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Abstract—In this paper, we present a new approach for the
enhancement of pulsed terahertz (THz) generation in quantum
dot (QD) based photoconductive antennas (PCA). We demon-
strate the benefits of the combination of a QD substrate based
PCA and an interdigitated electrodes topology which allows the
photocarriers to reach the antenna terminals in a quasi-ballistic
regime and immediately contribute to the THz emission. A 50-
fold increase in the generated THz power is observed. Such
enhancement is made possible by unique combination of QD
substrate properties, such as very high electric and thermal
breakdown ruggedness, high carrier mobility, and yet short
carrier lifetimes, compared to typical low temperature grown
materials. We expect this solution to become favourable for
development of powerful compact THz emitters.

I. INTRODUCTION

The quest for efficient yet compact source of the tera-
hertz (THz) radiation started almost 40 years ago and still
remains a pending issue, despite numerous solutions pro-
posed to date [1]. Photoconductive antennas (PCAs) have
shown themselves as the most efficient sources for pulsed
THz spectroscopy and imaging [2] applications. Nevertheless,
pulsed PCA setups, despite reaching considerable powers
and efficiency [3], are still relatively bulky and are barely
operational outside the labs, as they require extensive and
expensive ultrafast lasers as pump sources [4]. The placement
of optical nanoantennas in the PCA gaps, suggested about a
decade ago [5], showed some exciting results, boosting the
generation and detection efficiency by up to two orders of
magnitude [6], [7]. The plasmonic THz mesh at the output
of the PCA can also significantly enhance the emitted THz
power [8]. Further steps towards compactness of the pulsed
THz spectroscopic and imaging setups were taken with the
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introduction of the quantum-dot (QD) based PCAs (QDP-
CAs) [9]. The QD based photoconductive substrate provides an
inherent compatibility [10] with the QD ultrafast lasers [11].
Since introduction, QDPCA have proven to be an efficient
THz emitters capable of generating tunable CW [12] and
pulsed [9], [13] THz radiation. Due to high-quality, defect-less
QD substrates, such PCAs demonstrate exceptional thermal
and electrical breakdown tolerance, allowing for up to 1 W
of pump power into a single gap antenna [14]. Moreover,
these antennas were shown to be efficiently enhanced by
introduction of silver plasmonic nanoantennas [15].

Important to note that one of the crucial features of the QD
structures is the unique combination of the sub-ps photocarrier
lifetime τc [16] with increased mobility [9] compared to low-
temperature grown GaAs and ternary photoconductive com-
pounds as InGaAs [17]. The mobility vs. lifetime trade-off is
essential for the THz power enhancement and stable operation
of the PCA-emitter. Nevertheless, since the photocarrier mo-
bility is proportional to the momentum relaxation time τs, the
decrease of τc causes the degradation of τs [18], [19]. Recently
it was shown that this contradiction can be overcome using
thin (∼200 nm) and high-mobility photoconductive substrates
in combination with plasmonic nanoantennas, providing sub-
ps transit time τb of photocarriers, that is actually a ballistic
time, and thus mitigating the requirement of the shortening of
τc [20], [21] by shortening the τb.

Here, we report an alternative approach, i.e. without plas-
monic effects, to enhance the THz pulsed emission using the
QDPCA with an interdigitated (ID) electrodes topology. Such
topology is considerably easier in production than plasmonic
grating, due to the larger spatial size of the topology elements.
The observed THz boost occurs predominantly due to a
number of reasons residing in the ID topology: (1) increased
antenna perimeter, and as a consequence, increased photocur-
rent; (2) increased electrical capacitance of the IDQDPCA’s
gap, as the ID electrodes form a series of parallel connected
capacitors. Moreover, the developed emitter might operate in
a quasi-ballistic regime with a characteristic time τb ∼ 3 ps
thanks to the combination of the unique properties of a QD
structure with ID topology, that allows the photocarriers to
reach the electrodes immediately. Importantly, that the strong
electric fields between the fingers do not cause the breakdown
of the antenna due to the QD based photoconductive substrate.
Enhancement of the THz power manifests predominantly in
the lower frequency part of the spectrum, where it exceeds 50-
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fold mark at lower pump powers. Interestingly, up to date only
ID PCAs with a microlens array [22] and plasmonic large-area
THz emitters with a shadow Au layer [23] have been reported
as efficient pulsed THz transceivers.

II. SAMPLE GROWTH, ANTENNA FABRICATION AND
EXPERIMENTAL SETUP

The substrates containing InAs QDs in the GaAs bulk
used as the PCA photoconductive medium were MBE grown
in the Stranski-Krastanow regime. Structure with 25 equally
spaced unform QD layers were grown on 30 layer AlAs/GaAs
Distributed Bragg Reflector (DBR) and capped with 30 nm
thick layer of LT-GaAs. This layer is thin enough not to
contribute to the photoconductivity, yet its presence increases
the dark resistance of the resulting PCA samples and facilitates
the ohmic contact between PCA electrodes and the substrate.
More detailed information on the QD substrated design and
growth can be found in our earlier papers [9], [10].

The samples of IDQDPCA and bare QDPCA (for compar-
ison) were fabricated within one technological routine similar
to that reported in our previous works [24], [25]. The PCAs
utilize a 60◦ bow-tie topology with a photoconductive gap
of 20 µm. The 50/450 nm thick Ti/Au metallization was
deposited on the PCAs surface using thermal evaporation.
Finally, the 150 nm height ID electrode fingers were fabricated
using electron-beam nanolithography and covered with a 130
nm thick Al2O3 antireflection and protection layer. The 200
nm wide electrode fingers are separated by a 1.2 µm gap and
placed within a 20-µm wide area. Bare QDPCA was also
covered with a 130 nm thick Al2O3 layer to provide more
fair comparison. The SEM image of the IDQDPCA design is
shown in Fig.1 (a).

The PCA were used as THz emitters in our laboratory
THz time-domain spectrometer (THz-TDS) pumped with a
compact fiber EFOA-SH fs-laser (by AVESTA) featuring a
central wavelength of 780 nm, pulse duration ∼ 100 fs and
the repetition rate of 70 MHz. The wrapped-dipole PCA
TERA-8 (by Menlo Systems) was used as a THz detector.
Both PCA-emitters under the comparison were biased with
rectangular pulses with amplitude Ub = 0-5 V (adjustable)
and a repetition rate of 20 kHz. The laser radiation was
focused onto the antennas gap by a plano-convex lens with
a 10 mm focal length to provide a tight focusing of the
laser beam. The optical pump power in the PCA-emitter
channel was adjusted by the programmable attenuator in the
range of Popt = 0.1− 10 mW. A pair of plano-convex high-
resistivity float-zone silicon hyperhemispheric lenses with a
12 mm diameter and a 7.1 mm height HSL-12 (by Batop)
were used to match the THz radiation with free space; two
2-inch-diameter off-axis parabolic mirrors with 4-inch focal
length were employed to collect THz waves from the PCA-
emitter and focus them onto a PCA-detector. The current from
the PCA-detector was pre-amplified and then demodulated
at 20 kHz in order to obtain a signal-to-noise ratio of the
THz-TDS ∼ 70 dB. The collection time for one spectrum
measurement with frequency resolution of ∼ 0.02 THz was
about 20 s, which was achieved by using a 150 mm high speed
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Fig. 1. (a) SEM image of the fabricated IDQDPCA design, and (b) the PCA
photocurrent vs. bias voltage in log-scale for IDQDPCA and bare QDPCA
for pump powers of Popt = 1 and Popt = 10 mW.

linear delay stage with optical feedback, Parker Daedal MX80
(by Parker Hannifin). For simplicity, we limited ourselves
to THz measurements in non-dried room air and at room
temperature. Nevertheless, this does not prevent measurement,
analysis and comparison of the detected THz signal from the
PCAs under study. The detected THz pulse waveform signal
was collected 20 times; then we applied the Fast Fourier
Transform with Tukey (tapered cosine) signal window. During
comparative measurements, we only substituted and adjusted
the PCA-emitters, while keeping the rest of the THz beam
path unchanged.

The time-independent photocurrent, i.e. the photocurrent in
antenna-emitter circuit under fs-laser pump, was measured at
bias voltage Ub = 0-2 V in order to prevent the IDQDPCA
breakdown at high pump power due to substantial Joule
heating due to small gap between fingers in the ID topology.
This dependence is shown in Fig.1 (b) illustrating the impact
of ID electrodes on the photocurrent enhancement. As seen,
for the chosen Ub range, no current saturation effects for the
both PCAs are observed.

III. RESULTS AND DISCUSSION

Fig. 2 demonstrates the THz spectra for the bare QDPCA
and IDQDPCA, respectively. The observed numerical narrow
lines in the spectra are associated with the resonant THz
absorption by water vapour along the THz beam path. As it can
be seen from the plots, the spectra generally keep their shape
with the change of pump power across the whole frequency
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Fig. 2. THz spectra for the laser pump powers of Popt = 0.4− 9.2 mW for
(a) bare QDPCA and (b) IDQDPCA

domain for both bare and IDQDPCA, and IDQDPCA has a
spectral maximum at lower frequencies.

To demonstrate the effect of the incorporated ID electrodes
on the PCA-emitter performance, we introduce the spectral

power boost factor β (ν) =
PIDQDPCA(ν)

PQDPCA(ν)
, which is derived as

a ratio between the THz spectral power of IDQDPCA and
QDPCA, respectively.

As it can be seen from Fig.3 (a), β is dependent on the op-
tical pump power Popt, while the THz boost is predominantly
concentrated in a low-frequency region of ν 6 1 THz. The
very similar phenomenon we observed in plasmonic PCA-
emitters earlier [26], [27]. Nevertheless, plasmonic-assisted
technology is much more complicated when compared to
ID topology. The boost in the latter is associated with the
increased perimeter of the ID electrodes topology, that results
in the rise of the photocurrent compared to bare sample, as
well as with a ∼ 30-fold increase of the electric capacitance
of the antenna’s gap C, as the ID electrodes form multiple
capacitors connected in parallel, while the emitted THz power
is proportional to the electric energy stored in the gap as
PTHz ∼ CU2.

The two humps are also clearly seen in Fig.3 (a) at
ν = 0.175 THz and ν = 0.5 THz. The reason of their
appearance might arise from frequency-dependent impedance
mismatching between photoconductor and antenna [28]. Over-
all, the non monotonous behaviour of β(ν) is associated with
the change in conductivity of the antenna’s gap, since the
incident light accelerates a discharge of a capacitor. At a small
pump power, β slowly changes within wide frequency region,
while at highest value of Popt = 9.2 mW, the spectral power
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Fig. 3. (a) Spectral power boost factor β characterising the enhancement of
THz power in the IDQDPCA over QDPCA, and (b) β vs. Popt dependence
for the frequencies marked in (a).

boost factor begins to dramatically decrease. There are several
reasons for this. For a more clear illustration, we plotted the
β dependence on pump power for the chosen frequencies
outlined in Fig.3 (a), corresponding to the absolute maximum
of β at ν = 0.175 THz, for the local minimum of of β at
ν = 0.35 THz, and the second maxima of β at ν = 0.06 THz
and ν = 0.5 THz, respectively. These power dependences are
shown in Fig.3 (b). As one can see from the plot, all the curves
demonstrate a decreasing behaviour with increase of Popt. The
first reason of this is an overheating of the IDQDPCA due to
significantly increased photocurrent under higher pump power,
that impacts the operation of the QDs as carrier capture sites,
decreasing their capability to efficiently localise photocarriers.
The second reason is the intervalley scattering in InAs-related
materials [29], [30], as well as intensified screening effects in
PCAs, and the increase of charge carriers effective mass.

We note that similarly to plasmonic PCA [31], the ID elec-
trodes allow the antenna to operate in a quasi-ballistic regime,
featuring the characteristic time τb ∼ 3 ps thanks to the unique
properties of the QDs, hence allowing the photocarriers to
immediately reach the antenna electrodes. This enables one to
work with small bias voltages (and even at low pump power),
avoiding the breakdown of the emitter. Another important
advantage of IDQDPCA over plasmonic antenna [26] is the
feasibility and relative ease of its fabrication technology, and
a more uniform THz spectrum as well. Moreover, the selected
ID topology does not require the second Au metallization layer
to mask the incident laser radiation, and can easily be scaled
to a higher operational area of the photoconductive gap.
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IV. CONCLUSION

In this paper, we demonstrated a quasi-ballistic operation
of a quantum dot (QD) photoconductive antenna (PCA)-
emitter with interdigitated electrodes (ID) providing a 50-
fold enhancement of the spectral THz power compared to
the bare QD PCA with similar geometrical and physical
parameters, but with conventional topology. The enhancement
is predominately associated with a huge increase of the electric
field in the PCA gap, and its non-uniform spectral response
is defined by the ∼30-fold increase of electric capacitance of
the antenna’s gap due to ID electrodes, that form an array
of capacitors connected in parallel. Overall demonstrated THz
power enhancement recorded by the Golay cell is almost 10-
fold for lower laser pump powers. By combining the unique
properties of the QD photoconductive substrates, such as as
short carrier lifetime and high mobility with the ID topology,
we showed that the IDQDPCA demonstrates low saturation
compared, for example, to plasmonic antenna-emitter on a LT
grown substrates. We also note that the use of microlens array
similar to that reported in ref [22], can potentially suppress
the parasitic current, thus further enhancing the conversion
efficiency of the proposed emitter.
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