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1.1 INTRODUCTION 

Dissipative vector solitons (DVSs) in mode-locked fiber lasers compose a train of stabilized 

ultrashort pulses with the specific shape and state of polarization (SOP) driven by a complex 

interplay between the effects of gain/loss, dispersion, nonlinearity, and linear and circular 

birefringence (Grelu 2012, Haus 1999, S. C.-C. Cundiff 1999, L. T. Zhao 2008, Zhang 2009, Tang 

2008, S. V. Sergeyev 2014, Mou 2011, Boscolo 2014, S. Sergeyev 2014). Given the SOP of the 

solitons can be locked or evolved at different time scales, the DVSs stability is an important issue 

to be addressed in the context of applications in metrology (Udem 2002, X. L. Zhao 2018, Pupeza 

2021), spectroscopy (Mandon 2009, Picqué 2019) and high-speed fiber-optic communication 

(Hillerkuss 2011, Geng 2022). Also, the flexibility in the control of dynamic SOPs is of interest 

for trapping and manipulation of atoms and nanoparticles (Jiang 2010, Tong 2010, Spanner 2001, 

MacPhail-Bartley 2020, Misawa 2016), and control of magnetization (Kanda 2011, Kimel 2019).  

   The stability and evolution of vector solitons at a time interval from a few to thousands of 
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cavity round trips is defined by asymptotic states (attractors) which the laser SOP approaches at 

a long time scale, viz. fixed point, periodic, quasi-periodic, and chaotic dynamics. High signal-to-

noise ratio (>40dB) measurement in the case of mode-locked lasers and application of a 

polarimeter,  gives an opportunity for direct observation of attractors embedded in 3D space in 

terms of the Stokes parameters S1, S2, and S3 (S. Sergeyev 2014, S. V. Sergeyev 2014, Mou 

2011). In this section, we review our recent experimental study of the single soliton polarization 

dynamics in Er-doped mode-locked fiber lasers at time scales from one to a hundred thousand 

roundtrips. To characterize the dynamics theoretically, we review our new vector model in 

sections 1.9-1.11.  

1.2 FUNDAMENTAL SOLITON POLARIZATION DYNAMICS (EXPRIMENT) 

1.2.1 Experimental set-up    

Figure 1.1a illustrates the Er-doped fiber laser (EDFL) mode-locked by the carbon nanotubes 

(CNT) saturable absorber (SA). The EDFL gain medium has of 2 m of high-concentrated Er-

doped fiber (EDF Er80-8/125 from Liekki) which is pumped by 980 nm laser diode (LD) 

through 980nm/1550nm wavelength division multiplexing (WDM). The external and in-cavity 

polarization controllers are used to adjust the pump wave and lasing states of polarization. An 

optical isolator (OISO) provides a unidirectional lasing signal propagation in the laser cavity. 

The output coupler (OUTPUT C) redirects of 10 % of light outside the cavity. The total length of 

the laser cavity is 7.83 m with an average anomalous dispersion (group velocity dispersion 

(GVD) parameter for erbium fiber β2,EDF=-19.26 fs2 /mm) that will result in soliton output. To 

characterize the output lasing, auto-correlator (Pulsecheck), oscilloscope (Tektronix), optical 

spectrum analyzer (ANDO AQ6317B), and in-line polarimeter (Thorlabs, IPM5300) are used. 
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The EDFL is pumped at 178mW that resulting in 3mW of averaged lasing power. 

   Figure 1.1b shows an output optical spectrum of the output lasing signal centered at 1560 nm 

and having a full-width half-maximum (FWHM) spectral bandwidth of 3.72 nm. The Kelly 

sidebands indicate the fundamental soliton shape of the output pulses. A pulse train has a period 

of 38.9 ns or the repetition rate of 25.7 MHz (Figure 1.1c). The measured autocorrelation trace 

corresponding to the pulse duration of 583 fs is shown in Figure 1.1d.  

<Figure 1.1 here> 

Figure 1.1. Experimental set-up. EDF: high concentration erbium-doped fiber, SM: single-mode 

fiber with anomalous dispersion, POC: polarization controller, WDM: a wavelength division 

multiplexing coupler, OISO: an optical isolator, CNT: a fast saturable absorber (carbon 

nanotubes), OUTPUT C: an output coupler, AC; autocorrelator, OSA: optical spectrum analyzer, 

PD: photodetector, OSC: oscilloscope, ESA: electrical spectrum analyzer, IPM: inline polarimeter.  

(Adapted from Sergeyev, Sergey V., Mou, Ch., Turitsyna, E.G., Rozhin, A., Turitsyn, S.K. and 

Blow, K. 2014. "Spiral attractor created by vector solitons." Light: Science & Applications 3(1): 

e131-e131.) 

 

The polarimeter has a resolution of 1 µs and a measurement interval of 1 ms (25 – 25000 round 

trips) and detects the normalized Stokes parameters s1, s2, s3 and the degree of polarization (DOP) 

which are to the output powers of two linearly cross-polarized SOPs, 
2

u and  
2

v , and the phase 

difference between them  : 

𝑆0 = |𝑢|2 + |𝑣|2, 𝑆1 = |𝑢|2 − |𝑣|2, 𝑆2 = 2|𝑢||𝑣| 𝑐𝑜𝑠 𝛥𝜑, 𝑆3 = 2|𝑢||𝑣| 𝑠𝑖𝑛 𝛥 𝜑,  

𝑠𝑖 =
𝑆𝑖

√𝑆1
2+𝑆2

2+𝑆3
2
,  𝐷𝑂𝑃 =

√𝑆1
2+𝑆2

2+𝑆3
2

𝑆0
, (𝑖 = 1,2,3)                                      (1.1)  
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1.2.2 Experimentally observed fundamental soliton’s polarization attractors  

By adjusting in-cavity and pump polarization controllers, we observed vector solitons with SOPs 

slowly evolving at the surface of the Poincare sphere on a double spiral trajectory (Figure 1.2a). 

The slow dynamics includes residence near the orthogonal states of polarization for approximately 

200 µs and relaxation oscillations with a period of about 8 µs. This new type of vector soliton, viz. 

polarization precessing vector soliton, has a spiral structure quite similar to the attractors 

demonstrated theoretically for dye laser (S. Sergeyev 1999), vertical-cavity semiconductor laser 

(Willemsen 2001), and degenerate two-level optical medium (Byrne 2003).                

By tuning the intra-cavity and pump LD polarization controllers, we have also observed a 

polarization attractor in the form of a fixed point shown in Figure 1.2b that corresponds to the 

polarization locked vector soliton with a very high degree of polarization of 92% (Mou 2011) . 

By increasing the pump current to 330 mA and tuning the polarization controllers, we have also 

found a new polarization attractor in the form of a double semi-circle (Figure 1.2c). In view of 

polarimeter’s photodetector resolution of 1 μs this attractor is a results of the  signal dynamics 

averaging over 25 round trips.  

<Figure 1.2 here> 

Figure 1.2. Polarization attractors at the Poincaré sphere: a) spiral attractor; b) locked SOP; c) 

double arc.  Parameters: time frame of 25-25000 round trips (1 µs – 1 ms); a),  b) Pump current 

Ip=310 mA; c) Ip=330 mA (Sergeyev, Sergey V., Mou, Ch., Turitsyna, E.G., Rozhin, A., 

Turitsyn, S.K. and Blow, K. 2014. "Spiral attractor created by vector solitons." Light: Science & 

Applications 3(1): e131-e131). 



6 

  

 1.3 VECTOR MULTIPULSING SOLITON DYNAMICS (EXPERIMENT) 

By tuning an in-cavity polarization controller (POC) and POC for the pump laser (Fig. 1 a), we 

have found a new type of vector solitons with precessing SOPs for multipulsing operations at a 

time scale of 25-25000 roundtrips (S. V. Sergeyev 2012). In addition to slow polarimeter IPM5300 

with 1 s resolution we used a fast polarimeter inline polarimeter (OFS TruePhase® IPLM)13 

optimized for the high-speed operation (Fig. 3) (Tsatourian V 2013). The polarimeter comprises 

four tilted fiber gratings (TFBGs) inscribed in the core of polarization-maintaining (PM) fiber. 

Each TFBG scatters 1% of incoming light on the detector and four detectors’ voltages were 

recorded simultaneously by oscilloscope (Tektronix DPO7254). The polarimeter has 3 dB 

bandwidth of 550 MHz with a maximum  DOP error of around 4%. Self-calibration procedure 

has been used to convert the detectors signals voltage to Stokes parameters.  

<Figure 1.3 here> 

Figure 1.3. Inline polarimeter: OFS TruePhase® IPLM. (Tsatourian V, Sergeyev, S.V., Mou, C., 

Rozhin, A., Mikhailov, V., Rabin, B., Westbrook, P.S. and Turitsyn, S.K. 2013. "Polarisation 

dynamics of vector soliton molecules in mode locked fibre laser." Scientific reports 3(1): 1-8.) 

 

In the experiment, the pump current has been changed from 306 mA to 355 mA, and the in-cavity 

polarization and pump polarization controller have been adjusted. All auto-correlation traces have 

been averaged over 16 samples to mitigate the auto-correlator sensitivity to the input SOP.  

With the pump current of 306 mA, double-pulsing was observed (Figure 1.4a-f). The output optical 

spectrum shown in Figure 1.4a is centered at 1560 nm with Kelly sidebands indicating the 

fundamental soliton shape. The pulses doubling shown in Figure 1.4b is the result of the interplay 

between the laser cavities’ bandwidth constraints and the energy quantization associated with the 
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resulting mode-locked pulses (F. W. Li 2010). With increased pump power, the peak power 

increases, and the pulse width (inversely proportional to the spectral bandwidth) decreases 

according to the are theorem (F. W. Li 2010).  The increase in the mode-locked spectral bandwidth 

is limited by the gain bandwidth of the cavity. This constraint can be overcome by a further single 

pulse split into two pulses with energy divided between two pulses within the gain bandwidth. 

Given this, a double pulsing with the period T=38.9 ns, pulse width Tp=247 fs, and output power 

I≈ 0.55 mW was observed (Figure 1.4b). Averaging over 16 auto-correlation traces is enough to 

obtain a smooth soliton autocorrelation trace (Figure 1.4c). The slow dynamics recorded by 

IPM5300 polarimeter demonstrates that the anti-phase dynamics of oscillations for two cross-

polarized SOPs lead to cw operation for the total output power (Figure 1.4d). The low value of 

DOP oscillations at 12 % indicate that polarization dynamics is faster than the polarimeter’s 

resolution of 1 µs (Figure 1.4 e). The residual trace of the fast oscillations in Figure 1.4e takes the 

form of the fast phase difference jumps and so polarization attractor at the Poincaré sphere has  a 

polyline shape winding around a circle (Figure 1.4f).  

<Figure 1.4 here> 

 

Fig. 4 Vector soliton with a slowly evolving state of polarization for two-pulse operation. (a) 

output optical spectrum, (b) single pulse train, (c) measured autocorrelation trace. Polarization 

dynamics in the time frame of 25-25 000 round trips (1 µs – 1 ms) in terms of  (d) optical power 

of orthogonally polarized modes Ix (solid line) and Iy (dashed line), total power  I=Ix+Iy  (dotted 

line), (e) phase difference and degree of polarization, and (f) Stokes parameters at Poincaré 

sphere. Parameters: pump current Ip=306 mA, period T=38.9 ns, pulse width Tp=247 fs, output 

power I≈ 0.55 mW.   
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When the pump power current of  320 mA, the optical spectrum shown in Figure 1.5a preserves 

the soliton shape and five-pulse soliton dynamics with period T=38.9 ns, pulse width Tp=292 fs, 

output power I≈ 0.65 mW emerges (Figure 1.5b). As follows from Figure 1.5c, the fast dynamics 

of the output SOP results in nonsmoothed autocorrelation trace even after averaging over 16 

samples. Given the powers of two cross-polarized SOPs slightly deviate from the anti-phase 

dynamics, the total output power is oscillating with a small amplitude  (Figure 1.5d). Similar to 

the previous case (Figure 1.4e), DOP is oscillating around the low value of 30 % that also 

indicates the presence of fast SOP oscillations faster than 1 µs that can be also justified by phase 

difference dynamics (Figure 1.5e). Combination of the fast dynamics in the form of the phase 

jumps between cross polarized SOPs and slow SOP evolution takes the form of a polyline with 

an outline in the form of a circle at the Poincaré sphere  (Figure 1.5f).  

 

<Figure 1.5 here> 

 

Fig. 5 Vector soliton with slowly evolving state of polarization for five-pulse operation. (a) 

output optical spectrum, (b) single pulse train, (c) measured auto-correlation trace. Polarization 

dynamics in the time frame of 25-25 000 round trips (1 µs – 1 ms) in terms of  (d) optical power 

of orthogonally polarized modes Ix (solid line) and Iy (dashed line), total power  I=Ix+Iy  (dotted 

line), (e) phase difference and degree of polarization, and (f) Stokes parameters at Poincaré 

sphere. Parameters: pump current Ip=320 mA, period T=38.9 ns, pulse width Tp=292 fs, output 

power I≈ 0.65 mW.  
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In this experiment with the fast polarimeter, OFS TruePhase® IPLM, the pump current was 355 

mA, and the in-cavity polarization and pump polarization controllers have been tuned to obtain 

the polarization attractors shown in Figure 1.6. The two-pulses polarization dynamics shown in 

Figure 1.6a,b takes the form of polarization switching between cross polarized SOPs with the 

period equal to the pulse round trip in the laser cavity.    A four-pulse soliton operation is shown 

in Figure 1.6c,d. The polarization dynamics shown in Figure 1.6d demonstrates slow pulse-to-

pulse evolution of the laser SOP with the period of 335 ns corresponding to 8 round trips of the 

laser cavity. Unlike the previous case, the vector soliton shown in Figure 1.6d demonstrates slow 

cyclic SOP evolution with the circle trajectories at the Poincaré sphere (Figure 1.6d). It has been 

also found for two cases that DOP is oscillating around 90%  that indicates the SOPs of the two 

adjacent pulses within one round trip are the same (Tsatourian V. 2013).  

 

 

<Figure 1.6 here> 

 

Figure 1.6. Vector soliton for two- (a, b) and four-pulse (c, d) operation. (a, c) pulse train 

collected from four polarimeter photodetectors, (b, d) polarization attractors at Poincaré sphere.  

1.4 POLARIZATION DYNAMICS OF BOUND STATE SOLITONS (EXPERIMENT) 

Unlike multipulsing with the pulse separation of nanoseconds, the bound states originate from 

short-range interaction through the overlapping of solitons tails or soliton-dispersive wave 

interaction results and results in double pulses with the spacing of the few pulse widths and phase 

differences of  0, 𝜋  or  ±𝜋 2⁄ . The tightly BS solitons have been experimentally observed in fiber 
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lasers with different mode-locking techniques including nonlinear polarization rotation (Wang 

2020), figure-of-eight (Seong 2002), carbon nanotubes (CNT) (Mou Ch. 2013, Tsatourian V 2013, 

Wu 2011, Gui 2013) and graphene based mode locked fiber lasers (X. L. Li 2012) . In addition, 

various types of different bound states have been studied theoretically and experimentally 

including vibrating bound states, oscillating bound states (Soto-Crespo 2007) bound states with 

flipping and independently evolving phase (Zavyalov 2009, Ortac 2010). Stable bound states – 

soliton molecules can be used for coding and transmission of information in high-level modulation 

formats when multiple bits are transmitted per clock period, increasing capacity of communication 

channels beyond binary coding limits (Rohrmann 2012).  In this section, we review our recent 

experimental results on a new type BS solitons, namely vector BS soliton with evolving states of 

polarization (Mou Ch. 2013, Tsatourian V 2013). All results are obtained based on slow 

(IPM5300) and fast inline polarimeters.  

   The BS solitons with different pulse separation and a phase shift can be found from optical 

spectra analysis. For two-soliton BS with pulse separation 𝜏 and a phase shift 𝜑, the amplitude 

takes the form  𝑓(𝑡) + 𝑓(𝑡 + 𝜏) 𝑒𝑥𝑝( 𝑖𝜑) and so the optical spectral power can be found as follows 

(Tsatourian V 2013): 

𝑆(𝜈) = |𝐹(𝜈) + 𝐹(𝜈) 𝑒𝑥𝑝(−𝑖2𝜋[𝜏𝜈 + 𝜑])|2 = 2|𝐹(𝜈)|2(1 + 𝑐𝑜𝑠(2𝜋𝜈𝜏 − 𝜑)),                         (1.2) 

Here 𝐹(𝜈) = 𝐹𝐹𝑇(𝑓(𝑡)) is the Fourier transform. The results are found in Figure 7a-d. As follows 

from Figure 1.7a-d, the optical spectrum is modulated with the frequency 𝛥𝜈 = 1 𝜏⁄ ,  symmetry 

of spectrum depends on the phase shift, and the minimum of the spectral power is zero. Though 

some authors associate the loss of spectral fringes’ contrast with so-called vibrating solitons (Soto-

Crespo 2007), the interleaving of two two-pulse bound states with the phase shifts (0 and −𝜋/2 or 

𝜋 and 𝜋/2) supported by harmonic mode locking can lead to reduced  fringes’ contrast (Figure 1.7 
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e, f (Tsatourian V 2013)). For anomalous dispersion, pulse shape is a hyperbolic-secant-squared 

with the time-bandwidth product of 0.315. So, the pulse width 𝛥𝑇 and separation 𝜏 can be found 

from an optical spectrum as follows 

 𝛥𝑇 =
0.315𝑛𝜆2

𝑐𝛥𝜆
,  𝜏 = 𝛥𝑇 𝑁⁄ .                                     (1.3) 

Here n=1.44 is a refractive index of silica fiber, 𝜆 is the central wavelength in optical spectrum, c 

is the speed of light, and N is the number of minima in optical spectrum.  

<Figure 1.7 here> 

Figure 1.7. Spectra of two-soliton bound states with phase shift of: (a) 0, (b) 𝜋, (c) , −𝜋/2, (d) 

𝜋/2; (e, f) interleaving of two-soliton bound states with phase shifts of: (e) 0 and −𝜋/2,  (f) 

and 𝜋/2.  

   

During the experiment with slow IPM5300 polarimeter, the pump current has been varied from 

240 mA to 355 mA while both intra-cavity polarization and pump polarization controllers have 

been adjusted to reveal polarization attractors shown in Figures 1.8-1.11. To reduce the sensitivity 

of the auto-correlator to the input SOP, all auto-correlation traces were averaged over 16 samples.  

    Figure 1.8 shows the experimental results for pump current of 240 mA. The output optical 

spectrum with fringes shown in Figure 1.8a justifies the formation of a bound state soliton with π 

phase difference (Mou Ch. 2013). The three-peaks autocorrelation structure shown in Figure 1.8b 

has the peaks’ separation of 2.5 ps that is five times of the pulse duration of 494 fs and so presents 

the evidence of the tightly bound soliton (Wu 2011). The pulse train with the repetition rate of 25.7 

MHz demonstrates that the laser is operating in a fundamental soliton regime (Figure 1.8c). The 

output power is oscillating with a small amplitude (Figure 1.8 d), the output SOP  has the fixed 

phase difference of 1.125π between x and y SOPs, and oscillating DOP is high of 85% that 
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indicates the slow polarization dynamics (Figure 1.8e).  

 

<Figure 1.8 here> 

 

Figure 1.8 Polarization locked vector bound state soliton. (a) output optical spectrum, (b) 

measured auto-correlation trace, (c) single pulse train. Polarization dynamics in the time frame of 

25-25 000 round trips (1 µs – 1 ms) in terms of  (d) optical power of orthogonally polarized 

modes Ix (dotted line) and Iy (dashed line), total power I=Ix+Iy  (solid line), (e) phase difference 

and degree of polarization, and (f) Stokes parameters at Poincaré sphere. Parameters: pump 

current Ip=240 mA, period T=38.9 ns, pulse width Tp=494 fs, output power I= 0.25 mW, phase 

difference 𝛥𝜑 ≈ 1.125𝜋. 

 

   By tuning the PCs, we achieved bistable operation in the form of switching between bound 

state soliton (thin lines in Figures 1.9a and 1.9c) with pulse separation of 10 ps and twin pulse 

operation with separation of few ns (thick lines in Figures 1.9a and 1.9c). For bound state soliton, 

pulse separation is oscillating and so fringe contrast in Fig. 3(a) is suppressed (Soto-Crespo 

2007). For the two-pulse regime, uncorrelated pulses can’t produce fringes in optical spectrum 

(Figure 1.9a). Therefore, we would only see a single peak autocorrelation trace rather than three 

peaks. As follows from Figs. 1.9c and 1.9d, the pulse period is of 38.9 ns, pulse width of 494 fs 

and output power of 0.25 mW. Given the pulse separation is more than five times of the pulse 

width, the BS soliton is loosely BS one (Wu 2011). As shown in Figures 1.9e and 1.9f, the 

bistable operation results in polarization switching between two cross polarized SOPs related to. 

loosely bound state and twin pulse.    
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<Figure 1.9 here> 

 

Figure 1.9 Vector soliton switching between loosely bound state and twin pulse. (a) output 

optical spectrum of bound soliton (thin solid line) and twin pulse operation (thick solid line), (b) 

measured auto-correlation trace for bound soliton, (c) single pulse train of bound soliton (dashed 

line) and twin pulse operation (solid line). Polarization dynamics in the time frame of 25-25 000 

round trips (1 µs – 1 ms) in terms of  (d) optical power of orthogonally polarized modes Ix 

(dotted line) and Iy (dashed line), total power  I=Ix+Iy  (solid line), (e) phase difference and 

degree of polarization, and (f) normalized Stokes parameters at Poincaré sphere. Parameters: 

pump current Ip=240 mA, period T=38.9 ns, pulse width Tp=494 fs, output power I≈ 0.25 mW. 

 

In the experiment with the fast OFS TruePhase® IPLM, pump current was about 300 mA, and the 

in-cavity and pump polarization controllers was adjusted to obtain the polarization attractors 

shown in Figures 1.10-1.13 (Tsatourian V 2013). Figure 1.10a shows a spectrum of tightly two-

pulse bound state soliton with phase shift of   according to Figure 1.7b. The polarization 

dynamics in Figure 1.10b shows polarization switching between two SOPs with period equal to 

two round trips.  

 

<Figure 1.10 here> 

 

Figure 1.10 Polarization dynamics of bound state soliton in the form of polarization switching 

between two orthogonal SOPs. (a) Output optical spectrum indicates  shift bound state with 370 
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fs pulse width and 1.5 ps pulse separation, (b) Stokes parameters on the Poincaré sphere. Each 

point in Figure 1.10b corresponds to a single laser pulse. 

 

Pulse width and pulse separation have been found from Equation 1.3 and  Figure 1.10a as 370 fs 

and 1.5 ps. Given the high contrast of spectral fringes in Figure 10a and the pulse separation is less 

than five pulse widths, BS is a tightly bound soliton having fixed phase shift and pulse separation 

(Tsatourian V 2013).  

 

<Figure 1.11 here> 

Figure 1.11 Polarization dynamics of bound state soliton in the form of polarization switching 

between three SOPs. (a) Output optical spectrum indicates 𝜋 shift bound state with 370 fs pulse 

width and 1.5 ps pulse separation, (b) Stokes parameters on the Poincaré sphere. Each point in 

Figure 1.11b corresponds to a single laser pulse. 

 

The other type of polarization dynamics of BS soliton is shown in Figure 1.11. The spectra in 

Figure 1.11a and Figure 1.10a are similar and so BS in Figure 1.11 is a tightly BS soliton with 

fixed phase shift of 𝜋 and pulse separation of 1.5 ps (Tsatourian V 2013). The polarization 

dynamics in Figure 1.11b shows polarization switching between three SOPs with period equal to 

three round trips. Spectra in Figures 1.10a and 1.11a demonstrate the presence of slight asymmetry 

that can be caused by hopping between  - and  2/− -shifted bound states driven by changing the 

erbium gain spectrum under long-term fluctuations of ambient temperature (Gui 2013). High 

contrast of fringes and small asymmetry of spectrum justifies that lifetime in  -shifted BS is much 

longer than lifetime in 2/− -shifted BS.  
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<Figure 1.12 here> 

Figure 1.12 Polarization dynamics of bound state soliton in the form of superposition of 

polarization switching between three SOPs and SOP precession. (a) Output optical spectrum 

indicates  𝜋/2 shift bound state with 370 fs pulse width and 1.5 ps pulse separation; (b) Stokes 

parameters on the Poincaré sphere. Each point in Figure 1.12b corresponds to a single laser 

pulse. 

 

Finally, the spectrum in Figure 1.12a demonstrates close to the 2/− -shifted tightly BS with pulse 

width of 370 fs and pulse separation of 1.5 ps. The SOP evolution compises a combination of 

switching between three SOPs with a precession on a circle located on Poincaré sphere with the 

periods of 3 and 20 round trips (Figure 1.12 b). 

 

<Figure 1.13 here> 

Figure 1.13 Polarization dynamics of bound state soliton in the form of superposition 

popularization switching between two SOPs of two interleaved BSs and SOP precession. (a) 

Output optical spectrum indicates interleaved BSs with phase shifts of 𝜋/2 and 𝜋, 740 fs pulse 

width and 1.5 ps pulse separation; (b) Stokes parameters on the Poincaré sphere. Each point in 

Figure  1.13b corresponds to a single laser pulse. 

 

As follows from Figure 1.13a, and Figure 1.7e, the spectrum indicates an interleaving of 

independent tightly bound states with phase shifts of 2/  and  . The SOPs of two interleaved 
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BSs are slightly different and so we have superposition of the SOP switching with cyclic trajectory 

on the Poincaré sphere with the period of 14 round trips (Figure 1.13b). 

1.5 VECTOR SOLITON RAIN (EXPERIMENT) 

It was demonstrated in previous sections that short-range interaction through the overlapping of solitons 

tails or soliton-dispersive wave interaction results in soliton bound states formation with the spacing of the 

few pulse widths and SOP evolution at different trajectories on the Poincaré sphere (Tsatourian V 2013) . 

Unlike this,  long-range interactions driven, for example, by Casimir-like (Sulimany 2018, Weill 2016) , 

optoacoustic (Sergeyev S 2021, Liu 2019, Pang 2015) [11-13], and polarization effects [19] can lead to 

multi-pulsing in the form of  harmonic mode-locking (Sergeyev S 2021, Liu 2019, Pang 2015), breathers 

(Kbashi 2020), and the soliton rain (SR) (Kbashi H.J. 2019, Sulimany 2018, Chouli 2010, Niang 2014).  

   The SR is a bunch of small soliton pulses randomly distributed and drifting nearby the main pulse and 

complemented by a continuous wave (cw) background. The SR was studied experimentally and 

theoretically for different fiber lasers fiber lasers mode-locked based on nonlinear polarization rotation 

(NPR), nonlinear amplified loop mirror (NALM), the figure of eight cavity, graphene, and single-wall 

carbon nanotubes (SWCNT) (Kbashi H.J. 2019, Sulimany 2018, Chouli 2010, Niang 2014).  

   To extend the knowledgebase on SRs, in this section, we review our recent experimental results on the 

polarization dynamics mediated by the soliton rain evolution in the laser cavity.  The mode-locked is 

slightly different as compared to the laser shown in Fig. 1. Unlike the previous case, it has a  14 m long 

ring cavity and so a photon round trip time of 70 ns (fundamental frequency of 14.28 MHz). The cavity 

comprises 13 m of SMF-28 with 𝛽2= −22 𝑝𝑠2𝑘𝑚−1 and a 1 m of Er-doped fiber (EDF: Liekki Er80-

8/125). Instead of using the general approach of splicing fibers in the ring cavity, all the components are 

attached through APC fiber connectors. The signal was detected by  photodetector with a bandwidth of 17 

GHz (InGaAsUDP-15-IR-2 FC) connected to a 2.5 GHz sampling oscilloscope (Tektronix DPO7254). An 
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in-line polarimeter (Thorlabs IPM5300) was used to record the state and degree of polarization (SOP and 

DOP), respectively. 

The results on the fast dynamics are shown in Figure 1.14a-f.  The results have been obtained without 

adjustment of polarization controllers and with changing pump current J as follows: J=220 mA (a, d), 190 

ma (b, e), and 260 mA (c, f). As follows from Figure 1.14, the SR takes the forms of the condensed phase 

(Figure 1.14a, b) and a burst with cw component shown in Figure 1.14c,f.  

  <Figure 1.14 here> 

Figure 1.14. Fast dynamics. Oscillograms (a-c), and corresponding optical spectra (d-f). 

Parameters: Pump current J=220 mA (a, d); 190 mA (b, e); 260 mA (c, f).  

 

To study the soliton rain pulses' effect on the state of polarization, we use IPM5300 polarimeter to measure 

the normalized Stokes parameters s1, s2, s3, and degree of polarization (DOP) and to find the output powers 

of two linearly cross-polarized SOPs 𝐼𝑥, 𝐼𝑦, total power 𝐼 = 𝐼𝑥 + 𝐼𝑦 and the phase difference between them 

∆𝜑. The results are shown in Figure 1.15a-i. The slow dynamics corresponds to the cases of the fast 

dynamics, i.e., Figure 1.15a, d, g – to Figure 1.14a, d, Figure 1.15b, e, h – to Figure 1.14b, e, and Figure 

1.15c, f, i – to Figure 1.14c, f. As follows from Figure 1.15a,b, spiral attractors can emerge in almost 

isotropic cavity as a result of polarization symmetry breaking (S. Sergeyev 2014, S. V. Sergeyev 2014). In 

terms of the dynamics of the cross-polarized modes and the phase difference, the spiral attractor 

demonstrates the antiphase dynamics of the polarized SOPs the phase difference oscillations and switching 

between states of /2 and  (Figure 1.15d,g). The high DOP of about 90% justifies that polarization 

evolution is can be mapped with 1 ms resolution (Figure 1.15g). Emergence of small repulsing of the SR 

satellite pulses from the main pulse (Figure 1.14b) results in small modification of  polarization dynamics 

(Figure 1.15b, e, h). The dropped DOP to 80% is a proof that dynamics is faster than 1 ms. With the 
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increased number and the distance of the satellite pulses from the main pulse (Figure 1.14 c, f), polarization 

attractor transforms from spiral to circle, as shown in Figure 1.15c.  The of x and y SOP are oscillating in 

antiphase whereas the phase difference dynamics is oscillating between states of  and  (Figure 1.15 

f, i). The high DOP of 95% is an indication of slow dynamics with a resolution of 1 ms (Figure 1.15i).   

 

<Figure 1.15 here> 

Figure 1.15 Slow polarization dynamics: a)- c) trajectories on the Poincaré sphere.); d) - f) The 

output power vs time for two linearly cross-polarized SOPs Ix  (thin black line) and Iy (grey line) 

and total power I=Ix+Iy (thick black line);  g-f) DOP (black) and the phase difference (grey) vs 

time. Parameters: Pump current J=220 mA (a, d, g); 190 ma (b, e, h); 260 mA (c, f, i). 

The theoretical model for characterization of the vector soliton rain is found in section 1.12. 

1.6 VECTOR BRIGHT-DARK ROGUE WAVES (EXPERIMENT) 

The extreme events (rogue waves, RWs) can have an anomalously high amplitude and can emerge 

and disappear unpredictably. The RWs have initially observed in oceanography (Kharif 2008) [1] 

and further in such fields as financial markets (Yan 2010) [2], nonlinear optics and laser physics 

(Sergeyev S. 2018, Onorato 2013, Solli 2007, Kbashi H. 2018, Dudley 2014, Akhmediev 2016, 

Baronio 2012, Chen 2014). To be considered as RWs, extreme events should have probability 

higher than probabilities for Gaussian or Rayleigh distributions and amplitudes more than twice 

as large as the significant wave height (SWH). The SWH was initially defined as the mean 

amplitude of the highest third of the waves (Kharif 2008) and, at present, it is more common to 

use SWH definition as amplitude equals to the four times of the standard deviation of the 

amplitude’s variations (Onorato 2013).  



19 

  

    The scarcity of RWs and the inability to perform full-scale experiments in real-world scenarios 

are the major obstacles for developing techniques for RWs prediction and mitigation. Given mode-

locked fiber lasers (MLFLs) ability to generate  pico- and femtosecond pulses with MHz repetition 

rates,  more data on rogue waves in the short time (compared to the time scale of RWs in other 

systems, such as in the ocean and financial market (Kharif 2008, Yan 2010) ) can be collected 

under laboratory-controlled conditions . Previously it has been found that RW can emerge in mode-

locked lasers in the form of the soliton rain at the time scale of a round-trip time (Sergeyev S. 

2018, Onorato 2013, Solli 2007, Kbashi H. 2018, Dudley 2014, Akhmediev 2016).  

    All of the above experimental observations report the existence of either bright or dark rogue 

waves. The co-existence of the bright-dark rogue waves (BDRWs) has been predicted theoretically 

using coupled nonlinear Schrödinger equation (NLSE) systems (Baronio 2012, Chen 2014), but 

has never been observed experimentally in optics. In this section, we review our experimental 

results on a new mechanism of bright-dark rogue wave caused by desynchronization of the linear 

states of polarizations (SOPs)  (Sergeyev S. 2018, Kbashi H. 2018). 

   Unlike the previous design, an Er-doped fiber laser mode-locked by CNT comprises 1.1m long 

Er-doped fiber (EDF) with absorption of 80dB/m at 1530nm and the group velocity dispersion 

(GVD) of +59 ps2/km. A standard 70:30 output coupler (OUTPUT C) redirected of 30% of the 

laser light out of the cavity. Also, the laser cavity has 1.22m of OFS980 fiber and 4.4m of SMF 28 

fiber with the GVD of -0.04 ps2/nm. The POC1 and POC2 have been adjusted to find conditions 

for RWs emergence. To find the probability distribution histograms, the output voltage V for 

oscilloscope and output power for polarimeter is normalized as Vn=(V-median(V))/(V),  and so 

the RW criterion looks as Vn > 8.  
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   To eliminate the soliton-soliton and soliton-dissipative wave interactions at the fast (round-trip time) 

scale, we decreased the pump power P=18.4 mW and tuned POC1 and POC2 to suppress soliton rain. As 

a result, we observed the dark-bright rogue waves as shown in Figure 1.16a-d. Unlike the previous cases 

shown in Figures 1.14 and 1.15, the output power is randomly changing from pulse to pulse (Figure 16a, 

d)) and is satisfying the BDRWs criteria (Figure 1.16c). The slow polarization dynamics measured by 

IP5300  is shown in Figure 1.17a-c. As follows from the Figure 1.17a, b, the anomalous spikes in the 

output power satisfy the RWs criteria and are accompanied by transitions between orthogonally polarized 

SOPs, i.e.  the phase difference jumps in π (Figure 1.17a, b).    Thus, the experimental data demonstrate 

BDRWs appearance at the fast (round trip scale) and slow (tens of thousands of round trips) time scales 

for P=18.4 mW.  

 

<Figure 1.16 here> 

 

Figure 1.16   Laser dynamics demonstrating the emergence of the bright-dark rogue waves at pump 

power of 18.4 mW. (a) oscilloscope traces (32 GHz resolution); (b) Spatio-temporal dynamics 

(roundtrip time vs a number of round trips); (c) PDF histogram; d) part of the oscillogram 

demonstrating the absence of the soliton rain.   

<Figure 1.17 here> 

Figure 1.17  Polarization laser dynamics at the time scale of tens of thousands of round trips. a) – c) 

polarization measurements (1 μs resolution, i.e. averaging over approximately 33 round trips, 16 slices with 

1024 points per slice): a) the output power vs time (blue) and the phase differences (red); and b)  trajectories 

in normalized Poincaré sphere. c) Probability distribution histogram for the total output power I=Ix+Iy.  The 

output power I is normalized as shown in Fig.1. Parameters: a) – c) P=18.4 mW.  
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The mechanism of BDRWs emergence based on desynchronization of orthogonally polarized 

SOPs is  justified  in the section 1.13  with the help of new vector model which is different from 

the previously developed models based on coupled  Schrödinger or Ginzburg-Landau equations 

(Sergeyev S. 2018, Kbashi H. 2018).  

1.7 VECTOR RESONANCE MULTIMODE INSTABILITY (EXPERIMENT) 

Modulation instability (MI) is a mechanism driving the emergence of spatial and temporal 

patterns in fluids, granular media,  plasma, nonlinear optics and lasers (Tlidi 2014, Agrawal 

2013, Zakharov 2009, Benjamin 1967, Faraday 1831, Szwaj 1998, Turitsyna 2013, Onorato 

M. 2009, Perego 2016). One of the MI cases, the Benjamin-Feir instability (BFI), is related to 

the origin of the structures with the wave numbers k and –k due and their synchronization with 

homogeneous mode of k=0 trough nonlinearity (Tlidi 2014, Benjamin 1967). For Faraday 

instability, emerging spatial structures are result of an external uniform modulation (Tlidi 

2014, Faraday 1831). The other type of MI, namely dissipative parametric instability (DPI) 

(Perego 2016), is driven by periodic antiphase modulation of spectrally dependent losses 

towards formation of stable one- and two-dimensional patterns. Unlike MI, the main feature 

of multimode Risken-Nummedal-Graham-Haken (RNGH) instability is the presence of the 

second lasing threshold exceeding the first in nine times in terms of the pump power (Risken 

1968, Graham 1968).  For the pump power above the second threshold, excitation of the large 

number of the longitudinal spatial modes leads to generating the pulse train with period of the 

cavity round-trip time. Since 1968, when RNGH instability was discovered, it was found that 

a new second lasing threshold is close to the first threshold for Er-doped fiber lasers (Fontana 

1995, E. B. Pessina 1997, E. P. Pessina 1999, Voigt 2004, Lugiato 2015). Also, it was recently 

found that with accounting for the vector nature of the fiber laser dynamics a new type of 

RNGH instability, vector resonance multimode instability (VRMI), can emerge (Sergeyev 

S.V. 2017). In this section, we review our recent results on VRMI (Sergeyev S.V. 2017). The 

increased in-cavity birefringence strength causes spatial SOP modulation of the in-cavity 

lasing field (with a period of the beat length) and emergence of the additional satellite 
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frequencies with the frequency splitting proportional to the   birefringence strength. When the 

splitting is approaching the frequency difference between the longitudinal modes, parametric 

resonance results in longitudinal modes synchronization and locking similar to the injection 

locking (S. Y. Cundiff 2003).  In the experiments, the special laser configuration exclude mode 

locking based on nonlinear polarization rotation (Lee 2010). 

   Unlike the previous laser setups, the schematic in Figure 1.18a includes  1m of Er-doped fiber 

(Liekki Er80-8/125) and 614m of single mode fiber SMF-28. The 80/20 fiber coupler was used to 

redirect the part of the signal outside the cavity. The cavity was pumped via a 1480/1550 WDM 

by using a 1480 nm laser diode (FOL14xx series) with an in-built isolator. The first lasing 

threshold for the continuous wave (CW) regime was found for 16 mW pump power whereas the 

second threshold of the multimode instability was for 18 mW. The angles of the orientations of 

the paddles of POC1 and POC2 (1 and 2) were measured from the vertical position. The 1=-590 

whereas 2 was set at four different positions 2=-800,-780,-740,-690.  

   The results for polarization dynamics are shown in Figure 1.18b, c. As follows from the Figure 

1.18b, decreasing the size of the spot by adjusting  2 indicates that N-fold beat length is converging 

to the cavity length. As follows from Figure 1.18c, small oscillations  of the output power S0 and 

the phase difference  and small  DOP of 40% justifies that the laser dynamics is faster than 1 

s for POC2 setting at 2=-800. The further tuning the POC2 from 2=-780 to 2=-690 demonstrates 

the constant outputs and high (over 80%) DOP results in stable mode and SOP locking caused by 

matching N-fold beat length to the cavity length.  

   Adjustment of the in-cavity polarization controller was resolved better in the case of 1000th 

harmonic and so the radiofrequency (RF) spectrum evolution was recorded for frequencies of 

around 325.2 MHz (Figure 1.19a1-d1). The RF spectrum in Figure 1.19a1-d1 has three types of 

peaks, including  the 1000th harmonic (central peak),   two satellites adjustable with the help of the 

POC2 and two close peaks closely position of which is independent on POC2 adjustment. The 

origin of the satellite frequencies is discussed further in the theoretical part. As follows from Fig. 
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19 (a2-d2), the adjustment of POC2 results in regime stabilization similar to mode-locking when 

satellite frequencies match the main line (Fig. 19 (d2)). For RHGM instability, two-mode operation 

is oscillations close the harmonic with the photon round trip time period (Fontana 1995, E. B. 

Pessina 1997, E. P. Pessina 1999, Voigt 2004, Lugiato 2015). Unlike this, as follows form  

Figure 1.19d2, the pulse width is of 40 ns vs the round-trip time of 3 s. So, many longitudinal 

modes are phase synchronized (Sergeyev S.V. 2017).   

<Figure 1.18 here> 

  

Figure 1.18 (a) Erbium doped fiber laser. EDF: erbium-doped fiber; LD: l480 nm laser diode for pump; 

POC1 and POC2: polarization controllers, OISO: optical isolator; WDM: wavelength division 

multiplexer (WDM), OUTPUT C: 80:20 output coupler. (b) The map of the states of polarization on the 

Poincaré sphere (b) output power (S0) (c left) and corresponding phase difference between linearly 

polarized modes and DOP (c right) for different setting of the POC2: 2=-800, -780; -740; -690.  

 

<Figure 1.19 here> 

 

Figure 1.19 The RF spectrum (a1-d1) and corresponding oscillograms (a2-d2) for different setting 

of the POC2: a1, a2) 2=-800; b1, b2) 2=-780; c1, c2) 2=-740; d1, d2) 2=-690.  

The theoretical study justifying the vector nature of self-mode-locking is found in section 1.14.  

1.8 VECTOR HARMONIC MODE-LOCKING (EXPERIMENTS) 

Difficulty of shortening the laser cavity imposes limited by hundreds of MHz repetition rate of 

mode-locked lasers. The more practical pathway to increase the repetition rate to GHz scale is 
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harmonic mode-locking (HML) based on resonance with the acoustic phonons (Liu 2019, Pang 

2015, Grudinin 1997, Kbashi HJ. 2019, S. K. Sergeyev 2021), four-wave mixing (Quiroga-

Teixeiro 1998), pattern-forming modulation instability (Sylvestre 2002) or/and through the 

insertion of a linear component featuring a periodic spectral transfer function (Peccianti 2012). 

 

<Figure 1.20 here> 

Figure 1.20 Acoustic modes in optical fiber core: a) radial mode R0m; b) torsional-radial mode 

TR2m.  

   

Given the tunable mode-locking with repetition rates up to a few GHz and narrowing the RF 

line width down to 100 Hz, the resonance of a harmonic of the fundamental frequency with the 

frequency of a transverse acoustic wave is the most attractive HML technique (Liu 2019, Pang 

2015, Grudinin 1997, Kbashi HJ. 2019, S. K. Sergeyev 2021). The pulses propagating in the cavity 

perturb the fiber’s core refractive index and the fiber birefringence that leads to excitation of the 

radial R0m and torsional-radial TR2m acoustic modes (Figure 1.20a,b; (Shelby 1985, Pilipetskii 

1993, Kim 2015). It was found that tuning the in-cavity linear and circular birefringence by using 

the in-cavity polarization controller enables control of the acoustic modes mediated interaction 

between the neighbored pulses from attraction to repulsion and the dynamics - from the vector 

soliton rain to HML driven by TR2m modes  (Kbashi H.J. 2019, Kbashi HJ. 2019, Sergeyev S 

2021).   

   In previous section, for the Er-doped fiber laser without a saturable absorber, we demonstrated 

the mode-locking based on vector resonance multimode instability (VRMI) caused by tuning the 

birefringence (Sergeyev S.V. 2017). The TR2m modes induces weak oscillations of the fiber 

birefringence vector orientation (Shelby 1985, Pilipetskii 1993, Kim 2015) and so there is a 



25 

  

challenging task of revealing the interplay between VRMI and TR2m acoustic modes-based 

perturbation towards HML. In this section, we review our recent experimental results on novel 

vector HML mechanism caused by interplay of VRMI and TR2m (Sergeyev S 2021). The resonance 

occurred for the 24th, 38th, and 45th harmonics and resulted in linewidth narrowing below the 

values reported the other authors (Grudinin 1997).   

  The setup is shown in Figure 1.21a. The cavity includes 15.8 m of SMF28 and 75 cm of Liekki 

Er80-8/125 Er-doped fiber with the anomalous dispersion of -20 fs2/mm. The total length of the 

cavity is 17 meters. The pump laser diode (FOL14xx series with isolator) with the maximum power 

of 250 mW is used to pump the laser cavity via WDM coupler. A polarization controller POC1 

and an optical isolator for 1560 nm (to improve the laser diode stability) is located between the 

diode output and the WDM.  The output coupler (OUTPUT C) 80:20 redirects the light out of the 

cavity. After installation of an isolator with 51 dB attenuation, the laser was successfully mode 

locked. The lasing threshold was measured as 36 mW of the pump power based on linear 

extrapolation of the signal versus pump power curve (Figure 1.21b). To characterize the 

polarization laser dynamics, IPM5300 polarimeter is used. Given the absence of a polarizer and 

the presence of only one polarization controller inside the laser cavity, and low pump powers (less 

than 200 mW), mode-locking through nonlinear polarization rotation is excluded.  

 

<Figure 1.21 here> 

 

Figure 1.21. Operation of the laser at the fundamental frequency a) Erbium-doped fiber laser. EDF: 

erbium fiber; LD: l480 nm laser diode for the pump; POC1 and POC2: polarization controllers, 

OISO: optical isolator; WDM: wavelength division multiplexer (WDM), OUTPUT C: 80:20 

output coupler. b) Average laser output power versus pump power; INSET:  the RF linewidth 
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versus pump power (370 Hz at 220 mW pump power). The rectangle indicates the interval where 

unstable mode-locking patterns have been observed. c) The optical spectrum; inset: the same 

spectra plotted using a linear scale: 0.2 nm is a bandwidth at 3 dB level. d) The train of pulses at 

the fundamental frequency, INSET: time-resolved pulse. 

The graphs for the output power versus pump power, the emission spectrum, and the pulse train 

are shown in Figure 1.21b-d. For the pump power above 48 mW, mode-locked pulses emerges 

with the fundamental repetition rate of 12.21 MHz (Figure 1.21d), RF linewidth 370 Hz ( INSET 

of Figure 1.21b). The transient time for stabilization of this regime varies from a fraction of a 

second to few minutes. The pulse width of 20 ps (INSET of Figure 1.21d) can’t be measured with 

an auto-correlator and so, to estimate the pulse parameters, we used an ultrafast photodetector 

XPDV232OR with a bandwidth of 50 GHz and DSO-X93204A oscilloscope with a bandwidth of 

32GHz. The pulse width of 20 ps was obtained using the oscilloscope trace and the interpolation 

software supplied by Agilent that gave us the effective resolution of 781 fs/point (S. K. Sergeyev 

2021). The low signal-to-noise ratio (SNR) of 6 dB (Figure 1.21d) reveals the partial mode-

locking. The experimental results demonstrate the stable patterns at the fundamental frequency of 

12.21 MHz and its high-order harmonics at frequencies of 293.16 MHz, 464.17 MHz, and 549.7 

MHz (Table I).  

Table 1 Frequencies observed in the experiments 

Frequency, 

MHz. 

RF peak 

width, Hz. 

Temporal 

jitter, 

ppm3 

Long 

term drift 

12,21 [210, 370, 530] 1,2 40 Yes 

97.7 Unstable Unstable - 

207.6 Unstable Unstable - 

293.16 [9, 38, 155]1 1.4 Yes 
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464.17 [22, 38, 150]1 0.9 Yes 

549.7 [1, 13, 97]1 0.5 Yes 

842.5  Unstable Unstable - 

903.5 Unstable Unstable - 

1Asymmetric interval of confidence 0. 95 [min, mean, max] 
2At pump power of 220mW 
3 Parts per million with respect to the main value of frequency. The jitter has been 

quantified using ARIMA (0, 1, 0) (random walk with drift) model with the interval of confidence 

0.95. 

It has been demonstrated by many authors, that excitation of oscillations at such frequencies is 

caused by the resonance structure of the spectrum of acoustic phonons excited through the 

electrostriction effect (Grudinin 1997, Kbashi HJ. 2019, Liu 2019, Pang 2015, Sergeyev S 2021)  

The dynamics of the HML at 293.16 MHz is shown in Figure 1.22a-d. A part of the RF spectra 

is in Figure 1.22a. The lines "A","B" and "C" are related to the 23rd, 24th, and 25th harmonics of 

the fundamental frequency.  We adjusted birefringence by turning the knob of the POC2 and fixed 

the pump power at 160 mW to clarify evolution of the satellite lines caused by linear and circular 

birefringence. When the angle of the knob was set between 18 positions, the satellites of the lines 

“A” and “C” were moving closer to the line "B" as shown in Figure 1.22a. To demonstrate the 

linewidth compression, we recorded temporal traces and RF spectra for the last four steps 15-18 

(Figures 1.22b and 1.22c). For position 15 in Figures 1.22b and 1.22c, the distance between the 

satellites is slightly less than 3 MHz and the satellites disappears. The RF spectral line corresponds 

to the fundamental comb frequency with SNR changed from 6 dB to 30 dB for pump power 

increase from 48 mW to 160 mW. In position 16, the distance between satellites decreases, optical 

noise spectrum demonstrates a periodic pattern, and the RF spectrum becomes broader. After the 

knob of POC2 has turned to position 17, the oscilloscope traces (Figure 1.22b, shows oscillations 

at 293.16 MHz with the period close to 20 ns (50 MHz) and The RF spectrum has multiple peaks. 
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<Figure 1.22 here> 

Figure 1.22. Acousto-optical polarization-dependent locking of a high harmonics a) RF comb 

showing 24th harmonic along with satellites of 23rd, 24th, and 25th harmonics tuning with the help 

of in-cavity polarization controller POC2. b) Emergence of the 293.16 MHz pulse train for the 

positions 15, 16, 17, and 18 of the POC2. c) Evolution of the RF spectrum of the 293.16 MHz line 

for the positions 15, 16, 17, and 18 of the POC2. d) The output SOPs for the POC2 positions 15 

and 18 (measurements resolution is 1 s).  

Finally, for the knob position 18, the modulation disappears, and the regular oscillations pattern 

at the frequency of 293.16 MHz emerges. The RF spectrum shows narrow resonance line with 60 

dB SNR and the noise level of  -120 dB as shown in Figure 1.22d. The locked SOP for POC2 

positions 15 and 18 corresponds to the self-oscillation at the fundamental frequency for position 

15 and HML for position 18. The tuning POC2 from position 15 to position 18 changes the linear 

and circular birefringence in the cavity due to induced fiber squeezing and twist (Collett 2003). As 

shown in Figure 1.22d, increasing DOP from 62 % to 86%  indicates more stable operation for 

18th position as compared to the 15th position. By adjusting POC2. HML at different acoustic 

frequencies is observed as shown in Table 1. In section 1.15, we review our recent theoretical 

results on novel vector HML mechanism caused by interplay of VRMI and TR2m (Sergeyev S 

2021).  
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1.9 VECTOR MODEL OF ERBIUM DOPED FIBER LASER  

1.9.1 Semiclassical equations  

To describe vector features of mode-locked erbium doped fiber laser with a carbon nanotube 

(CNT) as a saturable absorber, we start with the vector semi-classical equations for a 

unidirectional laser (Fu 1987, S. V. Sergeyev 1996, S. Sergeyev 1999): 

𝜕𝐸𝑥

𝜕𝑡
+ 𝑐

𝜕𝐸𝑥

𝜕𝑧
= −𝑘𝐸𝑥 + 𝑖𝑘 ∫(𝒆𝒙𝑷(𝑔))𝑑𝑔 , 

𝜕𝐸𝑦

𝜕𝑡
+ 𝑐

𝜕𝐸𝑦

𝜕𝑧
= −𝑘𝐸𝑦 + 𝑖𝑘 ∫(𝒆𝑦𝑷(𝑔)) 𝑑𝑔 , 

𝜕𝑷(𝑔)

𝜕𝑡
= (−𝛾𝑝 + 𝑖𝛥0)𝑷(𝑔) − 𝑖𝛾𝑝𝐷(𝑔)𝒎𝒆

∗ (𝐸𝑥(𝒆𝒙𝒎𝑒) + 𝐸𝑦(𝒆𝑦𝒎𝑒)) , 

𝜕𝐷(𝑔)

𝜕𝑡
= 𝛾𝑑 (𝐷0 − 𝐷(𝑔) +

𝑖

4
(𝑷(𝑔)∗[𝐸𝑥𝒆𝒙 + 𝐸𝑦𝒆𝑦] − 𝑷(𝑔)[𝐸𝑥

∗𝒆𝒙 + 𝐸𝑦
∗𝒆𝑦])).                   (1.4) 

Here P(g) and D(g) are angular distributions for polarization of  active medium and normalized 

gain, g=(,,) are Euler angles showing the orientation of the local reference frame (X',Y',Z') 

connected to the orientation of the dipole moments of Er3+ ion with respect to the laboratory 

reference frame (X,Y,Z)  described by the orientation of the cross-polarized components of the 

electric field ex and ey. So, ∫. . . 𝑑𝑔 = (1 8𝜋⁄ )2 ∫ ∫ ∫ . . . 𝑠𝑖𝑛 휃
𝜋

0

2𝜋

0

2𝜋

0
𝑑휃𝑑𝜙𝑑𝜓 (Varshalovich 1988), 

E=Exex+Eyey is a lasing electric field, me is a unit vector for the dipole moment of the transition 

with emission (S. Sergeyev 1999, S. V. Sergeyev 1996), D0 is the normalized parameter for the 

pumping light power, Δ0 is detuning of the lasing wavelength from to the maximum of the gain 

spectrum, the vector me
* is a vector with complex conjugation of the vector  me;  k, γp, and γd are 

the relaxation rates for photons in the cavity, medium polarization and gain. Given the relaxation 

rate of the medium polarization in erbium doped silica matrix γp= 4.75 x 1014 s-1 >> γd, k (γd=100 
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s-1, k=107 - 108 s-1) (Williams 1996) , we can use the following simplification 𝜕𝑃(𝑔) 𝜕𝑡 = 0 ⁄ and 

so the Equation (1.4) takes the following form:  

𝜕𝐸𝑥

𝜕𝑡
+ 𝑐

𝜕𝐸𝑥

𝜕𝑧
= −𝑘𝐸𝑥 +

(1 + 𝑖𝛥)

1 + 𝛥2
(𝐷𝑥𝑥𝐸𝑥 + 𝐷𝑥𝑦𝐸𝑦), 

𝜕𝐸𝑦

𝜕𝑡
+ 𝑐

𝜕𝐸𝑦

𝜕𝑧
= −𝑘𝐸𝑦 +

(1 + 𝑖𝛥)

1 + 𝛥2
(𝐷𝑦𝑥𝐸𝑥 + 𝐷𝑦𝑦𝐸𝑦), 

𝜕𝐷(𝑔)

𝜕𝑡
= 𝛾𝑑 (𝐷0 − 𝐷(𝑔) −

𝐷(𝑔)

2
𝑅(𝐸𝑥, 𝐸𝑦, 𝑔)) , 

𝑅(𝐸𝑥, 𝐸𝑦, 𝑔) =
1

1+𝛥2 [
|𝐸𝑥|

2|𝒆𝒙𝒎𝑒|
2 + |𝐸𝑦|

2
|𝒆𝑦𝒎𝑒|

2
+

𝐸𝑥𝐸𝑦
∗(𝒆𝒙𝒎𝑒)(𝒆𝑦𝒎𝑦

∗ ) + 𝐸𝑦𝐸𝑥
∗(𝒆𝑦𝒎𝑒)(𝒆𝑥𝒎𝑒

∗)
].                           (1.5) 

Here  𝛥 = 𝛥0 𝛾𝑝⁄  and  

𝐷𝑥𝑥 = 𝑘 ∫𝐷(𝑔)|𝒆𝒙𝒎𝑒|
2𝑑𝑔 ,  𝐷𝑦𝑦 = 𝑘 ∫𝐷(𝑔)|𝒆𝑦𝒎𝑒|

2
𝑑𝑔 , 

𝐷𝑥𝑦 = 𝑘 ∫𝐷(𝑔)(𝒆𝑦𝒎𝑒)(𝒆𝑥𝒎𝑒
∗)𝑑𝑔,  𝐷𝑦𝑥 = 𝑘 ∫𝑛(𝑔)(𝒆𝑥𝒎𝑒)(𝒆𝑦𝒎𝑒

∗)𝑑𝑔                   (1.6) 

By adding a saturable absorber (single-wall carbon nanotubes, CNTs), fiber birefringence, Kerr 

nonlinearity, chromatic dispersion (S. Sergeyev 2014, S. V. Sergeyev 2014), absorption from the 

ground state at the lasing wavelength for Erbium ions (Desurvire 1994) (Figure 1.23a), and SOP 

for pump wave, we can modify Equation 1.6  as follows (S. Sergeyev 2014, S. V. Sergeyev 

2014) : 

𝜕𝐸𝑥

𝜕𝑧
= 𝑖𝛽𝐸𝑥 − 휂

𝜕𝐸𝑥

𝜕𝑡
− 𝑖𝛽2

𝜕2𝐸𝑥

𝜕𝑡2
+ 𝑖𝛾 (|𝐸𝑥|

2𝐸𝑥 +
2

3
|𝐸𝑦|

2
𝐸𝑥 +

1

3
𝐸𝑦

2𝐸𝑥
∗) + 𝐷𝑥𝑥𝐸𝑥 + 𝐷𝑥𝑦𝐸𝑦, 

𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝛽𝐸𝑦 + 휂

𝜕𝐸𝑦

𝜕𝑡
− 𝑖𝛽2

𝜕2𝐸𝑦

𝜕𝑡2
+ 𝑖𝛾 (|𝐸𝑦|

2
𝐸𝑦 +

2

3
|𝐸𝑥|

2𝐸𝑦 +
1

3
𝐸𝑥

2𝐸𝑦
∗) + 𝐷𝑦𝑥𝐸𝑥 + 𝐷𝑦𝑦𝐸𝑦, 

𝐷𝑥𝑥 =
𝛼1

2

(1 − 𝑖𝛥)

1 + 𝛥2
[𝜒 ∫𝑛(𝑔)|𝒆𝒙𝒎𝑒|

2𝑑𝑔 − 1] − 𝛼2 ∫𝑁(𝑔)|𝒆𝒙𝝁𝑎|2𝑑𝑔 − 𝛼4, 

𝐷𝑥𝑦 =
𝛼1𝜒

2

(1 − 𝑖𝛥)

1 + 𝛥2
∫𝑛(𝑔)(𝒆𝑦𝒎𝑒)(𝒆𝑥𝒎𝑒

∗)𝑑𝑔 − 𝛼2 ∫𝑁(𝑔)(𝒆𝑦𝝁𝑎)(𝒆𝑥𝝁𝑎
∗ )𝑑𝑔 , 
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𝐷𝑦𝑥 =
𝛼1𝜒

2

(1 − 𝑖𝛥)

1 + 𝛥2
∫𝑛(𝑔)(𝒆𝑥𝒎𝑒)(𝒆𝑦𝒎𝑒

∗)𝑑𝑔 − 𝛼2 ∫𝑁(𝑔)(𝒆𝑥𝝁𝑎)(𝒆𝑦𝝁𝑎
∗ )𝑑𝑔 , 

𝐷𝑦𝑦 =
𝛼1

2

(1 − 𝑖𝛥)

1 + 𝛥2
[𝜒 ∫𝑛(𝑔)|𝒆𝑦𝒎𝑒|

2
𝑑𝑔 − 1] − 𝛼2 ∫𝑁(𝑔)|𝒆𝑦𝝁𝑎|

2
𝑑𝑔 − 𝛼4,. 

𝜕𝑛(𝑔)

𝜕𝑡
= 𝛾𝑑 (

𝐼𝑝

𝐼𝑝𝑠
(1 − 𝑛(𝑔))|𝒆𝑝𝒎𝑎|

2
− 𝑛(𝑔) − (𝜒𝑛(𝑔) − 1)𝑅𝐸𝑟(𝐸𝑥, 𝐸𝑦, 𝑔)) , 

𝑁(𝑔) =
1

1 + 𝛼3𝑅𝐶𝑁𝑇(𝐸𝑥, 𝐸𝑦, 𝑔)(1 + 𝛥2)
 

𝑅𝐸𝑟(𝐸𝑥, 𝐸𝑦, 𝑔) =
1

1 + 𝛥2
[
|𝐸𝑥|

2

𝐼𝑠𝑠
|𝒆𝒙𝒎𝑒|

2 +
|𝐸𝑦|

2

𝐼𝑠𝑠
|𝒆𝑦𝒎𝑒|

2
+

𝐸𝑥𝐸𝑦
∗

𝐼𝑠𝑠
(𝒆𝒙𝒎𝑒)(𝒆𝑦𝒎𝑒

∗)

+
𝐸𝑦𝐸𝑥

∗

𝐼𝑠𝑠
(𝒆𝑦𝒎𝑒)(𝒆𝑥𝒎𝑒

∗)] , 

𝑅𝐶𝑁𝑇(𝐸𝑥, 𝐸𝑦, 𝑔) =
1

1+𝛥2 [
|𝐸𝑥|2

𝐼𝑠𝑠
|𝒆𝒙𝝁𝑎|2 +

|𝐸𝑦|
2

𝐼𝑠𝑠
|𝒆𝑦𝝁𝑎|

2
+

𝐸𝑥𝐸𝑦
∗

𝐼𝑠𝑠
(𝒆𝒙𝝁𝑎)(𝒆𝑦𝝁𝑎

∗ ) +

𝐸𝑦𝐸𝑥
∗

𝐼𝑠𝑠
(𝒆𝑦𝝁𝑎)(𝒆𝑥𝝁𝑎

∗ )].             (1.7) 

<Figure 1.23 here> 

Figure 1.23 a) Diagram of energy levels and transitions in Er3+ ion: 1 – pimp absorption at 980 

nm; 2- fluorescence at 1550 nm; 3 – absorption at 1550 nm; 4 – lasing at 1550 nm; 5, 5’ – 

upconversion (radiationless energy transfer between two excited ions at 4I13/2 level, the donor ion 

is deactivated whereas the acceptor is exited at 4I9/2 level); 6, 7 - non-radiative phonon-assisted 

transitions; 8 – fluorescence at 980 nm. b) The orientation of absorption and emission dipole 

moments for erbium doped silica (ma,me) and the absorption dipole moment for CNT μa. 

Here n(g) and N(g) are the angular distributions of the erbium ions at the first excited level and  

CNT in the ground state, 2  is the CNT absorption at the lasing wavelength, α3 is the ratio of 
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saturation powers for CNT and EDF, α4 represents the normalized losses, β is the birefringence 

strength (2 β=2π/Lb , Lb is the beat length),  ma and μa are unit vectors along the dipole moment 

of the transition with absorption for erbium ions and CNT, Vg is the group velocity, η=βλ/(2πc) 

is the inverse group velocity difference between the polarization modes,  𝛼1 = 𝜎𝑎𝛤𝐿𝜌 is the EDF 

absorption at the lasing wavelength, 𝐼𝑝𝑠 = 𝛾𝑑𝐴ℎ𝜈𝑝 (𝜎𝑎
(𝑝)

𝛤𝑝)⁄ ,  𝐼𝑠𝑠 = 𝛾𝑑𝐴ℎ𝜈𝑠 (𝜎𝑎
(𝐿)

𝛤𝐿)⁄  are 

saturation powers for pump and lasing (h is Planck's constant, νp, νs are pump and lasing 

frequencies), 𝜒 = (𝜎𝑎
(𝐿)

+ 𝜎𝑒
(𝐿)

) 𝜎𝑎
(𝐿)

⁄ , 𝜎𝑎(𝑒)
(𝐿)

,  𝜎𝑎
(𝑝)

are absorption and emission cross sections at 

the lasing wavelength and absorption cross section at the pump wavelength, ΓL and Γp are the 

confinement factors of the EDF fiber at the lasing and pump wavelengths, ρ is the concentration 

of erbium ions, A is the fiber core cross section area.   

1.9.2 Reducing the complexity of the semiclassical model  

To simplify description of the polarized lasing field interaction with the gain medium in 

Equations (1.7), we use an approximation introduced by Zeghlache and Boulnois (Zeghlache 

1995) and  justified by Leners and Stéphan (Leners 1995), i.e. we suggest that dipole moments 

(ma, me) and the dipole moment μa are located in the plane defined by the orthogonal 

components of the lasing field ex and ey (Figure 1.23b). In addition, we use the property of Er 

ions ma=me and consider an elliptically polarized pump 𝒆𝑝 = (𝒆𝑥 + 𝑖𝛿𝒆𝑦) √1 + 𝛿2⁄  (here δ is 

the ellipticity of the pump wave) as follows (S. Sergeyev 2014, S. V. Sergeyev 2014) 

 

(𝒎𝑒𝒆𝑥) = 𝑐𝑜𝑠(휃) , (𝒎𝑒𝒆𝑦) = 𝑠𝑖𝑛(휃) , (𝒎𝑎𝒆𝑝)
2

=
𝑐𝑜𝑠(𝜃)2+𝛿2 𝑠𝑖𝑛(𝜃)2

1+𝛿2
, 

(𝝁𝑎𝒆𝑥) = 𝑐𝑜𝑠(휃1) , (𝝁𝑎𝒆𝑦) = 𝑠𝑖𝑛(휃1)                            (1.8) 

So, the angular distributions n(g) now depends only on θ and can be presented by a Fourier series 

follows (S. Sergeyev 2014, S. V. Sergeyev 2014, Zeghlache 1995): 
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( ) ( ) ( ).sincos
2 1

2
1

1
0 ++=



=



= k
k

k
k knkn

n
n                                        (1.9) 

Substituting Equations (1.9) to Equations (1.4), we find a complete set of equations for Ex, Ey, n0, 

n12, n22 (S. Sergeyev 2014, S. V. Sergeyev 2014): 

𝜕𝐸𝑥

𝜕𝑧
= 𝑖𝛽𝐸𝑥 − 휂

𝜕𝐸𝑥

𝜕𝑡
− 𝑖𝛽2

𝜕2𝐸𝑥

𝜕𝑡2
+ 𝑖𝛾 (|𝐸𝑥|

2𝐸𝑥 +
2

3
|𝐸𝑦|

2
𝐸𝑥 +

1

3
𝐸𝑦

2𝐸𝑥
∗) + 𝐷𝑥𝑥𝐸𝑥 + 𝐷𝑥𝑦𝐸𝑦, 

𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝛽𝐸𝑦 + 휂

𝜕𝐸𝑦

𝜕𝑡
− 𝑖𝛽2

𝜕2𝐸𝑦

𝜕𝑡2
+ 𝑖𝛾 (|𝐸𝑦|

2
𝐸𝑦 +

2

3
|𝐸𝑥|

2𝐸𝑦 +
1

3
𝐸𝑥

2𝐸𝑦
∗) + 𝐷𝑦𝑥𝐸𝑥 + 𝐷𝑦𝑦𝐸𝑦 

𝐷𝑥𝑥 = (
𝛼1(1 − 𝑖𝛥)

1 + 𝛥2
𝐼𝑥𝑥(𝑛0, 𝑛12, 𝑛22) − 𝐽𝑥𝑥 − 𝛼4𝐿) , 𝐷𝑥𝑦 = 𝐷𝑦𝑥

= (
𝛼1(1 − 𝑖𝛥)

1 + 𝛥2
𝐼𝑥𝑦(𝑛0, 𝑛12, 𝑛22) − 𝐽𝑥𝑦) , 

𝐷𝑦𝑦 = (
𝛼1(1 − 𝑖𝛥)

1 + 𝛥2
𝐼𝑦𝑦(𝑛0, 𝑛12, 𝑛22) − 𝐽𝑦𝑦 − 𝛼4𝐿) 

𝐼𝑥𝑥(𝑛0, 𝑛12, 𝑛22) = (𝜒
𝑛0

2
− 1) + 𝜒

𝑛12

2
, 𝐼𝑦𝑦(𝑛0, 𝑛12, 𝑛22) = (𝜒

𝑛0

2
− 1) − 𝜒

𝑛12

2
, 

𝐼𝑥𝑦(𝑛0, 𝑛12, 𝑛22) = 𝜒
𝑛22

2
, 𝐽𝑥𝑥 = 𝛼2 (

1

2
− 𝛼3

1

8
[3|𝐸𝑥|

2 + |𝐸𝑦|
2
]) , 

𝐽𝑦𝑦 = 𝛼2 (
1

2
− 𝛼3

1

8
[|𝐸𝑥|

2 + 3|𝐸𝑦|
2
]) , 𝐽𝑥𝑦 = −

𝛼3𝛼2

8
[𝐸𝑥𝐸𝑦

∗ + 𝑐. 𝑐. ], 

𝑑𝑛0

𝑑𝑡
= 𝛾𝑑 [𝐼𝑝 + 2𝑅10 − (1 +

𝐼𝑝

2
+ 𝜒𝑅10) 𝑛0 − (𝜒𝑅11 +

𝐼𝑝

2

(1 − 𝛿2)

(1 + 𝛿2)
)𝑛12 − 𝜒𝑛22𝑅12] , 

𝑑𝑛12

𝑑𝑡
= 𝛾𝑑 [

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝

2
+ 𝑅11 − (

𝐼𝑝

2
+ 1 + 𝜒𝑅10) 𝑛12 − (

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝

2
+ 𝜒𝑅11)

𝑛0

2
] , 

𝑑𝑛22

𝑑𝑡
= 𝛾𝑑 [𝑅12 − (

𝐼𝑝

2
+ 1 + 𝜒𝑅10) 𝑛22 − 𝜒𝑅12

𝑛0

2
] , 

𝑅10 =
1

2(1+𝛥2)
(|𝐸𝑥|

2 + |𝐸𝑦|
2
) , 𝑅11 =

1

2(1+𝛥2)
(|𝐸𝑥|

2 − |𝐸𝑦|
2
) , 𝑅12 =

1

2(1+𝛥2)
[𝐸𝑥𝐸𝑦

∗ + 𝑐. 𝑐. ]. 
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(1.10) 

Here we use approximation 
𝛼3

4
[3|𝐸𝑥|

2 + |𝐸𝑦|
2
] << 1. We apply the distributed forms for 

saturable absorption and losses in Equations (1.10) instead of lumped presentation to simplify 

consideration. Next, we use approach of averaging over the pulse width to characterize the slow 

time scale dynamics. We introduce a new slow-time variable 𝑡𝑠 = 𝑧 (𝑉𝑔𝑡𝑅)⁄  , where tr=L/Vg is 

the photon round-trip time, L is the cavity length) and assume an ansatz in the form (S. Sergeyev 

2014, S. V. Sergeyev 2014): 

𝐸𝑥(𝑡, 𝑡𝑠) = 𝑢(𝑡𝑠) 𝑠𝑒𝑐ℎ( 𝑡 𝑇𝑝⁄ ), 𝐸𝑥(𝑡, 𝑡𝑠) = 𝑣(𝑡𝑠) 𝑠𝑒𝑐ℎ( 𝑡 𝑇𝑝⁄ ).                              (1.11) 

Here Tp is the pulse width. After substitution of Equations (1.11) into Equations (1.10) and 

averaging over the time Tp<<t<<tR we obtain the following (S. Sergeyev 2014, S. V. Sergeyev 

2014): 

𝑑𝑢

𝑑𝑡𝑠
= 𝑖𝛽𝐿𝑢 + 𝑖

𝛾𝐿𝐼𝑠𝑠
2

(|𝑢|2𝑢 +
2

3
|𝑣|2𝑢 +

1

3
𝑣2𝑢∗) + 𝐷𝑥𝑥𝑢 + 𝐷𝑥𝑦𝑣, 

𝑑𝑣

𝑑𝑡𝑠
= −𝑖𝛽𝐿𝑣 + 𝑖

𝛾𝐿𝐼𝑠𝑠
2

(|𝑣|2𝑣 +
2

3
|𝑢|2𝑣 +

1

3
𝑢2𝑣∗) + 𝐷𝑥𝑦𝑢 + 𝐷𝑦𝑦𝑣, 

𝑑𝑛0

𝑑𝑡𝑠
= 휀 [𝐼𝑝 + 2𝑅10 − (1 +

𝐼𝑝

2
+ 𝜒𝑅10) 𝑛0 − (𝜒𝑅11 +

𝐼𝑝

2

(1 − 𝛿2)

(1 + 𝛿2)
)𝑛12 − 𝜒𝑛22𝑅12], 

𝑑𝑛12

𝑑𝑡𝑠
= 휀 [

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝

2
+ 𝑅11 − (

𝐼𝑝

2
+ 1 + 𝜒𝑅10)𝑛12 − (

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝

2
+ 𝜒𝑅11)

𝑛0

2
], 

𝑑𝑛22

𝑑𝑡𝑠
= 휀 [𝑅12 − (

𝐼𝑝

2
+ 1 + 𝜒𝑅10) 𝑛22 − 𝜒𝑅12

𝑛0

2
], 

𝑅10 =
1

(1+𝛥2)
(|𝑢|2 + |𝑣|2),  𝑅11 =

1

(1+𝛥2)
(|𝑢|2 − |𝑣|2), 𝑅12 =

1

(1+𝛥2)
(𝑢𝑣∗ + 𝑣𝑢∗),                    

(1.12) 

Coefficients Dij can be found as follows: 

 

𝐷𝑥𝑥 =
𝛼1𝐿(1 − 𝑖𝛥)

1 + 𝛥2
(𝑓1 + 𝑓2) − (

𝛼2𝐿

2
−

2𝛼2𝛼3𝐿

8𝜋
𝑘1) − 𝛼4𝐿,  

𝐷𝑦𝑦 =
𝛼1𝐿(1 − 𝑖𝛥)

1 + 𝛥2
(𝑓1 − 𝑓2) − (

𝛼2𝐿

2
−

𝛼2𝛼3𝐿

4𝜋
𝑘2) − 𝛼4𝐿, 
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𝐷𝑥𝑦 = 𝐷𝑦𝑥 =
𝛼1𝐿(1−𝑖𝛥)

1+𝛥2 𝑓3 −
2𝛼2𝛼3𝐿

8𝜋
𝑘3,                                        (1.13) 

where: 

𝑓1 = (𝜒
𝑛0

2
− 1) , 𝑓2 = 𝜒

𝑛12

2
, 𝑓3 = 𝜒

𝑛22

2
, 

𝑘1 = 3|𝑢|2 + |𝑣|2,  𝑘2 = |𝑢|2 + 3|𝑣|2, 𝑘3 = 𝑢𝑣∗ + 𝑣𝑢∗.                                          (1.14) 

 

Here ε=tRγd and u, v are normalized to the saturation power Iss and Ip is normalized to the saturation 

power Ips. We have also neglected the inverse group velocity difference of the cross polarized 

components x and y that corresponds to 0 . For a cavity length Lc=7.8 m, beat length Lb=5m, 

and λ=1.56 μm the time delay between cross polarized pulses over the length of the cavity can be 

found from the notations to Equations (1.9) as Td=8 fs. Given the Td << Tp=600 fs and the CNT 

relaxation time of 300 fs, the group velocity difference can be neglected in Equations (1.9). We 

have also used the following notations (S. Sergeyev 2014, S. V. Sergeyev 2014)  

∫
𝑐𝑜𝑠ℎ(𝑥)2 − 2

𝑐𝑜𝑠ℎ(𝑥)3
𝑑𝑥

𝑇 𝑇𝑝⁄

−𝑇 𝑇𝑝⁄

→ 0,
∫ 𝑠𝑒𝑐ℎ(𝑥3)𝑑𝑥

𝑇 𝑇𝑝⁄

−𝑇 𝑇𝑝⁄

∫ 𝑠𝑒𝑐ℎ(𝑥)𝑑𝑥
𝑇 𝑇𝑝⁄

−𝑇 𝑇𝑝⁄

≈
1

2
,
∫ 𝑠𝑒𝑐ℎ(𝑥2)𝑑𝑥

𝑇 𝑇𝑝⁄

−𝑇 𝑇𝑝⁄

∫ 𝑠𝑒𝑐ℎ(𝑥)𝑑𝑥
𝑇 𝑇𝑝⁄

−𝑇 𝑇𝑝⁄

 ≈
2

𝜋
. 

                    

      

(1.15) 

We have neglected the absorption dynamics in CNT that holds true for saturable absorber 

relaxation time τa is smaller than the pulse width Tp. In our experiments τa ~ 300 fs and Tp ~ 600 fs 

and so approximation of fast saturable absorber is valid if we make change of variables α2 → α2(1-

exp(-Tp/τa)) for the case of α2 <<1. Though Er3+ ion is usually described as a four-level system in 

Figure 1.23b, we reduce this model to two-level one by excluding excited state absorption from 

4I11/2 and population of this level justified for pump powers Ip<200 mW, viz. for the case considered 

in our publications (S. Sergeyev 2014, S. V. Sergeyev 2014).  For high concentration Er-doped 

fiber, Sergeyev and co-workers demonstrated  that migration assisted upconversion (MAUP) 

results in decreasing first excited level lifetime more than 10 times (S. Sergeyev 2003, S. P. 
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Sergeyev 2006, Sergeyev, S., Popov, S., and Friberg, A.T. 2005) and so decreasing the lifetime at 

the first excited level is a reliable approach for mimic MAUP (S. Sergeyev 2014, S. V. Sergeyev 

2014). Slow MAUP dynamics in microseconds scale has no effect on pulse shape. Unlike 

previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau 

equations, the Equations (1.12)–(1.14) account for slow polarization dynamics.  

To study the evolving SOPs of the vector solitons, we account for birefringence tuning by in-

cavity polarization controller. First, we rewrite Equations (1.12) for ( )T
vu,=Ψ  as  

𝜳(𝑡𝑠 + 1) = 𝑩𝑒𝑥𝑝(𝑮) 𝜳(𝑡𝑠),                                                         (1.16) 

where  

( ) ( )

( ) ( )
.

exp0

0exp

,
11

11
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BG     (1.17) 

The presence of the in-cavity polarization controller modifies Equations (1.16): 

 ( ) ( ),)exp(1 ss tt ΨGBTΨ =+                                                                             (1.18) 

Where T is the transfer matrix of POC (Heismann 1994) 

𝑻 = [
𝐴 + 𝑖𝐵 𝐶 + 𝑖𝐷

−𝐶 + 𝑖𝐷 𝐴 − 𝑖𝐵
] , 𝐴 = − 𝑐𝑜𝑠(𝜓1) 𝑐𝑜𝑠(𝜓2) , 

𝐵 = −𝑠𝑖𝑛(𝜓3) 𝑠𝑖𝑛(𝜓1) , 𝐶 = −𝑐𝑜𝑠(𝜓1) 𝑠𝑖𝑛(𝜓2) , 𝐷 = − 𝑠𝑖𝑛(𝜓1) 𝑐𝑜𝑠(𝜓3) , 

𝐴2 + 𝐵2 + 𝐶2 + 𝐷2 = 1, 𝜓1 = 휁 − 𝜐 − 𝜉/2, 𝜓2 = 𝜉 2⁄ ,  𝜓3 = 𝜉 2⁄ + 𝜐,                     

(1.19) 

Here υ/2, ζ/2, and (υ+ξ)/2 are the orientations of the first quarter-wave plate (QWP), half-wave 

plate and the second QWP at the vertical axis Y.   

As follows from Equations (1.17) and (1.18):  
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                          (1.20)
 

As follows from Equation (1.18), the condition of the SOP reproducibility in n-round trips takes 

the form: 

(𝑻𝟏 𝑒𝑥𝑝(𝑮))𝑛 = 𝑎𝑰,   𝑰 = [
1 0
0 1

] , |𝑎| = 1, 𝑎𝑟𝑔(𝑎) = 𝜋𝑘,  𝑘 = 0,  1. ..
                                  

(1.21) 

If we neglect SOP rotation caused by an active medium, i.e.  exp(G)=I, reproducibility of SOP for 

two round trips for the condition A1=C1=D1=0 and B1=1 means Lb=2L whereas for reproducibility 

for three round trips for condition C1=D1=0 results in  A1=31/2/2, B1=1/2, i.e.  Lb=3L.  

To calculate pulse-to-pulse evolution of SOP numerically, we transform Equations (1.18) into the 

distributed form as follows:  

 
𝑑𝛹

𝑑𝑡𝑠
= (𝐺 + 𝑙𝑛( 𝑇1))𝛹,                                                                        (1.22) 

Given the condition C1=D1=0 for the case of SOP reproducibility in n-round trips, Equations 

(1.22) take the form  

𝑑𝜳

𝑑𝑡𝑠
= 𝑮𝜳 + (

𝑖𝜋𝐿 𝐿𝑏1⁄ 0

0 − 𝑖𝜋𝐿 𝐿𝑏1⁄
)𝜳 + 𝑵𝑳,

                               (1.23) 

Where Lb1 is the beat length for combined fiber-POC birefringence, NL describes contribution of 

the Kerr nonlinearity as follows:  

𝑵𝑳 = 𝑖
𝛾𝐿𝐼𝑠𝑠

2
(
|𝑢|2𝑢 +

2

3
|𝑣|2𝑢 +

1

3
𝑣2𝑢∗

|𝑣|2𝑣 +
2

3
|𝑢|2𝑣 +

1

3
𝑢2𝑣∗

).                                              (1.24) 
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For an analytical study of SOP evolution, we substitute ( )Tyx iviu )exp(),exp( =Ψ in Equation 

(1.23) and find equation for the phase difference 𝛥𝜑 = 𝜑𝑥 − 𝜑𝑦 

𝑑𝛥𝜑

𝑑𝑡𝑠
= −

2𝜋𝐿

𝐿𝑏1
+

𝛾𝐿𝐼𝑠𝑠
12

(|𝑣|2 − |𝑢|2)(1 − 2 𝑐𝑜𝑠(2𝛥𝜑)) + 𝐼𝑚(𝐷𝑦𝑦) − 𝐼𝑚(𝐷𝑥𝑥) + 

(|𝑣|2−|𝑢|2)

|𝑢||𝑣|
𝐼𝑚(𝐷𝑥𝑦) 𝑐𝑜𝑠(𝛥𝜑) −

(|𝑣|2+|𝑢|2)

|𝑢||𝑣|
𝑅𝑒(𝐷𝑥𝑦) 𝑠𝑖𝑛(𝛥𝜑).            (1.25) 

1.10 SPIRAL POLARIZATION ATTRACTOR (THEORY) 

Adjusting the in-cavity polarization controller enables changing fiber-POC birefringence from 

zero isotropic case to the case of high birefringent cavity. For the case of weak birefringence 

(Lb1>>L) and the pump power for laser below the threshold, cylindrical symmetry leads in SOP 

degeneration.  However, for the pump power above the threshold value, instability of the steady 

state solution with the Stokes vector S= (S0,0,0±1) results in emergence of a double scroll attractor 

located at the Poincaré sphere (S. Sergeyev 2014, S. V. Sergeyev 2014).  

Results for the numerical simulations of Equations (1.13) for the case of the isotropic cavity 

(Lb1>>L) are shown in Figure 1.24. Anisotropy in the cavity is caused by the elliptically 

polarized pump and external fiber patchcord transforms the output lasing SOP. When the pump 

is circularly polarized (δ=1), the spiral attractor is symmetrical with the repeatable trajectories 

(Figure 1.24a). If the pump SOP is an elliptical (δ=0.8), the laser becomes more anisotropic and 

the output SOP is locked (Figure 1.24b). Increased pump power and weak deviation of the pump 

SOP from the circular (δ=0.99) transforms the symmetry and the trajectories fill more densely 

the surface of the Poincare sphere (Figure 1.24c).  

<Figure 1.24 here> 
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Fig. 1.24 Theoretically obtained: a, c,  Polarization precessing,  and b, Polarization locked vector 

solitons in terms of  a, b, c,  Stokes parameters at the Poincaré sphere. Parameters: a-c, ε=10-4, 

α1L=200/ln(10), α2L=0.136, α3=10-4, α4L=50/ln(10), χ=5/3, Δ=0.1,  γLIss=2x10-6; a,  Ip=30, 

δ=1; b, Ip=30, δ=0.8;  c, Ip=100, δ=0.99.  

 

 Given the polarimeter’s photodetector has cut-off frequency of 1 MHz that means averaged over 

25 roundtrips, polarization dynamics, the attractors in Fig. 24 can have the different shape. To 

justify such comment, we have  processed the time domain waveforms shown in Figure 1.24 by  

using a low-pass filter in the form of a Hanning window (Transmission spectrum 𝑇(𝑓) =

(1 + 𝑐𝑜𝑠(𝜋𝑓 𝑓𝑐⁄ )) 2,  𝑓 ≤ 𝑓𝑐⁄ = 1𝑀𝐻𝑧) As a result, the spiral attractor in Figure 1.24a is slightly 

modified towards the shape similar to the experimentally observed (Figures 1.24a and 1.24a). 

Unlike this case, the filtering does not affect a polarization locked case (Figure 1.24b and 1.25b). 

Also, the low pass filter transforms the fast-evolving trajectory in Figure 1.24c to the slow-

evolving one which is taking the shape of the double semi-circle trajectory similar to the 

experimentally observed (Figure 1.25c). Presented in Figures 1.24a and 1.25a spiral attractor 

dynamics is related to the relaxation oscillations with the period in terms of round-trip time and 

notations to Equations (1.12) of Tosc ~ε1/2 (Khanin 2005). With 40 ns round trip time and ε=10-4 , 

we have Tosc  ~ 4 μs. Neglecting the  gain dynamics leads to ε →∞ in Equations (1.12) and so Tosc 

→∞. It means that auto-oscillations doesn’t exist and so there is no spiral attractor. Thus, Equations 

(1.12) can’t be further simplified and slow gain dynamics has to be included into consideration.  

 

<Figure 1.25 here> 

Figure 1.25 Low-pass filtering with a Hanning window:  a) Spiral attractor after filtering; b) 
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locked SOP, c) transformation of the double-scroll attractor to the double semi-circle by data 

filtering; (Transmission spectrum 𝑇(𝑓) = (1 + 𝑐𝑜𝑠(𝜋𝑓 𝑓𝑐⁄ )) 2,  𝑓 ≤ 𝑓𝑐⁄ = 1𝑀𝐻𝑧). Parameters: 

a-f, h-i, ε=10-4, α1L=200/ln(10), α2L=0.136, α3=10-4, α4L=50/ln(10), χ=5/3, Δ=0.1,  γLIss=2x10-

6; a-c, Ip=30, δ=1; d-f, Ip=100, δ=0.99; h, i, Ip=30, δ=0.8.  

In the theory of coupled oscillators’, the weak coupling leads to a complex behavior, while the 

strong coupling leads to the quenching oscillations and emerging the globally stable steady state 

(the Bar-Eli effect (Aronson DG 1990)). For our vector model, the coupling strength depends on 

the pump SOP ellipticity and power. Also, coupling the orthogonally polarized lasing SOPs takes 

place through the gain sharing, detuning of the lasing wavelength with respect to the maximum 

of the gain spectrum and the Kerr nonlinearity.  

       To find the contribution of each of these factors to the origin of the spiral attractor, we 

present three different cases: 1) scalar model of the Er-doped active medium, and a vector model 

of CNT; 2) a scalar model of both Erbium active medium and CNT, 3) a vector model of the 

active Erbium medium, and a scalar model of CNT at Δ=0 (∆ is detuning of the lasing 

wavelength with respect to the maximum of the gain spectrum).   

First, we linearized the equations by substituting |𝑢| = |𝑢0| + 𝑥1, |𝑣| = |𝑣0| + 𝑥1, 𝛥𝜑 = 𝛥𝜑0 +

𝑥3, 𝑓1 = 𝑓10 + 𝑥4, 𝑓2 = 𝑓20 + 𝑥5, 𝑓3 = 𝑓30 + 𝑥5in Equations (1.12) and account for the different 

coefficients for the cases 1)-3) . Here |𝑢0|, |𝑣0|,  𝛥𝜑0, 𝑓10,  𝑓20,  𝑓30 are steady state solutions for 

the cases 1)-3) 

|𝑢0|
2 = |𝑣0|

2 =
𝜋𝛼1

2𝜒𝛼4
(
𝐼𝑝

2
(𝜒 − 1) − 1) −

𝜋(1 + 𝛥2)

2𝜒
(1 +

𝐼𝑝

2
) ,   

𝛥𝜑0 = ±
𝜋

2
, 𝑓10 =

𝐼𝑝(𝜒−1) 2⁄ −1

1+
𝐼𝑝

2
+

2𝜒|𝑢0|2

(1+𝛥2)𝜋

, 𝑓20 = 𝑓30 = 0. (1.26) 

Where 𝑢 = |𝑢| 𝑒𝑥𝑝(𝜑𝑢) ,  𝑣 = |𝑣| 𝑒𝑥𝑝(𝜑𝑣), and 𝛥𝜑 = 𝜑𝑢 − 𝜑𝑣 is the phase difference between 
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two linearly polarized SOPs. Substituting 𝑥𝑖 = �̃�𝑖 𝑒𝑥𝑝(𝜆𝑡𝑠) into the linearized equations, we find 

the following eigenvalues  

𝜆1,2 = ±2√𝑎1
2 + 𝑎2

2 , 𝜆3,4 =
−𝑏2+4𝑎1

2
±

1

2
√(𝑏2 + 4𝑎1)2 − 8𝑎3𝑏1.

                                       
case 1)     

𝜆1 = 2𝑎2,  𝜆2 = −2𝑎2, 𝜆3,4 =
−𝑏2+4𝑎1

2
±

1

2
√(𝑏2 + 4𝑎1)2 − 8𝑎3𝑏1.                                     case 2)     

𝜆1,2 =
−𝑏2 + 2𝑎1

2
±

1

2
√(𝑏2 + 2𝑎1)2 − 4𝑎3𝑏1, 𝜆3,4 =

−𝑏2 − 4𝑎1

2
±

1

2
√(𝑏2 − 4𝑎1)2 − 8𝑎3𝑏1, 

𝜆5,6 =
−𝑏2+4𝑎1

2
±

1

2
√(𝑏2 + 4𝑎1)

2 − 8𝑎3𝑏1.         case 3)    

(1.27) 

Where  

𝑎1 =
𝛼2𝐿𝛼3|𝑢0|2

2𝜋
, 𝑎2 =

2𝛾𝐿𝐼𝑠𝑠|𝑢0|2

3
,  𝑎3 =

𝛼1𝐿

1+𝛥2 ,  𝑏1 = 휀𝜒𝑓10
2|𝑢0|2

(1+𝛥2)𝜋
, 𝑏2 = 휀 (1 +

𝐼𝑝

2
+

2𝜒|𝑢0|2

(1+𝛥2)𝜋
). 

(1.28) 

 

Next, we introduce a saddle index as follows (Ovsyannikov IM 1987) 

𝜈 = |𝜌 𝛾⁄ |,  𝐼𝑓 𝜆1 = 𝛾 > 0,  𝜆2,3 = −𝜌 ± 𝑖𝜔,  (𝜔 ≠ 0, 𝜌 > 0), 𝑜𝑟 𝜆1 = −𝛾 < 0,  𝜆2,3 =

𝜌 ± 𝑖𝜔,  (𝜔 ≠ 0, 𝜌 > 0).          (1.29)  

Equation (1.29) describe saddle-focus with limit cycles emerging in the homoclinic bifurcation. 

According to the Shilnikov theorem, the stability and number of the limit cycles is defined by 

saddle index ν (Ovsyannikov IM 1987).  If ν >1 homoclinic bifurcations results in one stable 

limit cycle. Unlike this, for ν <1 an infinite number of unstable cycles emerge and form a chaotic 

attractor (Ovsyannikov IM 1987). The saddle index as a function of pump power Ip is shown in 

Figure 1.26. As follows from Figure 1.26, the double-scroll attractor cannot exist for the first and 

the second case and, also, for the third case where  𝜆𝑖 = −𝜌𝑖 ± 𝑖𝜔𝑖,  (𝜔𝑖 ≠ 0, 𝜌𝑖 > 0). Thus, 
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we conclude that the detuning of the lasing wavelength with respect to the maximum of the gain 

spectrum and SOPs coupling through the gain sharing leads to the complex dynamics. 

 

<Figure 1.26 here> 

Fig. 26 Saddle index ν as a function of the normalized pump power Ip for the first case (solid 

line) and the second case  (dashed line). Parameters (thin and thick lines): ε=10-4, 

α1L=200/ln(10), α2L=0.136, α4L=50/ln(10), χ=5/3, Δ=0.1, δ=1,  γLIss=2x10-6; (thin lines): 

α3=10-4; (thick lines): α3=10-2. 

1.11 INTREPLAY BETWEEN POLARIZATION HOLE BURNING AND IN-CAVITY 

BIREFINGENCE (THEORY) 

To illustrate interplay between birefringence and polarization hole burning, we solve Equations 

(1.12) numerically by varying pump SOP ellipticity δ and beat length Lb1, and using parameters 

values quite close to the experimental ones (S. Sergeyev 2014), viz. L=10m, α1L=ln(10)6.4, 

α2L=0.136, α3=10-4, α4L=ln(10)0.5, χ=3/2, Δ=0.1,  Ip=30, γLIss=2x10-6, ε=10-4. The results for   

δ=1 (circularly polarized pump) are shown in Figure 1.27.  

As follows from Figure 1.27a-f, weak birefringence can distort spiral attractor and results in SOP 

localization close to the circle s2
2+ s3

2=1.   In line with Equation 1.21, SOP is reproduced in n 

round trips with a drift caused by polarization hole burning. 

<Figure 1.27 here> 

Figure 1.27. Fast and slow evolution of vector solitons in terms of Stokes parameters in the 

Poincaré sphere. Parameters: L=10m, α1L=ln(10)6.4, α2L=0.136, α3=10-4, α4L=ln(10)0.5, χ=3/2, 
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Δ=0.1,  Ip=30, γLIss=2x10-6, ε=10-4, δ=1; a) Lb=500 L, b) Lb=250 L, c) Lb=100 L, d) Lb=3 L, e) 

Lb=2 L, f) Lb= L. 

 

By changing ellipticity from to δ=1 to δ=0.5, we find that SOP is localized at the circle s2
2+ s3

2=a 

(a<1, s1≠0) with slightly suppressed SOP drift (Figure 1.28a,b). For the pump power decreased 

from Ip=30 to Ip=20, the drift is completely suppressed (Figure 1.28c). The origin of drift can be 

clarified by analyzing the signal power S0 as a function of number of round trips (Figure 1.28d-f). 

As follows from Figure 1.28d, e, fast oscillations of S0 are caused by changes in the pulse-to-pulse 

rotation matrix associated with gain G (Equation 1.23). Elliptically polarized pump with ellipticity 

of δ=0.5 leads to the light-induced anisotropy and so suppressed oscillations and (Figure 1.28e). 

As follows from Figure 1.28e. Stokes parameter 1s  
increase with increased light-induced 

anisotropy that, according to Equation 1.25 results in decreased contribution of the active medium 

to the SOP drift.  By decreasing the pump power from Ip=30 to Ip=20 we reduce the lasing powers 

22
, uv  that results in suppression of S0 (normalized output power) oscillations and so, according 

to Equation 1.25, in suppression of SOP drift as shown in Figure 1.28c, f.  

The obtained theoretical results are in a good agreement with our experimental data obtained 

previously for fundamental, bound state (BS) and multipulsing (MP) soliton operations (sections 

1.1-1.4 (Mou Ch. 2013, S. Sergeyev 2014, S. V. Sergeyev 2012, S. V. Sergeyev 2014, 

Tsatourian V 2013, Tsatourian V. 2013)). For example, application of ansatz (Equation 1.11) is 

justified by our experimental study where pulse width is fixed (Sections 1.1 – 1.4). Also, the 

ansatz can be used for different pulse shapes with fixed pulse widths also, viz. for Gaussian in 

the case of normal dispersion, multipulsing and bound soliton soliton regimes (Mou Ch. 2013, S. 

Sergeyev 2014, S. V. Sergeyev 2012, S. V. Sergeyev 2014, Tsatourian V 2013, Tsatourian V. 
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2013)).  

 

<Figure 1.28 here> 

 

Figure 1.28 Interplay between different types of birefringence caused by in-cavity polarisation 

controller and polarization hole burning, and light-induced anisotropy caused by elliptically 

polarized pump; a) – c) fast and slow evolution of vector solitons in in terms of Stokes 

parameters in the Poincaré sphere, d) – e) output power signal S0 as a function of number of 

round trips. Parameters: a)-f) Lb=3 L; a), d) Ip=30, δ=1; b), e) Ip=20, δ=0.5; c), f) Ip=20, δ=1.  

 

1.12 VECTOR SOLITON RAIN (THEORY) 

To understand the experimental data on spiral attractor transformation caused by the soliton rain, we review 

our recent theoretical results (Sergeyev, S.V., Eliwa, M., Kbashi, H. 2022) . Equation 1.12 are 

complemented by presentation of the vector soliton rain in the form of an injected signal with periodically 

evolving SOPs: 

𝐸𝑥 = 𝑎 ∙ cos(Ω𝑡 + 𝜙0) , 𝐸𝑦 = 𝑎 ∙ sin(Ω𝑡 + 𝜙0) ∙ 𝑒𝑥𝑝(∆𝜑).                                         (1.30) 

Here a is the amplitude of the soliton rain,  Ω is the frequency of oscillations, 𝜙0   is the initial phase, ∆𝜑 

is the phase difference between the orthogonal SOPs. The main pulse depletes orientation distribution of 

inversion mainly at orientation coinciding the linearly polarized SOP (polarization hole burning, PHN) in 

and so SR pulses can have a SOPs different from the main pulse’s SOP (Kbashi H.J. 2019). So, periodically 

evolving main pulse’s SOP causes oscillation of the SR SOP as shown in Equation 1.30. With taking into 

account Equation 1.30, Equations 1.12 take the form: 
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𝒅𝒖

𝒅𝒕
= 𝒊𝜷𝒖 + 𝒊

𝜸

𝟐
(|𝒖|𝟐𝒖 +

𝟐

𝟑
|𝒗|𝟐𝒖 +

𝟏

𝟑
𝒗𝟐𝒖∗) + 𝑫𝒙𝒙𝒖 + 𝑫𝒙𝒚𝒗 + 𝑬𝒙, 

𝒅𝒗

𝒅𝒕
= −𝒊𝜷𝒗 + 𝒊

𝜸

𝟐
(|𝒗|𝟐𝒗 +

𝟐

𝟑
|𝒖|𝟐𝒗 +

𝟏

𝟑
𝒖𝟐𝒗∗) + 𝑫𝒙𝒚𝒖 + 𝑫𝒚𝒚𝒗 + 𝑬𝒚, 

𝒅𝒏𝟎

𝒅𝒕
= 𝜺 [𝑰𝒑 + 𝟐𝑹𝟏𝟎 − (𝟏 +

𝑰𝒑

𝟐
+ 𝝌𝑹𝟏𝟎)𝒏𝟎 − 𝝌𝑹𝟏𝟏𝒏𝟏𝟐 − 𝝌𝒏𝟐𝟐𝑹𝟏𝟐], 

𝒅𝒏𝟏𝟐

𝒅𝒕
= 𝜺 [

(𝟏 − 𝜹𝟐)

(𝟏 + 𝜹𝟐)

𝑰𝒑

𝟐
+ 𝑹𝟏𝟏 − (𝟏 +

𝑰𝒑

𝟐
+ 𝝌𝑹𝟏𝟎)𝒏𝟏𝟐 − (

(𝟏 − 𝜹𝟐)

(𝟏 + 𝜹𝟐)

𝑰𝒑

𝟐
+ 𝝌𝑹𝟏𝟏)

𝒏𝟎

𝟐
], 

𝒅𝒏𝟐𝟐

𝒅𝒕𝒔
= 𝜺 [𝑹𝟏𝟐 − (𝟏 +

𝑰𝒑

𝟐
+ 𝝌𝑹𝟏𝟎)𝒏𝟐𝟐 − 𝝌𝑹𝟏𝟐

𝒏𝟎

𝟐
], 

𝑹𝟏𝟎 =
𝟏

(𝟏+𝜟𝟐)
(|𝒖|𝟐 + |𝒗|𝟐),  𝑹𝟏𝟏 =

𝟏

(𝟏+𝜟𝟐)
(|𝒖|𝟐 − |𝒗|𝟐), 𝑹𝟏𝟐 =

𝟏

(𝟏+𝜟𝟐)
(𝒖𝒗∗ + 𝒗𝒖∗),                    

(1.31) 

Coefficients Dij can be found as follows: 

 

𝑫𝒙𝒙 =
𝜶𝟏(𝟏−𝒊𝜟)

𝟏+𝜟𝟐
(𝒇𝟏 + 𝒇𝟐) − 𝜶𝟐 + 𝒍𝒏(𝟏 −

𝜶𝟎

𝟏+𝜶𝒔(|𝒖|𝟐+𝒗𝟐)
) , 𝑫𝒚𝒚 =

𝜶𝟏(𝟏−𝒊𝜟)

𝟏+𝜟𝟐
(𝒇𝟏 − 𝒇𝟐) − 𝜶𝟐 +

𝒍𝒏(𝟏 −
𝜶𝟎

𝟏+𝜶𝒔(|𝒖|𝟐+𝒗𝟐)
) , 𝑫𝒙𝒚 = 𝑫𝒚𝒙 =

𝜶𝟏(𝟏−𝒊𝜟)

𝟏+𝜟𝟐 𝒇𝟑.               (1.32) 

 

   To obtain results shown in Figure 1.29, we used the following parameters: a), d), g) Ip =25, a=0.001 ; b), 

e), h) Ip =22,  a=0.02; c), f), i) Ip =30, a=10.  The other parameters: a)-i) 𝛽𝐿 = 𝛽𝐶 = 0, 𝛼1 = 5.38, 𝛼2 =

1, 𝛼𝑠 = 10−3, 𝛼0 = 0.136, 𝛿 = 0.99  (elliptically polarized pump SOP),  D=0.13 ε=10-4, p=1, s=2.3, 

=,  = =.  To model the effect of the output SOP transformation caused by the patchcord 
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connected to the polarimeter, we use the 3D rotation (around axes related to the Stokes parameters S0, S1, 

S2, S3) matrix (Varshalovich 1988): 

(

 
 

�̃�𝟏

�̃�𝟐

�̃�𝟑

�̃�𝟎)

 
 

= [

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑 𝟎
𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑 𝟎
𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑 𝟎
𝟎 𝟎 𝟎 𝟏

] (

𝑺𝟏

𝑺𝟐

𝑺𝟑

𝑺𝟎

), 

 𝒂𝟏𝟏 = 𝒄𝒐𝒔(𝝍) 𝒄𝒐𝒔(𝜸),  𝒂𝟏𝟐 = 𝒄𝒐𝒔(𝜸) 𝒔𝒊𝒏(𝜶) 𝒔𝒊𝒏(𝝍) − 𝒄𝒐𝒔(𝜶) 𝒔𝒊𝒏(𝜸), 

𝒂𝟏𝟑 = 𝒄𝒐𝒔(𝜶) 𝒄𝒐𝒔(𝜸) 𝒔𝒊𝒏(𝝍) + 𝒔𝒊𝒏(𝜶) 𝒔𝒊𝒏(𝜸) , 

𝒂𝟐𝟏 = 𝒄𝒐𝒔(𝝍) 𝒔𝒊𝒏(𝜸) , 𝒂𝟐𝟐 = 𝒄𝒐𝒔(𝜶) 𝒄𝒐𝒔(𝜸) + 𝒔𝒊𝒏(𝜶) 𝒔𝒊𝒏(𝝍) 𝒔𝒊𝒏(𝜸), 

 𝒂𝟐𝟑 = −𝒄𝒐𝒔(𝜸) 𝒔𝒊𝒏(𝜶) + 𝒔𝒊𝒏(𝝍) 𝒔𝒊𝒏(𝜸), 𝒂𝟑𝟏 = −𝒔𝒊𝒏(𝜸) , 𝒂𝟑𝟐 = 𝒄𝒐𝒔(𝝍) 𝒔𝒊𝒏(𝜶), 

 𝒂𝟑𝟑 = 𝒄𝒐𝒔(𝜶) 𝒄𝒐𝒔(𝝍).                                                        (1.33)        

 

<Figure 1.29 here> 

Figure 1.29 Slow polarization dynamics: a)- c) trajectories on the Poincaré sphere.); d) - f) The 

output power vs number of the round trips for two linearly cross-polarized SOPs Ix  (dashed line) 

and Iy (dotted line) and total power I=Ix+Iy (black); );  g-f) the phase difference vs number of the 

round trips. Parameters: 𝛼 = −𝜋 4,⁄ 𝛽 = 𝜋 4,⁄   𝛾 = 2𝜋 5⁄ ,  (a-i);   Ip =25 (a, d, g), Ip =22  (b, e, 

h); Ip=30 (c, f, i). The time span of 104 corresponds to 1 ms.  

 

As follows from Figure 1.29a-h, the injected signal with evolving SOP modifies the spiral attractor and 

polarization dynamics of the SOPs x and y. Theoretical results are quite close to the experimental data ( 
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Figure 1.15a-h) for the soliton rain's condensed phase in Figure 1.14a, b. Increased amplitude of the injected 

signal from a=0.02 to a=10 transform the spiral attractor is transformed to the circle (Fig. 1.29c), and x and 

y SOPs’ oscillations take the form of antiphase close to harmonic oscillations with the fast phase difference 

switching (Figure 1.29 f, i). The dynamics is quite close to the experimental results shown in Figure 1.15 c, 

f, i and the corresponding the soliton rain bunch shown in Figure 1.14 c.  

    Kbashi and co-workers demonstrated that the mechanism driving the SR origin and merging to the 

condensate phase is competition between polarization hole burning (PHB) caused by SR pulses and holes 

refilling by the pump wave and active medium (Kbashi H.J. 2019). Here we reveal a new effect of the 

soliton rain on the active medium in the context of modifying the polarization properties. In the SR 

condensed phase (Figure 1.14a,b,d,e), the SR completely depletes population inversion and cw component 

can’t appear. The active medium is slightly modified by SHB by inducing a small circular birefringence 

and so the spiral attractor on the Poincaré sphere emerges (Figure 1.14a,b,d,e,g,h) and Figure 1.29b,e,h). 

The soliton bunch appears when PHB can't deplete the population inversion completely, and CW 

components generated (Figure 1.14f).  The soliton bunch has a large amplitude and the periodically 

evolving SOP caused by the its drift and so transforms the spiral attractor to the circle on the Poincaré sphere 

(Figures 1.15c,f, i) and 1.29c, f, i). The obtained results can pave the wave to development a new technique 

for the laser dynamics’ control by using the injected optical signal with evolving states of polarization that 

of interest for different application including spectroscopy, metrology and biomedical diagnostics.  

1.13  VECTOR BRIGHT-DARK ROGUE WAVES (THEORY)  

To justify mechanism of the RWs emergence at the fast and slow time scales, we modify Equations 1.12 

as follows:  
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𝑑𝑆0

𝑑𝑡
= (

2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2 − 𝑙𝑛 (1 −
𝛼0

1 + 𝛼𝑠𝑆0
)) 𝑆0 +

2𝛼1𝑓2
1 + 𝛥2

𝑆1 +
2𝛼1𝑓3
1 + 𝛥2

𝑆2, 

𝑑𝑆1

𝑑𝑡
= 𝛾𝑆2𝑆3 +

2𝛼1𝑓2
1 + 𝛥2

𝑆0 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2 − 𝑙𝑛 (1 −
𝛼0

1 + 𝛼𝑠𝑆0
)) 𝑆1 − 𝛽𝑐𝑆2 − (

2𝛼1𝑓3𝛥

1 + 𝛥2
) 𝑆3, 

𝑑𝑆2

𝑑𝑡
= −𝛾𝑆1𝑆3 +

2𝛼1𝑓3
1 + 𝛥2

𝑆0 + 𝛽𝑐𝑆1 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2 − 𝑙𝑛 (1 −
𝛼0

1 + 𝛼𝑠𝑆0
)) 𝑆2 + (

2𝛼1𝑓2𝛥

1 + 𝛥2
) 𝑆3, 

𝑑𝑆3

𝑑𝑡
= (

2𝛼1𝛥𝑓3
1 + 𝛥2

) 𝑆1 − (
2𝛼1𝛥𝑓2
1 + 𝛥2

) 𝑆2 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2 − 𝑙𝑛 (1 −
𝛼0

1 + 𝛼𝑠𝑆0
))𝑆3, 

𝑑𝑓1
𝑑𝑡

= 휀 [
(𝜒𝑠 − 1)𝐼𝑝

2
− 1 − (1 +

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆0)𝑓1 − (𝑑1𝑆1 +

𝐼𝑝𝜒𝑝

2

(1 − 𝛿2)

(1 + 𝛿2)
)𝑓2 − 𝑑1𝑆2𝑓3] , 

𝑑𝑓2
𝑑𝑡

= 휀 [
(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝(𝜒𝑠 − 1)

4
− (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓2 − (

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆1)

𝑓1
2
] , 

𝑑𝑓3

𝑑𝑡
= −휀 [

𝑑1𝑆2𝑓1

2
+ (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓3].                                                                                     (1.34) 

Here time and length are normalized to the round trip  and cavity length, respectively; Si (i=0,1,2,3) 

are the Stokes parameters defined in Equation 1.1 (S0 is the output power, pump and lasing powers 

are normalized to the corresponding saturation powers); 𝛽𝐿 (𝐶) = 2𝜋 𝐿𝑏𝐿(𝑏𝐶)⁄  is the linear (circular) 

birefringence, 𝐿𝑏𝐿(𝑏𝐶) is the linear (circular) birefringence beat length; α1 is the total absorption of 

erbium ions at the lasing wavelength, α2 is the total insertion losses in the cavity; δ is the ellipticity 

of the pump wave, ε=R/Er is the ratio of the round trip time R to the lifetime of erbium ions at 

the first excited level Er; p,s=(a
(s,p)+ e

(s,p))/a
(s,p),(a

(s,p) and e
(s,p)are absorption and emission 

cross-sections at the lasing (s) and pump (p) wavelengths); Δ is the detuning of the lasing 

wavelength with respect to the maximum of the gain spectrum (normalized to the gain spectral 

width); 𝑑1 = 𝜒𝑠 𝜋(1 + Δ2)⁄ .  

To explain mechanism of RW emergence, we solve Equations 1.34 numerically by using the parameters 

shown in Figure 1.30.   

  



49 

  

<Figure 1.30 here> 

Figure 1.30  Laser dynamics averaged over the roundtrip time and after low pass filtering. Dynamics before 

(a-c) and after (d-f) low-pass filtering with a Hanning window with transmission spectrum 

(T(f)=(1+cos(f/fc))/2, ffc=1MHz ). a)  Dynamics of the output power; b) dynamics of the phase difference 

; c) probability distribution histograms (the output power I is normalized  as shown in Fig.2); d) dynamics 

of the output powers I=Ix+Iy (black) and the phase difference  (gray); e) trajectories on the  Poincaré 

sphere; f)  Probability distribution histogram for the total output power (output power is normalized  as 

shown in Figs. 16 and 17). Parameters: Ip=76; α1=21.53, α0=0.136, αs=1.810-5, α2=2.533, χ=2.3, Δ=0.1, 

γ=2x10-6, ε=10-4; a-f) δ=0.84 (elliptically polarized pump), =−  

 

 As follows from Figure 1.30, adjusting the pump power, birefringence and the ellipticity of the pump wave 

leads to the emergence of the bright-dark rogue waves. After the data averaging over 30 round-trips (1 MHz 

low-pass filter) the data are transformed (Figure 1.30d-f).  The obtained results in Fig. 1.30 are in a good 

correspondence to the experimental data shown in Figures 16 and 17. The anomalous spikes-dips in the 

output power (Figure 1.30a,b,d) coincides with the phase difference jumps in π (Figue 1.30b, d), i.e. 

transitions between orthogonally polarized SOPs (Figure 1.30e).  Probability distribution diagram for the 

total power I=Ix+Iy (Figure 1.30 c, f) is showing the presence the dark-bright RWs.  The  emergence of the 

RWs at the slow time scale is explained in terms of transition of the  synchronization scenario from the 

phase locking to the chaotic phase drift (section 1.16).  

   Thus, we demonstrate a new type of the bright-dark rogue waves resulting from the interaction 

between the orthogonal SOPs in an Er-doped mode-locked fiber laser. By adjusting in-cavity and 

the pump wave polarization controllers, we enable control of the coupling between SOPs towards 

SOPs desynchronization and so emergence of the bright-dark rogue. The revealed mechanism 

shows a great potential for mapping conditions for RWs existence and so for developing 
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techniques for suppression RWS in different distributed systems.  

1.14.  VECTOR RESONANCE MULTIMODE INTSABILIT (THEORY) 

The experimental results on mode-locking based on Vector Resonance Multimode Instability 

(VRMI) can be well understood based on the vector model of an Er-doped fiber laser derived by 

Sergeyev et al. (Sergeyev S. 2018):  

 

𝜕𝑆0

𝜕𝑧
+

𝜕𝑆0

𝜕𝑡
= (

2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆0 +
2𝛼1𝑓2
1 + 𝛥2

𝑆1 +
2𝛼1𝑓3
1 + 𝛥2

𝑆2, 

𝜕𝑆1

𝜕𝑧
+

𝜕𝑆1

𝜕𝑡
= 𝛾𝑆2𝑆3 + (

2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆1 +
2𝛼1𝑓2
1 + 𝛥2

𝑆0 −
2𝛼1𝑓3𝛥

1 + 𝛥2
𝑆3, 

𝜕𝑆2

𝜕𝑧
+

𝜕𝑆2

𝜕𝑡
= −𝛾𝑆1𝑆3 +

2𝛼1𝑓3
1 + 𝛥2

𝑆0 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆2 + (
2𝛼1𝑓2𝛥

1 + 𝛥2
− 2𝛽) 𝑆3, 

𝜕𝑆3

𝜕𝑧
+

𝜕𝑆3

𝜕𝑡
=

2𝛼1𝛥𝑓3

1+𝛥2 𝑆1 −
2𝛼1𝛥𝑓2

1+𝛥2 𝑆2 + 2𝛽𝑆2 + (
2𝛼1𝑓1

1+𝛥2 − 2𝛼2) 𝑆3,  

𝑑𝑓1
𝑑𝑡

= 휀 [
(𝜒𝑠 − 1)𝐼𝑝

2
− 1 − (1 +

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆0) 𝑓1 − (𝑑1𝑆1 +

𝐼𝑝

2
𝜉) 𝑓2 − 𝑑1𝑆2𝑓3],  

𝑑𝑓2

𝑑𝑡
= 휀 [𝜉

𝐼𝑝(𝜒𝑠−1)

4
− (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓2 − (

𝐼𝑝𝜒𝑝

2
𝜉 + 𝑑1𝑆1)

𝑓1

2 ],  

𝑑𝑓3

𝑑𝑡
= −휀 [

𝑑1𝑆2𝑓1

2
+ (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓3].                                        

                                                                                                                                                  (1.35) 

Here =(1- δ2)/(1+ δ2) is parameter of the pump anisotropy. 

 Given the experimental condition that used pump power of 18 mW is much less than values 

(approx. 800 mW) required for mode locking based on nonlinear polarization rotation (NPR) [], 

the presnted model excludes NPR-based mode-locking (Lecaplain 2014) . The  pulse width in our 

experiments (Fig.  19)  was estimated to be of 40 ns and so we can use approximation where the 

second order dispersion can be neglected in the model of VMRI-based mode-locking. Also, the 

pulse width is much longer than the transverse relaxation time of 160 fs. Therfore, the medium 

polarization dynamics can be ignored (Fontana 1995, E. B. Pessina 1997, E. P. Pessina 1999, 

Voigt 2004, Lugiato 2015). 

    To find conditions for the VRMI-based mode locking, we linearize the Equation 1.35 nearby 
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the steady state solution F0=(S00 S00  0 0 f10 f20 0)T and substitute the following ansatz into 

Equation 1.35: 

𝑭(𝑡, 𝑧) ≡ [𝑆0𝑆1𝑆2𝑆3𝑓1𝑓2𝑓3]
𝑇 = 𝑭0 + [𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7]

𝑇 𝑒𝑥𝑝(𝜆𝑡 + 𝑞𝑧) , 

(1.36) 

where F0=(S00 S00  0 0 f10 f20 0)T. As a result, we find the following equation for eigenvalues: 

𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1 − 𝑖𝑞 − 𝜆

−𝑎1

0
0
𝑏2

𝑏4

0

0
𝑎1 − 𝑖𝑞 − 𝜆

0
0
𝑏4

𝑏2 2⁄
0

0
0

𝑎1 − 𝑖𝑞 − 𝜆
−𝑎3

0
0

𝑏2 2⁄

0
0

𝑎3 + 𝑎4

𝑎1 − 𝑖𝑞 − 𝜆
0
0
0

𝑎2

𝑎2

0
0

𝑏1 − 𝜆

𝑏3 2⁄
0

𝑎2

𝑎2

0
0
𝑏3

𝑏1 − 𝜆
0

0
0
𝑎2

Δ ∙ 𝑎2

0
0

𝑏1 − 𝜆]
 
 
 
 
 
 

= 0 

  (1.37)          

                                    

where  

𝑎1 =
2𝛼1

1 + 𝛥2
𝑓10 − 𝛼2, 𝑎2 =

2𝛼1

1 + 𝛥2
𝑆00, 𝑎3 =

2𝛼1𝛥

1 + 𝛥2
𝑓20 − 2𝛽, 𝑎4 = −𝛾𝑆00, 

𝑏1 = −휀 (1 +
𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆00) , 𝑏2 = −휀𝑑1𝑓10, 𝑏3 = −휀 (𝑑1𝑆0 +

𝐼𝑝𝜒𝑝𝜉

2
) , 𝑏4 = −휀𝑑1𝑓20, 

𝑆00 =
−𝑄2 − √𝑄2

2 − 4𝑄1𝑄3

2𝑄1
, 𝑄1 = −

𝛼2𝑑1
2

2
, 

𝑄2 = −𝛼2 (2𝑑1(1 + 𝐼𝑝𝜒𝑝) −
𝑑1𝐼𝑝𝜉

2
) + (

𝜒𝑠−1

2
𝐼𝑝 − 1). 

(1.38) 

 

As a result, Equation 1.37 has three branches of eigenvalues: 

𝜆 − 2𝑎1 + 2𝑖𝑞 = 0,  (𝐼) 

𝜆3 + [−2𝑏1 + 𝑖𝑞]𝜆2 + (𝑏1
2 −

𝑏3
2

2
−

3𝑎2𝑏2

2
− 2𝑎2𝑏4 − 2𝑖𝑞𝑏1) 𝜆 +

3𝑎2𝑏1𝑏2

2
+ 2𝑎2𝑏1𝑏4 − 
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2𝑎2𝑏1𝑏4 − 𝑎2𝑏2𝑏3 −
3𝑎2𝑏3𝑏4

2
−

𝑖𝑏3
3𝑞

2
+ 𝑖𝑏1

2𝑞 = 0,  (𝐼𝐼) 

𝜆3 + (−2𝑎1 − 𝑏1 + 2𝑖𝑞)𝜆2 + (𝑎1
2 + 2𝑏1𝑎1 + 𝑎3

2 + 𝑎 𝑎4 3 − 𝑞2 −
𝑎2𝑏2

2
− 2𝑖𝑏1𝑞 − 2𝑖𝑎1𝑞) + 

𝑏1𝑞
2 − 𝑎3

2𝑏1 − 𝑎1
2𝑏1 +

𝑎1𝑎2𝑏2

2
− 𝑎3𝑎4𝑏1 −

𝑎2𝑎3𝑏2𝛥

2
−

𝑎2𝑎4𝑏2𝛥

2
−

𝑖𝑎2𝑏2𝑞

2
+ 2𝑖𝑎1𝑏1𝑞

= 0,  (𝐼𝐼𝐼) 

As a result:  

(1.39) 

   

(𝐼) 𝜆0 = 𝑖𝑞 + 𝐴0(𝐼𝑝, 𝜉), 

(𝐼𝐼) 𝜆1 = 𝐴1(𝑞, 𝐼𝑝, 𝜉) + 𝑖𝛺1(𝑞, 𝐼𝑝, 𝜉),  𝜆2 = 𝐴2(𝑞, 𝐼𝑝, 𝜉) + 𝑖𝛺2(𝑞, 𝐼𝑝, 𝜉),

𝜆3 = 𝐴3(𝑞, 𝐼𝑝, 𝜉) + 𝑖𝛺3(𝑞, 𝐼𝑝, 𝜉), 

(𝐼𝐼𝐼) 𝜆4 = 𝐴4(𝑞, 𝐼𝑝, 𝛽, 𝜉) + 𝑖𝛺4(𝑞, 𝐼𝑝, 𝛽, 휁), 

𝜆5 = 𝐴5(𝑞, 𝐼𝑝, 𝛽, 𝜉) + 𝑖 (𝑞 + 𝛥𝛺(𝑞, 𝐼𝑝, 𝛽, 𝜉)) ,  𝜆6 = 𝐴6(𝑞, 𝐼𝑝, 𝛽, 𝜉) + 𝑖 (𝑞 − 𝛥𝛺(𝑞, 𝐼𝑝, 𝛽, 𝜉)) , 

𝐴0(𝐼𝑝, 𝜉) > 0, 𝐴1(𝑞, 𝐼𝑝, 𝜉) < 0,  𝐴2(𝑞, 𝐼𝑝, 𝜉) < 0,  𝐴3(𝑞, 𝐼𝑝, 𝜉) < 0, 

𝐴4(𝑞, 𝐼𝑝, 𝜉) < 0, 𝐴5(𝑞, 𝐼𝑝, 𝜉) > 0, 𝐴6(𝑞, 𝐼𝑝, 𝜉) > 0.
                     (1.40) 

 

Here q=0,±1, ±2,..±N is the wave number of the longitudinal mode and eigenvalues are normalized 

to the fundamental frequency =2/R. The results are shown in Figure 1.31. The first and the 

second (multimode instability) thresholds are found in Figure 1.31a. For RNGH instability, the 

threshold pump powers for excitation of different number of longitudinal modes are different 

(Fontana 1995, E. B. Pessina 1997, E. P. Pessina 1999, Voigt 2004, Lugiato 2015), whereas 

for the case of VRMI the powers are the same (Figure 1.31a).  Also, the second threshold of the 

VRMI coincides with the first lasing threshold for circuitry polarized pump and slightly exceeds 

the first one with increased pump anisotropy parameter . Threshold for MMI (branch I) coincides 

with the threshold for excitation of birefringence-dependent RF satellite lines (branch III). As 

follows from Figure 1.31b, the branch II corresponds to additional birefringence-independent 

spectral lines with the frequency splitting of 0.01f (f is the fundamental frequency) with respect to 
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the longitudinal mode frequency q.  The real part of the corresponding eigenvalues, i.e. A1, A2 and 

A3, are less than zero, but the parametric phase locking with the frequencies of the branch I can 

activate the satellites. For branch III (Figure 1.31c), increased birefringence strength can result in 

the resonance conditions, i.e. matching longitudinal mode q satellites’ frequencies the frequency 

of the longitudinal mode q+N (where N is integer) from the branch I.   

 

<Figure 1.31 here> 

Figure 1.31 The results of linear stability analysis of Equations 1.35. a) Vector multimode 

instability in terms of positive real parts of eigenvalues, i.e. A0 (dots), A5 (solid line) (A6 is close 

to the A5 and so is not shown here) and the output signal S0 (dashed line) vs pump power Ip for 

=0 (upper lines), =0.1 (lower line); b) The frequencies of the scalar branch: 1 (empty circles)  

2-1(empty triangles), 3 (empty squares) and vector branch 4 (empty diamonds) along with the 

real parts of the scalar branch: A1 (filled circles), A2 (filled triangles), A3 (filled squares), and  the 

vector branch:  A4 (filled diamonds) vs pump power Ip for =0.1. c) Frequencies for the branch I, 

i.e. 0=q , q=0,1,2,3 (solid lines), and the vector branch (III), i.e. 5,6=q (squares, triangles, 

circles), vs the birefringence strength 2-21/(1+2) for =0.1. The equality 0=5,6 for 2-

21/(1+2)=1,2,… means the resonance mode locking shown in Figure 1.31c. Parameters:  

L=615 m, 2α1=ln(10)6.4, 2α2=ln(10)0.5, χs=3/2, χp=1/0.7,  Δ=0.1,  Ip=10 (c), γ=2x10-6, ε=10-3, 

=1 (a,b), q=1 (b), =0.1 (b,c).  

 

As follows from Figures 1.31 and 1.19, the theoretical results are in a good correspondence with 

the experimental data.  First, the threshold of the multimode instability (the second threshold) 

slightly exceeds the first lasing threshold (Figure 1.31 (a)). Second, when the birefringence-

dependence satellites frequencies deviates from the longitudinal mode frequencies (Figure 1.19a1-

c1), the dynamics takes the form of complex oscillations in view of equal threshold conditions for 

all longitudinal modes and the absence of the synchronization (Figure 1.31a)). Finally, matching 

the frequencies for longitudinal modes’ harmonics and the birefringence-dependent satellites leads 

their synchronization similar to the injection locking-based mode locking (S. Y. Cundiff 2003). 
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Also, stable mode locking is accompanied with the stable SOP locking Figs. 18 (b, c). As follows 

from Figure 1.31, linear stability analysis results in the eigenfrequencies ratio with respect to the 

fundamental frequency as 1:10-1:10-2:10-3:10-4. In addition, the presence of harmonics (more than 

1000, as follows from the experiment) requires accounting for many time scales and so the direct 

numerical simulation is very complex problem.  

The demonstrated vector resonance multimode instability-based mode-locking can be potentially 

observed in the other distributed systems. The resonance of the satellite lines caused by the 

birefringence tuning with the other branch of eigen-frequencies leads to the synchronization 

phenomena which can be of interest in photonics and beyond.  

 

1.15 VECTOR HARMONIC MODE-LOCKING (THEORY)  

To understand the mechanism of harmonic mode-locking tunability and linewidth narrowing, we 

review our recently developed vector model of EDFLs (Sergeyev S 2021). The model accounts 

for the linear and circular birefringence and fast- and slow axis modulation caused by TR2m   

acoustic modes. Without accounting for the gain dynamics, the SOP evolution in terms of the 

Stokes vector S and number of roundtrips caused by the interplay of the factors mentioned above 

can be described as follows: 

𝑑 𝑆 𝑑𝑡⁄ = 𝑅 ∙ 𝑊 × 𝑆,                                   (1.41) 

Here time is normalized to the roundtrip time, 𝑊 = (𝛽𝐿 , 0, 𝛽𝑐)
𝑇  is the birefringence vector, 

𝛽𝐿 (𝐶) = 2𝜋 𝐿𝑏𝐿(𝑏𝐶)⁄  is the linear (circular) birefringence strength, 𝐿𝑏𝐿(𝑏𝐶) is the beat length for 

linear (circular) birefringence. The matrix 𝑅 is the 3x3 matrix that defines the rotation of the 

birefringence vector around axis OS3 caused by TR2m excitation (Collett 2003): 
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𝑅 = [

cos (휁(𝑡)) −sin (휁(𝑡)) 0

sin (휁(𝑡)) cos (휁(𝑡)) 0

0 0 1

],                    (1.42) 

where 휁(𝑡) = 𝐴0 cos(2𝜋Ω𝑡). Here 휁(𝑡) is the angle of the birefringence vector rotation,  𝐴0 is the 

amplitude of rotation, and  Ω is the frequency of oscillations at the TR2m acoustic mode. In 

Equations 1.41 and 1.42, the contribution of TR2m was accounting for only in the birefringence 

modulation context.  The modulation of the refractive index was neglected. With accounting for 

Equations 1.41 and 1.42, along with the ASE noise in the cavity, Eqs. (30) and (31) take the 

following form (Sergeyev S 2021): 

 

𝑑𝑆0

𝑑𝑡
= (

2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆0 +
2𝛼1𝑓2
1 + 𝛥2

𝑆1 +
2𝛼1𝑓3
1 + 𝛥2

𝑆2, 

𝑑𝑆1

𝑑𝑡
= 𝛾𝑆2𝑆3 +

2𝛼1𝑓2
1 + 𝛥2

𝑆0 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆1 − 𝛽𝑐𝑆2 − (
2𝛼1𝑓3𝛥

1 + 𝛥2
− 𝛽𝐿𝑠𝑖𝑛(휁(𝑡))) 𝑆3 + 𝜎1, 

𝑑𝑆2

𝑑𝑡
= −𝛾𝑆1𝑆3 +

2𝛼1𝑓3
1 + 𝛥2

𝑆0 + 𝛽𝑐𝑆1 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆2 + (
2𝛼1𝑓2𝛥

1 + 𝛥2
− 𝛽𝐿𝑐𝑜𝑠(휁(𝑡))) 𝑆3 + 𝜎2, 

𝑑𝑆3

𝑑𝑡
= (

2𝛼1𝛥𝑓3
1 + 𝛥2

− 𝛽𝐿𝑠𝑖𝑛(휁(𝑡))) 𝑆1 − (
2𝛼1𝛥𝑓2
1 + 𝛥2

− 𝛽𝐿𝑐𝑜𝑠(휁(𝑡))) 𝑆2 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆3 + 𝜎3, 

𝑑𝑓1
𝑑𝑡

= 휀 [
(𝜒𝑠 − 1)𝐼𝑝

2
− 1 − (1 +

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆0)𝑓1 − (𝑑1𝑆1 +

𝐼𝑝𝜒𝑝

2

(1 − 𝛿2)

(1 + 𝛿2)
)𝑓2 − 𝑑1𝑆2𝑓3] , 

𝑑𝑓2
𝑑𝑡

= 휀 [
(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝(𝜒𝑠 − 1)

4
− (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓2 − (

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆1)

𝑓1
2
] , 

𝑑𝑓3

𝑑𝑡
= −휀 [

𝑑1𝑆2𝑓1

2
+ (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓3].                                                                                     (1.42) 

i are Stokes parameters of the injected −correlated stochastic signal: 
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〈𝜎𝑖(𝑡)〉𝑡 = 0, 〈𝜎𝑖(𝑡)𝜎𝑗(𝑡 − 𝜏)〉𝑡 = Σ2𝛿𝑖,𝑗𝛿(𝜏),     𝛿𝑖,𝑗 = {
1, 𝑖 = 𝑗,
0 𝑖 ≠ 𝑗.

 𝛿(𝜏) = {
∞, 𝜏 = 0,
0 𝜏 ≠ 0.

                    

(1.43) 

Here 𝛿𝑖,𝑗 is the Kronecker symbol, () is the Dirac function, 𝜎2 = 1 𝜏𝑐⁄  , 𝜏𝑐 is the correlation 

time.  

   To obtain results shown in Figure 1.32, we used the following parameters: a)-i) Ω = 7, 𝐴0 =

0.1; a)-c)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 0; d)-f)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 𝜋√2 √5⁄ ; g)-i)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 =

𝜋√4 √5⁄ . The other parameters: a)-i) α1=21.5, α2=2.53, Ip=30,d=0.5 (elliptically polarized pump 

SOP)  =0.1, ε=10-4, p=1/0.75, s=2.3, S=10-3.  

 

It was shown in section 12 that tuning the linear birefringence results in the vector resonance 

multimode instability (Sergeyev S.V. 2017). By adjusting the in-cavity and the pump wave 

polarization controllers, the birefringence strength can be increased and two satellite lines around 

the q-harmonic frequency emerge. Finally, longitudinal modes synchronization happens when the 

beat length equals the cavity length and so the frequencies of the satellites for q-harmonic are in 

resonance with the q+1-and q-1-harmonic.  

The complexity of the vector model exceeds the complexity of any known scalar or vector 

models of fiber lasers considered elsewhere.  Given the complexity of the problem, we use a few 

approximations to reveal the effect of the TR2m on the modulation of the output power at frequency 

Ω. First, in the theoretical analysis, we accounted for the only interplay of the linear and circular 

birefringence with the TR2m acoustic mode-based modulation for harmonic 𝑞 = 0 in terms of the 

ability of excitation of the output power oscillations at a frequency of TR2m  mode.  

The results of the theoretical analysis are shown in Figure 1.32a-i. As follows from Figure 1.32 a, 

b,d,e, the output power I and Ix, Iy are oscillating at frequency 𝜔 = √𝛽𝐿
2 + 𝛽𝑐

2  (Collett 2003), 
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whereas oscillations at the frequency Ω have almost been suppressed. Only for the case when the 

frequency Ω = 14π is a multiple of frequency 𝜔 = 2𝜋, the oscillations at the frequency 𝜔 

disappear, and the output power is modulated at frequency Ω.  This is like the experimental data 

shown in Figure 1.21, where HML is stabilized only when 𝜔 = 2𝜋, i.e. when the satellites’ 

frequencies are matching the frequency spacing between harmonics.   The HML mechanism looks 

like the vector mode-locking at the fundamental frequency (Sergeyev S 2021). By adjusting the 

in-cavity polarization controller POC2, we were able to increase the circular birefringence strength 

that leads to the generation of two satellite lines around the q=0 harmonic frequency. When the 

birefringence-based modulation frequency 𝜔 approaches the fundamental frequency, the 

modulation of the harmonic at the frequency 𝜔 disappears, and TR2m is activation results in 

modulation of q=0 cavity mode with the frequency of TR2m. The amplitude of the output power 

(Figure 1.32g) along with the Stokes parameters shown was small, and so SOP was locked (Figure 

1.32i). 

 

  

<Figure 1.32 here> 

Figure 1.32. Results of the numerical modeling. a), d), g) The output power vs time for two 

linearly cross-polarized SOPs Ix  (dashed line) and Iy (dots) and total power I=Ix+Iy(solid 

line);  b), e), h) Spectrum of the oscillations; c), f), i) trajectories on the Poincare sphere. 

Parameters: time is normalized to the roundtrip time, frequency Ω – to the fundamental  

frequency; birefringence strengths  𝛽𝐿 ,  𝛽𝐶  - to the fiber length;  a)-i) Ω = 7, 𝐴0 =

0.1; ellipticity of the pump wave = a)-c) 𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 0; d)-f)  𝛽𝐿 =
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2𝜋 √5⁄ , 𝛽𝐶 = 2𝜋√2 √5⁄ ; g)-i)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 2𝜋√4 √5⁄ . The other parameters are 

found in text.  

The trajectories shown in Figure 1.32c and 1.32f are different from the experimentally observed 

(Figure 1.21d). However, the DOP=62 % in Figure 1.21d is indication that the SOP evolves at the 

time scale faster than the polarimeter resolution of 1 s and, after averaging over 10 roundtrips, 

can merge to the dot at the Poincare sphere (Kbashi HJ. 2019).  By using a low-pass filter (Hanning 

window with the transmission spectrum 𝑇(𝑓) = (1 + 𝑐𝑜𝑠(𝜋𝑓 𝑓𝑐⁄ )) 2,  𝑓 ≤ 𝑓𝑐⁄ = 1𝑀𝐻𝑧) we 

processed time domain waveforms shown in Figure 1.32c and found that circle was transformed 

to the dot with DOP=61.7 % that is close to the experimental data.  The suppression of the 

oscillations at the frequency  indicates that the linewidth is narrowing due to oscillations only at 

the frequency  (Figure 1.32h).   

We highlight that the analysis of HML based on the excitation of TR2m   provides just a 

qualitative approach to the linewidth suppression. The presence of oscillations of the output power 

at the frequency of TR2m   mode and cancelation of the oscillations at the frequency related to the 

linear and circular birefringence results in narrowing the RF line and increased SNR of 30 dB as 

shown in Figure 1.22c.  

1.16 SELF-PULSING IN FIBER LASERS (THEORY) 

Output power self-pulsing (or self-Q-switching, SQS) in fiber lasers at frequencies of 10–100 kHz is a 

phenomenon resulting in emergence of auto-oscillations without external modulation (Toral-Acosta 

2014, Mallek 2013, Lee 2010, S. O. Sergeyev 2010, Barmenkov 2004, Kir'yanov 2004, Le Boudec 1993, 

F. L. Sanchez 1995, F. S. Sanchez 1996). To explain variety of self-pulsing operations, the following 

mechanisms have been suggested: (i) effect of saturable absorber by unpumped section of active fiber 



59 

  

(Toral-Acosta 2014) or clustered erbium ions (Le Boudec 1993, F. L. Sanchez 1995, F. S. Sanchez 1996); 

(ii) stimulated Brillouin scattering (Mallek 2013), (iii) self-phase modulation (Lee 2010); (iv) coherence 

and anti-coherence resonance (CR an ACR) scenario where multimode and polarization instabilities play 

the role of an external noise source (S. O. Sergeyev 2010); (iv) the pump-to-signal intensity noise transfer 

(PSINT) (Barmenkov 2004), (v) power-dependent thermo-induced lensing in Er-doped fiber (Kir'yanov 

2004). The X-ray-absorption fine structure spectroscopy (XAFS) has revealed a short-range coordination 

order (SRCO) of erbium ions rather than pair clustering (Peters 1998). Though in high concentration 

LIEKKI TM fibers SRCO is suppressed (Tammela 2003, S. a. Sergeyev 2007), however, SQS still 

presents (S. O. Sergeyev 2010). It has been also found, that the PSINT can contribute to low-frequency 

self-pulsing only slightly above the first lasing threshold (Barmenkov 2004). Also, coherence and CR and 

ACR are feasible scenarios but the models of CR and ACR-based self-pulsing have not been developed 

yet (S. O. Sergeyev 2010). Given that the saturable effect of unpumped active fiber, Brillouin scattering, 

and self-phase modulation have a high threshold, these mechanisms can be feasible only for high power 

Yb-doped lasers (Toral-Acosta 2014, Mallek 2013, Lee 2010). Power-dependent thermo-induced lensing 

can induce low-threshold self-pulsing (Kir'yanov 2004), but can’t explain an origin of the experimentally 

observed complex self-pulsing regimes (Le Boudec 1993, F. L. Sanchez 1995).  

    In this section, we review a new concept of a tunable vector self-pulsing in Er-doped fiber laser 

developed by Sergeyev (S. Sergeyev 2016). The approach is based on Equations 1.42 . To reveal self-

pulsing without a saturable absorber at frequencies less than the fundamental frequency of mode locking, 

linear stability along saddle index analysis (Tigan 2008) have been applied to find conditions for 

emerging complex vector attractors on the Poincare sphere as a function of the laser parameters such as 

the cavity birefringence, and power and ellipticity of the pump wave. Stability analysis was validated by 

numerical simulations which demonstrated that double scroll polarization attractor (DSPA) can exist as a 
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result of the polarization symmetry breaking in isotropic cavity without a saturable absorber whereas 

increased ellipticity of the pump wave and in-cavity birefringence leads to deformation of DSPA to 

chaotic attractor and further to limit cycle and stable focus. Thus, the obtained theoretical results provides 

an insight into the experimental data on the complex of self-pulsing regimes including chaos and rogue 

waves.  

   To describe evolution of the laser SOP on the Poincare sphere in terms of the Stokes parameters and the 

population of the first excited level in Er3+ doped active medium we use a simplified form of Equations 

1.42:  

 

𝑑𝑆0

𝑑𝑡
= (

2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆0 +
2𝛼1𝑓2
1 + 𝛥2

𝑆1 +
2𝛼1𝑓3
1 + 𝛥2

𝑆2, 

𝑑𝑆1

𝑑𝑡
= 𝛾𝑆2𝑆3 +

2𝛼1𝑓2
1 + 𝛥2

𝑆0 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆1 − 𝛽𝑐𝑆2 −
2𝛼1𝑓3𝛥

1 + 𝛥2
𝑆3, 

𝑑𝑆2

𝑑𝑡
= −𝛾𝑆1𝑆3 +

2𝛼1𝑓3
1 + 𝛥2

𝑆0 + 𝛽𝑐𝑆1 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆2 +
2𝛼1𝑓2𝛥

1 + 𝛥2
𝑆3, 

𝑑𝑆3

𝑑𝑡
=

2𝛼1𝛥𝑓3
1 + 𝛥2

𝑆1 −
2𝛼1𝛥𝑓2
1 + 𝛥2

𝑆2 + (
2𝛼1𝑓1
1 + 𝛥2

− 2𝛼2) 𝑆3, 

𝑑𝑓1
𝑑𝑡

= 휀 [
(𝜒𝑠 − 1)𝐼𝑝

2
− 1 − (1 +

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆0)𝑓1 − (𝑑1𝑆1 +

𝐼𝑝𝜒𝑝

2

(1 − 𝛿2)

(1 + 𝛿2)
)𝑓2 − 𝑑1𝑆2𝑓3] , 

𝑑𝑓2
𝑑𝑡

= 휀 [
(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝(𝜒𝑠 − 1)

4
− (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓2 − (

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆1)

𝑓1
2
] , 

𝑑𝑓3
𝑑𝑡

= −휀 [
𝑑1𝑆2𝑓1

2
+ (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0)𝑓3].                                                                                      

(1.44) 

   Next, equations 1.44 were linearized  in the vicinity of the steady state solution (S00, S1=S2=0, S3=S0) 

and find  numerically eigenvalues  for the parameters quite close to the experimental ones (S. V. Sergeyev 
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2014) : viz. L=17m, α1=ln(10)6.4, α4=ln(10)0.5, χ=3/2, Δ=0.1,  Ip=10, γ=2x10-6, ε=10-4 .  As a result, we 

find eigenvalues  and saddle index  as follows:   

 

𝜆0 = 0, 𝜆1,2 = −𝛾1 ± 𝑖𝜔1, 𝜆3,4 = −𝛾2 ± 𝑖𝜔2,   𝜆5,6 = 𝜌 ± 𝑖𝜔3, 𝜈 = |
𝛾1

𝜌
| 

(𝜔1,2,3 ≠ 0, 𝜌, 𝛾1, 𝛾2 > 0, 𝛾1 > 𝛾2). 

(1.45) 

In view of eigenvalues for steady states (S00, S1=S2=0, S3=S0)  and (S00, S1=S2=0, S3=-S0) are equal, 

conditions of the chaos existence in the neighborhood of the heteroclinic orbit can be written in the form 

of generalized Shilnikov theorem as follows: γ2>0, ρ2>0   and ν <1 (Tigan 2008). 

<Figure 1.33 here> 

 

 Figure 1.33 Saddle index (=Re{1}/ Re{5}<1) as a function of the pump power Ip , birefringence 

strength   and the anisotropy of pump  (1-2)/(1+2)  in the vicinity of the steady state solution (S00, 

S1=S2=0, S3=S0). Parameters: L=17m, α1=ln(10)6.4, α2=ln(10)0.5, χ=3/2, Δ=0.1, γ=2x10-6, ε=10-4. The 

threshold pump power for cw operation Ip,th=5.123, the boundaries of self-pulsing for =0, =1: 

Ipmin=5.134, Ipmax=140.   

 

The saddle index ν as a function of the anisotropy of the pump  (1-2)/(1+2) and  birefringence strength 

 is shown in Figure 1.33. The internal area bounded by the surface shown in Fig. 33 and the surface =1 

defines the area of chaotic oscillations (Tigan 2008).   

    As follows from Figure 1.33 chaotic oscillations exist for the wide range of the pump power and very 

narrow range of ellipticity, and the cavity birefringence strength. Tunability of the dynamics with tuning 
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the ellipticity of the pump wave is shown in Figures 1.34 and 1.35.  As follows from Figure 1.34, double 

scroll spiral attractor can exist without a saturable absorber (Figure 1.34, =1) and takes the forms of to 

the chaotic attractor, limit cycle and stable focus with increased ellipticity of the pump wave. However, 

with increased the birefringence strength, spiral attractor changes shape to the chaotic attractor and the 

limit cycle (Figure 1.35). As follows from Figure 1.36 (filled squares), increased birefringence results in 

modulation of the Stokes parameters with the frequency (2-1f2 /(1+2) (Sergeyev S.V. 2017).  

<Figure 1.34 here> 

Figure 1.34 The calculated from Eqs. (1) dynamic waveforms and corresponding trajectories on the 

Poincare sphere as a function of ellipticity of the  pump wave  (Ip=20, =0). Inset (IN1) shows auto-

oscillations of the output power that corresponds to the double scroll polarization attractor. Parameters: 

L=17m, α1=ln(10)6.4, α2=ln(10)0.5, χ=3/2, Δ=0.1, γ=2x10-6, ε=10-4. 

 

As follows from Figure 1.36, spiral attractor is transforming into the limit cycle for L>0.017 and =1. 

However, for =0.9 chaotic oscillations of the output power is emerging again as a result of re-activation 

of oscillations close to the steady state of S00, S1=S2=0, S3=S0 (filled triangles in Fig. 36) and the 

presence of birefringence-driven oscillations around steady state S00 S1=S0, S2=S3=0 (filled squares in 

Figure 1.36). The complexity of demonstrated  self-pulsing regimes can be interpreted based on the 

coupled oscillators theory (Pikovsky 2002, Arenas 2008, Thévenin 2011, Aronson DG 1990) where the 

phase difference ∆𝜑 for two orthogonal linearly polarized modes plays the role of relative phase. The 

following equation for the phase difference ∆𝜑 can be derived by using Equations 1.44:  

𝑑𝛥𝜑

𝑑𝑡
= 𝛥𝛺 + 𝐾𝑁𝐿 𝑠𝑖𝑛2(𝛥𝜑) + 𝐾𝑠 𝑠𝑖𝑛(𝛥𝜑) + 𝐾𝑎𝑠 𝑐𝑜𝑠(𝛥𝜑) ,  
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𝛥𝛺 =
2𝛼1𝑓2𝛥

1 + 𝛥2
− 2𝛽,𝐾𝑁𝐿 =

𝛾𝐿𝐼𝑠𝑠
6

(𝐼𝑦 − 𝐼𝑥), 𝐾𝑠 = −
2(𝐼𝑦 + 𝐼𝑥)

√𝐼𝑥𝐼𝑦

𝛼1𝑓3
(1 + 𝛥2)

,  

𝐾𝑎𝑠 =
2(𝐼𝑦−𝐼𝑥)

√𝐼𝑥𝐼𝑦

𝛼1𝑓3𝛥

(1+𝛥2)
.

 (1.46) 

The Equation 1.46 is the further generalization of Adler equation (Pikovsky 2002, Arenas 2008, Thévenin 

2011, Aronson DG 1990) based on accounting for asymmetry in the coupling of polarization modes (Kas 

coefficient) and polarization modes’ coupling based on the Kerr effects (KNL). In addition to this, Ix and Iy 

are also time-dependent variables.  

    As follows from the form of Equation 1.46 and 1.44, detuning  and coupling coefficients Ks, Kas, 

KNL depend on the laser parameters and so mapping of different synchronization regimes (phase locking, 

phase entrainment with periodically oscillating phase and phase drifting with chaotically oscillating 

phase) can be done only numerically by using Equations 1.44 (S. Sergeyev 2016). 

<Figure 1.35 here> 

Figure 1.35 The calculated from Eqs. (1) dynamic waveforms and corresponding trajectories on the 

Poincare sphere as a function of the birefringence strength  (Ip=20). Parameters: L=17m, α1=ln(10)6.4, 

α2=ln(10)0.5, χ=3/2, Δ=0.1, γ=2x10-6, ε=10-4
. 

 

<Figure 1.36 here> 

 

Figure 1.36 Frequency of self-pulsing (in red) and real part of the corresponding eigenvalue (in blue) in 

the vicinity of steady solution S00, S1=S2=0, S3=S0 (filled circles and empty and filled triangles) and 

S00 S1=S0, S2=S3=0 (filled squares and empty squares). Parameters: Ip=20, =1 (squares and empty 

triangles), =0.9 (filled triangles). Real part for eigenvalue in the vicinity of steady state S00 S1=S0, 
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S2=S3=0 (empty squares) is multiplied on 10-3. All frequencies are normalized to the fundamental 

frequency which is inversely proportional to the round-trip time.   

 

For example, the absence of self-pulsing for high pump power can be explained by the increased 

coupling strength between polarization modes to allow phase locking and so steady-state solution. 

The results of the phase difference evolution as a function of ellipticity of the pump wave and the 

birefringence strength are shown in Figure 1.37a,b. For =0, it is possible to conclude that detuning 

is growing faster as compared to the coupling and so phase dynamics changes from the phase 

entrainment to the phase drift (curves 1 and 2 in Figure 1.37a) and chaotic self-pulsing while tuning 

ellipticity from =0.95 to =0.9. Further decreasing the ellipticity results in the faster growth of 

coupling that leads to the phase entrainment (curve 3 in Figure 1.37a) and periodic power 

oscillations with the increased frequency and, finally, in phase locked solution (curve 4 in Figure 

1.37a) and steady-state regime for =0.8. For circularly polarized pump (=1) and increasing 

birefringence strength, phase difference dynamics is changing from the chaotic drift (=0.017, 

curve 1 in Figure 1.37b) to the phase entrainment (=0.034, curve 2 in Figure 1.37b) with the fast 

periodic oscillations of the phase difference and output power correspondently (Figure 1.34).  

Aforementioned resonance activation of the chaotic oscillations (Figure 1.34 and 1.35) for (=0.9 

and =0.034) results in the chaotic phase drift (curve 3 in Figure 1.37b).   

<Figure 1.37 here> 

Figure 1.37a,b. The phase difference evolution. (a) =0 and =0.95 (curve 1), =0.9 (2), =0.85 

(3), and =0.8 (4);   (b) =1, =0.017 (1); =1, =0.034 (2); =0.9, =0.034 (3). Parameters: Ip=20, 

L=17m, α1=ln(10)6.4, α4=ln(10)0.5, χ=3/2, Δ=0.1, γ=2x10-6, ε=10-4. 
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  In conclusion, we demonstrate theoretically different vector self-pulsing scenarios in erbium-

doped fiber laser. Unlike previous self-pulsing models modulation (Toral-Acosta 2014, Mallek 

2013, Lee 2010, S. O. Sergeyev 2010, Barmenkov 2004, Kir'yanov 2004, Le Boudec 1993, F. L. 

Sanchez 1995, F. S. Sanchez 1996)., we reveal the emergence of the complex vector self-pulsing 

regimes in terms of the theory of synchronization of coupled oscillators as a transition from the 

phase locking to new types of phase entrainment and intermittent phase drift regimes as a function 

of coupling strength and detuning between oscillators’ frequencies equation (Pikovsky 2002, 

Arenas 2008, Thévenin 2011, Aronson DG 1990).  
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