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Abstract 39 

Operator attention failure due to mental fatigue during extended equipment operations is a common cause of 40 

equipment-related accidents that result in catastrophic injuries and fatalities. As a result, tracking operators' mental 41 

fatigue is critical to reducing equipment-related accidents on construction sites. Previously, several strategies 42 

aimed at recognizing mental fatigue with adequate accuracy, such as machine learning utilizing EEG-based 43 

wearable sensing systems, have been proposed. However, the ability to track operators’ mental fatigue for its 44 

implementation on an actual construction site is still an issue. For instance, the mobility and systemic instability 45 

of EEG sensors necessitate their application in laboratory settings rather than on actual construction sites. 46 

Furthermore, while the machine learning classifiers achieved acceptable accuracy, their input is limited to 47 

manually developed EEG features, which may compromise the models’ performance on real construction sites. 48 

Accordingly, the current research proposes the viability of a construction site strategy that uses flexible headband-49 

based sensors for acquiring raw EEG data and deep learning networks to recognize operators' mental fatigue. To 50 

serve this purpose, a one-hour excavator operation by fifteen operators was conducted on a construction site. The 51 

NASA-TLX score was used as the ground truth of mental fatigue, and brain activity patterns were recorded using 52 

a wearable EEG sensor. The raw EEG data was then used to develop deep learning-based classification models. 53 

Finally, the performance of deep learning models, i.e., long short-term memory, bidirectional LSTM, and one-54 

dimensional convolutional networks, was investigated using accuracy, precision, recall, specificity, and an F1-55 

score. The findings indicate that the Bi-LSTM model outperforms the other deep learning models with a high 56 

accuracy of 99.941% and F1-score between 99.917% and 99.993%. These findings demonstrate the feasibility of 57 



applying the Bi-LSTM model and contribute to wearable sensor-based mental fatigue recognition and 58 

classification, thus enhancing on-site health and safety operations. 59 

Keywords: mental fatigue, deep learning networks, electroencephalography, construction equipment operators, 60 

construction safety 61 
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1 Introduction 77 

The construction industry has significantly contributed to the development of countries, with over 350 million 78 

workers around the world (Birhane et al., 2022). Besides, it is also regarded as one of the most hazardous industries 79 

(Hinze and Teizer, 2011) and is distinguished by its complexity, uncertainty, and disorderliness. In particular, 80 

construction projects are carried out in an uncertain and unpredictable environment (Choi et al., 2020, Laitinen 81 

and Päivärinta, 2010). Almost every day, the activities of workers, materials, and construction equipment create 82 

an environment that is unique and dynamic (Zhu et al., 2016). Such an environment makes construction workers 83 

more vulnerable to accidents compared to other occupational industries (Albert et al., 2020). As a result, accidents 84 

at work happen often in the construction industry (Koc and Gurgun, 2022). These accidents not only cause serious 85 

injuries and deaths but also halt the flow of work at sites (Sarkar et al., 2020). Among these, construction 86 

equipment-related accidents constitute a significant proportion and are unarguably one of the most frequent types 87 

of construction accidents (Li et al., 2021, Li et al., 2017b). For instance, in the United States construction industry, 88 

construction equipment is a major cause of work-related fatalities and injuries (Vahdatikhaki et al., 2019). 89 

According to Hinze and Teizer (2011), one in four construction industry fatalities is caused by accidents involving 90 

equipment. Therefore, reducing the occurrence of equipment-related incidents at construction sites is crucial to 91 

reducing fatalities and injuries in the construction industry. 92 

One of the leading causes of construction equipment-related accidents is human behavior (Ma et al., 2021), which 93 

is highly influenced by fatigue states (Behrens et al., 2023, Yang et al., 2021, Molan and Molan, 2021, Bucsuházy 94 

et al., 2020). According to Bai and Qian (2021), over 65% of all accidents can be attributed to human error. 95 



According to Brown (1994), fatigue is "a state of energy depletion" that leads to "difficulties in maintaining task-96 

directed efforts and a loss of attentiveness." Fatigue is a risk to both workers' health and safety (Williamson et al., 97 

2011), resulting in reduced energy levels and increased fatigue during and after work (Frone and Tidwell, 2015). 98 

There are two primary types of fatigue: physical and mental (Villani et al., 2022). Physical fatigue is the feeling 99 

of tiredness, weakness, or lack of energy that results from physical activity, such as exercise or manual labor 100 

(Alghadir and Anwer, 2015). It poses a risk for construction accidents and occupational injuries due to poor worker 101 

judgment in dynamic environments (Wu et al., 2018, Umer et al., 2018, Adane et al., 2013, Chan, 2011). Similarly, 102 

mental fatigue is the outcome of the brain's engagement in intellectually demanding tasks for an extended period 103 

of time and can lead to decreased behavioral and cognitive performance (Borragán et al., 2016, Boksem and Tops, 104 

2008, van der Linden et al., 2003). In addition, mental fatigue is significant in occupations that demand workers 105 

to be cognitively active and vigilant, such as long-distance driving (Hu and Lodewijks, 2020), airport baggage 106 

screening (Chavaillaz et al., 2019), and nurses working prolonged shifts (Farag et al., 2022). Both physical and 107 

mental fatigue can have negative impacts on performance, safety, and well-being (Chen and Hsu, 2020). The 108 

fundamental distinction between physical and mental fatigue is the source of fatigue. Nonetheless, the symptoms 109 

of physical and mental fatigue can be similar, such as decreased energy, decreased motivation, and impaired 110 

performance (Behrens et al., 2023, Van Cutsem et al., 2017). 111 

In the construction industry, construction equipment is utilized to execute several challenging tasks, such as 112 

excavation, material lifting, and compaction. These tasks are cognitively demanding and require the equipment 113 

operators to maintain a significant level of sustained effort and alertness (Li et al., 2020b). According to Wagstaff 114 



and Sigstad Lie (2011), such protracted construction operations and attentive tasks lead to mental fatigue among 115 

construction equipment operators, which results in an inability to maintain equipment operations requiring 116 

sustained attention. Their judgment and focus are impaired (Das et al., 2020), resulting in a decrease in productivity 117 

and performance (Masullo et al., 2020). This renders equipment operators more susceptible to equipment-related 118 

incidents, resulting in injuries and fatalities on the site. Therefore, preventing the inattention of construction 119 

equipment operators is crucial for improving site safety (Han et al., 2019). As a result, it is imperative that the 120 

mental fatigue of construction equipment operators be monitored constantly, so that safety personnel can respond 121 

immediately if necessary. 122 

To prevent accidents and ensure the safety and health of construction equipment operators, proactive safety 123 

management has become a critical component of construction safety (Hallowell et al., 2013, Carbonari et al., 2011). 124 

Previously, several studies were conducted to monitor and analyze mental fatigue on construction sites, either by 125 

using psychological or physiological techniques. Initially, the operators’ mental fatigue was subjectively assessed 126 

using questionnaires, where NASA-TLX was the most widely utilized assessment tool (Li et al., 2019b). However, 127 

this assessment is intrusive in nature and time-consuming (Umer et al., 2020). Further, it lacks accuracy as it is 128 

prone to bias (Han et al., 2019). As a result, researchers were motivated to develop a more objective assessment 129 

of mental fatigue. Hence, wearable sensors have gained significant attention from researchers in recent years owing 130 

to technological developments that allow more objective monitoring of mental fatigue on construction sites. As a 131 

result, research efforts were conducted to assess mental fatigue by evaluating the workers' physiological signals, 132 

e.g., electrodermal activity (EDA) (Lee et al., 2021, Choi et al., 2019); electroencephalogram (EEG) (Ke et al., 133 



2021b, Xing et al., 2020); electrocardiograph (ECG) (Umer, 2022); and eye-tracking (Li et al., 2020b). According 134 

to the literature, there is a substantial association between these signals and workers' mental states, and they can 135 

be employed to reliably identify construction workers’ fatigue. Recently, geometric measurements of facial 136 

features have also been used to identify mental fatigue during on-site construction operations (Mehmood et al., 137 

2022). However, among these technologies, EEG has emerged as one of the fastest-growing ones that has attracted 138 

significant attention from researchers for assessing workers’ cognitive and mental states under dynamic workplace 139 

conditions (Zhang et al., 2019b). As a result, the overarching purpose has been to enhance safety performance on 140 

construction projects in order to ensure that construction sites are safer for workers. 141 

EEG is an electrophysiological monitoring system that records the electrical activities generated by cortical 142 

neurons (Sanei and Chambers, 2013). It is recognized as a potent technique in the field of construction research 143 

since it detects brain activity rapidly, cost-effectively, with a high temporal resolution, and in a portable manner 144 

(Saedi et al., 2022). There has been extensive research into the construction industry's use of EEG data gathered 145 

from wearable devices for the purpose of analyzing distinct mental states among construction workers, such as 146 

fatigue (Tehrani et al., 2021, Xing et al., 2020, Li et al., 2019a), stress (Lee and Lee, 2022, Jebelli et al., 2019a), 147 

distraction (Ke et al., 2021b, Ke et al., 2021a), workload (Chen et al., 2017), vigilance (Wang et al., 2019), emotion 148 

(Xing et al., 2019, Hwang et al., 2018), and hazard identification (Wang et al., 2022, Liao et al., 2022, Jeon and 149 

Cai, 2022). In the aforementioned studies, different mental states were analyzed and computed using either 150 

statistical methods or machine learning. Several statistical significance tests, including the Kruskal-Wallis test, the 151 

analysis of variance (ANOVA), the Mann-Whitney U test, the Wilcoxon signed-rank test, the Spearman rank-order 152 



correlation test, and the paired sample t-test, have been used to draw conclusions between experimental and control 153 

groups in EEG-based studies to compute the cognitive status of construction workers (Ke et al., 2021b, Chae et 154 

al., 2021, Xing et al., 2020). The purpose of these analyses was to ascertain whether or not there was a statistically 155 

significant relationship between construction workers' EEG signals and their performance on the task pertaining 156 

to their mental states. Even if these assessments fared well, they have significant shortcomings when it comes to 157 

drawing reasonable and trustworthy inferences about the mental wellbeing of construction workers. Cheng et al. 158 

(2022) reported these limitations: that conventional statistical approaches are inadequate for modeling complex 159 

mapping, whereas the relationships between EEG patterns and cognitive ability are rather complex. This is mostly 160 

because the sample data used to test these statistical approaches is typically subject to stringent requirements. 161 

Therefore, the researchers turned to machine learning methods, which offer a high degree of adaptability (Rajula 162 

et al., 2020). 163 

Machine learning may be utilized to compute the mental state of construction workers using their EEG signals. 164 

Various machine learning models have been developed by researchers to estimate the mental state of construction 165 

workers. For instance, using a supervised learning algorithm, Jebelli et al. (2019a) proposed a framework that can 166 

identify stress levels among construction workers and achieved an accuracy of 84.5%. Aryal et al. (2017) predicted 167 

the fatigue of construction workers with an accuracy of 82% using a boosted tree classifier. Furthermore, Hwang 168 

et al. (2018) demonstrated that two aspects of construction workers' emotional states (arousal and valence) could 169 

be measured and quantified using EEG signals as they performed various construction-related tasks. To identify 170 

mental stress in construction workers, Jebelli et al. (2018a) compared the efficacy of K-nearest neighbors (KNNs), 171 



support vector machines (SVM), and gaussian discriminant analysis (GDA). When compared to other methods, 172 

they discovered the highest accuracy of 80.32% with SVM. In another study, Ke et al. (2021b) proposed a 173 

distraction monitoring method for construction workers, and validation was done using SVM classifier. Similarly, 174 

Jeon and Cai (2022) explored multi-class classification for hazard identification in construction workers using 175 

EEG signals in a virtual reality environment and achieved 82.3% accuracy. Selecting a suitable model and 176 

optimizing its hyperparameters are key phases in machine learning for achieving optimal results. Regardless of 177 

these advances, robust and accurate detection of construction workers' cognitive performance by EEG remains a 178 

challenge. The EEG-based studies conducted in the construction industry using machine learning were conducted 179 

offline by first measuring the data and then downloading the raw electroencephalography data for analysis (Cheng 180 

et al., 2022). In such a case, the model development may be suitable for implementation on real-time monitoring 181 

of the mental states of construction workers while they are facing dynamic site conditions (Cesa-Bianchi and 182 

Orabona, 2021). Furthermore, it is generally understood that EEG manifestations are very non-stationary and 183 

change over time within and between subjects (Thodoroff et al., 2016). Hence, recognizing overarching trends in 184 

EEG data is difficult since the signals are constantly changing (Zeng et al., 2018). 185 

According to Türk and Özerdem (2021) and Li et al. (2020a), the ability of deep learning to analyze raw data and 186 

identify key features is its major strength. Deep learning approaches are actively applicable to different signal 187 

processing because they can learn the features from raw data and have cutting-edge performance and robust skills 188 

in creating trustworthy features in time-series data analysis (Rastgoo et al., 2019, Liu et al., 2017, Zheng et al., 189 

2014). They have been utilized in several fields, including computer vision, natural language processing, and 190 



speech recognition (LeCun et al., 2015). Subsequently, construction-related research domains have recently shown 191 

a significant deal of interest in deep learning networks due to their outstanding performance in a variety of research 192 

areas, such as image classification (Yeşilmen and Tatar, 2022, Duan et al., 2022, Del Savio et al., 2022, Zhong et 193 

al., 2020, Yang et al., 2018), object identification and recognition (Wu et al., 2021, Fang et al., 2018b, Fang et al., 194 

2018a), natural language processing (Wu et al., 2022, Moon et al., 2022, Ding et al., 2022, Zhong et al., 2020, 195 

Zhang et al., 2019a), and recognition of work-related risk factors (Zhao et al., 2022, Antwi-Afari et al., 2022, Zhao 196 

and Obonyo, 2021, Wang et al., 2021, Seo and Lee, 2021, Zhao and Obonyo, 2020, Yang et al., 2020, Lee et al., 197 

2020, Kim and Cho, 2020, Yu et al., 2019, Zhang et al., 2018). Although EEG analysis and decoding of data with 198 

deep learning algorithms have become hot research topics in recent years, unfortunately, EEG-based classification 199 

of mental fatigue using deep learning approaches has not previously been investigated for construction equipment 200 

operators on real construction sites. 201 

Therefore, the objective of the current research is to evaluate the feasibility of using deep learning techniques to 202 

classify construction equipment operators' mental fatigue using raw EEG data and has two major contributions. 203 

The present study represents the first attempt to acquire and analyze EEG data from construction equipment 204 

operators in real-world construction sites, thus demonstrating the feasibility and applicability of the proposed 205 

method for construction site settings. This approach enabled the authors to collect data in a natural environment, 206 

providing a more authentic and realistic context. Moreover, the study is likely to have higher external validity, 207 

which refers to the extent to which the findings of a study can be generalized. Many prior investigations on mental 208 

fatigue have been carried out in controlled laboratory settings with student participants, as exemplified by studies 209 



conducted by Li et al. (2020b) and Li et al. (2019b). However, such laboratory experiments may face challenges 210 

related to generalization and validity since they lack the dynamics and complexity of actual construction sites 211 

(Xing et al., 2020). Therefore, the current study collected EEG data from construction equipment operators during 212 

an on-site excavation operation to support the study's findings, resulting in more comprehensive, accurate, and 213 

realistic results.  214 

Secondly, the current study evaluates the usefulness and performance of deep learning models in detecting and 215 

classifying mental fatigue in construction equipment operators using EEG sensor data. Hypothetically, these 216 

models are more suitable for time-dependent data such as EEG signals, as they account for temporal dependencies 217 

and trends that cannot be captured using traditional classification machine learning algorithms. To the best of the 218 

authors' knowledge, no previous research in the construction industry (Cheng et al., 2022) has demonstrated the 219 

innovative approach of using deep learning models and EEG signals for detecting and classifying mental fatigue 220 

in construction workers. This is attributed to the difficulty in collecting EEG data in the field due to various factors 221 

such as noise, motion artifacts, and safety concerns, as highlighted in previous studies (Ke et al., 2021b, Ahn et 222 

al., 2019). Furthermore, the limited availability of large EEG datasets in the construction industry, as observed in 223 

studies by Wang et al. (2019) and Jebelli et al. (2018a), may constrain the training and validating of deep learning 224 

models. These challenges have hindered the application of deep learning models in the construction industry. To 225 

overcome these challenges, the current study collected an EEG dataset using a four-channel EEG sensor and 226 

recorded one hour of EEG data from each equipment operator. This resulted in more than 18 million data points 227 

for the entire experiment, enabling the effective application of deep learning models. This gap was also filled by 228 



the current study. 229 

There is a plethora of deep learning architectures to choose from in the literature; nevertheless, choosing the right 230 

one is crucial for EEG data processing. Recent studies by Nakagome et al. (2022), Roy et al. (2019), and Craik et 231 

al. (2019) have examined the latest trends in EEG research and identified that convolutional neural networks (CNN) 232 

and recurrent neural networks (RNN) are gaining popularity for processing EEG data. According to Nakagome et 233 

al. (2022), more than half of EEG studies used CNN or RNN, particularly with raw EEG data as input, to analyze 234 

EEG data end-to-end, eliminating the need for time-consuming feature extraction processes. Moreover, both these 235 

deep learning architectures have been effectively used in studies involving individuals exposed to external stimuli 236 

(Nakagome et al., 2022). Subsequently, this study employed and investigated the performance of three deep 237 

learning techniques, i.e., long short-term memory, bidirectional long short-term memory, and one-dimensional 238 

convolutional networks, for mental fatigue recognition in construction equipment operators. Therefore, the 239 

findings of this study are expected to provide a better understanding of the application of electroencephalography 240 

technology for mental fatigue detection in construction equipment operators in real construction scenarios based 241 

on field tests. Furthermore, using this approach, operators of construction equipment might have their mental 242 

fatigue continuously monitored without having to be observed or watched by a supervisor. Having said that, this 243 

study will also contribute to classifying construction equipment operators’ mental fatigue using raw EEG data, 244 

without any human intervention for manual crafting of features. As a result, the suggested method has the potential 245 

to improve the standardization of safety management within the construction industry. 246 

2 Methodology 247 



Figure 1 shows an overview of the research process. It demonstrates the proposed method for detecting mental 248 

fatigue in construction equipment operators by analysing brain activity patterns acquired using an EEG device. 249 

The research process consists of four steps. In the first step, an experiment was conducted to acquire relevant data. 250 

A headband was mounted on the head of construction equipment operators to obtain EEG data, and data related to 251 

subjective feelings of mental fatigue was gathered using a questionnaire. In the second step, the EEG data was 252 

analysed and labelled into mental fatigue levels using subjective scores, artifacts were removed, and the data was 253 

down sampled. In the third step, detection of multiple mental fatigue levels in construction equipment operators 254 

was done based on deep learning techniques. Each deep learning model was trained using raw EEG data from an 255 

EEG device as input data. In the last step, the performance of each deep learning architecture was assessed using 256 

metrics. 257 
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Figure 1: Overview of the research process 



2.1 Experiment design and data collection 259 

2.1.1 Participants 260 

Fifteen male construction equipment operators were voluntarily recruited to participate in the experiments. The 261 

operators’ mean age was 33.07 years (SD = 3.95). Construction equipment operators were recruited and 262 

participated in this study because excavation operation tasks (ground excavation and moving the material from the 263 

pits to the transport vehicles) are repetitive, cognitively demanding, and often involve prolonged working hours, 264 

which require the operators to have a significant level of sustained attention (Li et al., 2020b). Furthermore, we 265 

determined the sample size of excavator operators to recruit for our research investigations based on sample sizes 266 

from previous studies. In earlier studies with similar purposes, 12 crane operators (Das et al., 2020), 12 excavator 267 

operators (Li et al., 2019b), 11 drivers (Ahn et al., 2016), 6 excavator operators (Li et al., 2020b), and 5 crane 268 

operators (Liu et al., 2021a) were recruited. Considering previous research in the literature, we decided that more 269 

than fifteen operators would be sufficient for our investigation and to justify our results. All the participants were 270 

excavator operators with prior experience in excavator operations at construction sites. All the excavator operators 271 

had slept at least eight hours the previous night and abstained from alcoholic drinks for at least 24 hours before 272 

experimentation. The operators were required to directly come for experiments on their designated days, and they 273 

were not involved in any other tasks or activities before the start of the experiment. In addition, we ensured that 274 

each operator remained fully engaged during the length of the task. The experimental protocol for data collection 275 

was reviewed and approved by the ethics subcommittee of the Hong Kong Polytechnic University (Reference 276 

Number: HSEARS20210927008) and conducted in accordance with the Declaration of Helsinki. In addition, 277 



written consent was obtained from each participant after a verbal explanation of the experimental procedures. 278 

Table 1 provides the demographic information of the construction equipment operators who participated in the 279 

study. 280 

Table 1: Construction equipment operators’ demographic information. 281 

 Mean SD Range (Min-Max) 

Age (Years) 33.07 3.95 13 (26-39) 

Job Experience (Years) 7.27 2.58 8 (3-11) 

Height (cm) 175.87 5.32 18 (166-184) 

Weight (kg) 77.86 7.72 22 (68-90) 

Body Mass Index (kg/m²) 25.16 2.06 7.48 (21.91-29.39) 

2.1.2 Subjective Assessment 282 

The NASA-TLX score was used for the labeling of construction equipment operators by assessing their individual 283 

subjective feelings of mental fatigue. The subjective assessment was used as a ground truth for construction 284 

equipment operators’ mental fatigue levels. It has been widely used in various research investigations since its 285 

development, and its reliability and sensitivity have been tested in a consistent number of independent tests. The 286 

NASA-TLX is intended to measure operators' perceived workload in six dimensions: mental demand, physical 287 

demand, effort, own performance, temporal demand, and frustration. An overall NASA-TLX score was computed 288 

by adding the scores from each of the six dimensions of the scale. Overall NASA-TLX scores were used, with no 289 

weight applied to the individual categories. Adding the subscale scores to calculate an overall score is a common 290 

approach to simplifying the original scale (Hart, 2006, Byers, 1989). Additionally, several recent studies by Kaduk 291 

et al. (2021), Mehmood et al. (2022), Bitkina et al. (2021), Das et al. (2020), Li et al. (2019b), and Chen et al. 292 

(2017) reported that an increase in the NASA-TLX score over time during the same task can serve as a reliable 293 



indicator of mental fatigue. Moreover, in the construction industry, studies by Mehmood et al. (2022), Li et al. 294 

(2020b), and Li et al. (2019b) have employed the increase in the overall NASA-TLX score for the same task as a 295 

subjective indicator of mental fatigue. Likewise, in our study, an increase in the NASA-TLX score was the result 296 

of an increase in mental fatigue. 297 

2.1.3 Electroencephalogram (EEG) Recording 298 

To capture EEG signals, we employed the Muse headband, a flexible and user-friendly EEG recording device. Dry 299 

electrodes are located at AF7, AF8, TP9, and TP10 on a four-channel headband, with the FPz serving as the 300 

reference electrode. Electrodes are typically made of silver. The Muse headband has a sampling rate of 256 Hz, 301 

which makes it suitable for capturing EEG data. Through a Bluetooth connection, data was transmitted from the 302 

Muse headband to a smartphone. The construction equipment operators’ EEG data was gathered on a smartphone 303 

using an app called Mind Monitor, then transferred to a computer for post-processing. The recorded EEG signals 304 

are subjected to artifact removal techniques to remove muscular artifacts, power line noise, and other artifacts. The 305 

Muse EEG headband has an on-board noise cancellation mechanism to filter out the noise based on the statistical 306 

properties of the data. The statistical properties used by the MUSE headband include amplitude, variance, and 307 

kurtosis. An EEG signal is considered clean if its statistical properties are below a predetermined threshold; 308 

otherwise, the signal is considered noisy and discarded (Arsalan et al., 2019). Although the on-board noise 309 

cancellation method has been successful in various fields, including research by Cannard et al. (2021) and Arsalan 310 

et al. (2019), construction site tasks are demanding and dynamic (Xing et al., 2020). It involves the continual body 311 

movement of workers to perform these tasks on construction sites (Mehmood et al., 2022). Hence, it is crucial to 312 



remove artifacts that cause noise in the acquired EEG data. Therefore, the acquired data underwent further 313 

preprocessing techniques for artifact removal, including the third-order one-dimensional median filter (Krauss et 314 

al., 1994) and the Savitzky-Golay (SG) filter (Orfanidis, 1995). The classical SG filter is designed based on the 315 

least-squares polynomial approximation phenomenon (Savitzky and Golay, 1964) and is used to remove 316 

inappropriate and large spikes in the EEG sensor data. The goal was to smooth the data while retaining the quality 317 

of the signal. To achieve this, we applied an overlapping window of 50% (Krauss et al., 1994). Previous studies in 318 

the construction industry by Aryal et al. (2017) have effectively used this noise cancellation method to smooth the 319 

data while retaining the quality of the acquired EEG data. Once the artifacts were removed from the data, it was 320 

down sampled to 128 Hz by selecting each second sample and effectively reducing the number of data points by 321 

half. It is a common method to reduce the dimensionality of the data (Frydenlund and Rudzicz, 2015). According 322 

to Roy et al. (2019), 72% of the studies employing EEG sensors have used the down sampling technique to 323 

preprocess their EEG data. In our investigation, doing down sampling did not affect the data model's predictive 324 

power, yet it improved the training time of the models significantly. Figure 2 demonstrates the electrode 325 

positioning system on the scalp of construction equipment operators as well as the various views of the EEG device 326 

used in the study.  327 



2.1.4 Experiment Procedure 328 

Figure 3 shows an overview of the experiment’s procedure. At a construction site, an excavator operation 329 

experiment was carried out to collect data for detecting the mental fatigue of construction equipment operators. 330 

The experiment was carried out on different days at the same time, from 9:00 a.m. to 11:00 a.m. (Li et al., 2019b) 331 

in the morning, under similar weather conditions, particularly clear weather on all data collection days. The 332 

experiment involved a repetitive and time-consuming excavation and discharge task on a construction site. It was 333 

a time-on-task approach, which is a common approach to induce mental fatigue (Li et al., 2020b, Morales et al., 334 

2017, Hopstaken et al., 2016). For an hour, the excavator operators were required to conduct a repetitive and 335 

protracted excavation operation that included ground excavation and transporting material from pits to transport 336 

vehicles. The conditions for each excavator operator were the same, requiring them to continuously operate the 337 

   
   

   
      

          

          

          

    
  

       

               

     

        

   

                       

                   

          

         

          

            

        

              

             

Figure 2: Overview of headband-based EEG device for measuring the activity of the brain, 10-20 system of 

electrode positioning, and mobile application for acquiring data 



equipment in the manner of a cyclic operation. The amount of earth excavated or moved, as well as the number of 338 

vehicles filled, were not fixed since it was a time-on-task experiment. Furthermore, no prior practice session was 339 

scheduled for the operators, as they already had experience with excavation operations. During the experiment, 340 

the operators were wearing a headband-based EEG device to collect data on their brain activity regarding active 341 

brain areas for mental fatigue while doing their tasks. Furthermore, the NASA-TLX score was used to quantify 342 

the subjective evaluation of equipment operators' mental fatigue. It has been used in various previous studies to 343 

subjectively assess mental fatigue in operators (Das et al., 2020). For the one-hour experiment, the subjective 344 

mental fatigue levels were recorded every 20 minutes, i.e., at 20, 40, and 60 min. Accordingly, the acquired EEG 345 

data was then labelled as per the subjective assessment into three mental fatigue states, i.e., alert state, mild fatigue 346 

state, and fatigue state (Prabaswari et al., 2019, Grier, 2015). There was no practice session included in the 347 

experiment because all the operators were professional excavator operators with prior experience in excavation 348 

operations. Furthermore, the exact duration of the experiment was not revealed to the operators. The purpose was 349 

to avoid the end-spurt effect reactivation that occurs when participants realize the experiment is nearing its 350 

conclusion (Morales et al., 2017). 351 



 352 

2.2 Deep Learning-based Networks 353 

The aim of our research was not to develop new and unique models, but rather to evaluate the innovative approach 354 

of utilizing deep learning techniques and headband-based wearable EEG sensor data to identify and classify mental 355 

fatigue states in construction equipment operators. Hence, the primary purpose was to contribute to the 356 

advancement of knowledge in the construction field by providing a deeper understanding of the cognitive 357 

processes and mental states of construction workers through a more sophisticated analysis of EEG data. This, in 358 

turn, could pave the way for improving safety and productivity, reducing accidents and injuries, and enhancing the 359 

overall well-being of construction workers. To achieve this, we employed three types of deep learning models: 360 

long short-term memory, bidirectional long short-term memory, and one-dimensional convolutional networks to 361 

train raw EEG data acquired by a wearable sensor. The sub-sections explain the details about the structures of the 362 

deep learning architectures we adopted in our research. 363 

                                

                                                           

                         

                   

           

     

          

        

          

           

               

              

            

           

                         

                   

                         

                   

Figure 3: Experimental procedure for temporal assessment through NASA-TLX score and electroencephalography 



2.2.1 Long Short-Term Memory (LSTM) 364 

In the last decade of the twentieth century, Hochreiter and Schmidhuber (1997) presented the first examples of 365 

LSTMs. These networks have the unique ability to learn long-term dependencies. Since it also has a memory 366 

component, it is one of the finest algorithms for processing sequence data. As a result of its memory component, 367 

LSTM can recall its prior actions in a process. With just a little structural tweak, it can solve the problem of the 368 

vanishing gradient that plagues RNN. The basic layout of an LSTM cell is depicted in Figure 4 (Olah, 2015). 369 

Because of this cell state, LSTM can only allow specific sets of information to pass through it. To implement this 370 

function, three logic gates are used. Input to these gates is provided by the sigmoid activation function. The first 371 

gate to determine what data can be safely erased from the cell is known as the Forget Gate 𝑓𝑡 and is described in 372 

Eq. 1: 373 

𝑓𝑡 = 𝜎(𝑥𝑡𝑊
𝑓 + ℎ𝑡−1𝑈

𝑓 + 𝑏𝑓)          𝐸𝑞. 1 374 

The result is either 0 or 1, with 0 indicating forget and 1 indicating keep. The second phase is the input gate, which 375 

determines which data will be added to the cell state or saved. As indicated in Eq. 2, the input gate also includes a 376 

second sigmoid layer for determining fresh candidate inputs that may be utilized to modify the cell's status. 377 

𝑖𝑡 = 𝜎(𝑥𝑡𝑊
𝑖 + ℎ𝑡−1𝑈

𝑖 + 𝑏𝑖)          𝐸𝑞. 2 378 

In the following phase of LSTM, the old cell is replaced with a new one. As demonstrated in Eq. 3, the tanh 379 

function generates a vector of possible values that could be appended to the state. 380 

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑊
𝑔 + ℎ𝑡−1𝑈

𝑔 + 𝑏𝑐)          𝐸𝑞. 3 381 

Then, the new cell state replaces the previous one in 𝐶𝑡−1 by discarding the information created by the forget 382 



gate in Eq. 1. The current cell state, denoted by 𝐶𝑡 in Eq. 4, has been modified. 383 

𝐶𝑡 =  𝜎(𝑓𝑡 х 𝐶𝑡−1 + 𝑖𝑡  х Ĉ𝑡)          𝐸𝑞. 4 384 

Finally, a sigmoid layer and subsequently a 𝑡𝑎𝑛ℎ layer is employed to classify the output, as stated in Eq. 5 and 385 

6. 386 

𝜎𝑡 = 𝜎(𝑥𝑡𝑊
𝑜 + ℎ𝑡−1𝑈

𝑜 + 𝑏𝑜)          𝐸𝑞. 5 387 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) х 𝜎𝑡          𝐸𝑞. 6 388 

where, 𝑖𝑡, 𝑓𝑡, and 𝜎𝑡 denotes the input gates, forget gates, and output gates, respectively. 𝑊𝑖, 𝑊𝑓, and 𝑊𝑜 389 

denotes the weights for the input gate, forget gate, and output gates at time step 𝑡, respectively. 𝑊𝑔 is the weight 390 

of the candidate layer. 𝑈𝑖, 𝑈𝑓, and 𝑈𝑜 are the weights for the input gate, forget gate, and output gates at time 391 

step 𝑡 − 1. 𝑈𝑔 is the weight for the candidate layer. 𝑥𝑡 is the input at the current time step 𝑡. ℎ𝑡 and ℎ𝑡−1 are 392 
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Figure 4: Long short-term memory (LSTM) cell architecture 



the cell outputs at the current time step 𝑡 and the previous time step 𝑡 − 1, respectively. 𝐶𝑡 and 𝐶𝑡−1 are the 393 

states of the cell at time steps 𝑡 and 𝑡 − 1, respectively. 𝑏𝑖, 𝑏𝑓, and 𝑏𝑜 denotes the biases for the input gate, 394 

forget gate, and output gates, respectively. 𝑏𝑐 is the bias for the candidate layer, and 𝜎 is the sigmoid function. 395 

 396 

2.2.2 Bidirectional Long Short-Term Memory (Bi-LSTM) 397 

The Bi-LSTM layer structure is shown in Figure 5, and it consists of three independent layers that share the same 398 

input sequence and whose outputs are combined and displayed in the sequence. The state cells of a standard LSTM 399 

are split into a forward layer that controls the forward time path and a backward layer that controls the backward 400 
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Figure 5: Bidirectional long short-term memory (Bi-LSTM) layer architecture 



time direction in a Bi-LSTM model. For each time step forward and backward, information can be obtained by 401 

concatenating the outputs of the forward and backward layers. Given the established dependency between adjacent 402 

data pairs, this method improves the learning process. 403 

 404 

2.2.3 1-Dimensional Convolutional Network 405 

Deep convolutional neural networks, as they have been traditionally described in the literature, were developed 406 

with a focus on processing only two-dimensional data, such as images and recordings (Kiranyaz et al., 2021). For 407 

this reason, 2D-CNNs have become commonplace. Recently, however, 1D convolutional neural networks (1D-408 

CNN) have been designed to work on one-dimensional data and have been applied to a wide variety of scenarios 409 

instead of 2D-CNN, such as by Eren et al. (2019), Kiranyaz et al. (2018), and Abdeljaber et al. (2018). Typically, 410 

specialized hardware is required for training deep 2D CNNs (e.g., cloud computing or GPU farms). Conversely, 411 

training small 1D CNNs with few hidden layers is practical and can be done quickly on any CPU implementation 412 

on a desktop machine (Kiranyaz et al., 2021). As a result of their minimal processing requirements, small 1D 413 

CNNs are ideal for real-time and low-cost scenarios (Eren, 2017). The 1D-CNN structure of the time-series 414 

prediction models used in this study is depicted in Figure 6. The network has several layers, including input, 415 

convolution, pooling, flattening, fully connected, and output layers. The features of the input are passed into a 416 

convolution layer. A feature map is generated by filtering an input feature in the convolution layer. The outcomes 417 

are then activated using the provided function. To shrink the feature map, the convolution layer's output is fed into 418 

a pooling layer. After that, to prepare the merged feature map for further processing, it is given to a flattening layer, 419 



which transforms it into a one-dimensional array. The completely linked layer then receives input from the layered-420 

flattened layer. The weights are used in the fully connected layer to process the data. The output layer receives the 421 

signal from the layer with all connections made. When it comes to activation functions, ReLU is used in the 422 

convolution layer of this research. All other layers are ignored by the activation function (Chaerun Nisa and Kuan, 423 

2021). 424 

 425 

2.3 Training and performance evaluation of deep learning models 426 

The EEG data of brain activity patterns was trained using three different deep learning techniques in the present 427 

study: long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), and one-dimensional 428 

convolutional networks (1D-CNN). To ensure consistency among the deep learning models, they were all 429 

constructed with the same dataset for training and evaluation. Based on EEG analysis, each designated class 430 

represents a single construction equipment operator. The electroencephalography data vector for each excavator 431 

operation task done by each operator has a dimensionality of 20 vectors (5 brain waves from each electrode x 4 432 

electrodes of the EEG device) x 256 data samples. As a result, 5120 values serve as data samples in total. Input 433 

                                                                                    

Figure 6: A sample one-dimensional convolutional network layer, flatten layer and SoftMax layer architecture 



data for the current investigation consisted of 6,971,010 sample values from each electrode for every brain wave 434 

from fifteen equipment operators, since each window size contained 256 data samples and data was gathered for 435 

one hour. A sliding window approach was utilized with a window size of nine seconds to split the EEG sensor data 436 

into smaller segments, in order to capture long-term dependencies in the data. Overlapping of consecutive windows 437 

was then employed to ensure that no relevant data was missed. Specifically, a 50% overlap of adjacent data 438 

segment lengths was used in this study, as described by Liu et al. (2021b). However, there is no consensus on the 439 

optimal percentage of overlap, as previous studies have reported a range of overlapping percentages from 1% to 440 

95% (Roy et al., 2019). Each deep learning model consists of three layers, with the number of hidden units varying 441 

from one hundred to five hundred. A similar architecture was utilized in a previous study, also using 200 hidden 442 

units per layer. When assessing the accuracy of our models, we employed a cost function based on the cross-443 

entropy losses (the log loss function). In a classification problem, the loss function is what ultimately decides the 444 

model's performance. It is more indicative of reality when the loss value is lower. The optimization function is 445 

responsible for making the necessary adjustments to the model's weights and biases. An adaptive form of stochastic 446 

gradient descent was utilized for model training (Kingma and Ba, 2014), in addition to the Adam optimization 447 

function. Adam is a trustworthy optimizer that provides precise and quick updates to the network's settings. This 448 

research utilized the dropout technique (Srivastava et al., 2014), a popular stochastic regularization method, to 449 

prevent model overfitting. When the loss function is extremely small on the training data and extremely large on 450 

the testing data, overfitting occurs. The primary objective of the dropout method is to inhibit neurons in the system 451 

from over-adapting to one another, which leads to poor model generalization. 452 



During the evaluation of the model's performance, the available data was partitioned into two subsets, with 70% 453 

being allocated for training purposes and the remaining 30% for testing. The original training dataset was split into 454 

two parts, with 80% going to the training phase and 20% going to the validation phase. We used the validation 455 

data to fine-tune our hyper-parameters and find the perfect spot for each of our three deep learning models' unit 456 

counts. Analogous to earlier research using deep learning networks (Antwi-Afari et al., 2022, Yang et al., 2020, 457 

Kim and Cho, 2020), the 10-fold cross-validation method was utilized to evaluate the classification performance 458 

of deep learning models. The optimum hyper-parameters can be chosen by 10-fold cross-validation, and the deep 459 

learning models can be tested as generalized models that exhibit acceptable classification performance with an 460 

unseen dataset. Based on the model, we chose the parameter values that achieved the highest level of accuracy 461 

with the least amount of time spent in training. The findings demonstrate that by adjusting the parameters of epoch, 462 

dropout, batch size, learning rate, and hidden units to 30, 0.5, 64, 0.001, and 200, respectively, our tuning procedure 463 

yielded the best accuracy for the datasets. To run the tests and train the models, we used a computer outfitted with 464 

a 2.50 GHz Quad-Core Intel Core i7-9750H CPU, 16 GB of RAM, a 64-bit operating system (Windows 10 Pro), 465 

and an Intel Iris Plus Graphics 650, 1,536 MB GPU running MATLAB R2020b. Table 2 displays the fine-tuned 466 

hyperparameters of the proposed deep learning models and the detailed dataset. 467 

Table 2: Dataset and hyperparameters of proposed deep learning models 468 

Dataset and Parameters Value 

Number of classes 3 (Alert State, Mild Fatigue State, Fatigue State) 

Number of EEG sensors 4 (TP9, AF7, AF8, TP10) 

Window size 9 s 

Overlap of adjacent windows 50 % 

Sampling rate 128 Hz 



Epoch 30 

Dropout 5% 

Batch size 1000 

Learning rate 0.001 (Adam optimizer: provides adaptive optimization) 

Number of sample data 6,971,010 data samples 

Accuracy, precision, recall, specificity, and the F1-score were employed to evaluate the three different types of 469 

deep learning models' performance in terms of evaluation and classification (Phutela et al., 2022, Attal et al., 2015). 470 

Each metric's breakdown for evaluation may be seen in Table 3. The most widely utilized metric to sum up 471 

classification performance across all classes is accuracy. Specifically, it is the ratio of instances that were correctly 472 

labeled relative to the total number of instances. Precision is the rate at which positive cases are correctly identified 473 

as such. In this sense, it is a quantitative indicator of precision. It is the ratio of positive instances that were correctly 474 

labeled compared to the total number of positive instances classified. Recall, also referred to as sensitivity, is a 475 

measure of how accurately positive examples were identified as such. Correctly classifying positive instances as 476 

a percentage of all positive instances is the definition of this metric. Whereas specificity is measured by how many 477 

times negative examples are correctly labeled as negative. To put it simply, it is the ratio of false-negatives that 478 

were identified compared to the total number of false-negatives. Precision and recall are combined into a single 479 

number called the F1-score, which is then used to evaluate the efficacy of the classification model without 480 

introducing any systematic bias (Ordóñez and Roggen, 2016). In addition to these measures, the confusion matrix 481 

was used to evaluate the performance of each model in particular classes, and the accuracy and loss curves were 482 

plotted to determine which model performed the best. The confusion matrix describes the discrepancies between 483 

the data's true labels and the model-generated labels. Elements on the diagonal of this matrix represent correctly 484 



classified fatigue states, whereas those off the diagonal represent incorrectly classified fatigue states. Furthermore, 485 

the Mann-Whitney test was conducted to analyze the results obtained from the deep learning models. While 486 

previous studies on EEG data and deep learning models for mental fatigue classification have compared models 487 

based on their achieved accuracy or training time, they have not statistically evaluated the difference in accuracy 488 

between models. To address this, we chose the Mann-Whitney test as it is a non-parametric test that does not 489 

require any assumptions about the distribution (Mat Roni et al., 2021), resulting in more conservative results. 490 

Velarde et al. (2022) and Phutela et al. (2022) employed analogous techniques in their investigations of the 491 

significance of predicted outcomes for time-series data using deep learning models.. Table 10 shows the inferences 492 

from classifiers with a p-value of less than 0.01 were considered significant, while the others were considered 493 

insignificant. If the p-value was less than 0.01, it was deduced that the classifier used for analysis is significant; 494 

otherwise, it is insignificant. 495 

Table 3: Details of performance evaluation metrics for deep learning models 496 

Performance metric Equation 

Accuracy 
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄  

Precision 
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)⁄  

Recall 
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)⁄  

Specificity 
(𝑇𝑁)

(𝑇𝑁 + 𝐹𝑃)⁄  

F1-Score 2 х 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 х 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

3 Experimental Results 497 

In this section, we describe the findings of our investigations and the data we acquired from the operators. All 498 



fifteen construction equipment operators successfully completed the experiment. Therefore, data from all operators 499 

was used for analysis.  500 

3.1 Analysis of ground truth data 501 

The NASA-TLX score was utilized as a ground truth for recognizing mental fatigue states. Accordingly, Table 4 502 

displays descriptive and analytical statistics derived from the ground truth evaluation. Subjective mental fatigue 503 

was significantly higher at the end of the NASA-TLX than at the start, increasing from 11.067 (SD = 2.764) to 504 

64.733 (SD = 4.543). According to Table 3, operators reported increasing mental fatigue as the excavation 505 

operation progressed. 506 

Table 4: Subjective assessment as a ground truth of mental fatigue 507 

 
 Mental Fatigue States 

Baseline Alert State Mild Fatigue State Fatigue State 

Subjective Assessment     

NASA-TLX Score (0-100) 11.25 (2.77) 30.81 (2.99) 45.00 (4.27) 65.25 (4.85) 

*The scores for each state are mentioned as mean score (standard deviation) 

3.2 Analysis of physiological data 508 

The absolute power for each frequency band of the EEG data acquired from all the channels of the MUSE headband 509 

was analyzed using the paired t-test across the three experimental phases (alert, mild fatigue, and fatigue) to make 510 

inferences about the underlying physiological processes. T-test results were interpreted in light of a null hypothesis 511 

and associated p-value. If the p-value for rejecting the null hypothesis was less than 0.05, then there was a 512 

statistically significant difference among the studied fatigue states. Table 5 displays the t-Stat for the power spectral 513 

density of EEG recordings made from various regions of the brain depicted in Figure 3. These findings indicate a 514 

statistically significant difference. For example, the t-test applied to EEG signals revealed that the alpha band was 515 



not found to be statistically significant at right frontal channel i.e., AS-MFS (𝑡𝑆𝑡𝑎𝑡 = 4.991, 𝑝 < 0.05) and MFS-516 

FS (𝑡𝑆𝑡𝑎𝑡 = -3.641, 𝑝 < 0.05), whereas at the left frontal channel the alpha band was statistically significant only 517 

for comparison at fatigue states; AS-MFS (𝑡𝑆𝑡𝑎𝑡 = -4.816, 𝑝 < 0.05). However, there was an increase in alpha 518 

activity as the experiment progressed from AS to FS, as demonstrated in Figure 7. Likewise, a similar trend was 519 

also shown for beta band at right frontal channel i.e., AS-MFS (𝑡𝑆𝑡𝑎𝑡 = 7.172, 𝑝 < 0.05) and MFS-FS (𝑡𝑆𝑡𝑎𝑡 = -520 

4.741, 𝑝 < 0.05). However, this trend was inverse at left frontal channel for beta band. The beta band showed 521 

differences that were statistically significant in both the frontal and temporal parts of the brain. Overall, the theta 522 

band showed an increasing trend with an increase in mental fatigue from AS to FS in the frontal region of the brain, 523 

as demonstrated in Figure 7. The Delta band was found to be statistically significant in the left and right temporal 524 

regions. However, it was not significant for AS-MFS and MFS-FS at AF8 (𝑡𝑆𝑡𝑎𝑡 = 0.523) and AF7 (𝑡𝑆𝑡𝑎𝑡 = -525 

1.559), respectively. Furthermore, the gamma band was found to be statistically significant between MFS-FS with 526 

𝑝 < 0.05 at TP9 (𝑡𝑆𝑡𝑎𝑡 = -3.175), AF7 (𝑡𝑆𝑡𝑎𝑡 = 4.814), AF8 (𝑡𝑆𝑡𝑎𝑡 = -4.791) and TP10 (𝑡𝑆𝑡𝑎𝑡 = -3.553). Table 5 527 

depicts the statistical assessment of all the channels' bands. Previous studies have reported similar findings to our 528 

own, such as the study by Zhao et al. (2012) , which found significant theta and beta activity in the frontal regions 529 

of the brain. Other studies, including those by Nguyen et al. (2017), Käthner et al. (2014), and Dasari et al. (2010), 530 

also reported increased alpha and beta activity in the parietal region of the brain with an increase in mental fatigue. 531 

Additionally, Ma et al. (2018) reported increased alpha activity due to mental fatigue. Our investigations into 532 

mental fatigue show an increasing trend of frontal theta activity, which is consistent with previous studies by Trejo 533 

et al. (2015), Roy et al. (2013), and Dasari et al. (2010). Furthermore, the theta, alpha, and beta bands are the most 534 



commonly investigated EEG metrics for measuring mental fatigue. The (θ+α)/β ratio is the most widely used EEG 535 

metric for mental fatigue assessment. Higher mental fatigue is associated with an increase in this metric, according 536 

to findings by Jap et al. (2009). In our research, we found that time-on-task had a significant increasing effect on 537 

the EEG metric (θ+α)/β [F = 15.011, p < 0.05, η2= 0.517]. The value of the EEG metric (θ+α)/β in the alert state, 538 

mild fatigue state, and fatigue state was 1.015, 1.482, and 1.739, respectively, indicating an increase in mental 539 

fatigue. These findings are consistent with previous investigations by Ma et al. (2018) and Li et al. (2017a). 540 

Construction equipment operators' brain activity was visualized by calculating the power spectral density from 541 

their EEG data when they were in the alert state, mild fatigue state and fatigue state, as shown in Figure 7. The red 542 

color on the brain maps represents high levels of cortical activity, whereas the orange tint represents low levels. 543 

Brain activity in the alpha and beta bands of the frontal AF7 and AF8 channels can be seen to change graphically 544 

from the alert state to fatigue state on the brain maps. 545 

Table 5: t-Stat for EEG power spectral densities at different brain regions 546 

Mental Channels EEG Bands (t-Stat) 

Figure 7: Brain visualization using EEG power spectral densities from different brain regions 



Fatigue States Delta Theta Alpha Beta Gamma 

AS and MFS 

 

TP9 2.526* 0.655 -1.325 7.560* 1.403 

AF7 -5.699* -0.604 -4.816* 0.299 -1.871 

AF8 0.523 4.389* 4.991* 7.172* 1.574 

TP10 -2.662* 0.020 -1.351 -1.621 -17.812* 

MFS and FS TP9 -3009* -4.464* -2.823* -3.450* -3.175* 

AF7 -1.559 -0.370 -0.036 3.856* 4.814* 

AF8 -3.306* -3.543* -3.641* -4.741* -4.791* 

TP10 -2.670* -5.596* -1.411 -3.348* -3.553* 

*The t-Stat values are significant at the 0.05 level 

 547 

3.3 Deep learning-based classification results 548 

Three deep learning models, LSTM, Bi-LSTM, and 1D-CNN were used to classify mental fatigue in construction 549 

equipment operators into alert, mild fatigue, and fatigue states. The implementation of LSTM, Bi-LSTM, and 1D-550 

CNN employed cutting-edge parameter values, as demonstrated in Table 2. To limit experimental error, these 551 

models were run on the same system. The classification accuracies of the Bi-LSTM and LSTM deep learning 552 

models were both greater than 99%. The 1D-CNN deep learning model, on the other hand, only attained a 553 

classification accuracy marginally higher than 69%. However, upon evaluating the performance of the three deep 554 

learning models in terms of training time, it was found that the average duration for LSTM, Bi-LSTM, and 1D-555 

CNN models was 68 minutes and 21 seconds, 163 minutes and 56 seconds, and 16 minutes and 57 seconds, 556 

respectively, as presented in Table 6. The findings show that, when trained on data reflecting operators' brain 557 

activity patterns over three increasingly demanding phases of work, the Bi-LSTM model outperformed the other 558 

deep learning models investigated in this study in terms of accuracy. Furthermore, LSTM also achieved accuracy 559 

slightly lower than Bi-LSTM when trained on the EEG sensor data. 560 



Table 6: Classification accuracy and training time for deep learning models 561 

Deep Learning Models Accuracy (%) Training Time 

Long short-term memory (LSTM) 99.7063 68 mins 21 seconds 

Bidirectional long short-term memory (Bi-LSTM) 99.9410 163 mins 56 seconds 

One-dimensional convolutional network (1D-CNN) 69.4726 16 mins 57 seconds 

 562 

3.3.1 Long short-term memory 563 

Table 7 and Figure 8 illustrate the evaluation metrics and confusion matrix for the LSTM model. In general, the 564 

evaluation metrics demonstrated a good level of performance of the LSTM model on EEG-based brain activity 565 

data for identifying different mental fatigue levels in construction equipment operators. However, the performance 566 

of this model was slightly lower than that of Bi-LSTM. The LSTM model attained classification performance 567 

values ranging from 99.556% to 99.963% in terms of precision. FS represented 99.963% of instances of correctly 568 

identified fatigue levels. In addition, AS and MFS states exhibited the same effect on the LSTM model compared 569 

to FS, i.e., 99.556% and 99.589%, respectively. However, their effects were less than FS. Furthermore, higher 570 

recall and precision indicated that the model yielded fewer false negatives and false positives, respectively. 571 

Likewise, specificity and F1-score measures have values ranging between 99.761% and 99.818% and 99.681% 572 

and 99.718%, respectively. High specificity indicates the true negative rate, i.e., that a person identified as being 573 

in a fatigued state was in fact in that fatigued state. Besides, the confusion matrix was utilized to determine whether 574 

classes were misclassified or confused with others. As illustrated in Figure 8, each column depicts the actual mental 575 

fatigue states, while each row represents the predicted mental fatigue states. The diagonal cells indicate the correct 576 

instances for a more comprehensive evaluation of the classification performance at the end of the 30th epoch. The 577 



diagonal members of this matrix represent the cases in the dataset for which classification was accurate. Incorrectly 578 

classified instances include nondiagonal elements. The high values of the diagonal elements imply that the model 579 

correctly distinguishes between the three classifications of mental fatigue. The other cells indicate the incidents 580 

that were incorrectly classified. It is also evident that alert and mild fatigue states were misclassified more often 581 

than fatigue state. In spite of this, the misclassification rate remains remarkably low when compared to their 582 

number of classified instances. Furthermore, AS was confused with MFS and FS in 1299 and 1949 instances, 583 

respectively. 584 

Table 7: Performance evaluation metrics for LSTM model 585 

 Testing    

Indicator  Alert State Mild Fatigue State Fatigue State 

Accuracy 99.7063%    

Precision  99.5569% 99.5898% 99.9634% 

Recall  99.8807% 99.7735% 99.4693% 

Specificity  99.7613% 99.8185% 99.9808% 

F1-score  99.7186% 99.6816% 99.7157% 

 586 

3.3.2 Bidirectional long short-term memory 587 

Figure 8: Confusion matrix for LSTM model (the value in purple cells shows true positive instances) 
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The evaluation matrix and confusion matrix of the bidirectional LSTM model are presented in Table 8 and Figure 588 

9, respectively. Bi-LSTM evaluation measures indicated the highest performance on EEG-based brain activity data 589 

for identifying distinct mental fatigue levels in construction equipment operators. This shows that Bi-LSTM is 590 

most effective in our construction equipment operation-related task. Results for accuracy-related classification 591 

performance for the Bi-LSTM model ranged from 99.840% to 99.995%. The MFS and FS indicated approximately 592 

comparable instances of correctly identified fatigue levels with a precision slightly above 99.995%; however, the 593 

AS exhibited a little less of an effect on the Bi-LSTM model with a precision of 99.840%. In addition, greater 594 

recall and precision indicated that the model produced fewer false negatives and, consequently, false positives. 595 

Similarly, specificity measures have values ranging from 99.914% to 99.997%, while the F1-score has values 596 

ranging from 99.917% to 99.993%. High specificity demonstrates the true negative rate, i.e., a person identified 597 

with any fatigue state was indeed experiencing that fatigue level. According to the confusion matrix in Figure 9, it 598 

can be observed that MFS and FS are the most recognized classes, with 640609 and 718872 positive instances, 599 

respectively. Furthermore, it is notable that AS was misclassified more frequently than MFS and FS. However, the 600 

misclassification rate was exceptionally low in comparison to the number of instances that were correctly identified. 601 

The confusion matrix further indicates that the AS was 1141 times confused with the FS. However, the confusion 602 

among the remaining states was modest. 603 

Table 8: Performance evaluation metrics for Bi-LSTM model 604 

 Testing    

Indicator  Alert State Mild Fatigue State Fatigue State 

Accuracy 99.9410%    

Precision  99.8409% 99.9945% 99.9952% 



Recall  99.9972% 99.9915% 99.8390% 

Specificity  99.9144% 99.9975% 99.9975% 

F1-score  99.9190% 99.9930% 99.9170% 

 605 

3.3.3 One-dimensional convolutional network 606 

Table 9 and Figure 10 exhibit the evaluation matrix and confusion matrix of the 1-dimensional convolutional 607 

network (1DCN) model, with correct classes provided in the diagonal cells for a more detailed evaluation of 608 

classification performances at the end of the 30th epoch. When compared to the LSTM and Bi-LSTM models, the 609 

evaluation metrics of the 1DCN model achieved the lowest performance. In terms of precision, the 1-dimensional 610 

convolutional model produced classification performance values ranging from 54.600% to 84.241%. FS had the 611 

highest percentage of accurately classified instances, i.e., 72.545%. Furthermore, AS had the lowest accurately 612 

categorized instances, i.e., 65.387%. Moreover, for MFS, the model produced a high number of false negatives 613 

and false positives in this state as compared to other fatigue stages, i.e., 227,581 times with AS and 148,916 times 614 

with FS. Similarly, specificity measurements range from 74.046% to 92.874%, while the F1-score ranges from 615 

Figure 9: Confusion matrix for Bi-LSTM model (the value in purple cells shows true positive instances) 
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61.607% to 77.957%. These findings reveal that the 1-dimensional convolutional model underperformed the 616 

LSTM or Bi-LSTM models based on EEG data in classifying mental fatigue in construction equipment operators. 617 

Furthermore, the confusion matrix in Figure 10 indicates that FS was the most recognized class, with 52,2348 618 

affirmative instances. 619 

Table 9: Performance evaluation metrics for 1D-CNN model 620 

 Testing    

Indicator  Alert State Mild Fatigue State Fatigue State 

Accuracy 69.4726%    

Precision  74.4194% 54.6009% 84.2415% 

Recall  65.3874% 70.6780% 72.5452% 

Specificity  87.9317% 74.0461% 92.8743% 

F1-score  69.6116% 61.6078% 77.9570% 

 621 

3.3.4 Train/test accuracy and loss  622 

The accuracy and loss over iterations curves of the three deep learning models investigated in this study are shown 623 

in Figure 11, respectively. The training and validation results for a bidirectional LSTM model show higher 624 

Figure 10: Confusion matrix for 1D-CNN model (the value in purple cells shows true positive instances)  
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accuracy and lower loss, as shown in Figure 11(b). Specifically, the bidirectional LSTM model exhibited the 625 

maximum accuracy during training and validation, while the associated loss value was the lowest at the 30th epoch. 626 

As a result, the Bi-LSTM model was effectively trained without overfitting the EEG-based brain activity data of 627 

construction equipment operators, as demonstrated by the smallest difference between training accuracy and 628 



validation accuracy or training loss and validation loss. 629 

 630 

3.3.5 Comparison of p-values for deep learning models 631 

The p-values of the Mann-Whitney test computed on the results given by the bidirectional long short-term memory 632 

Figure 2: Accuracy and loss over iteration curves with the tuned hyperparameters of (a) LSTM model, (b) Bi-

LSTM model, and (c) 1D-CNN model 

(a)

(b)

(c)



(Bi-LSTM) findings are presented in Table 10. The results demonstrate that the bidirectional LSTM model's 633 

accuracy was considerably higher to that of the other two models, i.e., the LSTM and the 1D-CNN, for 10-fold 634 

cross-validation. 635 

Table 10: Mann-Whitney test-based comparison of p-values for Bi-LSTM model 636 

Model Validation method 
LSTM 1D-CNN 

p-value Significance p-value Significance 

Bi-LSTM 10-fold cross validation 0.007994 Sig. 7.22 x 10-30 Highly Sig. 

LSTM 10-fold cross validation   1.4 x 10-28 Highly Sig. 

* Significant at p < 0.01 

4 Discussion 637 

4.1.1 Deep learning networks and EEG data for mental fatigue 638 

Construction equipment operations are cognitively demanding and necessitate the operators' undivided attention. 639 

Such protracted attention induces mental fatigue in construction equipment operators, which is one of the leading 640 

causes of construction-site equipment-related accidents. As a result, it is imperative that the mental fatigue of 641 

construction equipment operators be monitored non-invasively to reduce equipment-related incidents and make 642 

construction sites safe for workers. Thus, the objective of this study was to assess a novel approach for recognizing 643 

and classifying different types of mental fatigue states in equipment operation using deep learning-based networks 644 

and wearable EEG data gathered from equipment operators. This study compared three types of deep learning 645 

models for training time-series raw EEG data acquired by a wearable headband: long short-term memory (LSTM), 646 

bidirectional long short-term memory (bi-LSTM), and one-dimensional convolutional network (1D-CNN). To our 647 

knowledge, this study is the first to propose a deep learning-based model for recognizing and classifying alert, 648 



mild fatigue, and fatigue states from EEG signals in construction equipment operators under sustained attention. 649 

Our results show that mental fatigue can be accurately classified in construction equipment operators with varying 650 

mental fatigue levels, i.e., alert state, mild fatigue state, and fatigue state. 651 

Comparing the deep learning models utilized in this study revealed that the bidirectional LSTM model had the 652 

highest accuracy of 99.941%. In addition, the results demonstrate that the bidirectional LSTM model achieved 653 

precision, recall, specificity, and F1-score metrics ranging from 99.840% to 99.995%, 99.839% to 99.997%, 654 

99.914% to 99.997%, and 99.917% to 99.993%, respectively, when classifying multiple states of mental fatigue 655 

in construction equipment operators. Regarding the confusion matrix, it was concluded that the fatigue state (FS) 656 

and mild fatigue state (MFS) had the fewest misclassified instances, i.e., 34 and 35, respectively. While alert state 657 

(AS) was the most misclassified class, with 1164 instances of misclassification. In addition, the performance of 658 

the Bi-LSTM model increases in accuracy and decreases in loss during both training and testing. These findings 659 

indicate that the Bi-LSTM model, which is a deep learning network model, could provide a more accurate 660 

classification of the mental fatigue states of operators. This finding might be explained from the perspective of the 661 

model. Bidirectional LSTM can remember previous time-series patterns and is more effective at processing time-662 

series data. The Bi-LSTM model is a cyclic neural network comprised of two distinct LSTM networks that can 663 

collect information not only from past input but also from future input states. Consequently, the concept of 664 

bidirectional LSTM's design is to collect the characteristics of a time series at the current time while also having 665 

information about the past and the future, resulting in outstanding classification accuracy. In this study, the 666 

bidirectional LSTM model surpassed other deep learning-based models in terms of classification accuracy. Similar 667 



to previous research, our findings indicate that the bidirectional LSTM model is better than unidirectional LSTM 668 

models (Li et al., 2020c), while bidirectional LSTM performs better with time-series data (Siami-Namini et al., 669 

2019). Similarly, Sarkar et al. (2022) reported a high performance of the LSTM architecture compared to CNN 670 

when the models were applied to a testing dataset with varied percentages such as 20%, 30%, and 40%. The study 671 

established that when dealing with time-series EEG data, LSTM was found to perform better than a convolutional 672 

neural network, stating that CNN is more useful for image data. Similarly, Phutela et al. (2022) also reported that 673 

LSTM is a promising option for classifying stress-related brain activity data. Likewise, Rastgoo et al. (2019) also 674 

stated that long short-term memory has a strong ability to exploit the temporal dependencies in time-series data. 675 

Similarly, the results of the study by Cai et al. (2021) and our findings also demonstrated that the proposed 676 

approach, based on the three-layer Bi-LSTM prediction model, has a greater conception of the data exhibited in 677 

the forecast models, leading to more reliable forecasts of mental fatigue in construction equipment operators. The 678 

three-layer Bi-LSTM model learns from its errors during unsupervised training of the EEG-based brain activity 679 

patterns, to increase precision while maintaining the original attributes of the input EEG data. As a result, the 680 

forecast model of mental fatigue classification we developed in this study is more robust for its application in the 681 

construction industry. Hence, the use of bidirectional LSTM and LSTM models is recommended to classify mental 682 

fatigue states in construction equipment operators based on EEG data. 683 

In Table 11, we contrast the performance of our approach with other methods found in the literature that are 684 

relevant to construction workers. Based on the comparison, it is evident that our classification method employs 685 

bidirectional LSTM and LSTM-based deep learning models, is better in performance. Previously, many studies 686 



had been conducted in construction to classify the stress or fatigue of construction workers, and some acceptable 687 

accuracy had been achieved. However, all these studies used manually crafted features from EEG data and applied 688 

machine learning to classify either stress or fatigue. Our approach is significantly different from previous machine 689 

learning approaches, where raw EEG data has been directly used without any manual crafting of input features. 690 

Although Jebelli et al. (2019c) have used deep learning neural networks to classify mental stress with an accuracy 691 

of 86.62%, such a study is significantly different in several ways. For example, their task was not a prolonged task 692 

because the focus of the author was to classify mental stress in construction workers. It was a simple task with a 693 

short duration that was performed by workers once standing on the ground (low stress) and then on the top of a 694 

ladder (high stress). Furthermore, such experimental settings are not suitable to induce mental fatigue in workers, 695 

particularly construction equipment operators. Also, it's worth noting that, because of variations in the 696 

experimental setup, the nature of tasks performed by operators, the number of subjects, the subjects themselves, 697 

etc., direct comparison with the methods is not possible or will be quiet challenging. 698 

Table 6: Comparison of mental fatigue classification accuracies in construction domain 699 

Reference 
No. of 

subjects 

No. of 

electrodes 

Stress or 

Fatigue 

(Levels) 

Stimulus 

(Type of data collection 

settings) 

Classification 

Method 

Accuracy 

(%) 

(Aryal et al., 

2017) 
12 

Beta 1 

channel 
Fatigue (4) 

Psychomotor Vigilance 

Task (indoor simulated) 
Boosted trees 82.60 

(Jebelli et al., 

2018a) 
11 14 Stress (2) 

Working on ladder 

(construction site) 

Fully connected 

NN 
79.26 

(Jebelli et al., 

2018b) 
5 14 Stress (2) 

Working on ladder 

(construction site) 

OMTL-

VonNeuman 
77.60 

(Jebelli et al., 

2019b) 
7 14 Stress (2) 

Working on ladder 

(construction site) 

Gaussian support 

vector machine 
80.32 

(Jeon and Cai, 30 16 Hazard (3) Simulated environment CatBoost 65.2 



2022) (Laboratory setting) LightGBM 63.7 

Current study 15 4 Fatigue (3) 
Construction Equipment 

Operation (Site) 

Deep learning 

(Bi-LSTM) 
99.9410 

Current study 15 4 Fatigue (3) 
Construction Equipment 

Operation (Site) 

Deep learning 

(LSTM) 
99.7076 

Current study 15 4 Fatigue (3) 
Construction Equipment 

Operation (Site) 

Deep learning 

(1D CNN) 
69.4726 

4.1.2 Study implications 700 

The proposed research investigation is expected to impact safety management practices on construction sites in 701 

many ways, especially as they pertain to construction equipment operators. It provides researchers and 702 

practitioners in the construction industry with pertinent results and practical implications. First, the feasibility of 703 

onsite experimental data collection for detecting mental fatigue using a wearable electroencephalography sensor 704 

has important practical implications. Collecting wearable sensing data in a real-world construction scenario is 705 

extremely challenging for a variety of reasons, including the dynamic nature of the construction site (Chen et al., 706 

2022), the need for enormous resources, and the plethora of onsite risks. However, many prior investigations on 707 

mental fatigue monitoring, such as the investigations by Liu et al. (2021a), Li et al. (2020b), and Li et al. (2019a), 708 

were conducted in a laboratory under controlled settings. In addition, other investigations were undertaken on 709 

construction sites, but they did not focus on mental fatigue, which necessitates the collection of extensive data 710 

from workers and operators. These experiments, like those by Lee and Lee (2022), and Jebelli et al. (2019a), only 711 

focused on small tasks to detect stress in workers. In contrast, the present research investigated the use of wearable 712 

electroencephalography data while construction equipment operators performed an extended excavation task on a 713 

construction site. Therefore, the findings are highly valuable to construction industry researchers. As a 714 



consequence of protracted equipment operations, mental fatigue is a typical human behavior. The proposed method 715 

could be utilized not only for excavation operations (such as excavating earth and then tracking the bucket before 716 

and after transferring the excavated material to the trucks) but also for other prolonged repetitive equipment 717 

operations in the construction industry, such as crane operations, etc. Secondly, the insights can assist construction 718 

managers in establishing a framework for managing worker shifts. In the current study, researchers analyzed 719 

changes in the brain activity of construction equipment operators at three levels for one hour. They can be observed 720 

by construction managers every 30 to 45 minutes. Breaks between shifts can be introduced to allow equipment 721 

operators to recuperate from the mental fatigue they have induced. Thirdly, the proposed method facilitates the 722 

recognition and classification of mental fatigue states in construction equipment operators. Using EEG data and 723 

deep learning networks, it is possible to recognize and classify the mental fatigue that affects human behavior due 724 

to attention failure in construction equipment operators. Identification of mental fatigue is the first step towards 725 

proactively preventing attentional failure. As a result, this EEG data and deep learning networks-based approach 726 

can serve as a proactive intervention tool for tracking and identifying various brain fatigue states in operators, 727 

thereby decreasing mental fatigue-related incidents on construction sites and minimizing accidents. In addition, 728 

this method may be effective for assisting workers in many construction industry occupations, such as monitoring 729 

the mental states of structural design engineers, who are frequently required to do multiple redesign tasks in a short 730 

period of time with sustained attention. Furthermore, the current technique will assist in the development of real-731 

time wearable EEG sensor computing through the use of brain activity pattern performance and a bidirectional 732 

LSTM model for the classification of distinct states of mental fatigue. Managers in charge of workplace safety 733 



might utilize this data to better protect their workers. The best deep learning models, i.e., Bi-LSTM and LSTM, 734 

can learn the brain activity patterns of equipment operators and reliably forecast mental fatigue states, as 735 

demonstrated by the performance accuracy of all three deep learning models in this study. However, 736 

misclassification of mild fatigue states was revealed to occur more frequently than misclassification of other 737 

fatigue states, which could lead to identification problems. Nonetheless, the study's findings can be applied to 738 

other cognitive failures, such as mental stress, mental workload, hazard identification, emotions, etc., leading to 739 

better incident management for construction workers experiencing cognitive issues. 740 

4.1.3 Limitations and future research 741 

The proposed research is the first study to use deep learning-based models to classify mental fatigue in construction 742 

equipment operators using EEG sensor data. Although the findings have expanded our comprehension of mental 743 

fatigue monitoring using EEG data of brain activity patterns, they have some limitations that should be 744 

acknowledged and addressed in future research investigations. First, the sample size in this study (fifteen 745 

equipment operators) was modest, and there were three mental fatigue levels. Despite the fact that we determined 746 

the sample size based on the sample sizes employed in previous research of a similar kind, findings with such a 747 

limited number of operators may limit the application of the proposed approach to the construction industry. To 748 

generalize the results to the entire population of operators, future studies should collect large data sets representing 749 

a variety of mental fatigue states. Second, this research exclusively employed excavation operators as equipment 750 

operators. Future research may corroborate these findings for operators of other construction equipment, such as 751 

crane operators, dozer operators, grader operators, etc. In general, a data set with enough samples from different 752 



groups of equipment operators to identify additional mental fatigue states is important for training, testing, and 753 

building a general model for construction operations. Thirdly, this study did not define the thresholds for various 754 

levels of mental fatigue based on EEG data. Depending on whether or not these mental fatigue thresholds can be 755 

set and applied to all operators of construction equipment, future research may use such thresholds to define and 756 

classify mental fatigue states using statistical analysis, machine learning, and deep learning. Fourthly, the current 757 

research exclusively analyzed electroencephalography data from wearable sensors to classify equipment operators' 758 

mental fatigue. Additionally, different types of wearable sensor networks or biosensors exist for gathering data on 759 

things like an operator’s heart rate, respiration rate, skin conductance, and geometric facial feature measurements. 760 

Construction site monitoring and recognition applications could benefit from combining the acquired data from 761 

multiple sensors. Therefore, multimodal networks for monitoring and managing the mental fatigue of construction 762 

site workers should be developed in future studies that integrate information gathered from various biomarkers. 763 

Finally, the current study used only three types of deep learning networks to recognize and classify mental fatigue 764 

in construction equipment operators. Nevertheless, deep learning models based on bidirectional LSTM are 765 

intended primarily to handle sequence and time-series data. They do, however, come at a higher cost. They require 766 

more time to train the model. As a result, future research could combine multiple deep learning networks as a 767 

fusion model or use multi-deep learning models to classify mental fatigue in equipment operators. 768 

5 Conclusions 769 

Operators' attention failure as a consequence of mental fatigue due to prolonged equipment operations is a common 770 

cause of equipment-related accidents. These incidents lead to serious injuries and fatalities on construction sites. 771 



As a result, the current study proposes a construction site procedure for classifying mental fatigue in construction 772 

equipment operators, which is an effective way to decrease the incidence of equipment-related accidents. Given 773 

that mental fatigue can cause inattention failures in construction equipment operators, this study evaluated a novel 774 

approach that used deep learning-based networks and EEG sensor data to distinguish and classify mental fatigue 775 

states. Through subjective assessment, three different types of mental fatigue states, i.e., alert state, mild fatigue 776 

state, and fatigue state, were labeled, and subsequent brain activity patterns of fifteen equipment operators were 777 

acquired using a wearable headband EEG sensor. The mental fatigue was induced by a monotonous and prolonged 778 

excavation task on a real construction site. Accuracy, precision, recall, specificity, and the F1-score were used to 779 

evaluate the classification performance of the three deep learning models, i.e., LSTM, bidirectional LSTM, and 780 

1D-CNN. Furthermore, the Mann-Whitney test was conducted to assess the statistical significance of the results 781 

obtained from three deep learning models. The experimental findings demonstrate that the bidirectional LSTM 782 

model performs better compared to the other deep learning models, with an accuracy of 99.941% and an F1-score 783 

of 99.917% to 99.993%. Bidirectional LSTM and LSTM models both outperformed 1D-CNN models; however, 784 

the difference between their accuracies was less than 1%. These findings provide support for the notion that the 785 

Bi-LSTM model, which is prevalently used for the classification of time-series and sequential data, can be 786 

employed to learn sequential brain activity patterns captured by an EEG sensor in order to distinguish and classify 787 

different types of mental fatigue states during construction operations. In addition, the current method will aid in 788 

the development of real-time wearable EEG sensor computing through the classification of different states of 789 

mental fatigue utilizing brain activity pattern performance and a bidirectional LSTM model. Furthermore, it will 790 



help to improve the safety and health management on construction sites by allowing safety managers to constantly 791 

track the mental fatigue level of construction equipment operators in real-time. 792 
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