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Abstract: The material removal rate (MRR) is an important variable but difficult to measure in the
chemical–mechanical planarization (CMP) process. Most data-based virtual metrology (VM) methods
ignore the large number of unlabeled samples, resulting in a waste of information. In this paper,
the semi-supervised deep kernel active learning (SSDKAL) model is proposed. Clustering-based
phase partition and phase-matching algorithms are used for the initial feature extraction, and a deep
network is used to replace the kernel of Gaussian process regression so as to extract hidden deep
features. Semi-supervised regression and active learning sample selection strategies are applied to
make full use of information on the unlabeled samples. The experimental results of the CMP process
dataset validate the effectiveness of the proposed method. Compared with supervised regression
and co-training-based semi-supervised regression algorithms, the proposed model has a lower mean
square error with different labeled sample proportions. Compared with other frameworks proposed
in the literature, such as physics-based VM models, Gaussian-process-based regression models,
and stacking models, the proposed method achieves better prediction results without using all the
labeled samples.

Keywords: semi-supervised regression; active learning; deep kernel learning; virtual metrology;
phase partition; phase match

1. Introduction

Today, semiconductor manufacturing represents the highest level of microfabrication
in the world. Wafer production is a key step in semiconductor manufacturing, which
includes many complex processes, such as lithography, etching, deposition, chemical me-
chanical planarization (CMP), oxidation, ion implantation, diffusion, etc. Processes such as
etching, deposition, and oxidation result in wafers with uneven surfaces, including higher
steps and larger trenches. CMP technology is an important way to build wafer structures.

The material removal rate (MRR) is a critical variable in the CMP process. Each wafer
needs to be polished to the target thickness; thus, an accurate MRR estimation is required
to accurately set the polishing time. However, the MRR is difficult and costly to measure,
and at the same time, it may cause damage to the wafers. In this stage, the MRR relies on
engineering experience and actual measurements with a very low frequency (e.g., only
one wafer is selected for measurement in one lot, or one wafer is measured at fixed time
intervals) as a reference to complete the setup and adjustment.

In industrial production, to accurately estimate an important but difficult-to-measure
variable, it is customary to model the relationship between the variable and easily accessible
environmental variables, equipment parameters, intermediate variables, etc., and complete
the prediction with physical laws or historical data. This process is called virtual metrology
(VM). VM consists of two main forms: physics-based models and data-based models.
Physics-based models establish mathematical expressions by analyzing the physical and
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chemical reactions of the process. Preston proposed that the MRR is related to pressure and
the relative velocities of wafers and polishing pads and established the Preston equation [1].
Teh and Chen et al. investigated the dressing process of polishing pads by designing pad
simulation modules to investigate the effect of key geometrics [2]. Shin and Kulkarni et al.
tested the effects of different diamond structures on the polishing pad and polishing
performance [3]. Liu et al. established the relationship of the MRR of fused silica with
the polishing pressure, chemical reagents, and their concentrations, as well as the relative
velocity between the wafer and the polishing pad [4].

Some of the existing physics-based models build global-based mathematical expres-
sions by analyzing the physical and chemical reactions of the CMP process. Other models
focus on the role of certain variables in the CMP process and the effects on the MRR. How-
ever, the CMP process involves so many variables that explicit mathematical expressions
and physics-based models can hardly cover all of them. At the same time, the duration
of the CMP process is very long. In an operating cycle, the CMP process passes through
multiple operating points, dividing the process into multiple phases. The different rela-
tionships between variables in different phases also lead to continuous changes in the
physical models. The global-based physical models are difficult to describe in detail in
terms of process changes. With the continuous development of data science, researchers are
increasingly placing emphasis on mining knowledge and information from large amounts
of historical data, and therefore, data-based VM models are increasingly favored.

Since individual machine learning models do not suitably fit the CMP process, some
studies have used stacking models. Zhao and Huang performed one-hot encoding of the
“stage” and “chamber” variables in the feature creation and feature encoding stages to
transform the process data into multidimensional information, and the stacking integration
model was chosen for the regression [5]. Li and Wu et al. also used a stacking integrated
learning regression model with primary learners including random forest (RF), gradient
boosting tree (GBT), and extreme random tree (ERT), and meta-learner as extreme learning
machine (ELM) and classification and regression tree (CART), and the features in the model
included the frequency domain features of the three rotation variables and feature selection
using RF [6].

The CMP process runs continuously, and the dynamic prediction of the MRR is
necessary. Cai and Feng et al. combined k-nearest neighbors (kNN) and Gaussian process
regression (GPR) to dynamically predict the MRR, where kNN searched historical data
as reference samples and a multi-task Gaussian process (MTGP) model incorporated
the training data and reference sample information [7]. The authors proposed another
dynamic prediction model, in which reference samples from historical data were fused
with data samples through support vector regression (SVR), and a particle filter (PF)
estimated and updated the prediction results and ensured that the model could track
changes in the CMP process [8]. Lee and Kim addressed the problem of the degradation
of the model’s prediction performance due to process drift and proposed a VM model
combining the recurrent neural network (RNN) and the convolutional neural network
(CNN), extracting time-dependent and time-independent features with a two-stage training
method to alternately update the network weights [9]. The existing stacking models and
dynamic prediction models in the literature focus on extracting global features and are
insensitive to the phase changes in the CMP process. Therefore, a more adequate feature
extraction method is needed.

Several researchers have proposed prediction methods based on a combination of
physical models and data models [10]. Yu and Li et al. derived a formula for MRR using
a pad and conditioner. This model considers the contact between the polishing pads,
abrasives, and wafers, and the polishing pad surface topology term in the formula is
estimated using RF [11]. Lim and Dutta proposed that the kinetics and contact between the
wafer and polishing equipment are applied based on knowledge obtained a priori and a
physical model for wafer classification, and they also proposed classification and regression
methods, where the feature extraction is obtained by downsampling and expanding the
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dosage and pressure variables [12]. These methods add physical analysis of the CMP
process to the data models. However, similar to the physics-based VM model, the physical
analysis focuses on some important variables but cannot cover all the variables’ effects on
the MRR.

Research on neural networks and deep learning has provided new ideas [13,14]. Lim
and Dutta used autoencoder and k-means clustering to determine the feature space of the
training samples and combined the reconstruction loss of the encoder–decoder and the
clustering error to form a loss function [15]. Xia and Zheng et al. applied hypergraph
convolutional networks to MRR prediction [16]. In the data preprocessing stage, the
piecewise aggregate approximation (PAA) method was used for time series alignment
and dimensionality reduction. In the prediction stage, a hypergraph model was used
to represent the complex relationships between the devices and variables. Maggipinto
et al. used deep learning methods to model images of optical emission spectra (OES)
with spatial and temporal evolution to build VM models of visual 2D data [17]. Wu et al.
designed a VM model combining CNN and Gaussian process regression (GPR) to address
the mismatch between VM models and features, using CNN for feature extraction and GPR
for the prediction of quality variables [18]. The deep learning methods can fully explore
the process features and the relationships between variables but require a large amount of
data; otherwise, there is a risk of overfitting. However, due to the difficulty of measuring
the MRR, there are less data for the CMP process.

There are some points for improvement regarding the established MRR prediction
methods. First, the CMP process is a batch process, and its process data have three
dimensions: the batch, variable, and time. Meanwhile, the CMP process involves several
phases, and the work points change over time. The different batches and phases are not
equal in duration. Most of the existing prediction methods extract the overall features of
the process and ignore the phase features. Second, feature extraction with machine learning
only involves statistical features, as well as other features such as the duration and nearest
neighbors, and the mining of deep features and deep information in the CMP process data
is not sufficient. Third, it is worth noting that a large number of wafers lack an MRR and
become unlabeled samples because the MRR is not easy to measure. If labeled samples
alone are used to build VM models, this will cause information wastage.

In this paper, a semi-supervised deep kernel active learning (SSDKAL) method is
proposed for MRR prediction, with the following main contributions:

First, the semi-supervised active learning framework can fully exploit and utilize
information regarding unlabeled samples. In this framework, semi-supervised regression
(SSR) incorporates the uncertainty of the unlabeled samples into the loss function, while
active learning (AL) can compensate for the weakness of the insufficient representativeness
and diversity of samples in SSR. Second, clustering-based phase partition and phase-
matching algorithms are used to extract phase features. Third, neural networks provide
more in-depth identification and fitting of complex multi-phase processes through complex
network connections. Our experiments based on CMP process data show that the proposed
method achieves good results in terms of the prediction accuracy for the MRR. In actual
production, many batch processes have the characteristics of multiple phases and unequal
lengths, and there are a large number of unlabeled samples. Therefore, the proposed
method can be extended to these processes. In the feature extraction stage, feature data
are extracted using phase partition and phase matching, and in the prediction stage, a
combination of DKL, SSR, and AL are used for prediction.

The rest of this paper is organized as follows. Chapter 2 presents the related works,
including deep kernel learning and active learning regression. Chapter 3 describes the
procedure of the SSDKAL method in detail. Chapter 4 presents the experimental results
and the discussion. Chapter 5 concludes the paper.
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2. Related Works
2.1. Deep Kernel Learning

Gaussian process regression (GPR) was first proposed by Rasmussen [19]. As an
efficient statistical learning method, GPR computes optimal hyperparameters by learning
prior functions of historical data to obtain predictive models. With its good interpretability,
GPR is widely used in system modeling for industrial processes, especially complex systems
with high dimensionality, small samples, and nonlinear characteristics [20]. GPR can
provide rich statistical representation, accurate prediction, and new insights into modeling
using large datasets.

A Gaussian process (GP) is a stochastic process in which observations appear in a
continuous domain (e.g., time or space). In a Gaussian process, each point in the continuous
input space is associated with a Gaussian-distributed random variable. Any finite number
of random variables obey the joint Gaussian distribution, denoted as Equation (1):

f (X) ∼ N(µ(X), ΣX,X) (1)

where µ(X) denotes the mean function and ΣX,X =
[
σij
]
=
[
σ(xi, xj)

]
denotes the covari-

ance function.
GPR is a typical nonparametric model based on a Bayesian framework. Suppose that

we obtain a set of n independently and identically distributed observation samples that con-
stitute the input matrix X = (x1, x2, · · · , xn)T, xi ∈ Rd, where d denotes the dimensionality
of the input samples. The output values corresponding to the samples constitute the vector
y = (y1, y2, · · · , yn)T, yi ∈ R. Let the matrix of the test samples to be X∗ = (x∗1 , x∗2 , · · · , x∗m)T.
From the definition and properties of GPR, it is known that the training samples and the
test samples obey the joint Gaussian distribution, and y and the model prediction of the
test samples f (X∗) obey the joint Gaussian distribution, as shown in Equation (2):[

y
f (X∗)

]
∼ N

([
µ(X)
µ(X∗)

]
,
[

ΣX,X + σ2 I ΣX,X∗

ΣX∗ ,X ΣX∗ ,X∗

])
(2)

where µ(X) and µ(X∗) are the mean vectors of the training and test samples, respectively,
ΣX,X and ΣX∗ ,X∗ are the self-covariance matrices of the training and test samples, respec-
tively, and ΣX,X∗ = ΣT

X∗ ,X is the covariance matrix between the training and test samples.
This can be deduced as shown in Equations (3)–(5):

f (X∗)|y, X, X∗ ∼ N(µ f , Σ f ) (3)

µ f = µ(X∗) + ΣX∗ ,X(ΣX,X + σ2 I)−1(y− µ(X)) (4)

Σ f = ΣX∗ ,X∗ − ΣX∗ ,X(ΣX∗ ,X∗ + σ2 I)−1ΣX,X∗ (5)

where µ f is the predicted mean vector, i.e., the predicted value of the GPR model, while Σ f
denotes the error region of the predicted output.

Assuming that the parameters of ΣX,X are θ, and ΣX,X is replaced by Σθ , while the
input data are considered to have completed normalization with a mean of 0, according to
Equations (3)–(5), y conforms to a Gaussian distribution with a mean of 0 and a variance of
Σθ + σ2 I. The probability distribution function of y is shown in Equation (6):

p(y|θ, X) =
1

(2π)
n
2 |Σθ + σ2 I|

exp
(
−1

2
yT(Σθ + σ2 I)−1y

)
(6)

After taking the logarithm, we can obtain Equation (7):

log p(y|θ, X) ∝ −
[
yT(Σθ + σ2 I)−1y + log |Σθ + σ2 I|

]
(7)
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Wilson and Hu et al. introduced deep networks into the Gaussian process by replac-
ing the kernel and proposed deep kernel learning (DKL) method, which combines deep
learning with existing kernel functions using techniques such as deep feedforward, convo-
lutional architectures, and structure utilization algebra to transform deep architectures into
inputs for spectral hybrid-based kernels [21]. The deep kernel is as shown in Equation (8):

σ(xi, xj|θ)→ σ(g(xi, w), g(xj, w)|θ, w) (8)

where g(x, w) is a nonlinear mapping of the deep network, and w is a network parameter;
therefore, the parameters of DKL become η = (θ, w). Similarly, the deep kernel model
learns the parameters by maximizing the log marginal likelihood function L of the Gaussian
process, in which the chain rule is used to calculate the derivatives of the log marginal
likelihood function with respect to the parameters and update the parameters through
backpropagation. The derivatives are calculated as shown in Equations (9) and (10):

∂L
∂θ

=
∂L

∂Ση

∂Ση

∂θ
(9)

∂L
∂w

=
∂L

∂Ση

∂Ση

∂g(x, w)

∂g(x, w)

∂w
(10)

where Ση is the depth kernel covariance matrix, and the KISS-GP matrix can be used instead
in the calculation.

2.2. Active Learning Regression

The purpose of active learning (AL) is to manually label fewer samples from unlabeled
samples to achieve the target accuracy when both labeled and unlabeled samples are
available. AL is an iterative framework that actively selects the most useful samples in
the unlabeled sample set during each iteration and passes them on to experts for labeling,
after which they are added to the training set and the current model is updated. AL greatly
reduces the amount of data needed to train the model by prioritizing the expert labeling,
thus reducing the cost while improving accuracy [22].

In AL, the strategy of selecting valuable unlabeled samples is the core of the algorithm.
For active learning classification (ALC), there are numerous strategies, while there are
fewer strategies for active learning regression (ALR) [23]. Wu proposed three criteria for
pool-based ALR strategies, namely, informativeness, representativeness, and diversity.
Informativeness indicates that the queried samples need to contain rich information, which,
after labeling, can improve the prediction performance of the model. Representativeness
can be measured based on the number of nearest neighbors of the sample, and if the
number is high, the sample is more representative. Diversity indicates that the samples
need to be dispersed throughout the input space rather than concentrated in a category or
a region [23].

Seung and Opper, et al. proposed the query by committee (QBC) method for ALC, in
which a set of classifiers are trained on labeled data and then predict unlabeled data, from
among which the samples with the most divergent committee members are selected for
labeling [24]. Freund et al. demonstrated that the method is applicable when the samples
are not labeled as discrete [25]. Krogh and Vedelsby defined the ambiguity of a sample
in terms of prediction variance in a committee composed of neural networks and queried
the sample label with the largest variance [26]. RayChaudhuri and Hamey used a similar
approach but employed bagging in the design of the models [27].

Cai et al. proposed an AL framework for expected model change maximization
(EMCM), which aims to select samples from an unlabeled sample set that maximizes
the change in the model before and after labeling [28]. The model change is quantified
according to the difference in the model parameters before and after the addition of the
given sample.
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Yu and Kim proposed a passive sampling technique for ALR to identify informative
samples based on their geometric features in the feature space [29]. They argued that
the samples selected for queries based on loss functions have relatively large errors and
are likely to be noisy. They proposed four passive sampling methods, including the
Grid approach, k-center algorithms, greedy sampling (GS) algorithm, and incremental
k-medoids algorithm.

Wu and Lin et al. argued that the above GS algorithm takes into account the diversity
of samples in the input space and proposed two other GS methods. The first method, GSy,
takes into account the diversity of samples in the output space, and the second method,
iGS, takes into account the diversity of samples in both the input and output spaces [30].

Wu proposed a new ALR method using passive sampling that incorporates the idea
of clustering in the initialization and iteration while considering informativeness, rep-
resentativeness, and diversity. The method can complete the process of ALR without a
single labeled sample. This method can also be combined with QBC, EMCM, and greedy
sampling [23].

3. Methods
3.1. Feature Extraction

The data for the CMP process have three dimensions: the batch, variable, and time.
Usually, the data of a batch represent the production process of a wafer, i.e., the data matrix
of variable× time, corresponding to an MRR value. The main processing method for 3D
data is to expand the data in the variable direction or batch direction and recover them as
2D data. Multiple principal component analysis (MPCA) and multiple partial least squares
(MPLS) are then used for early batch process statistical monitoring and regression analysis,
respectively [31,32].

Due to variations in the equipment and environment, the duration of each wafer is
different. The above-mentioned MPCA, MPLS, and most other methods are not feasible
for a CMP process that is unequal in length. At the same time, the CMP process is divided
into several phases, and the variable relationships are different in different phases, with
different operating points of the devices. The extraction of global features will only lead to
the loss of information. In this paper, we adopt a feature extraction method based on phase
partition and phase matching.

In phase partition, a combination of wrapped k-means (WKM) [33] and the phase
partition combination index (PPCI) are used. The dimensionality of each wafer data matrix
is different because the wafers have different operation times. The purpose of phase
partition is to obtain more accurate phase features; thus, phase partition is performed
separately for each wafer. The data of the I-th batch are X = (x1, x2, · · · , xKI )

T, where KI
denotes the sampling length, i.e., the number of sample points contained in the batch, and
xk ∈ RJ , k = 1, 2, · · · , KI , where J is the number of variables contained in each sample
point. The basic idea of phase partition is that the sample vectors in the batch are clustered,
and different categories correspond to different phases. However, it is worth noting that
the process data need to satisfy the temporal order constraint. Given the number of clusters,
i.e., the number of phases C, the batch data are initially divided according to the cumulative
error, and then the sampling points are moved. Here, the sum of squared error (SSE) is
used to calculate the clustering error and acts as the basis for the sampling point movement.
The SSE is calculated as shown in Equation (11):

SSE =
C

∑
c=1

∑
xk∈Phase c

(xk − sc)
T(xk − sc) (11)

where sc is the center point of the c-th phase. The following rule is used for sample point
movement, when the movement condition is met, the first half of the sample points of each
phase can only move to the previous phase, and the second half can only move to the latter
phase. If a sample point does not meet the move condition, the remaining sample points in
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that half will no longer move. After a sample point xk moves from phase c to phase b, the
centroids will change, as shown in Equations (12) and (13):

ŝc = sc −
xk − sc

lc − 1
(12)

ŝb = sb +
xk − sb
lb + 1

(13)

where lc and lb are the numbers of sampling points in phase c and phase b before the move,
respectively. After that, the SSE is recalculated, and if the SSE decreases, xk will be moved
to phase b. Otherwise, the move will be rejected.

The CMP process contains stable phases with small changes in variable relationships
and transition phases with fast changes in variable relationships. In the WKM algorithm,
given the number of clusters C, a wafer can be divided into C phases, but the effectiveness
of the partition is related to the size of C. When C is larger, the partition is detailed, and
more transition phases are divided. When C is small, more transition phases are merged
into the stable phases. We weigh the phase number C and the clustering error SSE and use
PPCI for the metric. With the increase in C, PPCI shows a trend of decreasing and then
increasing. The phase number corresponding to the smallest PPCI is chosen as the phase
partition number of the wafer.

Due to the presence of PPCI, the optimal phase number differs from wafer to wafer. In
the CMP process, many wafers have more transition phases with drastic changes, and the
PPCI still decreases when the cluster number is large. The ultimate goal of phase partition
is to extract the features of key phases; therefore, the phases of different wafers need to be
matched. First, we must eliminate the effect of transition phases. Given a minimum length
LS, the phase with a number of sampling points no lower than LS is considered as a stable
phase; otherwise, it is a transition phase. Next, the standard stable phase number (SSN)
and the standard stable phase center (SSPC) are determined. For all wafers, the plural of
the stable phase number is selected as SSN. All wafers with stable phase numbers equal
to SSN are selected, the mean value of the centroid of each stable phase is calculated, the
wafers far from the mean value are discarded, and the process is iterated to finally obtain
the SSPC.

After that, all wafers that have completed phase partition are matched with the SSPC.
The basic method of phase matching is to calculate each phase center and identify the SSPC
with the closest distance to it. However, at the same time, the time series constraint needs to
be maintained. Two phases with backward and forward orders of time cannot be matched
with SSPCs with opposite time orders. The optimization problem of phase matching is as
shown in Equation (14):

min ∑SSN
h=1

[
dist(s∗h, s̃i

h)− ρL̃h
]

s.t. L̃h = endi
h − starti

h

s̃i
h = 1

L̃h
∑

endi
h

l=starti
h

xl

starti
h+1 ≥ endi

h, h = 1, 2, · · · , SSN − 1
dist(s∗h, si

t) ≤ θ, t = Jh, Jh + 1, · · · , Jh + Th − 1

(14)

where i denotes the matching process of the i-th wafer, s∗h denotes the h-th SSPC, and s̃i
h

denotes the h-th phase center of the i-th wafer after phase matching is completed. starti
h,

endi
h, and L̃h denote the start point, end point, and the length of the h-phase after the

matching, respectively. θ is the distance threshold of the two centers, ρ denotes the balance
parameter of the distance and phase length, and Jh and Th denote the starting and ending
phases of the original wafer that match the h-th standard phase. We use a greedy algorithm
to continuously compare the distance between the center of the phases and the SSPC to
complete the phase matching.
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3.2. Semi-Supervised Deep Kernel Active Learning

It is worth noting that, due to the sampling detection of the MRR, a large number
of samples are missing the MRR. Attention should be paid to semi-supervised regression
(SSR) methods using both labeled and unlabeled samples. Kostopoulos et al. divided SSR
into four categories: semi-supervised kernel regression, multi-view regression, graph regu-
larization regression, and semi-supervised GPR [34]. Among them, the semi-supervised
GPR model consists of two components in the log-likelihood function: the joint distribution
of independent and dependent variables with labeled samples based on the requested
parameters, and the joint distribution likelihood function with unlabeled samples based on
the requested parameters. The parameter value that maximizes the log-likelihood function
is obtained via derivation [35–37].

The semi-supervised deep kernel learning (SSDKL) method combining deep learning
and the Gaussian process uses the deep neural network (DNN) as a kernel function, and the
optimization objective function includes both the log-likelihood function and the prediction
variance of the unlabeled samples, the latter being used as a regularization term to suppress
the overfitting of the model [38]. The loss function is adjusted to Equation (15):

LSS(η) =
1
L

Llikelihood(η) +
α

U
Luncertainty(η) (15)

where α is the equilibrium parameter controlling the two types of losses.
In SSR, information on unlabeled samples is captured by adding the prediction

variance as the regularization term of the loss function. In contrast toSSR based on co-
training [39], the unlabeled samples and pseudo-labels in SSDKL are not added to the
labeled sample set, but by changing the loss function, they have an impact on the pa-
rameters of the model. The unlabeled samples provide an informative basis for model
improvement but do not take into account the representativeness and diversity. At the
same time, the small number of labeled samples in SSR are likely to be unevenly distributed
and cannot fully cover the overall distribution of the samples. Active learning (AL) can
compensate for this weakness. AL allows the model to select the important samples itself,
thus obtaining a higher performance with less training samples.

Considering the three sample selection criteria, this paper uses a sample query strategy
based on a combination of query by committee (QBC) and greedy sampling (GS).

Suppose that there are N samples in the training set, constituting X = {xi}N
i=1, where

the set of labeled samples XL = {xi}L
i=1 contains L labeled samples, and the set of unlabeled

samples XU = {xi}L+U
i=L+1 contains U unlabeled samples, L + U = N. According to QBC,

M regressors are trained according to XL, and the prediction variance of the unlabeled
samples is as shown in Equation (16):

sQBC
i =

1
M

M

∑
j=1

(yj
i − yi)

2 (16)

where yi is the average of the predicted values of the M regressors for the i-th unlabeled
sample. QBC selects the sample with the largest prediction variance for the query. Here,
the prediction variances of all unlabeled samples are sorted from largest to smallest, and
the set of unlabeled samples with the largest variance are selected and denoted as XQBC.

Next, from the set XQBC, GS selects the sample farthest from the existing labeled
sample for the query. The distance is calculated as shown in Equation (17), and the
unlabeled sample corresponding to the largest sGS

i will become the queried sample.

sGS
i = min

xl∈XL
‖xi − xl‖ (17)

The semi-supervised deep kernel active learning (SSDKAL) method is proposed. In
each round of iterations, a combination of QBC and the GS sample selection strategy are
used. QBC focuses on the performance improvement of the model with respect to the
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query sample, i.e., informativeness, while GS takes into account the representativeness
and diversity. The training process starts by training a set of SSDKL regressors using a
small number of labeled samples. All regressors make predictions based on the unlabeled
samples, select a set of samples with the largest variance, and choose a subset of unlabeled
samples from this set, which are farthest from the existing labeled samples. The sample
labels in this subset are queried and added to the labeled sample set. The learning, predic-
tion, and sample selection process are repeated until the accuracy constraint or the upper
limit of the query capability is reached.

The algorithm of SSDKAL is shown in Algorithm 1. Without loss of generality, we
assume that there are only two regressors in the AL committee, fA(x|ηA) and fB(x|ηB).

Algorithm 1 SSDKAL

Input: After phase partition and phase matching, the input data X, which have completed
phase feature extraction, feature selection, and normalization, include the labeled
dataset XL = {(x1, y1), · · · , (xL, yL))}, unlabeled dataset XU = {(xL+1), · · · , (xL+U))},
learning rate lr, unlabeled sample loss term weight parameter α, maximum number of
iterations Maxep, maximum AL query sample number MAL, and error threshold ε.

Output: Final model parameters η∗A =
{

θ∗A, w∗A
}

, η∗B = {θ∗B, w∗B}.
1: Initializing model parameters η0

A =
{

θ0
A, w0

A
}

, η0
B =

{
θ0

B, w0
B
}

.
2: The query number of AL qey = 0.
3: while qey ≤ MAL do
4: Construct semi-supervised deep kernel regression models fA(x|η0

A), fB(x|η0
B) using

XL.
5: Iteration number i = 0.
6: while i ≤ Maxep do
7: Calculate the loss function of the models based on the labeled and unlabeled

datasets.
8: Li

labeled = 1
L ∑x∈XL

Llikelihoood(η
i
A/B)

9: Li
unlabeled = 1

U ∑x∈XU
Luncertainty(η

i
A/B)

10: Li
SS = Li

labeled + Li
unlabeled

11: Compute the derivative of the loss function Li
SS with respect to the parameter

ηi
A/B =

{
(θi

A/B, wi
A/B)

}
and update the parameter using stochastic gradient

descent (SGD).
12: θi+1

A/B ← SGD(Li
SS, lr, θi

A/B)

13: wi+1
A/B ← SGD(Li

SS, lr, wi
A/B)

14: if abs(Li
SS, Li−1

SS ) ≤ ε then
15: End the training.
16: end if
17: i = i + 1
18: end while
19: Calculate the outputs of the models for unlabeled data, fA(x|x ∈ XU), fB(x|x ∈ XU).

20: Sort ( fA(x)− fB(x))2 and take the first K maxima to form the unlabeled data subset.
21: Calculate the sample farthest from XL in the subset, query its label, add it to the

labeled dataset XL, and remove it from XU .
22: qey = qey + 1
23: end while
24: return: Model parameters η∗A =

{
θ∗A, w∗A

}
, η∗B = {θ∗B, w∗B}

Figure 1 shows the algorithm flow of SSDKAL. First, the training samples pass through
the steps of phase partition, phase matching, and feature extraction to obtain the initial
dataset, which includes the labeled sample set and the unlabeled sample set. According
to the SSDKAL algorithm, the DKL model is built using the labeled sample set, and
the model parameters are updated based on the log marginal likelihood function of the
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labeled samples and the uncertainty of the unlabeled samples. The model predicts the
outputs of the unlabeled samples and selects the samples that satisfy the informativeness,
representativeness, and diversity according to the AL strategy of combining QBC and GS,
querying the labels, and adding them to the labeled sample set. For the test set, the phase
partition, phase matching, and feature extraction are similar to the training set. After the
phase partition for each wafer, the SSN and SSPC obtained from the training set are applied
to complete the phase matching, and the final model is used for the prediction.

Feature Extraction

Labeled Sample Set

DKL Model

Training Set

Unlabeled
Sample Set

Update ParametersPrediction

Test Set

Final Model

Phase Partition

Final Model

Predictions

Phase Match

Regular 
Term

AL Strategy

Phase Match

Feature Extraction

Phase Partition

Figure 1. Algorithm flow of SSDKAL.

4. Experiments and Discussion
4.1. Datasets

The dataset is from the 2016 Prognostics and Health Management (PHM16) Data
Challenge and contains a set of CMP process data. The dataset is divided into a training
set, a validation set, and a test set, each of which contains process data from several wafers.
The number of sampling points for each wafer is between roughly 200 and 400, and each
sampling point contains 25 variables, as shown in Table 1. Among them, 6 variables are
device and wafer information, and the remaining 19 variables are process variables, which
are divided into 5 groups, including usage, pressure, flow, rotation, and status. Each
wafer is identified based on two variables, “Wafer_ID” and “Stage”, and corresponds to an
MRR value.

Figure 2 shows the trajectories of some variables of a wafer, including six pressure
variables, three flow variables, and three rotation variables. It can be seen these variables
have different relationships in different phases, which also indicates that the CMP process
is a multi-phase process.
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Table 1. Variables in PHM16 Dataset.

Group Name Group Name

Information Machine_ID Pressure Pressurized_chamber_pressure
Machine_Data Main_outer_air_bag_pressure

Timestamp Center_air_bag_pressure
Wafer_ID Retainer_ring_pressure

Stage Ripple_air_bag_pressure
Chamber Edge_air_bag_pressure

Usage Usage_of_backing_film Flow Slurry_flow_line_A
Usage_of_dresser Slurry_flow_line_B

Usage_of_polishing_table Slurry_flow_line_C
Usage_of_dresser_film Rotation Wafer_rotation
Usage_of_membrane Stage_rotation

Usage_of_pressurized_sheet Head_rotation
Status Dressing_wafer_status

Figure 2. Different variables of a wafer.

All wafers can be divided into three modes based on the “Chamber” and “Stage”.
Table 2 shows the distribution of three modes, including the chamber, stage, and the range
of the MRR, as well as the numbers of samples in the training set, validation set, and test set.

Table 2. Three modes in PHM16 Dataset.

Mode Chamber Stage MRR Training Validation Test

Mode I 4,5,6 A [50, 90] 798 185 165
Mode II 4,5,6 B [50, 110] 815 172 186
Mode III 1,2,3 A [120, 170] 368 67 72

4.2. Feature Extraction

For each wafer, we perform phase partition using the WKM-PPCI algorithm. During
the CMP process, different variables have different trends. Among them, the usage variables
have an increasing trend and do not conform to the phase change characteristics. The
pressure, flow, and rotation variables have phase change characteristics, and the pressure
variables have more obvious changes and coincide with the switching of chambers at
certain change time points. Therefore, six pressure variables are used for clustering and
phase partition.

Given the phase number C, integers of [4, 15] are taken, and the number corresponding
to the smallest PPCI is chosen as the phase number of this wafer. After the phase partition,
the minimum number of sampling points LS = 5 contained in the stable phase is selected
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according to the phase alignment algorithm to distinguish the stable phases and the
transition phases for each wafer. The plural of all the wafers’ stable phases is chosen as
the SSN, and in this experiment, the SSN = 5. The SSPC is calculated iteratively, and the
phases of all the wafers are matched with the SSPC using a greedy algorithm. Finally, all
the wafers are divided into five phases.

Figure 3 shows the phase partition and phase match of a wafer. In Figure 3, the
horizontal axis indicates the time order of the sampling points, and the vertical axis
indicates the normalized variable values. The colored solid lines indicate the variation of
the 6 pressure variables along time. The vertical dashed line indicates the optimal phase
partition results after using the phase partition algorithm with the combination of WKM
and PPCI. It can be seen that due to the presence of the transition phases, the phase partition
is very detailed in the transition phases, and the optimal number of phases is large, which
is 15 in the case of this wafer. The solid line on the vertical axis and the number between
the solid lines indicate the results of the phase match. After the phase match, 15 phases are
matched with 5 standard stable phase centers.

Figure 3. Phase partition and phase match of a wafer.

As shown in Table 3, for each phase, the pressure, flow, and rotation variables coincide
with the change in the phases, and five statistical features are extracted, including the mean,
standard deviation (std), median, peak-to-peak (PtP), and area under the curve (AUC). The
status variable has only two states of 0 and 1, the median and PtP are meaningless, and
the mean and AUC are redundant variables; only the mean and std features are retained.
The usage variable is an incremental variable independent of the phase change, and only
the initial value feature is extracted. In addition, the start time and duration are extracted
from the timestamp variable. Seventy variables are extracted for each phase, forming a
large feature set. The filtered feature selection method is used, which can filter out single
numerical features, low-variance features, high-linear-correlation features, etc.
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Table 3. Phase features.

Group Feature Group Feature

Timestamp start_time Flow mean
duration std

Usage initial_value median
Status mean peak-to-peak

std AUC
Pressure mean Rotation mean

std std
median median

PtP PtP
AUC AUC

4.3. Prediction Results of Different Regression Models

After obtaining the phase features, we apply different models to the PHM16 Dataset.
Tables 4 and 5 show the prediction results of different types of regression models for Mode
I and Mode II. The prediction results of each regression model are the average predicted
values obtained after running several experiments. In this paper, the criterion for comparing
the prediction results is the mean square error (MSE), as shown in Equation (18):

MSE =
1

Ntest

Ntest

∑
i=1

(ŷi − yi)
2 (18)

where Ntest is the number of samples in the test set, and ŷi and yi are the prediction and true
values of the i-th test sample, respectively. The bold numbers in Tables 4 and 5 indicate the
prediction error values with the best prediction performance. In our experiments, we chose
four supervised regression models, including k-nearest neighbor (kNN) regression [40],
support vector regression (SVR) [41], ExtraTree (ET) [42], and Gaussian process regression
(GPR), and three SSR models, including Coreg-kNN, Coreg-SVR, and SSDKL, in addition
to the proposed method, SSDKAL. “Global Features” indicate that the models do not use
phase partition or phase match methods, and only global features are extracted from the
process data. The regression models used for the “Global Features” are four supervised
regression models, including kNN, SVR, ET, and GPR.

The models use multiple experiments to obtain the mean value as the prediction
results. Among them, Coreg is a semi-supervised method based on co-training and involves
multiple regression models [43]. Coreg-kNN and Coreg-SVR denote the regression models
of kNN regression and SVR, respectively.

“Label_Ratio” indicates the proportion of labeled samples in the training set, and the
formula is shown in Equation (19):

Label_Ratio =
L

L + U
× 100% (19)

where L and U denote the numbers of labeled samples and unlabeled samples in the
training set, respectively.

In the supervised regression models, the number of nearest neighbors of kNN is 15,
the penalty parameter of SVR is 1.0, the minimum number of samples of split points in ET
is 2, and the minimum number of samples of leaf nodes is 1. In SSR, the numbers of nearest
neighbors of the two kNN models chosen by Coreg-kNN are 10 and 15, and the penalty
parameters of the two SVR models chosen by Coreg-SVR are 0.1 and 1.0, respectively.
The front-end network of SSDKL uses multiple fully connected layers, the parameter of
the activation function LeakyReLU is 0.2, and the optimizer chooses stochastic gradient
descent (SGD) with a learning rate of 0.01. The main parameters of SSDKAL are the same
as those of SSDKL, but multiple models need to be included as committees of AL, and
the main difference between the models is the number of layers and nodes of the fully
connected layers.
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Table 4. Results of different regression models based on Mode I.

Model

Class
Models

Label_Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Global
features

kNN 46.70 40.94 40.40 39.27 37.16 34.93 33.86
SVR 49.72 47.87 47.42 46.16 46.45 44.99 44.60
ET 39.65 38.21 34.79 36.49 26.74 28.51 26.78

GPR 43.79 42.52 42.75 42.44 42.81 42.19 41.92

Supervied
regression

kNN 32.14 25.51 24.89 24.62 23.20 21.54 21.24
SVR 42.32 38.67 38.11 35.95 35.10 34.16 34.18
ET 20.96 17.14 20.63 18.69 20.17 13.95 12.40

GPR 41.83 41.71 42.33 42.41 41.41 41.94 41.69

SSR
Coreg-kNN 20.20 17.34 16.59 16.24 16.44 15.82 16.53
Coreg-SVR 36.09 29.16 26.99 25.37 24.06 21.96 20.50

SSDKL 20.53 20.03 13.44 12.51 13.21 11.67 9.75

AL SSDKAL 15.90 14.10 10.10 8.33 8.84 9.22 7.86

Table 5. Results of different regression models based on Mode II.

Model

Class
Models

Label_Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Global
features

kNN 58.45 50.86 45.17 42.44 40.28 38.54 36.77
SVR 73.70 73.53 73.02 73.03 72.92 72.84 72.75
ET 40.72 38.95 36.95 28.34 28.14 39.72 28.60

GPR 78.71 77.30 74.33 73.91 74.03 74.07 74.39

Supervied
regression

kNN 51.98 41.93 34.93 32.08 29.54 28.75 27.28
SVR 71.96 70.30 69.44 67.18 66.21 64.65 64.60
ET 29.98 21.48 19.46 23.72 17.46 16.98 15.60

GPR 73.06 73.70 72.73 72.61 72.73 72.92 73.16

SSR
Coreg-kNN 27.81 22.78 19.69 19.77 19.46 19.41 18.46
Coreg-SVR 55.36 45.41 39.90 36.59 34.53 31.75 29.83

SSDKL 30.56 20.21 23.25 14.50 10.92 11.78 10.97

AL SSDKAL 20.93 12.08 11.85 10.68 10.64 10.18 9.95

The results in Tables 4 and 5 show that the prediction errors of the different models
basically show a decreasing trend as the proportion of labeled samples increases. This is
an expected result, because the increase in the amount of labeled data causes the models
to obtain more accurate information, and the models can fit the real variable relationships
more accurately. However, there are also some models for which the prediction results
fluctuate as the proportion of labeled samples increases. On the one hand, supervised
regression is more prone to fluctuations, because when there is less valid information, the
fitting effect of the model is far from the real situation, and an effective prediction model
cannot be built. On the other hand, the labeled samples were obtained by random sampling
in these experiments; thus, the informativeness and representativeness of the extracted
samples vary with different proportions, leading to a situation in which the prediction
results fluctuate with the proportion of labeled samples.

In Tables 4 and 5, the comparisons of the prediction results of the “Global Features”
and supervised regression models based on phase features demonstrate the role of the
phase features in the proposed framework. For the same regression model and label ratio,
the phase features contribute to the accuracy of the prediction results. The proposed phase
partition and phase match methods can more fully exploit the trend of the time series data
in the CMP process and obtain accurate phase features.

Meanwhile, Tables 4 and 5 show that the SSDKAL algorithm, which incorporates SSR,
GPR, and DKL together with AL, obtains more accurate prediction results than supervised
regression and SSR for different labeled sample proportions in both Mode I and Mode II.
Compared with the corresponding supervised regression methods (kNN and SVR), the
semi-supervised Coreg algorithm, which obtains pseudo-labels of unlabeled data, leads to
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a substantial improvement in the prediction performance. The addition of DKL leads to a
further reduction in the prediction error. The SSDKAL algorithm takes the features initially
extracted after phase partition and phase matching and, through information mining
via DNN, fitting with a Gaussian process kernel function, and adding the uncertainty
information of the unlabeled data, with a very small amount of AL query information,
achieves a more accurate MRR prediction.

For comparison, Table 6 shows the prediction results for Mode III. Mode III involves
fewer samples, and the multi-phase characteristic is not obvious. For Mode III, we only
extracted global features and did not use phase partition or phase matching. The feature
number is small. Table 6 shows that the simple model (e.g., kNN) has better prediction
results, and the addition of other modules increases the model’s complexity and the risk
of overfitting, which prevents the extraction of more feature information. Therefore, the
SSDKAL algorithm is more suitable for datasets with a larger data volume and a larger
number of features.

Table 6. Results of different regression models based on Mode III.

Model

Class
Models

Label_Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Supervied
regression

kNN 13.37 14.33 12.71 11.95 10.31 9.04 9.55
SVR 15.56 16.31 16.31 16.18 15.89 15.49 15.41
ET 15.29 15.28 12.79 14.80 18.32 13.57 20.52

GPR 15.38 15.73 15.51 15.62 15.25 15.02 15.12

SSR
Coreg-kNN 12.77 12.33 11.85 11.14 9.82 9.86 9.82
Coreg-SVR 15.56 16.31 16.31 16.18 15.90 15.49 15.41

SSDKL 15.88 15.95 10.74 14.43 15.26 13.93 14.35

AL SSDKAL 15.39 14.44 13.82 11.38 12.71 12.31 10.26

Taking Mode I as an example, Table 7 shows the time consumption of different
regression models, and the unit of data is seconds. The time for the “Global Features”
and supervised regression models is the average of a single run time. The time for the
SSR models and SSDKAL is the time for each training round, and the number of training
rounds is set to 30. Each round of Coreg-kNN and Coreg-SVR includes the training of
multiple models based on labeled data. The models select unlabeled data with high
confidence, as well as their pseudo-labels, and add them to the labeled dataset. Each
training round of SSDKL consists of training DKL models based on labeled data, predicting
unlabeled data, calculating a loss function containing the uncertainty of the unlabeled
data, and performing backpropagation. Each round of SSDKAL includes the forward
computation and backpropagation of multiple models and query sample selection based
on a combination of QBC and GS. Bold numbers indicate the time required by the SSDKAL
model. The bold numbers in Table 7 indicate the time consumption of SSDKAL.

The time consumption in Table 7 shows that the simple supervised regression models
take very little time but have a lower prediction accuracy. The SSR models and SSDKAL
require the prediction, selection, and training of unlabeled samples, and the time required
for each training round is long. SSDKAL incorporates deep neural networks for feature
extraction and applies the results of multiple regression models to the sample selection
strategy of combining QBC and GS, and therefore, the time consumption is higher. However,
the SSDKAL method can fully exploit the data features and improve the prediction accuracy
by using unlabeled samples.
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Table 7. Time Consumption for Different Regression Models based on Mode I.

Model

Class
Models

Label_Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Global
features

kNN 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SVR 0.00 0.00 0.016 0.016 0.016 0.031 0.031
ET 0.00 0.00 0.00 0.004 0.00 0.00 0.00

GPR 0.016 0.016 0.016 0.031 0.028 0.063 0.062

Supervied
regression

kNN 0.016 0.00 0.007 0.00 0.00 0.00 0.016
SVR 0.016 0.00 0.016 0.016 0.031 0.031 0.040
ET 0.00 0.016 0.016 0.00 0.016 0.022 0.020

GPR 0.00 0.031 0.016 0.047 0.069 0.100 0.127

SSR
Coreg-kNN 15.32 7.70 21.70 4.44 8.52 25.64 32.21
Coreg-SVR 8.53 5.12 8.27 35.78 18.24 53.17 42.67

SSDKL 6.68 12.32 20.29 27.63 34.60 41.64 50.66

AL SSDKAL 14.30 29.13 41.37 54.21 68.83 82.63 96.73

4.4. Ablation Experiments

In the ablation experiments, we split SSDKAL to test the prediction performance of the
GPR, DNN, and DKL models separately. DNN uses multiple fully connected layers, with
the top-layer features as input to the DKL model. DKL, SSDKL, and SSDKAL optimize
all the hyperparameters of the deep kernel and train the network using the log marginal
likelihood function to derive the parameters and perform backpropagation. The models are
experimentally implemented using GPytorch [44]. The experimental results of the ablation
experiments are shown in Table 8 and Figure 4 for Mode I.

Table 8. Results of ablation experiments based on Mode I.

Models
Label_Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7

GPR 41.83 41.71 42.33 42.41 42.41 41.94 41.69
DNN 53.93 45.55 58.77 42.48 44.37 43.01 43.03
DKL 40.45 27.71 22.05 17.75 14.90 13.96 9.06

SSDKL 20.53 20.03 13.44 12.51 13.21 11.67 9.75
SSDKAL 15.90 14.10 10.10 8.33 8.84 9.22 7.86

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Label Ratio

10

20

30

40

50

60

M
SE

GPR
DNN
DKL
SSDKL
SSDKAL

Figure 4. Variations in different models with the label ratio in the ablation experiments based on
Mode I.
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As shown in Table 8 and Figure 4, the ablation experiments based on Mode I demon-
strate the prediction performance of each model when the proportion of labeled samples is
consistent, and the approximate performance ranking is SSDKAL > SSDKL > DKL > GPR >
DNN. The GPR model is a typical machine learning model, which requires additional data
cleaning and feature engineering. When the modeled data distribution is too complex, the
availability of a priori knowledge regarding the data distribution directly determines the
accuracy of the data feature engineering, which, in turn, affects the model’s performance.
DNN can reduce manual involvement to a greater extent via multi-level feature extraction.
DKL gives full play to the advantages of both models by organically combining DNN and
GPR and maintains the strong generalization performance with respect to the data, keeping
the model performance high while maintaining strong generalization in regard to the data.

The model prediction performance of SSDKAL is best when the proportion of labeled
samples is kept the same. In the semi-supervised scenario, pure machine learning has a
performance limitation. SSDKAL further enhances the model’s utilization of unlabeled
data by incorporating AL methods into the training mechanism of DKL by combining the
prediction uncertainty of unlabeled samples with actively learned expert queries and thus
improves the comprehensive modeling capacity of the dataset.

4.5. Comparisons of Different AL Strategies and Kernel Functions

Tables 9 and 10 show the prediction performance of the models with different AI
query strategies and different kernel functions. The models used in the experiments are all
SSDKAL, and the proportion of labeled samples is 0.3.

Table 9. Results of different AL query strategies and different kernels based on Mode I.

AL Query Strategy Kernel MSE

QBC + GS

RBF 10.10
Cosine 41.01
Matern 13.80

RQ 13.61

QBC + GS

RBF

10.10
QBC 12.61
GS 11.99

QBC Group 12.24

Table 10. Results of different AL query strategies and different kernels based on Mode II.

AL Query Strategy Kernel MSE

QBC + GS

RBF 11.85
Cosine 23.32
Matern 12.47

RQ 13.16

QBC + GS

RBF

11.85
QBC 13.75
GS 16.41

QBC Group 13.15

In Tables 9 and 10, “QBC + GS” indicates the query strategy using a combination
of QBC and GS, i.e., the group of unlabeled samples with the largest prediction variance
between different models is selected first; then, that which is farthest from the labeled
samples is selected from among them and the label is queried. “QBC”, “GS” indicates
that only the QBC or the GS strategy is used, respectively, and only one sample is queried.
The “QBC Group” indicates the querying of a group of samples in an epoch using the
QBC strategy, in which case the query is faster. The experimental results show that the
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strategy combining QBC and GS, which considers informativeness, representativeness, and
diversity, has the best prediction effect.

RBF, cosine, Matern, and RQ are the four kernel functions in the DKL framework,
and the tables show that the cosine kernel has a poor prediction performance. The CMP
process is a nonlinear, multi-batch complex production process, and there is no significant
correlation between the data features, which is a key factor limiting the performance of
the cosine kernel. In comparison, RBF has a better fitting effect. For different application
scenarios, the kernel functions and related hyperparameters need to be flexibly selected
based on domain knowledge in order to achieve the maximum performance of the model.

4.6. Effects of the SSDKAL Method

Table 11 presents the results of existing methods for MRR prediction and compares
them with the proposed SSDKAL method. The data shown are the MSE. The ratio of labeled
samples for the SSDKAL method is 0.7. SSDKAL achieves good prediction results without
using all the labeled samples. In the feature extraction stage, SSDKAL takes into account
the unequal length and multi-phase characteristics of the CMP process and extracts detailed
process features through phase partition, phase matching, and phase feature extraction.
DKL obtains the phase features through deep neural networks and further mines the
depth features and the deep associations between variables. SSR adds the uncertainty of
unlabeled samples to the loss function. The AL sample selection strategy compensates
for the lack of representativeness and diversity of samples in SSR and makes full use of
unlabeled sample information.

Table 11. Comparison of the proposed method with existing methods.

Methods Mode I Mode II

Preston model [45] 870.25
Reconst. + Clust.loss [15] 32.34

Luo & Dornfeld model [45] 288.08
FE12 + CR [12] 312.915 307.091

CART-Stacking [6] 25.65 20.25
ELM-Stacking [6] 22.99 20.12
kNN-MTGP [7] 9.94 13.20

JIT-PF [8] 9.88 13.32
SSDKAL 7.86 9.95

Figure 5 demonstrates the prediction accuracy of SSDKAL for a labeled sample ratio of
0.7. Figure 5a shows the predicted values compared with the actual values, Figure 5b shows
the distribution of the residuals, and Figure 5c shows the linear analysis of the predicted
and actual values. It can be seen that SSDKAL can predict the MRR more accurately.

(a)

Figure 5. Cont.



Sensors 2023, 23, 4392 19 of 21

(b) (c)

Figure 5. The prediction performance of SSDKAL. (a) The predictions and ground truths. (b) The
histogram distribution of the residuals. (c) The linear correlation between the predictions and the
ground truths.

4.7. Limitations

The proposed method, SSDKAL, still has some limitations and drawbacks. Firstly,
due to the small number of samples, the query samples for AL are still affected by the
problem of insufficient representativeness and diversity. Since the query samples have an
incomplete coverage of the overall distribution of the samples, the model’s estimation of
the sample distribution is biased, which affects the prediction accuracy. Secondly, in the
SSDKAL model, the deep kernel mapping of the Gaussian DKL model uses fully connected
layers, which is insufficient for the extraction and mining of the depth features of the
sample data. Finally, the AL sample selection strategy is based on the data features of the
samples. However, the CMP process is complex, and the utilization of information from the
process data is incomplete if knowledge obtained a priori, such as the process mechanism,
is completely absent.

5. Conclusions

In this paper, we proposed a VM method known as SSDKAL for MRR prediction in the
CMP process. In the feature extraction stage, the phase information is fully mined, and the
phase features are extracted using phase partition and phase-matching algorithms. In the
modeling stage, the combination of deep neural networks and Gaussian process regression
enable the deep mining of feature information. Semi-supervised regression and active
learning sample query strategies make full use of the information of unlabeled samples.
The proposed method was validated based on the CMP process dataset and achieved a
better prediction accuracy than supervised regression and semi-supervised regression.

Our future work will focus on applying deep learning methods to data in the CMP
process. To date, deep learning has yielded rich research results for both image and
time series data, while more accurate and deep feature extraction and processing could be
accomplished. The 3D data can be considered as both image and time series data. Therefore,
deep learning will play an important role in data research on the CMP process.
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