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A B S T R A C T

The micro-generation of electricity arises as a clean and efficient alternative to provide electrical power.
However, the unpredictability of wind and solar radiation poses a challenge to attend load demand, while
maintaining a stable operation of the microgrids (MGs). This paper proposes the modeling and optimization,
using a swarm-intelligent algorithm, of a hybrid MG system (HMGS) with a Net-Metering compensation
policy. Using real industrial and residential data from a Spanish region, a HMGS with a generic ESS is used
to analyze the influence of four different Net-Metering compensation levels regarding costs, percentage of
renewable energy sources (RESs), and LOLP. Furthermore, the performance of two ESSs, Lithium Titanate
Spinel (Li4Ti5O12 (LTO)) and Vanadium redox flow batteries (VRFB), is assessed in terms of the final $/kWh
costs provided by the MG. The results obtained indicate that the Net-Metering policy reduces the surplus from
over 14% to less than 0.5% and increases RESs participation in the MG by more than 10%. Results also show
that, in a yearly projection, a MG using a VRFB system with a 25% compensation policy can yield more than
100000$ dollars of savings, when compared to a MG using a LTO system without Net-Metering.
1. Introduction

In the European Union (EU) context, the share of energy from re-
newable sources in the gross final consumption of energy increased by
17% in 2016, doubling the share in 2004 (8.5%). The 2020 European
strategy included a target of reaching 20% of energy in the gross final
consumption of energy from renewable sources by 2020. This target
was met with the EU achieving 22.1% by the end of 2020. Following
this increase, the target for 2030 is set to 32%. These figures are
based on energy use in all its forms across all three main sectors, the
heating and cooling sector, the electricity sector, and the transport
sector [1,2]. To achieve the future targets for the transition towards
climate neutrality, EU countries need to prioritize more effectively
the deployment of renewable energy sources and invest in improving
energy efficiency.

These goals are based on the fact of the growing and exponential
demand for energy, caused by the impact of the imminent depletion of
fossil fuels and the environmental impact they cause. In this context,
the addition of microgrid generation (MG) systems has attracted the
attention of European countries in the electrical sector. The use of clean
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and sustainable generation becomes a promising bet for the generation
of electricity on a global scale [3–5].

MG comprises low-voltage distribution systems with distributed
energy resources (microturbines, fuel generators, photovoltaic panels,
among others) along with storage devices (energy capacitors and en-
ergy storage systems), and flexible loads. These systems can be operated
autonomously in a standalone way, or non-autonomously, intercon-
nected to the main grid — in a grid-connected approach. Operating
MG on the public grid can provide important benefits for overall system
performance if managed and coordinated efficiently [6,7].

The general benefits of generating electricity via MG include: allow-
ing access to electricity in remote regions [8,9] and minimizing both
the generation costs [10,11] and carbon emissions [12–14]. However,
generating electricity via renewable sources has some challenges: the
lack of regulation that standardizes the generation and integration of
the generated energy into the public grid [15]. Developments in renew-
able electricity generation, distribution, and storage are constantly in
need to achieve the goal of changing energy production into a mainly
renewable-based one.
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The net-Metering policy is a utility billing mechanism that allows
residential or commercial users who generate their own electricity
(using solar panels or photovoltaic systems) to send back to the grid
their surplus energy. This mechanism has many advantages such as
providing extra financial credit, eliminating the need for battery storage
and backup generator, and being inexpensive, among others. The Net-
Metering mechanism is vital for the goals of future power systems [16],
and is being adopted worldwide [17]. From the producer–consumers
(prosumers) point of view, besides the subsidy from the government,
the offering of a net-metering policy by the Distribution Companies
can be very attractive in reducing the prices of photovoltaic (PV)
panels, as pointed out in [18]. The study presented in [19] shows that,
when the Net-Metering policy does not provide much compensation
to the end user, the prosumers tend to forego investing in renewable
sources. In Brazil, for example, in order to attract prosumers to adopt
renewable energy generators, a law issued by the government regulates
the compensation policy for users that opt to connect to the grid. This
law states that the power injected by each user remains valid for a
period of 60 months and can be compensated in an address different
from the one that the power was injected [20–23]. However, such
policies must be aligned with the distribution companies’ interests. As
indicated in [24], as the penetration of renewable generation in the
MG increases, the Net-Metering policy must be carefully analyzed. A
Net-Metering policy that only benefits the end user by compensating
injected energy at the retail price may lead to a reduction in the
companies’ revenues.

1.1. Literature review

Several recent works have studied the inclusion and optimization
of different procedures and technologies in MGs, such as the Net-
Metering procedure, diverse control mechanisms, and different energy
storage systems (ESS) technologies. We revise here the recent lit-
erature works on these topics. In [25] the effectiveness of China’s
Net-Metering subsidies for household distributed photovoltaic systems
is assessed. [26] showed alternatives for current Net-Metering in the
Netherlands: a comparison of impacts on a business case and pur-
chasing behavior of private homeowners, and on governmental costs.
Australian’s government policy towards energy has been dominated by
an array of interventions and market-based instruments [27]. A study
carried out in Italy showed the advantage to prosumers in performing
Net-Metering. According to [17], the use of Net-metering system has
been recently adopted in many countries such as Italy [16], USA [28],
and Brazil [22]. However, other countries, such as Spain, are still facing
the market and institutional barriers to the use of the mechanism in the
public power grid [29,30].

Numerous approaches to provide control mechanisms in MGs, es-
pecially in grid-connected mode, to ensure a reliable and sustainable
operation have been addressed in the literature. [7,31] bring forward
two surveys describing thirty works that include approaches for optimal
control of MG applied to different countries. In addition to these
works, the recent literature discusses different optimization techniques
applied to a diverse range of MG systems. A study applied to the
region of Bangladesh analyzing how it is possible to optimize load
dispatch strategies was carried out in [32]. Using the Simulink tool,
the results showed that the techno-economic feasibility and system
stability responses (voltage and frequency) were achieved via the de-
fault optimization tools in MATLAB. A deep learning method based
on Convolutional Neural Networks is proposed in [33] to develop
a wake model for wind turbines in real-time. The obtained model
is evaluated in a wind farm containing 25 wind turbines, obtaining
minimal error to predict the dynamic wind farm wakes with respect
to wind speed. Aiming at achieving higher wind speeds, [34] proposed
an optimization tool to optimize the design parameters for a specific
2

geometry of floating offshore wind turbines. The results showed that
the optimal design obtained reduces cost by two to three times the
worst cost scenario.

A mixed integer linear programming (MILP) approach was proposed
by [35,36] to solve the coordinated control in a dynamic optimization
way in direct current power in microgrid systems. The simulation
indicated that the control system showed a fast recovery and robust
performance from the transient using the mode-override operation of
storage systems, thus coordinating with generators. [37,38] proposed a
dispatch controller via robust optimization. [39] developed a solution
to find the optimal size of a microgrid system using the Grasshopper
optimization algorithm (GOA). The results indicated that GOA was able
to optimally size the system as compared to Particle Swarm Optimiza-
tion. GOA, in a multi-objective approach, was able to minimize the
production costs and the CO2 emissions of a simulated microgrid [40].

The sector of new technologies in EES has been drawing attention
and is in a constant expansion [41,42]. In general, the lithium-ion (Li-
ion) battery class have a high cost per power capacity and high energy
density [43]. On the other hand, batteries based on redox flow have
some innovative features such as design flexibility and greater cycle
capacity, even though they still have a high-cost [44]. In this work,
we investigate two potential technologies to identify which one is best
suited to the studied MG, named the lithium titanate spinel (Li4Ti5O12
(LTO) – [45]) and Vanadium redox flow (VRFB – [46]).

Regarding the benefits of using Energy Storage Systems (ESSs) in
a microgrid, it is worth noting the reduction in the system peak and
congestion [47] and the leveling of the load [48]. In [49] a cost–
benefit analysis for load leveling is proposed, in which a Li-ion battery
is compared to a RFVB in terms of return on investment and cost
savings. The results indicated that the Li-ion battery is superior to
the RFVB in both comparisons. Similarly, a techno-economic analysis
considering a commercial building is made in [50]. In this analysis, a
Li-ion battery is compared to two other batteries that use reversible fuel
cells by means of Levelized Cost Of energy Storage (LCOS) with and
without considering ESS’s degradation. As a result, despite being prone
to degradation, Li-ion batteries are economically attractive. Contrarily,
as wisely pointed out by [51], despite the high cost and longer life
cycle, VRFBs produce less environmental impact than Li-ion batteries.
The environmental advantages of RFVBs are also assessed by [52] in a
combination with a hydropower plant in Ecuador. The ESS is used to
inject energy into the main grid during peak hours.

With respect to combining multiple ESSs, [53] solved an ESS control
problem by integrating the uncertainties of renewable energy sources
generation into the problem and minimizing the use of ESSs to correct
forecast errors. The targeted control problem is solved using Stochas-
tic Model Predictive Control techniques and Mixed-Integer Quadratic
Programming. [54] proposed an Alternating Direction Method of Mul-
tipliers (ADMM) to minimize the costs of a system containing multiple
microgrids and a combination between BESS and a thermal energy
storage system.

Diverse bio-inspired algorithms were addressed in [55]. The results
showed that such algorithms are suitable to manage and provide elec-
tric control of MG successfully. The genetic algorithm (GA) applied to
managing MG systems was described in [56], [57]. Results showed that
the performances are just 10% below when compared to the fuzzy-
systems approach. [58,59] proposed an optimal energy management
and control aspects using multi-agent systems. In general, approaches
via multi-agent systems have a high computational cost, which makes
their application in a real system unfeasible. Particle Swarm Optimiza-
tion (PSO) was applied to reduce the operational cost for a hybrid
residential standalone microgrid consisting of a diesel generator, wind
turbines (WT), photovoltaic (PV) panels and battery energy storage
systems [60]. The experiments addressed that the use of storage sys-
tems minimized fuel consumption, and therefore the CO2 emission was
the lowest. Maintaining State-of-Charge (SoC) in batteries is also an
important topic in the study of microgrid systems. For instance, PSO

was well applied by [61] as a control system able to choose the optimal
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generation source, minimizing the material and financial costs. In [62]
PSO is also applied to develop a fuzzy logic controller to manage the
charge and discharge of the BESS in a MG. The MG addressed in the
aforementioned problem contained a diesel generator, a PV system,
WTs, and biomass.

A version of the Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm was used in [63–65] to provide control while en-
suring the maximum utilization of generation sources and maintaining
SoC to manage the exchange of power between the MG studied. A
Differential Evolution (DE) application can be observed in [66–68].
In general, the DE quickly converged attaining feasible and efficient
solutions.

1.2. Contributions

To the best of our knowledge, the algorithms and approaches de-
scribed before have not yet been applied to construct an optimization
solution based on the Net-Metering mechanism. In this paper we pro-
pose to incorporate and optimize the Net-Metering mechanism into a
MG, taking into account the seasonal and load data from a Spanish
region. Two distinct storage technologies, VRFB and LTO, are assessed
and compared in an annual planning horizon. For optimizing the
proposed MG, the C-DEEPSO algorithm [69] is employed. C-DEEPSO is
a single-objective swarm optimization method with selection and self-
adaptive properties inspired by Differential Evolution. The rationale
behind this choice is due to its ease of implementation, fast conver-
gence, and efficiency in finding good solutions to electrical dispatch
problems in MG. In this case, C-DEEPSO acts as an electrical dispatch
controller system, capable of offering optimized solutions for the annual
planning horizon. The paper presents the following contributions:

• An improved mathematical modeling to electric dispatch includ-
ing the Net-Metering policy;

• A study on the effectiveness of the Net-Metering approach applied
to a Spanish scenario;

• An in-depth performance assessment of two distinct storage sys-
tems, named VRFB and LTO in the MG, and;

• A projection analysis has been carried out indicating a profit
economy when solving the problem using the proposed approach.

The remainder of this paper has been organized as follows: Section 2
escribes the MG system considered, detailing the electrical dispatch
athematical modeling, the Net-Metering mechanism, and the seasonal

nd technical data. Section 3 addresses the optimization technique used
o solve the electric dispatch problem introducing the fundamentals of
he C-DEEPSO method. Section 4 comprises the experimental design
erformed, and the comparative analysis of the MG system with and
ithout Net-Metering mechanism. After that, a study of which storage

ystem is the most suitable to the MG and a techno-economic analysis
re done Finally, Section 5 illustrates the conclusions regarding the
verall compensation policy robustness.

. Microgrid systems

Currently, with the challenges of energy decentralization and the
utomation of systems, proposing new solutions for grid-connected MG
as become an emerging economic development and research area.

power dispatch problem defined in MG tries to find the optimal
cheduling for the MG, aiming to meet the load demand while satisfying
ll systems constraints. The mathematical model of the proposed MG
3

nd the considered optimization problem are described next.
2.1. Power dispatch problem: mathematical modeling in microgrids

This work addresses the optimal active power dispatch problem
in MGs, with the goal of minimizing the total costs of production
and losses in the system. The MG addressed here is composed of
photovoltaic panels (PV), micro wind turbines (WT), energy storage
system (ESS), AC–DC inverter (INV), and energy from the public grid
system (PG). In this context, the power generated by PV can be obtained
by Eq. (1) [70],

𝑃𝑝𝑣 = 𝑃𝑁 × 𝐺
𝐺𝑟𝑒𝑓

×
[

1 +𝐾𝑡
(

(𝑇𝑎𝑚𝑏 + (0.0256 × 𝐺)) − 𝑇𝑟𝑒𝑓
)]

, (1)

in which 𝑃𝑝𝑣 is the power production of PV’s (in kW/h) and 𝑃𝑁 is
rated power under reference conditions. The term 𝐺 means the solar
radiation (W∕m2), 𝐺𝑟𝑒𝑓 is a constant equals to 1000 (W∕m2), 𝑇𝑟𝑒𝑓 is the
average temperature in Cádiz (Spain) equals to 18 ◦C, 𝐾𝑡 it is a constant
equals to −3.7 ×10−3 (1/◦C), and 𝑇𝑎𝑚𝑏 is the ambient temperature [70].

The power wind production depends on wind variation. Thus, the
power law equation to wind turbines is calculated by the following
correlation: 𝑣2

𝑣1
=

(

ℎ2
ℎ1

)𝛼
[71]. The wind gradient (𝛼) is a function of

parameters such as wind speed, temperature, hour of the day, time of
the year, the roughness of the terrain, and the height above ground
[71]. Usually, we can use 𝛼 = 1∕7 [70]. The term 𝑣2 is the speed
at the hub height (ℎ2) and 𝑣1 is the speed at the reference height
ℎ1). Following these rules, the power output of wind turbine can be
pproximated by [71]:

𝑤 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝑉 < 𝑉𝑐𝑢𝑡−𝑖𝑛, 𝑉 > 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡

𝑃𝑟

(

𝑉 3−𝑉 3
𝑐𝑢𝑡−𝑖𝑛

𝑉 3
𝑟 −𝑉 3

𝑐𝑢𝑡−𝑖𝑛

)

𝑉𝑐𝑢𝑡−𝑖𝑛 ⩽ 𝑉 < 𝑉𝑟𝑎𝑡𝑒𝑑

𝑃𝑟 𝑉𝑟𝑎𝑡𝑒𝑑 ⩽ 𝑉 ⩽ 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡

(2)

in which, 𝑃𝑟 is rated power, 𝑉 is the wind speed in the current time
tep. Terms 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡, 𝑉𝑟𝑎𝑡𝑒𝑑 , and 𝑉𝑐𝑢𝑡−𝑖𝑛 represent cut-in wind speed,
ominal wind speed, and cut-out wind speed respectively. The real
lectric power from the wind generator (in kW/h) can be given by [72]:

𝑤𝑖𝑛𝑑 = 𝑃𝑤 × 𝜂𝑤 × 𝐴𝑤, (3)

in which 𝜂𝑤 is the turbine efficiency and 𝐴𝑤 is the total swept area of
he wind turbine. An important component in microgrids is the DC/AC
onverter (inverter). An inverter converts the electrical energy from DC
nto AC with the desired frequency of the load. The efficiency of the
nverter can be defined by the following Eq. (4) [70],

𝑖𝑛𝑣 = 𝑃
𝑃 + 𝑃0 + 𝜅 × 𝑃 2

. (4)

The initial power (𝑃0), 𝜅, and power (𝑃 ) are given by [70]

𝑃0 = 1 − 99
(

10
𝜂10

− 1
𝜂100

− 9
)2

, 𝜅 = 1
𝜂100

− 𝑃0 − 1, 𝑃 = 𝑃𝑜𝑢𝑡∕𝑃𝑛, (5)

in which 𝜂10 and 𝜂100 are provided by the manufacturers and represent
the efficiency of the inverter at 10% and 100% of its nominal power,
respectively. Then, the inverter input power is (𝑃𝑖𝑛𝑣 = 𝑃𝑙𝑜𝑎𝑑

𝜂𝑖𝑛𝑣
) in which

𝑙𝑜𝑎𝑑 is the power consumed by the load and 𝜂𝑖𝑛𝑣 is the inverter
fficiency.

The proposed model considers a grid-connected system allowing
he wind turbines and photovoltaic cells to be used in synchronized
onnection with a public grid supply (𝑃𝑔𝑟𝑖𝑑 = 0.73 $h), in case the
ystem does not meet the demand. Here, the EES capacity (in kW) of the
ystem is designed according to the demand and the days of autonomy
sing the following Eq. (6) [73],

𝑑 =
𝑐𝑏𝑎𝑡

𝐿𝑐 × 𝐸𝑠 ×𝐷𝑜𝐷
. (6)

𝑐𝑑 is the degradation cost of ESS, 𝐿𝑐 is the degradation in terms of
available cycle lifetime, and 𝐸 is the energy storage capacity, at a
𝑠
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certain depth of discharge (DoD) related to the total ESS cell costs
(𝑐𝑏𝑎𝑡). In our modeling the total cost of installation, maintenance, and
operation (𝐶𝑡𝑜𝑡𝑎𝑙) can be obtained by Eq. (7) [73]:

𝑡𝑜𝑡𝑎𝑙 = 𝐼𝐶 + 𝑃𝑊𝑝 + 𝑃𝑊𝑛𝑝 +
ℎ=8640
∑

ℎ=1
𝑐𝑑 , (7)

in which the value 𝐶𝑡𝑜𝑡𝑎𝑙 represents the sum of the system initial cost
IC) — personnel cost, installation and connections – periodic costs
𝑊𝑝 — maintenance of PV panels, maintenance of wind generator,
mong others, and the non-recurrent cost 𝑃𝑊𝑛𝑝 characterized as a cost

of ESS replacement and others [73].

2.2. Optimization modeling

A simple approach to simultaneously minimize two or more objec-
tive functions is to use a weighted sum of the objectives creating a
mono-objective optimization problem [74]. In scalarized approach, the
weights of the functions are associated with the importance of each
objective. The resulting mono-objective problem is given by:

min 𝑓 =

{

𝑘
∑

𝑖=1
𝑤𝑖

𝑓𝑖(𝑥)
𝑓𝑚𝑎𝑥
𝑖

}

, (8)

𝑖 ≥ 0 and
𝑘
∑

𝑖=1
𝑤𝑖 = 1

ubject to ∶ 𝑚𝑖𝑛 𝑔𝑖(𝑥) ≥ 0 𝑓𝑜𝑟 𝑖 ∈ {1,… , 𝑚},

n which 𝑘 is the number of objectives. The terms 𝑤𝑖 are the weights
or each objective, 𝑥 is the vector of decision variables, 𝑓 is the

objective function and 𝑓𝑚𝑎𝑥
𝑖 is the upper bound of i𝑡ℎ objective function.

Functions 𝑔𝑖(𝑥) are the inequality constraints of problem.
Here, the two functions we want to optimize are the total costs in

electricity (COE) and losses of power supply probability (LOLP). COE
can be obtained (in $/kWh), by using the following Eq. (9) [73],

𝐶𝑂𝐸($∕h) =
𝐶𝑡𝑜𝑡𝑎𝑙

∑ℎ=8640
ℎ=1 𝑃𝑙𝑜𝑎𝑑

× 𝐶𝑅𝐹 , (9)

n which 𝐶𝑡𝑜𝑡𝑎𝑙 means the total costs of installation, maintenance, and
peration described in Eq. (7). Power consumption over time (using
4 h×30 days×12 months = 8640h) is given by 𝑃𝑙𝑜𝑎𝑑 . The CRF is a ratio
o calculate the present value of the costs for a given planning horizon
aking into consideration the interest rate.

Statistical techniques and chronological simulation approaches are
sed to calculate the LOLP. As a novelty, the modeling proposed the
nclusion of two factors in the calculation of LOLP:

1. the power generated by the public grid which, in some situa-
tions, may generate exceeding energy. The surplus may be used
to charge the ESS. It provides a more environmentally friendly
approach, and;

2. the state of charge of the battery. The state of charge of the
ESS is a measure of the short-term capacity of the battery and it
changes over time since the battery capacity gradually reduces
as it ages.

These inclusions provide a more realistic model. For calculating
he LOLP, time series data in a given period are based on the energy
ccumulative effect of ESS as expressed [73],

𝑂𝐿𝑃 (%) =
∑

𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑝𝑣 − 𝑃𝑤𝑖𝑛𝑑 + 𝑃𝑔𝑟𝑖𝑑 + 𝑃𝑠𝑜𝑐𝑚𝑖𝑛
∑

𝑃𝑙𝑜𝑎𝑑
, (10)

in which 𝑃𝑙𝑜𝑎𝑑 is the hourly power consumption, 𝑃𝑝𝑣 is the power
generated by PV (in kW), 𝑃𝑤𝑖𝑛𝑑 is the power (in kW) provide by the

ind generator. 𝑃𝑔𝑟𝑖𝑑 is the power (in kW) received from public grid
nd 𝑃𝑠𝑜𝑐𝑚𝑖𝑛 is the minimum state of charge of the battery (in kW).

An important piece of information is to know how much energy
4

as been generated via renewable sources by the microgrid. Thus, the
renewable energy factor (REF) is defined as a boundary to determine
the amount of energy coming from the public grid as compared to
the renewable sources inside the microgrid. Thus, we use the REF as
a constraint problem. When REF is close to 100%, it means that the
system is based on renewable resources only. On other hand, when REF
is close to zero percent, it shows that the amount of power coming from
the public grid is equivalent to the power from renewable resources.
REF can be calculated by Eq. (11) [73],

𝑅𝐸𝐹 (%) =
∑

𝑃𝑝𝑣 + 𝑃𝑤𝑖𝑛𝑑 + 𝑃𝑠𝑜𝑐𝑚𝑖𝑛 − 𝑃𝑠

𝑃𝑔𝑟𝑖𝑑
, (11)

in which 𝑃𝑠 stands for the surplus energy amount.
In our modeling, the COE and the LOLP are equally important

since the obtained system must guarantee reliability and uninterrupted
energy supply at a competitive cost. In this way, the scalarized objective
function proposed in this work is described by [73],

𝑓 = 𝜔 × 𝐿𝑂𝐿𝑃 + 𝜔 × 𝐶𝑂𝐸 + 𝜌
𝑛
∑

𝑖=1
max

[

0, 𝑅𝐸𝐹
]2 , (12)

in which 𝜔 = 0.5 is the weight applied to COE and LOLP and 𝜌 is a
penalty factor associated with the REF constraint.

2.3. Net-metering

Microgrid systems connected to the main public grid can have me-
ters that, instead of just recording incoming energy flow from the public
grid, record both income and outcome energy flows. Incoming energy
flow means that the user is using more energy than it is being produced
and, outcome energy flow means that the amount of energy produced
surpasses the amount consumed. The use of such meters allows the
use of an electricity policy, namely Net-Metering, in which users send
surplus energy back to the grid whilst receiving compensation in the
electricity bill [75,76].

Under a net metering policy, the user can opt to sell either all the
renewable energy produced or the excess energy. The compensation
mechanism varies depending on the country. For instance, in California
- EUA, there are 2 different feed-in tariffs (FiT) distinguishing users
that sell excess from users that sell all the electricity generated [77].
Alternatively, in European countries, a common policy is to use the
public grid as a backup system for the excess energy production [76,78]
in which it is possible to retrieve the energy at zero price or paying a
fraction of retail price.

Besides providing financial advantages to customers, net metering
policies contribute to improvements in the public grid. The energy sent
back to the grid from PV and WT systems can raise the voltage in
the grid. This higher voltage helps to prevent temporary blackouts in
remote areas, such as rural properties because voltage tends to drop at
the end of long distribution lines under high demand. In this way, net
metering policies also help to strengthen the grid [79].

In this work, we assume that the net metering policy employed uses
the grid as a backup system. We vary the compensation of the backup
energy that is retrieved from the grid to 0%, 25%, 50%, and 75% of
the retail price. Thus, the 𝑃𝑔𝑟𝑖𝑑 factor is split into 𝑃𝑔𝑟𝑖𝑑 and 𝑃𝑚𝑒𝑡, in
which 𝑃𝑚𝑒𝑡 stands for the amount of energy consumed from backup
system. Fig. 1 illustrates the HMGS flowchart, in which the orange
steps indicate power consumed both from the public grid and backup
storage. Furthermore, Eqs. (10) and (11) are modified to include the
new parameter as follows,

𝐿𝑂𝐿𝑃 (%) =
∑

𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑝𝑣 − 𝑃𝑤𝑖𝑛𝑑 + 𝑃𝑔𝑟𝑖𝑑 + 𝑃𝑚𝑒𝑡 + 𝑃𝑠𝑜𝑐𝑚𝑖𝑛
∑

𝑃𝑙𝑜𝑎𝑑
, (13)

𝑅𝐸𝐹 (%) =
∑

𝑃𝑝𝑣 + 𝑃𝑤𝑖𝑛𝑑 + 𝑃𝑠𝑜𝑐𝑚𝑖𝑛 − 𝑃𝑠

𝑃𝑔𝑟𝑖𝑑 + 𝑃𝑚𝑒𝑡
. (14)

It is important to note that the excess energy is sent to the grid only if
the battery is fully charged. In other words, PV and WT excess power
generated firstly charge the battery and then, if there is any power left,
is sold to the grid.
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Fig. 1. Flowchart of the modeled HMGS with Net-Metering.
2.4. Technical data information: a case study in Spain

A generic region in Campo de Gibraltar, in Southern Spain, was
used as a hypothetical locality for the case study of this work. Seasonal
annual series (measured in 8640 h) for typical loads from a residential
community and industrial consumption (provided by a Spanish energy
company), the series of solar radiation, hourly wind speed, and ambient
temperature extracted from a public repository (see [80]) serve as
model inputs. Different data series for the period of one year are shown
in Fig. 2, in which the data was extracted from [81].

The proposed microgrid has different renewable energy sources.
Inverter costs are scale-dependent and based on [82] techno-economic
values. Performance curves for small wind turbines are taken from [83],
and the other values are taken from [70,83]. The costs and general
characteristics of the equipment are described in Table 1. The extra
information regarding the WTs specification are: swept area = 113.1 m,
cut out = 20 m/s, and cut in = 3 m/s.

As previously described, our approach takes into account energy
injection via the public grid. Thus, we consider the electricity end-user
5

Table 1
General information about INV, PV, and WT. PV is the nominal power. WT is rated
power.

Life Time (y.r.) Initial Cost ($) Efficiency (%) Power (kW)

INV 15 771.6 96 –
PV 24 1800 95 7.3
WT 24 2869 95 30

price of 0.4892 $/kWh which is the daily electricity average cost in
Spain. Some economic parameters are also part of the costs, such as a
discount rate of 6%, inflation rate of 1.4%, Operation&Maintenance+
running cost of 20%, and project lifetime of 24 years.

2.5. Energy storage systems

With the increasing demand for electrical energy to provide con-
ditions for the use of appliances, smartphones, and even cars, new
technologies for energy storage systems (ESS) have been proposed. In
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Fig. 2. Input system time series data: wind speed, solar radiation, and loads.
general, to design new storage systems some characteristics need to
be taken into account: (i) the scalability/power bridging to provide
and guarantee proper management in power generation for charge/dis-
charge operation over the use of equipment (in the period of multiple
hours); (ii) ESS needs to operate in a fast response time to supply fast
discharge capabilities making the equipment more versatile; (iii) in
general, a battery must have a high storage capacity that means the
ability to store power energy for a long period of time; (iv) in ESS,
the price is an important issue in which the costs of storage need to
be competitive in the market, (taking into account the cost–benefit);
(v) the efficiency of an ESS is correlated to its storage capacity and its
ability to reduce energy losses in the charge/discharge operation (the
better the ESS fulfills these requirements, the greater its efficiency); (vi)
it is desirable for an ESS to have a long life. It means that, in a general
way, the storage system should be a good trade-off between use life and
maintenance activity of the equipment, and; (vii) finally, the battery
needs to present a low environmental impact indicating that ideally,
the storage maintains a low level of pollutant emissions in its operation
throughout its use [84–87].

To study new technologies, this work aims to simulate an hybrid
microgrid system (HMGS) in order to test different ESS. In particular,
two promising ESS technologies are: a technology based on Vanadium
redox flow batteries (VRFB – [46]) and one based on spinel lithium
titanate (Li4Ti5O12 (LTO) – [45]). In recent decades, interest in redox
flow batteries has gained attention as the demand for energy storage
has grown. This is due to the emerging market for electricity production
via solar and wind power [87]. According to [88], VRFB is able to
provide modular and scalable energy in terms of an easy scale-up, long
cycle life, and good recyclability.
6

Table 2
ESS techno-economic values.

Factor Unit Generic VRFB LTO

Cycles un 5000 10,000 8000
Cost $/kWh 1256.00 581.66 1143.00
Efficiency % 70 75 90
Lifetime y.r. 20 15 17.5
BoP $/kW 374 374 374
Other cost $/kW 328 328 328

The main advantages of VRBF are twofold. It presents a fast re-
sponse in its operation (loading and unloading taking less than 0.001 s).
It also presents a high capacity for carrying out operating cycles (no less
than 10,000 and up to more than 16,000 cycles). However, VRBF still
has a high cost when compared to other technologies. Moreover, it is
responsible for energy losses in the system [46,89].

LTO has been studied in the 1980s as a cathodic material for
lithium-ion batteries because of its high conductive capacity. However,
it has not attracted wide attention due to its low potential and low
discharge capacity [90]. LTO is a technology with a high lithium
insertion/extraction voltage of approximately 1.55 V (vs. Li/Li+) and
excellent cycle stability. The significant advancement of LTO is the
high efficiency (>90%), high energy density, rapid response time, and
attractive self-discharge rate. It also shows a prolonged cycle operation
(8000 full cycles) and 20 years of lifetime [91]. However, as a disad-
vantage LTO has a higher cost [44,92]. Table 2 shows a brief overview
of the main techno-economic characteristics of the considered ESS in
this work.
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3. Proposed evolutionary swarm solution

Electrical power flow problems very often contain several local
minima along with high dimensional search space and a mix of con-
tinuous and integer variables. These characteristics pose difficulties
for many standard optimization techniques that are overcome in evo-
lutionary meta-heuristics. Among the many available meta-heuristics,
swarm intelligence algorithms are constantly being successfully ap-
plied in solving electrical energy flow problems [73,93–95]. A recent
algorithm namely Canonical Differential Evolutionary Particle Swarm
Optimization (C-DEEPSO) has been proposed in [69] and has been
effectively solving problems related to optimal power flow in electrical
systems. This algorithm is a swarm-based optimization technique that
implements selection and mutation operators derived from Differential
Evolution (DE), initially proposed by [96]. The recombination oper-
ator employed in C-DEEPSO is borrowed from the Particle Swarm
Optimization (PSO) proposed by [97].

C-DEEPSO’s movement rule equation is the same as presented by
the main swarm intelligence algorithms, according to Eq. (15)

𝐗𝑛 = 𝐗𝑛−1 + 𝐕𝑛 (15)

otwithstanding, not only the velocity in C-DEEPSO differs from the
tandard swarm intelligence techniques but also the way the best
articles are stored. C-DEEPSO uses a memory mechanism that saves
percentage of the best particles found so far among the particles in

he population. By using this mechanism, the new velocity is calculated
y Eqs. (16) and (17),

𝑛 = 𝐰∗
𝐼𝐕𝑛−1 + 𝐰∗

𝐴(𝐗𝑠𝑛 − 𝐗𝑛−1) + 𝐰∗
𝐶𝐂(𝐗

∗
𝑔𝑏 − 𝐗𝑛−1), (16)

𝑠𝑛 = 𝑋𝑟𝑎𝑛𝑑 + 𝐹 (𝑋𝑟 −𝑋𝑛−1). (17)

he first term in this equation is the inertia term, related to the
revious velocity. The second term is the assimilation term that uses an
volutionary strategy that comes from DE. In this work, the rand/1/bin
trategy is used to generate, according to Eq. (17). The particle 𝐗𝑟
s obtained from uniform recombination from the particles in the
emory. Finally, the third term in Eq. (16) is the communication term,

n which 𝐗𝑔𝑏 stands for the global best particle ever found and the term
represents a 𝑁 × 𝑁 diagonal matrix of random variables sampled

n every iteration. These random variables are sampled according to
Bernoulli distribution with success probability 𝑃 that provides the

ommunication among the particles (see [98]). The superscript ∗ indi-
ates that the corresponding parameter undergoes evolution through a
utation process using a Gaussian distribution given by Eq. (18):

∗ = 𝑤[1 + 𝜏 ×𝑁(0, 1)]. (18)

We applied C-DEEPSO to solve the optimization problem com-
osed by Eq. (12) added to the constraint of generating energy prefer-
bly from renewable sources. The optimization problem has four de-
ision variables with the respective bounds: nominal power of the PV
[10,150] kW); autonomy grade for the BESS ([1,3] hours); the number
f wind turbines ([1,5] units), and nominal power of the public grid
[1, 100] kW). The movement rule (see Eq. (16)) is applied to find
he initial velocity for all particles in swarm, according to: 𝑉 0 =

𝑚𝑖𝑛 + ((𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)) × 𝑟𝑎𝑛𝑑(1, 𝐷) in which, the minimal velocity is
𝑚𝑖𝑛 = 𝑈𝑃𝑃𝐸𝑅𝑏𝑜𝑢𝑛𝑑 −𝐿𝑂𝑊𝐸𝑅𝑏𝑜𝑢𝑑 , the maximal velocity for a particle
s 𝑣𝑚𝑎𝑥 = |

|

|

𝑣𝑚𝑖𝑛
|

|

|

, and 𝐷 is the dimension of electric dispatch in HMGS
roblem. Fig. 3 presents a diagram of the solution applied to electric
ower generation in the HMGS grid-connected described by Algorithm
7

.

Algorithm 1 C-DEEPSO for HMGS
Require: population size (𝑁𝑃 ), mutation rate 𝜏, communication

rate (𝑃 ), memory size (𝑀𝐵), total iterations (𝑇 ), lower
bounds (𝑋𝑃𝑉

𝑙𝑏 , 𝑋𝑊 𝑇
𝑙𝑏 , 𝑋𝐸𝑆𝑆

𝑙𝑏 , 𝑋𝑃𝐺
𝑙𝑏 ) and upper bounds

(𝑋𝑃𝑉
𝑢𝑏 , 𝑋𝑊 𝑇

𝑢𝑏 , 𝑋𝐸𝑆𝑆
𝑢𝑏 , 𝑋𝑃𝐺

𝑢𝑏 ), renewable factor constraint (𝑟𝑐), seasonal
data series, components characteristics,
Set the generation number 𝑡 = 0
Initialize the NP particles positions
and velocities at random according to
[ (𝑋𝑃𝑉

𝑙𝑏 , 𝑋𝑃𝑉
𝑢𝑏 ), (𝑋𝑊 𝑇

𝑙𝑏 , 𝑋𝑊 𝑇
𝑢𝑏 ), (𝑋𝐸𝑆𝑆

𝑙𝑏 , 𝑋𝐸𝑆𝑆
𝑢𝑏 ), (𝑋𝑃𝐺

𝑙𝑏 , 𝑋𝑃𝐺
𝑢𝑏 )]

Evaluate the renewable factor of the initial population
while renewable factor > 𝑟𝑐 do

Initialize the NP particles positions
and velocities at random according to
[ (𝑋𝑃𝑉

𝑙𝑏 , 𝑋𝑃𝑉
𝑢𝑏 ), (𝑋𝑊 𝑇

𝑙𝑏 , 𝑋𝑊 𝑇
𝑢𝑏 ), (𝑋𝐸𝑆𝑆

𝑙𝑏 , 𝑋𝐸𝑆𝑆
𝑢𝑏 ), (𝑋𝑃𝐺

𝑙𝑏 , 𝑋𝑃𝐺
𝑢𝑏 )]

Evaluate the renewable factor of the initial population
end while
Update the global best 𝑋𝑔𝑏 with minimum COE and LOLP
while 𝑡 < 𝑇 do

for individual 𝑖 in the population 𝑁𝑃 do
Calculate 𝑋𝑟 using the strategy 𝑆𝑔𝑃𝐵 − 𝑟𝑛𝑑
Copy current individual 𝑋𝑡−1
Mutate strategy parameters 𝑤𝐼 , 𝑤𝐴, 𝑤𝐶 and
𝑋∗

𝑔𝑏
Apply movement rule in current individual according to

Equations (15) and (16)
𝑋𝑡−1
Evaluate current individual 𝑋𝑡 and its copy
Select the fittest individual to proceed to next
generation
Update personal best individual
Update global best individual

end for
𝑡 = 𝑡 + 1

end while

4. Experiments and results

In this section, we evaluate the impact of Net Metering when
applied to MG. Furthermore, the evaluation of two distinct ESS systems
is carried out. The experimental setup is divided into the following
studies:

1. To assess the Net-Metering economical impacts on MG perfor-
mance to solve the electric dispatch problem in HMGS, we per-
form 30 runs for each load profile scenario (residential and indus-
trial). We use a generic ESS to measure the impact of Net metering
in the grid using a compensation of 100%;

2. The VRFB and LTO are evaluated in the system using 25%, 50%,
75%, and 100% Net-Metering compensation. The obtained results
are compared to the results of VRFB vs. LTO in each load scenario,
and;

3. To analyze the optimized results for solving the electrical dispatch
problem, highlighting the positive impact of using this approach
as a power production control system capable of generating great
savings for prosumers users.

For assessing the performance of the experiments, the initialization
parameters used for C-DEEPSO are a population size equal to 10 par-
ticles, and the total number of iterations equal to 20 (stop criteria).
The algorithm uses a mutation rate equal to 0.5 and a communication
rate equal to 0.9. All parameters have been defined empirically. We
conducted the computational simulation using an Intel(R) Core(TM) i9-
10900X CPU@3.70 GHz and 64 GB RAM, with Windows 10 Pro. The
simulation code is implemented in Matlab R2020b.
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Fig. 3. Diagram describing C-DEEPSO applied to the HMGS modeled.
4.1. MG vs. MG with net-metering

In this experiment, we propose the analysis of the impact of the
Net-Metering policy on the MG system modeled in this work. For
this, 30 runs for each scenario, with and without Net-metering, were
performed. A generic battery was considered in the MG and its infor-
mation is shown in Table 2. We analyzed the average result, considering
a 100% energy offset between the MG and the public grid. From
the averages of the optimized solutions using the generic battery, an
analysis of the behavior of the MG was performed. Industrial load
refers to the monitoring of real industrial activity. The time series was
normalized to meet a consumption of 6 000 000 kWh per year.

A generic battery is implemented as ESS with its state of charge
(SoC) shown across scenarios. The maximum charge power depends on
the SoC. When SoC is 100% (completely charged), the power is limited
by the maximum capacity the battery converter can provide. Power
charging is maintained almost constant until the ESS’s SoC reaches
around 80%. Then, the charging ESS is progressively reduced, to avoid
too high battery voltages that could damage it. The generation of
energy produced in the spring and winter periods for the industrial
load can be analyzed in Figs. 4(a) to 4(d). The residential load for the
same periods can be observed in Figs. 4(e) to 4(h). In all scenarios,
it is possible to notice the charging and discharging of the ESS by
the variation of the SoC. Fig. 5 depicts the ESS’s SoC along with its
charging and discharging amounts. It is important to note that the
Net-Metering policy affects only the behavior of the controller when
consuming from the public grid. Hence, Fig. 5 does not distinguish
between the presence or absence of a Net-Metering policy.

Observing Figs. 4(a) and 4(e), we can see that even though both
scenarios present peaks near 130 kW of power load during Spring.
The electrical supply needed in the industrial scenario oscillates around
80 kW and in the residential scenario, it showed lower values close to
30 kW. As a result of the higher amplitude of the power demand curve
in the residential scenario, the public grid consumption is lower than
that in the industrial scenario. In addition to this, ESS in the industrial
scenario takes more hours to fully charge, as shown by the differences
in the charging behavior presented in Figs. 5(a) and 5(c). Moreover, the
8

well-behaved load in the residential scenario allows the ESS’s discharg-
ing peaks to align with the moments of higher load. The continuously
high power necessity in the industrial scenario surpasses the amount of
renewable energy available, which incurs falling back to the public grid
multiple times in order to attend the system. Furthermore, we can see
in Figs. 4(c) and 4(g) that, during Spring, all public network generation
can be compensated via the Net-Metering policy in both industrial and
residential scenarios.

Analyzing Figs. 4(b) and 4(f), it is possible to note that, while in-
dustrial power load does not vary too much between 30 kW and 80 kW
in Winter, the residential scenario’s amplitude is even higher than that
in Spring, ranging from 30 kW to more than 130 kW. Moreover, when
the amount of available energy from PV and Wind is low in Winter,
the ESS is not able to fully handle these power request spikes in the
residential scenario. In Fig. 5(d) we can see that the battery is not only
discharged more rapidly but also is fully discharged before the hours
with the highest load. This type of behavior leads to using the public
grid multiple times, achieving peaks in public network energy of more
than 180 kW. On the other hand, the behavior of load in the industrial
scenario can be mostly satisfied by renewable energy sources with a
minor call to the public network. This demand increases only when
the incidence of wind and solar radiation reduces drastically. Unlike
Spring, the low PV and Wind generation associated with a high energy
requisition does not allow all the public grid to be compensated via the
Net-Metering policy. In Fig. 4(d), we can see that the low variability in
the industrial load allows almost all the public network generation to
be compensated via Net-Metering. However, as shown in Fig. 4(h), the
extremely high peaks of public network generation in the residential
scenario cannot be fully compensated via Net-Metering. Additionally,
Fig. 5(b) shows that when the energy request does not vary much as
in the industrial scenario, the ESS is discharged slower when compared
to the residential scenario. Thus, when renewable energy generation is
low, as in Winter, the shape of the power load curve directly influences
both the amount of public network generation that can be compensated
via Net-Metering and the charging/discharging behavior of the ESS
deployed in the MG.

To verify the impact of the net-metering policy on the system, Fig. 6
presents the result of the annual generation in the industrial scenario.
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Fig. 4. Industrial (a–d) and Residential (e–h) analysis. N-M stands for Net-Metering.

Fig. 5. Industrial (a–b) and Residential (c–d) ESS’s behavior analysis.
9

Fig. 6. Total annually generation share in industrial scenario.

The total power generation without a Net-metering policy is shown in
Fig. 6(a). We can see that the renewable production, composed of solar,
wind, and ESS was 63.88% in a year. When the MG was not able to
generate energy from these sources, due to seasonal fluctuations of low
solar radiation or low wind speed, the MG resorted to the public grid
to meet the load. The surplus situation in which renewable sources are
already supplying the demand and the ESS is fully charged, composed
14.58% of the total power generation that cannot be used locally.
When applying the Net-metering policy, as shown in Fig. 6(b), the
renewable factor was 75.17%. This means an increase of 11.29% of
the generation provided by renewable generators. The compensation
generated reduces the need to inject energy via the public grid and,
in the industrial scenario, the Net-Metering policy has benefited the
system to the point of reducing substantially the MG surplus (being just
0.11%).

Fig. 7 shows the total generation in the residential scenario. We
can note that the Net-Metering policy adopted in Fig. 7(b) increased
the usage of renewable energy sources, compared to Fig. 7(a). The MG
without Net-Metering policy had as a renewable share of just 66.11%
of power production. On the other hand, in the MG with Net-Metering
policy, the renewable share was 76.51% of energy power. It means an
increase of 10.4% in the share comprised of PV panels, wind generators,
and ESS. In this case, the surplus was even smaller (0.03%) when
compared to the surplus of the MG without the Net-Metering policy.
The supplementation of energy via the public network was even lower
when compared to the industrial scenario. Here, the difference was
12.02%. An interesting fact is the increase in ESS usage when the
Net-metering policy is used.

In terms of power energy prices, the generation in the industrial
scenario was 61.ct$ per kWh without the Net-metering policy. When we
used 100% of compensation, the final price was 28.ct$ per kWh. This
means an economy of 33.ct$ per kWh. Similar behavior is observed
in the residential scenario. MG attending the residential load without
the compensation policy had a cost of 55 ct per kWh, and using Net-
Metering a cost of 28.ct$ per kWh, generating an economy of 27.ct$
per kWh. In general terms, it is noted that the use of a compensation
policy benefits generation in MG systems. The energy surplus is almost
zero, the use of the ESS system is more effective, and the generation
cost reduction is, on average, 48% smaller in relation to the two load
scenarios studied. The losses of power supply probability (LOLP) were
less than 5% in all cases.

4.2. Discussion about ESS technologies: VRFB vs. LTO

Following the previous analysis of the MG behavior when an N-M
policy is applied, we study the effects of different battery technolo-
gies in the MG. Therefore, two new emerging ESS technologies, the
Vanadium redox flow batteries (VRFB) and the Spinel Lithium Titanate
(Li4Ti5O12) batteries (LTO), are evaluated in terms of loss of load prob-
ability, costs, penetration of renewable energy and excess power. As
discussed in Section 2.5, these technologies differ in terms of efficiency,
cost, and the number of cycles, among other particulars. LTO is 20%
more efficient than VRFB. On the other hand, VRFB has 2000 more
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Fig. 7. Total annually generation share in residential scenario.
Fig. 8. Boxplot of industrial and residential optimized prices in MG.

Fig. 9. Heatmap of the pairwise comparisons after applying the Conover test with
Holm–Bonferroni correction using 99% of confidence level. Legend: 𝑝 < 0.01 indicates
that the test is significant; NS indicates that the test is not significant; NC indicates
pairwise comparisons with different compensation percentages that are not considered.

track cycles than LTO. We followed the same experimentation proce-
dure discussed in Section 4.1. All tests followed the same generation
behavior, indicating that both batteries charge and discharge energy.
Table 3 shows the average results obtained by the ESSs studied here,
when used in the MG for the industrial and residential test scenarios
after 30 runs.

When the microgrid employs a Net-Metering policy, both the indus-
trial and residential scenarios can experience a reduction in the LOLP.
Analyzing Table 3, we can see that, in the industrial scenario, there
is a reduction of 0.18% using LTO battery with 100% compensation
and 0.19% using VRFB battery with 25% compensation. In the resi-
dential scenario, the reduction in the LOLP is 0.44% using LTO battery
with 50% compensation and 0.30% using a VRFB battery with 100%
compensation. It is possible to see in Table 3 that the more energy
compensation is performed in the MG (in terms of %), the lower the
final value of kWh (in $). In all cases the use of renewable sources in-
creases, reaching a value greater than 76% in some cases. Furthermore,
10
Table 3
ESS mean results according Net-Metering level’s (0%: without compensation).

LOLP COE REF Surplus

Industrial

LTO (0%) 5.34% 50.ct$ 69.98% 20%
VRFB (0%) 5.31% 47.ct$ 69.83% 19%
LTO (25%) 5.24% 47.ct$ 74.64% <1%
VRFB (25%) 5.12% 44.ct$ 74.16% <1%
LTO (50%) 5.32% 41.ct$ 73.66% <1%
VRFB (50%) 5.16% 34.ct$ 75.22% <1%
LTO (75%) 5.21% 30.ct$ 74.64% <1%
VRFB (75%) 5.17% 26.ct$ 75.05% <1%
LTO (100%) 5.16% 18.ct$ 75.64% <1%
VRFB (100%) 5.23% 18.ct$ 75.20% <1%

Residential

LTO (0%) 5.82% 49.ct$ 70.74% 18%
VRFB (0%) 5.50% 44.ct$ 72.08% 19%
LTO (25%) 5.50% 47.ct$ 74.57% <1%
VRFB (25%) 5.22% 40.ct$ 76.46% <1%
LTO (50%) 5.38% 37.ct$ 76.23% <1%
VRFB (50%) 5.25% 32.ct$ 76.69% <1%
LTO (75%) 5.42% 30.ct$ 75.64% <1%
VRFB (75%) 5.32% 25.ct$ 76.37% <1%
LTO (100%) 5.39% 20.ct$ 76.41% <1%
VRFB (100%) 5.20% 20.ct$ 75.67% <1%

disregarding Net-Metering, the MG shows a surplus higher than 18% in
all cases.

We can note the impact of the distinct ESS technologies, LTO and
VRFB, in the power generation in terms of objective functions used in
this work. VRFB showed fewer prices in all cases (applying or not the
Net-Metering policy). In addition, in only one case, the LTO presented
a renewable factor greater than the VRFB (in both cases with 100%
compensation). Evaluating the losses generated in the system (LOLP)
and the occurrence of surplus, we see that both batteries had similar
results in all cases. On average, the kWh in Spain is 0.4892 $/kWh.
Thus, when using the VRFB or LTO in the microgrid with compensation
policies, the generation costs were lower than the average price of
$/kWh in Spain. Table 3 shows a summary of tests performed.

This fact validates the power micro-generation of energy as a good
way to achieve the energy goals in Spain. Fig. 8 presents boxplots of
KWh price values (in $) in the MG, using LTO and VRFB, for different
compensation policies. Each boxplot displays the summary of the price
values (minimum, first quartile, median, third quartile, and maximum)
obtained for each battery technology using 25%, 50%, 75%, and 100%
compensation values. In this kind of analysis, when the boxes do not
overlap, we can say that there is a statistical difference between the
sample mean represented by the non-overlapped boxes [98]. However,
when the boxes overlap, further investigation is required to assess if
there is a statistical difference between the obtained sample means.

Observing Fig. 8(a), for the industrial case, the VRFB proves to be a
more promising technology than LTO showing an average lower price
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Fig. 10. Electrical results. Production to Industrial (Ind.P) | Production to Residential (Res.P). Contribution (Cont.).
result for all compensation policies. Except for the 25% case, all the
boxes do not overlap, indicating that VRFB mean-cost of energy result
is statistically different from LTO battery. Considering the residential
case, a similar conclusion can be derived for all compensation policies
excluding 100%. In this work, we defined the null hypothesis as the
equality of the mean costs obtained after 30 runs for each scenario.
After that, we applied a statistical test to ensure in which pairs of
comparisons the null hypothesis can be rejected or not, for a given
significance level 𝛼. To assess the test results, we analyze the p-values
obtained. A 𝑝-value is the likelihood that, in a sample, the null hypothe-
sis is correct [99]. For a significance level of 𝛼 = 0.01, when the 𝑝-value
≤ 0.01, we can say that there are no differences among the mean values
being compared with a 99% confidence interval [98]. Thus, we chose
a nonparametric test entitled Conover statistical test [100] along with
Holm–Bonferroni correction1 [101] to evaluate the samples of energy
costs obtained from the system using either LTO or VRFB technologies
in the smart grid, applied to both test scenarios (residential and indus-
trial). Fig. 9 shows the Conover test results as a heatmap, in which
the diagonals immediately above and below the main one provide the
test outcomes for each pairwise comparison. A blue square indicates
that it was possible to find differences between the compared mean
costs, rejecting the null hypothesis, because the 𝑝-value obtained is
less than 0.01. Fig. 9(a) shows that, for the industrial case test results,
all pairs are significant. Thus, we can say that, with 99% confidence,
VRFB is the alternative with the lower cost for all the compensation
levels evaluated in the industrial scenario. Additionally, the same can
be stated for the VRFB in the residential scenario in Fig. 9(b) with 25%,
50%, and 75% compensation levels. The test nonetheless was not able
to identify differences between the LTO and VRFB mean costs for the
100% compensation level in the residential scenario.

1 The correction is used along with the test to alleviate the influence of
multiple comparisons in the final test results by controlling the family-wise
error rate.
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To summarize, Table 4 shows an overview of the costs obtained
for each battery technology under the evaluated Net-Metering levels.
As a validation of the minimum average cost obtained, the plus sign
(+) besides VRFB indicates that the mean cost for this battery is
significantly different (with 99% confidence) from the cost for a LTO
battery with a minus sign (−). We can observe that, apart from the
results obtained for a 100% compensation level, VRFB obtained both
statistically significant costs and a smaller standard deviation. This
result indicates that the VRFB technology consistently achieved lower
kWh costs through runs.

In general, we can say VRFB proves to be a suitable option since
both the mean and standard deviation cost values found by the com-
pensation policies are lower than that of LTO. One can argue that either
for the residential or industrial cases when the compensation is set to
100%, it may be economically advantageous for the prosumer to choose
LTO. Although the difference in the prices is not statistically significant
in the residential scenario, its useful life is longer than that of VRFB and
it provides a smaller cost variation.

4.3. Discussion about the optimal controller and the savings achieved

Since in Spain the Net-metering policy has not been implemented
yet, we only analyzed the use of this compensation policy for the 25%
level, in a conservative way, to show the benefits of applying Net-
Metering. For a better discussion about the functioning MG generation,
an evaluation of the characteristics of power generation in the MG is
described with the VRFB storage system. Furthermore, we chose a time
interval in the winter season to analyze the general behavior of the
microgrid system.

Fig. 10 represents a compilation of generation results in kW. The
energy production by PV sources and wind generators is the same for
both scenarios (residential and industrial), as the time series of wind
and solar radiation are the same. Fig. 10(a) shows a trend curve ob-
tained by calculating the moving average for a week that helps a visual
analysis. As expected, there is a greater production of solar energy in
the mid-spring and mid-summer periods, with an average of 80 kW. A
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Table 4
Summary of the obtained costs on each scenario. A plus sign (+) indicates that, within the same Net-Metering level, the
battery cost is significantly different from the other with the minus sign (−).

N-M Level Battery Best Median Worst Mean Std.

Industrial

25% (−)LTO 46.ct$ 46.ct$ 50.ct$ 47.ct$ 1.9.ct$
(+)VRFB 43.ct$ 43.ct$ 47.ct$ 44.ct$ 1.9.ct$

50% (−)LTO 39.ct$ 41.ct$ 43.ct$ 41.ct$ 1.2.ct$
(+)VRFB 34.ct$ 34.ct$ 34.ct$ 34.ct$ 0.0.ct$

75% (−)LTO 27.ct$ 27.ct$ 39.ct$ 30.ct$ 4.5.ct$
(+)VRFB 25.ct$ 25.ct$ 29.ct$ 26.ct$ 1.5.ct$

100% (−)LTO 18.ct$ 18.ct$ 19.ct$ 18.ct$ 0.2.ct$
(+)VRFB 15.ct$ 16.ct$ 24.ct$ 18.ct$ 2.9.ct$

Residential

25% (−)LTO 43.ct$ 46.ct$ 53.ct$ 47.ct$ 3.9.ct$
(+)VRFB 40.ct$ 40.ct$ 42.ct$ 40.ct$ 1.0.ct$

50% (−)LTO 35.ct$ 36.ct$ 39.ct$ 37.ct$ 1.8.ct$
(+)VRFB 32.ct$ 32.ct$ 33.ct$ 32.ct$ 0.6.ct$

75% (−)LTO 26.ct$ 26.ct$ 40.ct$ 30.ct$ 5.6.ct$
(+)VRFB 23.ct$ 23.ct$ 29.ct$ 25.ct$ 2.3.ct$

100% (−)LTO 18.ct$ 18.ct$ 24.ct$ 20.ct$ 2.9.ct$
(−)VRFB 15.ct$ 15.ct$ 30.ct$ 20.ct$ 6.0.ct$
higher autumn/winter wind power generation rate (maximum installed
turbine capacity of 240 kW) is seen in Fig. 10(b). The dispersion of wind
generation is greater due to the air currents that may have occurred
during the year in the studied region.

It is noted that energy compensation in winter is more effective
in the industrial setting when comparing Figs. 10(e) and 10(c). The
Net-Metering in industrial load is on average 20 kW higher than in
the residential load between hours 317 and 554. The contribution of
solar and wind sources to generate the Net-Metering can be seen in
Figs. 10(g) and 10(i). Results indicate that power generation via PV
panels has a greater contribution when compared to generation via
wind turbines. The Net-Metering for the period presents peaks of high
power generated, sometimes reaching more than 150kw in both loads
tested.

Electricity from the public grid is only used in the MG model
when demand cannot be met by renewable sources, battery storage,
and in the absence of a positive energy balance to be compensated,
as illustrated in Figs. 10(e) and 10(f). The average fluctuation of the
amount of electricity consumed from the public grid is more intense in
the industrial scenario, with peaks of 40 kW. Contrarily, the residential
load scenario, for the same period, presents a low need to resort to
the public grid to maintain the necessary load that serves the 200
houses. Although there is a high ESS charge contribution from wind
generation on some days in the industrial scenario, we can say, by
analyzing Figs. 10(i) and 10(j), that most part of the energy used to
charge the ESS comes from the solar source, for both load profiles.

Fig. 11 shows both the MG and the ESS behavior in relation to
available energy sources using VRFB with 25% of Net-Metering for
industrial/residential electrical supply during the winter. As illustrated
by Figs. 11(a) and 11(b), the PV generation is by far the source
that most contributes to the MG system, reaching more than 50% of
generation for both load scenarios. Figs. 11(c) and 11(d) show that
VRFB works by keeping the SoC stable and presenting charge (Ech)
and discharge (Edch) states properly. In particular, this ESS is well
suited to provide modular and scalable energy storage due to favorable
characteristics that validate its use.

By analysing the residential scenario in Fig. 12(b), it is possible to
notice that the maximum charge amount verified in the ESS was ap-
proximately 130 kW in some hours (in relation to PV/Wind), while the
discharge was around 140 kW with peaks over 150 kW in winter. We
argue that the operation for the residential VRFB loading and unloading
profile is more efficient according to the technical specifications [51],
This means that the microgrid benefits more from using the energy
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Fig. 11. MG meeting the industrial load demand (left) and residential load demand
(right).

storage system because VRFB can provide high DoD without incurring
in an increase in the life cycle loss [51]. This corroborates the use of
this ESS by residences due to its quality and lower cost compared to
LTO.

For the industrial load scenario, VRFB also shows its efficiency in
terms of charge and discharge, bringing benefits to the MG. It is possible
to verify that the maximum load verified in the system ESS was around
100 kW (relative to PV/Wind), while the discharge was around 100 kW
(in relation to the load). From these results, it is possible to say that
with a Net-Metering policy of 25% compensation, the VRFB battery
efficiently meets the microgrid for both analyzed load profiles. The
level of compensation between the MG and the public grid reduced the
energy surplus to a value of less than 1%.

Comparing the values in Table 3, there is reduction in the in-
dustrial profile from 47ct.$ to 44ct.$ while in the residential profile
from 44ct.$ to 40ct.$. From this, the application of the adopted Net-
Metering policy generates an annual saving (yr) of 44112.17$/yr and
31793.05$/yr in the residential and industrial load scenarios, respec-
tively. Furthermore, without using the compensation policy (25%),
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Fig. 12. Operation of the Vandium Redox Flow battery for Industrial and Residential loads.
the power surplus incurred in a waste of 90114.01$/yr (residential
profile) and 82664.61$/yr (industrial profile). Thus, by employing a
Net-Metering mechanism, the total amount saved is 134226.18$/yr
and 114457.66$/yr for the residential and industrial load scenarios,
respectively.

From this, the application of the adopted Net-Metering policy gen-
erates a reduction of thousands of dollars per year. This measure may
have a positive impact on the economy, increasing the power to buy
and sell energy in the national market, generating income for the
prosumer. In addition, the study showed that ESS based on redox flow
is beneficial to the microgrid, reducing the costs of kWh. Thus, the
VRFB proved to be an interesting alternative when compared to a
lithium-based battery.

5. Conclusions

In this paper, we have proposed new modeling for electric dispatch
in microgrids (MGs) which takes into account the use of a Net-Metering
(N-M) policy with different levels of compensation. The evaluated MG
was composed of generic small wind turbines, photovoltaic panels, and
an energy storage system (ESS). The proposed model is then optimized
using an emerging evolutionary swarm meta-heuristic, the C-DEEPSO
algorithm. Accordingly, we conducted a twofold analysis of industrial
and residential scenarios, divided into three parts. First, the MG profile
regarding energy sources contributions and surplus was analyzed before
and after the inclusion of the Net-Metering policies. The evaluated Net-
Metering policies differed according to the level of compensation, 25%,
50%, 75%, and 100%. Second, the ESS effects in the MG were analyzed
according to lithium-based and redox flow-based battery specifications.
Finally, the techno-economic impacts of employing a Net-Metering
policy with a 25% compensation level are assessed and investigated.

In the first part of the analysis, the application of a 100% Net-
Metering policy along with a generic ESS was evaluated. Results
showed that the policy employed was beneficial to the system, reducing
the excess energy (surplus) from 14.58% to 0.11% and from 14.57%
to 0.03% in industrial and residential scenarios, respectively. Then,
LTO and RFVB ESS technologies were evaluated without Net-Metering
and with four different levels of Net-Metering: 25%, 50%, 75%, and
100%. The MG with N-M experienced in both consumption profiles
a decrease in electrical power losses and an increase in the usage
of renewable sources. In terms of energy costs, VRFB costs were
statistically significant compared to LTO costs in both scenarios for
compensation levels ranging from 25% to 75%. A MG with a 100%
compensation level, however, will be better served by the LTO due to
its longer life and smaller cost variation, even though both batteries
have the same average kWh cost. In general, VRFB proved to be more
efficient, even in the residential scenario in which the ESS is more
intensely requested. Thus, an economical study was carried out in a MG
using VRFB. This study showed that, in a conservative analysis, using
a VRFB with a 25% N-M policy can yield prosumer savings larger than
$134000.00 and $114000.00 per year for the industrial and residential
profiles, respectively.

Regarding the evolutionary algorithm proposed, C-DEEPSO suffered
from some drawbacks such that, mutation and communication param-
eters have to be carefully selected and, due to its stochasticity, several
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runs should be performed in order to assess an average result. Despite
these drawbacks, an evolutionary swarm meta-heuristic like C-DEEPSO
proved to be an efficient controller for electric dispatch in MGs. In
summary, from a perspective of sustainability and energy savings, the
results presented in this work gain relevance every day, representing
tangible benefits for prosumers and for the environment in a future
in which these types of systems are available to a larger portion of
the population. As a future outcome, a sensitivity analysis can be
performed evaluating not only ESS’s cycle and calendar life but also
its environmental impacts in a multi-objective approach.
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