditions. This SC covers software,
tools, and hardware, and the industry’s data centre for
future references. Trust among all involved parties is
ensured using SC. Market reliability, stock value pre-
dictions, and product commercial value evaluations are
accountable and shared by all the investors using SLC.
Easily accessible machine-level SC assists in tying the
consumer market with industries without any external
brokerages. Energy wastages calculation uses a digital
IoT environment. Most SMEs use this blockchain in
their product procurement, delivery, and market stock
analysis.

5.5. Application logic contract (ALC)

SC assists in using IoT devices for data collection, pro-
cessing, analysis, and decision-making in automobile
assembly and delivery. Most of the tools and methods
used in the AAM involve many application-specific IoT
devices, support vectors, classifiers, and federated learn-
ing models. ALC helps bridge gaps in programming
tools, system design software, and industrial standards
for assembly and production processes. ALC applies to
design and modelling. All the active components, irre-
spective of manufacturers and process, can be brought
under a common umbrella of SC without additional pol-
icy formation. Many investors agree to get involved in
the logical contract without scrutinising their design and
development details. Since XYZ company comes under
SME in Europe, the implementation and design pro-
cess is much more flexible while using ALC as one of
the SC.

5.6. Spare parts inspection and trust validation

The pivotal stage is to classify different tools and com-
ponents from manufacturers. During this stage, mar-
ket valuation and the component’s purchase cost are
critically studied. Forecasted market value is quoted as
the best market index during their training in real-
time. All the datasets are trained and modelled using
their unique ID and training vector classifiers. Database
that holds the record about multiple components of the
exact specifications using SC procedures. Their label and
time tags are uniquely modelled, trained, and stored
under their unique classifiers and support vectors (Zheng
et al. 2020).

Once the automotive elements are classified based on
different datasheets, market values and usages are mod-
elled and trained using their support vectors and classi-
fiers. This helps identify and eliminate the data errors and
accumulated processing errors during data reception and
storage by different IoT devices installed at different crit-
ical industrial zones. Data play a critical role in TTL limit
identification for every industry-grade tool and embed-
ded component. Datasets with errors are processed sepa-
rately rather than training with other error-free datasets.
Further data normalisation shows the datacentric abil-
ity of ML in processing the information among different
sections of the industry(Pokhrel and Choi 2020).

After classification and modelling, the components
are mapped with their respective section based on usage
requirements in the assembly process. In this stage, errors
accumulated during the dataset training and evaluation
are updated, and new entries are stored. Sections involved
in the XYZ company use this mapped dataset and their
normalised values for smooth and easy identification of
components from multiple manufacturers. This classi-
fication is based on their market valuation and stock
listings as well. Grouping and logging take place once
the trained values are available at respective data loggers.
Irrespective of time, cost, and energy usage, all the ele-
ments are logged and categorised using their classifiers
and support vectors in this stage. Since the next stage
of vehicle design requires tools and components based
on timing and assembly, these logged data are clustered
together (Manimuthu et al. 2021).

5.7. Product design and schematic verification

As all the datasets required for component assembly and
product structuring are readily available, the SC policy is
checked before starting this process. During the process,
almost all the assembly operations will be completed,
and only the delivery of the final product will remain
in the industry. Before starting this process, product
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Figure 3. Rendered Schematic Viewpoint for the Heavy-Duty Commercial Vehicle.

schematics, as shown in Figure 3, are critically analyzed
and evaluated deeply to come with the process initiation.
The schematics include the components assembly with
reference to the different viewpoints. The references are
shared with all the divisions and the sections for their
correct fitting and design verification in detail. Cross-
sectional views help the design process more compact
as the tools are categorised according to their require-
ments. Robots take care of the assembly process using
the embedded software, and R models help in data visu-
alisation. Once verified and approved, this stage of pro-
duction and assembly cannot be intervened by any of
the embedded devices in the middle(Singh, Rathore, and
Park 2020). Only the emergency halt operation can be
performed. Steps and processes involved in this stage
include:

(1) Fitting
(2) Assembly
(3) Polishing
(4) Testing
(5) Analysis
(6) Verification

In each section, ML values, trained classifiers ele-
ments, and the permitted storage level are recorded; So
that there will not be any excess values in any sections.
This helps to secure the system from any loss due to
excess storage cost, and energy required to process and
store the values. The product design schematics with
all viewpoints, as shown in Figure 3, are kept readily

available for usage and shared as a key reference to assem-
ble every individual component (O’Leary 2013). In con-
trast to the existing business models and industrial setup,
the developed design uses smart technologies, AI and
smart contract to assess and manage all the error prone
zone in the business and industrial operations.

5.8. Product delivery

After assembling the product, the usages are updated
with their ID and TTL values in real-time. In this stage,
data obtained from the sensors and embedded devices are
modelled and trained using FAI. Component’s classifiers
and support vectors are correlated for their usage and
threshold limits in real-time. Once the process is initi-
ated, data obtained are relatively normalised andmapped
in parallel with their SC before getting transported
to the final product delivery section(Gonçalves et al.
2021).

Data about the components and tools, embedded soft-
ware, and smart sensors are cross verified for theirmarket
utility, licenses, and delivery cost with their intended con-
sumers or vendors for commercial stocking. Fault identi-
fication at this stage is crucial as the entire schematics of
the system need to be reworked and revamped based on
the TTL values. FAI training is again performed to restore
the system, just as every process involving the faulty com-
ponent. The component is replaced completely. If the
fault is identified during assembly or production, the
entire items delivered during that time-stamped stage
and product classifiers are separated from the rest of the
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sections. This helps secure the production without being
affected much by the fault at different stages during mass
production(Min 2010).

Further, with TTL, the market pricing is carefully
identified and evaluated to get the best pricing value
during the final product delivery – SCs help bring qual-
ity and quantity during the distribution of vehicles in
the commercial market. Stakeholders and investors, par-
ticipating venture capitals are provided with the vehi-
cle standardisation schemes and method of designs and
explained about the TTL and their performance in devel-
oping customer-centric smart vehicle design with an
assured profit margin to all the investors and partici-
pating agencies in real-time in terms of market share,
stocks and commodity and consumers commercial mar-
ket trust(Cioffi et al. 2020).

6. Design simulation and experimental analysis

Model development, simulation, and software-based
programming include three levels of data extraction and
modelling, as shown in Figure 4. In all the stages, fea-
ture extraction, error identification, rectification, model
processing, and data training are performed continuously
using SVML and FAI. The modelling scheme involves
SC and TTL to ensure the proper commercial pricing to
design and the required number of assembly and product
design components.

6.1. Level 1: Data normalisation and feature
extraction

Rpackages and industry-grade smart system software are
used in bringing the full features available from every

Figure 4. Automobile Assembly Model (AAM) using TTL, FAI, and Smart Contract Blockchain.
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component involved in the design. Training and eval-
uation include stock lists, pricing values, and manufac-
turer support for smooth testing, loading, unloading, and
information extraction. The process involves fact sheets
and design information obtained from original vendors
and suppliers. This information is retrieved andmodelled
using SVML, and classifiers are provided to each section
for smooth identification(Nofer et al. 2017). Each com-
ponent is mapped and logged onto a local database for
easy pick and place into different sections involved in the
process. Investors and stakeholders are advised about the
market price.

6.2. Level 2: Trust Threshold Limit identification and
modelling

One of the critical levels of design and testing is function
evaluation and vector characterisation of components for
identifying their TTL values in the system. This TTL
references consumption, wastages, energy usage, and cost
function involved in the commercial vehicle assembly and
distribution process.With TTL, the loss margin is greatly
improved, and the stock pricing is kept on the desired
limit by all the involved component vendors. Support
vectors and the federated training values are modelled
and smoothly channelised for best throughput as the
limit is set during the initialisation process. Table 3 shows
the impact of using TTL and SC in analyzing the risk
index in the commercial market. Before implementing
FAI, the use case of SC is not completely achieved in the
design as suitable infrastructure is not viably available.
Based on the contracts and mutual agreements, the pur-
chase and string values go through their applicable SC.
Thereby the unwanted storing cost and the risk involved
in storing are significantly reduced. It is not mandatory
to pay additional costs, and energy wastages for mainte-
nance are nullified completely. Thus, this implementation
directly reduces the risk involved in handling all forms
of products movements. If the SC is not implemented,
the policymakers have the freedom to implement addi-
tional maintenance charges along with storage and deliv-
ery cost. Almost 1.5% of the risk index is improved using

TTL and FAI while setting the FAI margin as 1.27% dur-
ing the purchase and installation of ECU alone. Then
the same process is done for every individual compo-
nent. The overall gain margin using FAI in the design
includes a whopping 26.46% overall gain throughout the
entire process. However, this whole FAI margin will not
be reflected the same at the end of product design and
delivery as the market share is prorated and has its stock
and investment fluctuations(Giancaspro 2017). The pro-
cedure is followed in the SME for almost ten months
unlike any other existing models, which may normally
be implemented only for few months before deploying
on a large-scale industrial environment. Now it is fully
operational and exporting vehicles overseas with a solid
profitability range of in the body and commercial division
split-up alone for each investor based on their investment
percentages apart from market gain and fluctuations in
real-time.

6.3. Level 3: Federated learning AI and smart
contract

The installation, procurement, purchase, and product
delivery process is subject to the cost and energy usages
apart from market investments and stock prices. The
training and evaluation of data and component’s speci-
fications are based on their original suppliers (Fenwick
and Vermeulen 2019; Yuanyu Zhang et al. 2019).

The smart contract involved in the design includes
the insurance policies that attempt to protect and secure
the initial investments made during the production and
delivery process. In this SME, only two insurance policies
are incubated in the design process. 1. Pure Holding Type
and 2. Intermediate Holding type.

6.4. Pure holding type

Companies that participate in component investments
andmarket share alone without product design and com-
ponent pricing come under this category. These invest-
ment companies hold a significant share in the SC, and
the commercial market’s profit margin is also very high.

Table 3. Rawmaterials implemented with FAI training percentage and valuation index.

Elements
License
(In Years)

License
Grade Units

Smart Contract
(SC) Type

Risk Index (%)
(Before FAI)

FAI
Margin

Risk Index (%)
(After FAI)

ECU 2 Industrial 25 ALC 14 1.27 9.8
Embedded Controller 1 Retail 50 ALC 25 2.14 17.5
Sensors 1.5 Vendor 120 Smart Legal 27 4.21 18.9
Actuators 1 Vendor 100 Smart Legal 30 5.31 21
Conveyors 3 Industrial 12 ALC 15 2.89 10.5
Data Stack 5 Retail 5 ALC 10 3.47 9.5
Logger 2 Retail 10 Smart Legal 5 4.01 3.75
Debugger 1 Vendor 10 Smart Legal 5 3.16 3.5
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6.5. Intermediate holding type

As the name suggests, instead of investing and acquiring
a significant stake in the company, these companies will
invest along with other retail investors in terms of cost,
energy, and component purchases. The main advantage
of this type of holding is high return in the short term,
but it also involves heightened risk due to market fluctu-
ations. Companies in this category tend to be proactive
in commercialising the automobile as soon as the prod-
uct reaches the commercial market for consumer utility
in real-time. Table 4 shows the insurance type and the
SC values for each critical component with many ven-
dors and suppliers. In addition to these components and
tools, many other products are available in the vehicle
where the gross margin is shared between many local
investors.

From table 4, it can be observed that the gross mar-
gin gain for each component raised to an average of
1.5–2.3 percent irrespective of their SC and Insurance
holding type. Thus, TTL and FAI help companies get bet-
ter investment returns and market sustainability for the
long term.

Similarly, the TTL tends to limit all the company’s
share value based on their market trends and com-
mercial market fluctuations in real-time irrespective of
the share contributions these companies have in the
vehicle design, development, and commercialisation. As
shown in Table 5, companies from A-G supplies different
embedded components, and the conveyors are purchased
from companies X to Z in the local market. Due to the
randomness of investments and stock prices, the valua-
tion of each company is closely monitored and fed to the

FAI for their best training attributes. Hence, with these
values, the best market price for each of the essential ele-
ments is obtained. Based on this, TTL is developed as iter-
ations for the next consecutive progression ofmatrices for
the same companies.

In this process of training and evaluation of goods and
services, SC involved in the design helps to get better
pricing values from the commercial market by identify-
ing, analyzing, and estimating the pricing of goods and
commodities. It also the product movement from and
to the company and commercial market respectively in
real-time.

The tariff rate, along with their market valuation,
are identified, modelled, and evaluated based on deliv-
ery speed, charges/item, and market capitalisation(SC;
and Enterprise value). Many vendors have their delivery
agencies for loading and unloading goods and commodi-
ties. Thus, TTL and FAI help identify the best pricing
agency for delivery and transportation in the commercial
market. Table 6 shows the delivery agency list and their
enterprise valuations like market cap, enterprise value,
and delivery charges before and after implementing FAI
and TTL in the workplace.

Similarly, the performance index is evaluated for the
dealers based on the revenue and gross sales. These data
must be submitted as per the company policy and SC
blockchain for insurance, maintenance, andmarket share
calculation in real-time. Thus, all the agencies and deal-
ers produce their total retail and commercial revenue
data for FAI training and analysis. This helps to study
and identify potential issues or threats or quality index
and improve cost margin gain regarding distribution and

Table 4. Insurance type and gross margin % of different components in AAM design.

Elements
Insurance

Holding Type
Smart Contract

(SC) Type
SC Rate (%)
(Before FAI)

Gross Margin
(%) (Before FAI)

SC Rate (%)
(After FAI)

Gross Margin
(%) (After FAI)

Conveyor Pure ALC 2.23 4.20 4.68 6.59
Data Stack Intermediate ALC 3.01 5.32 7.21 8.32
ECU Intermediate Smart Legal 2.86 3.26 4.19 3.53
Sensors Immediate Smart Legal 4.33 5.32 10.35 9.81
Battery Pure Smart Legal 4.53 4.82 9.83 7.09
Software Pure ALC 2.87 2.94 3.80 3.61

Table 5. Companies market valuations for each critical component in AAM design.

Companies (Market Fluctuation %)

Elements A B C D E F G X Y Z

ECU 4.011 6.12 3.51 9.6 15.28 17.79 6.402
Embedded Controller 6.19 4.29 5.35 7.29 4.69 8.29 4.69
Sensors 3.67 4.67 3.14 8.21 4.36 7.26 3.03
Actuators 5.158 5.146 5.173 5.193 5.103 6.09 5.049
Conveyors - - - - - - - 11.93 10.29 9.143
Data Stack 5.21 6.21 5.179 4.29 9.21 7.29 6.73
Logger 4.019 9.27 7.95 7.63 6.72 6.1 4.03
Debugger 5.753 6.017 6.32 5.236 4.93 5.017 6.73

Note: Values highlighted in Red gives the best market valuation for a particular component using FAI and TTL.
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Table 6. Transportation tracking with delivery rate of all dealers in AAM design.

Dealer ID
Delivery

Charges (%)
Delivery Rate
(Before FAI)

Market
Cap (%)

Enterprise
Value (%)

Delivery Charges
(%) (After FAI)

Delivery Rate
(After FAI)

IN263 12.23 23.86 131.53 168.75 5.22 21.15
IN753 16.23 15.93 95.89 123.02 −16.68 13.22
IN632 17.30 14.40 89.28 114.55 −21.64 11.68
IN895 14.23 19.27 110.58 141.87 −6.67 16.56
IN412 9.21 20.31 110.76 142.11 7.44 17.60
IN724 11.04 21.42 118.15 151.59 4.54 18.71
IN244 19.23 20.15 119.96 153.91 −17.86 17.43
IN893 10.25 19.33 106.88 137.13 3.37 16.61
IN710 10.86 22.36 122.66 157.38 6.38 19.65
IN837 9.31 18.40 101.29 129.96 4.31 15.68
IN720 8.39 19.38 105.29 135.08 8.09 16.67
IN207 19.34 22.36 131.14 168.25 −14.81 19.65
IN663 14.30 23.64 132.50 169.99 −0.28 20.93
IN743 17.29 20.93 121.94 156.45 −11.83 18.22
IN552 13.70 19.30 110.20 141.39 −5.30 16.59
IN349 14.93 19.76 113.73 145.92 −7.68 17.05
IN735 15.73 24.36 137.53 176.45 −2.79 21.65
IN753 13.29 23.18 129.19 165.75 1.55 20.47
IN823 14.37 22.31 125.92 161.55 −2.46 19.60
IN634 14.20 21.34 120.90 155.11 −3.49 18.63
IN900 11.36 22.56 124.16 159.30 5.44 19.85
IN209 10.30 22.79 124.25 159.41 8.44 20.08
IN760 8.24 19.39 105.19 134.95 8.50 16.68
IN860 11.80 21.29 118.25 151.71 2.43 18.58

Note: Negative Value indicates gross margin exceeds the desired limit (Outperforms in Market Valuation).

Table 7. Dealers revenue and gross sale improvisation using FAI,
TTL, and SC during AAM design.

Dealer ID

Gross Sales
(Margin %)
(Before FAI)

Revenue (%)
(Before FAI)

Gross Sales
(Margin

%)(After FAI)
Revenue

(%)(After FAI)

IN263 14.06 7.56 16.08 10.29
IN753 11.90 13.26 13.92 15.98
IN632 11.57 17.02 13.58 19.75
IN895 12.72 5.77 14.74 8.49
IN412 11.73 8.56 13.75 11.29
IN724 12.71 5.80 14.73 8.53
IN244 14.50 16.05 16.51 18.77
IN893 11.62 3.62 13.63 6.35
IN710 13.05 8.24 15.07 10.96
IN837 10.97 4.29 12.98 7.02
IN720 11.11 8.91 13.13 11.63
IN207 15.45 14.27 17.46 16.99
IN663 14.55 1.35 16.57 4.08
IN743 14.28 11.03 16.29 13.76
IN552 12.58 4.56 14.60 7.29
IN349 13.12 6.87 15.14 9.59
IN735 15.26 4.44 17.27 7.16
IN753 14.08 0.10 16.09 2.83
IN823 14.02 3.29 16.04 6.02
IN634 13.57 3.81 15.59 6.53
IN900 13.28 7.27 15.29 10.00
IN209 13.07 10.71 15.08 13.44
IN760 11.08 9.36 13.09 12.08
IN860 12.87 3.40 14.89 6.13

market limitations. Table 7 shows the similar gross mar-
gin gain achieved by the dealers and commercial distri-
bution agencies after implementing FAI and TTL in their
operating procedures. Advancing further from the exist-
ing design (Ivanov et al. 2016), all the participating agents
are provided with their stock movement details and pric-
ing values. This includes wastages, flaws and defects in
their goods and services.

Table 8. Energy evaluation during AAM design, testing, and
evaluation.

Category

Gross
Margin %
(Before FAI)

Energy
Consumed/
Day (%)

Gross
Margin %
(After FAI)

Energy
Consumed/
Day (%)

Loading 6.346 7.631 11.1055 6.1048
Polishing 3.21 12.78 5.6175 10.224
Assembly 6.27 15.364 10.9725 12.2912
Fitting 4.95 16.37 8.6625 13.096
Organizing 5.071 12.71 8.87425 10.168
Tunning 4.32 20.3 7.56 16.24
Testing 9.22 20.13 16.135 16.104
Control 13.432 15.019 23.506 12.0152
Unloading 11.432 8.31 20.006 6.648
Total Energy 128.614 96.2432

Apart from the cost and component distribution, it
is very much possible for the TTL to identify and ana-
lyze the energy consumed per product. Thus, Table 8
shows the reduction in energy consumption after imple-
menting TTL and FAI in the intelligent industrial unit.
It is estimated and recorded from unloading at the
warehouse throughout different production and assem-
bly stages. Thus, the loading, unloading, transportation,
assembly, fitting, and polishing costs, along with anal-
ysis and design schematic verification costs, are iden-
tified, recorded, and processed. The processed value is
applied with FAI and SC policies for getting final mar-
ket evaluation and stock prices/unit of energy consumed
in the industrial process(Ivanov, Sokolov, and Dolgui
2014, 2019). Figure 5 depicts the performance before and
after implementing TTL in the workplace. The tabulated
results are visually represented in figure 5 to compile and
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Figure 5. Data visualisation and results comparison (before & after implementing TTL & FAI).

show the use case of TTL and the effect of using FAI and
SC in the design process. Apart from the cost and energy,
the interest rate, delivery charges, and SC’s policies help
the industry achieve better performance and improved
productivity in real-time.

7. Discussions of findings

The study has designed and developed an Automobile
Assembly Model (AAM) concentrating on industrial-
grade commercial vehicle design. This study practically
implemented and evaluated the developed design using
real-time data analytics and machine learning models to
process, train, and test developed AAM. Before explain-
ing the key findings, the study has opened doors for
emerging technologies like IoT, AI, and SmartContract

Blockchain into the commercial vehicle industry prac-
tices. Various studies on Blockchain, AI, and IoT have
detailed their usage from the industry perspective (Singh,
Rathore, and Park 2020; Yuanyu Zhang et al. 2019).
They also triggered the point that combining mul-
tiple technologies with data analytics tends to solve
many real-time problems in the industrial environ-
ment over many decades. Quality and performance val-
uation, design analytics, and productivity enhancement
constitute several possible sustainability solutions to
withstand in any global industrial market. In addi-
tion to the additive manufacturing and process automa-
tions, the use of SC and IoT helps the industrial envi-
ronment and active participants to obtain a detailed
market response curated with the existing business
practices.
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Data modelling, computational algorithm design, simu-
lation, and schematic formations were again a big hurdle
due to prevailing trust issues between stakeholders and
investors. As the SC helps bridge this trust issue by pol-
icy formation and legal assistance, all the investors tend
to have hassle-free investment plans in real-time. This
design includesmultiple procedures in terms of purchase,
delivery, utility, and distribution. All the data are mod-
elled using SVML, and Federated LearningML techniques
as the data are effectively captured by the embedded IoT
in the industry. Developed AAM shows the use cases of
ML and IoT in fixing, evaluating, and processing all forms
of data irrespective of sources without any deviation from
their programmed functions. The programmed model
uses a customised R programming scheme, and simu-
lations are done using company-owned industry-grade
licensing software. Thus, unbiased data is fed to the train-
ing, testing, and evaluation model at all assembly stages
in real-time.

Irrespective of industry, these methodologies can be
implemented with a few minor customisations. Many
industries, including leather, textile, biogas, fuel cells,
and two-wheelers, can incubate these methods in their
practices to achieve profitability in the short term. They
maintain ongoing modifications include curtailing the
cost of productivity and minimise energy consump-
tion during their production procedures. In some other
cases, these techniques were exclusively used in iden-
tifying the flaws, damages, and defects in the compo-
nents, tools, and product design. This aims to attain
sustainability without losing the market margin gain
within the calculated time frame. Recent reviews show
that the fault identification and testing scheme evalu-
ation can be made based on industry standards and
company policy, whereas in AAM, all the investors
need to abide by the SC policy. This method of test-
ing and evaluation includes all forms of cost, energy
consumption, and market fluctuations. This confirms
an eco-friendly market share dividend among all the
participating agencies as per their investment per-
centage and profit margin obtained during product
delivery.

Qualitative evaluation of every deliverable plays a sig-
nificant role in design, development, and product assem-
bly. Many techniques other thanML includes fuzzy logic;
the neural network can explore SMEs based on their
production cost and infrastructure capabilities. Predic-
tion analytics and modelling with these techniques aim
to offer better performance without considering any
market investments. Thus, ultimately, improved produc-
tion cost, commercial value gain, and market valuation
become void in these industries. In some worst cases,
the decision model lags in providing the required results

as the dataset may not be sufficient to provide result-
oriented decisions in real-time. Thus, flexible and robust
infrastructure capable of emerging smart technologies in
industrial practice is required in the automated indus-
trial setup. The discussion made from the literature and
practical industrial white papers shows the importance
of decision-making models and flexible data process-
ing metrics. This helps industries to improve resilience
against fluctuating global market. Accordingly, the policy
makers and regulatory management authorities will get a
clear understanding of the business process and manage
the operations with open information, transparency and
visibility. This includes operations, logistics, distribution
and transportation.

The present AAM uses four form factors that act as
pillars in the design, development, and successful test-
ing of the design scheme. It includes smart technologies
and industrial standardizations. Form factors include 1 –
data from Stock, suppliers, and vendors, 2. Smart Contract
Policies, 3. Trust Threshold Level for each element involved
in the production process, 4. SVML and FAI for perfor-
mance comparison, modelling, and analysis at various
stages of design. In addition to these critical form fac-
tors, other methods used in training and processing data
and stages include classification, assembly, fitting, pol-
ishing, testing, analysis, assembly, grouping, logging, and
schematic verification.

Data shared between different stages with the ML
algorithms will extract the features and help in decision
making. SC comes into the picture when the devices
or equipment are observed of any faults or damages or
malfunction during any stage of the assembly until the
product is delivered into the commercial market.

As this process is technically considered stable, the
market fluctuation always prevails while fixing the prod-
ucts’ cost and commercial value. Thus, in this AAM, a
novel estimation technique called TTL is implemented in
the design itself. Through this estimation scheme, all the
products are modelled based on their cost, energy usage,
market value, and profit margin of utilising them in the
design. TTL has the following features that have helped
the XYZ company to have a commercial profit margin
of 13 percent within 60 days of their commercial vehicle
sales. Feature includes:

(1) Data modelling and component analysis (Vendors,
suppliers, stocks)

(2) Loading, Unloading, distribution, and usage valua-
tion cost

(3) Consumer satisfactory index
(4) Market valuation and SC legal policies
(5) Sale valuation and investors profit margin
(6) Storages and stock listing data
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(7) Stock purchase valuation comparison
(8) Market pricing vs. Purchase pricing analytics

These data help fine-tune each component’s threshold
value after their potential utility during the assembly and
delivery process. AAM with TTL in the industries uses
a margin variation function with a maximum deviation
of 2.3-3.2 percent. TTL derived from the production and
assembly process involves market investments and com-
pany stock shares that are openly available for any kind
of investors. It helps them to take part in legal policy with
smart contract blockchain.

Data is modelled and distributed among various sec-
tions for cross-referencing, stocking, and complex com-
putation purposes.

8. Implications

The design and research analysis offer significant con-
tributions in operations and supply chain, specifically
automotive assembly processes.

8.1. Theoretical contributions

First, the study provides a use case of machine learn-
ing models and smart IoT devices and bridges two
indigenous methodologies that contribute to produc-
tivity improvement(O’Leary 2013; Yuanyu Zhang et al.
2019). When compared with the existing industrial prac-
tices, these smart techniques notably promote the stock
value in the commercial market. Timing, data analytics,
fault identification, and systematic assembly process were
made throughout the production and product delivery
process. Targeting the commercial vehicle distribution
market, SMEs focus more on reducing the losses from
purchasing and procuring raw materials. The process is
continued till the final product is delivered. Second, the
study provides procedural guidance to create a smart
industrial ecosystem that involves AI-enabled smart sen-
sors and machine learning practices(Manimuthu et al.
2021) for the best market valuations to each commodity.
As the design involves stock pricing and energy con-
sumption factors, all these data are modelled with their
respective normalisation values obtained during train-
ing, analysis, and estimation. In this way, the marginal
error accumulated at every stage of data processing is
significantly improved.

Third, this is the first study that emphasizes the FAI
and its role in the product assembly industry. The delib-
erations in managing the product complex system and
support vectors for data normalisation helps to find the
best fit values for design and testing. Fourth, it discusses
cost-saving functions in the available industrial practices

focusing on their internal costing features and func-
tions. The developed AAM tried to integrate all forms of
functions, procedures, values, and specifications of every
tool and commodity. Further, the TTL value helps iden-
tify and process every component’s functional attribute
with detailed identification, analysis, and market utility.
Thus, it indirectly facilitates the firm to getmore visibility
and position itself in the competitive commercial vehicle
market. Besides, FAI andTTLdesigned and implemented
are unique and novel where both relatively bring sustain-
able industrial practices and solutions that any industry
can quickly adapt in their workplace. The model devel-
oped, solutions provided, and dataset training function-
alities are entirely customisable based on the industry
requirement and infrastructure support. It will signifi-
cantly contribute to all forms of supply chain practices
and operations management with assured safety. Finally,
the secured smart contract usages act as a backup tomeet
any legal grounds in real-time.

8.2. Practical implications

The study has notable managerial contributions. The
design provides use cases to the SMEs and large-scale
industries irrespective of their domain. First, it supports
the incubation and use of smart IoT devices in industrial
processes through real-time data collection and process-
ing using machine learning algorithms. Here data act
as a critical resource in consecutive processing stages in
the IoT-enabled smart assembly unit. Grouping, vectori-
sation, feature extraction, and data analysis involve both
SVML and Federated learning at different stages. They all
help leverage the information about the tools, software,
components, and devices in the assembly process.

Secondly, in the developed design, a novel element
called Trust Threshold Limit is used in all areas of
data training under the Federated Artificial Intelligence
(FAI) integrated framework. It supports the industrial
automation and analytics that can be realistically mod-
elled using the emerging smart techniques. Limit for
purchase and storage can be visually made available
to the concerned stakeholders using this mode of data
processing and analytics. Modelling and development
involve machine learning models that help bring the
best market values for all the components involved in
the design process. This training and modelling help
investors and the third parties involved in the design to
closely monitor the product prices and their stock val-
ues in real-time. Combining blockchain, federated AI,
and machine learning models helps foresee the com-
ponent requirements, usages, procedural functionali-
ties, and data-driven decision-making models, thereby
reengineering the overall product tracking system in a
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manufacturing firm. In terms of process control and
design optimisation, tracking, modelling and design ver-
ification play a major role. Valuation and the process-
ing capabilities of the smart systems can be studied and
compared with the existing tools for optimised business
operations.

Thirdly, the simulation and modelling provide the
necessary resources for FAI analysis and the TTL estima-
tion. As the market risk is involved in all design stages,
TTL serves as a better response index starting from load-
ing goods to product delivery in real-time. The design
shows the importance of IoT devices and ML modelling
mechanisms in bringing the best possible values for each
component subject to their market investment and com-
mercial values.

Fourthly, the study supports the practical usage of
TTL using ML models and data analytics methods in
real-time for equal distribution of resources. Energy dis-
tribution and parallel computation provisions engage IoT
devices, smart sensors, and electronic controllers. Imple-
menting smart, innovative techniques in the industrial
practices streamline the industrial procedures and orient
them towards profit-making from market investments,
with a focus on market risk and secure product com-
mercialisation in real-time. Thus, in this AAM design,
TTL and FAI advance understanding of the role of stock
pricing, market rate, commercial product valuation with
intense ideation of practical usage of cost, energy, indus-
trial standards, and smart, innovative technologies for
building a better sustainable industrial ecosystem. Evalu-
ation of the existing methods provides a standard perfor-
mancemetrics as tabulated inTable 8 include energy con-
sumption and margin of wastages. This becomes more
realistic while implementing the TTL in the actual busi-
ness practices. Minimum modifications with maximum
potential in operations, supply-chain and production
factors in real-time resource assessment and manage-
ment can be achieved. Besides, AAM will help foresee
the requirements, usages, procedural functionalities, and
data-driven decision-making models. Using smart tech-
nologies such as ML, IoT and Blockchain in industrial
practices, the companies may have better accountability
and sustain competitive commercial market index value.
Thus, AAMdirectly facilitates restructuring of the overall
firm’s standard operating procedures.

9. Conclusion

The work provides evidence that the enhanced data
collection, processing, and control procedures help in
efficiently handling the data generated for the manu-
facturing procedures. The experimental study offers a

roadmap for implementing a wide range of smart tech-
nologies for vehicle operations, control, and assembly
performance valuation using data-driven modelling and
analysis. The study involves IoT and supports vector
machine learning for grouping, analyzing, and classify-
ing tools, components, and other supporting goods in
the assembly process. Irrespective of the market invest-
ments, these additive manufacturing strategies will help
production and distribution processes and quantitatively
assess the market risk and investors’ returns in real-time
(Alavian et al. 2020; Guo and Ryan 2021).

The design proposed a novel TTL value that spotlights
the use of threshold limits in the purchase, production,
and product delivery. TTL is combined with federated
learning AI mechanism to propose a smart solution for
improving profit margins. Data normalisation, vector
classification, analysis, and feature evaluations are criti-
cally scrutinised throughout the process of AAM design.
TTL and FAI help fix, finalise, and set the limit values
for purchase, storage, usage, and distribution of goods
and services commercially, irrespective of market fluctu-
ations. The legal policy for security and liability is taken
care of by smart contract as all the investors and stake-
holders are legally entitled under standards industrial
operating procedures. Thus, TTL helps set the limit in
cost, energy usage, purchase, and processing options. It
assists in building the vehicle from scratch without the
worry of losses due to socio-economic crises or market
stock fluctuations. TTL assists for energy usage, pur-
chase of raw material, transportation, and delivery. The
local vendor selection is mapped, modelled, analyzed,
and tabulated, and verified in the industrial environment
in real-time.

9.1. Limitations and future directions

The study has its limitations and offers future research
avenues. First, the study does not involve any data stor-
age with remote access. Thus, firms can consider using
cloud storage for data processing and remote accessibility.
All the software and codes are purchased from third-
party vendors. They cannot be trusted all the time for
data reliability. Hence the data used for processing may
have a marginal variation of permissible range that could
contribute to other errors. SC formed for this design
scheme can only permit few extendable ranges of com-
plications that include natural disasters. However, it does
not involve defects in industrial design infrastructure, as
that is taken care of solely by the company alone.

The simulation scheme used in the design requires
skilled labourers, and Graphical User Interface (GUI)
cannot be customised as they are not locally developed
for industrial practice. TTL uses FAI and SVML data
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processing that any other ML technique can outperform.
Data acquired and processed from the IoT-enabled smart
sensors can have their latency in data delivery.

In the current industrial setup with more than 60–70
percent of automation in place, the incubation and
deployment of the developed AAM can be a hassle-free
action. Finally, the developed design is not integrated
with the existing model and warrants its customised
infrastructure. The developed model can be adapted in
manufacturing, warehousing, and distribution industries
with minor adjustments and customised control levels,
data collection mode, processing, and analytical meth-
ods. New designs may integrate AAMwith other existing
industrial models by customising it based on infrastruc-
ture, cost, and energy availability. A better alternative for
R packages can also be tested in the design. The devel-
oped AAM with TTL and FAI can set a new benchmark
for research on emerging and innovative smart technolo-
gies in real-time.
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