
Parametric amplification in
coupled nonlinear waveguides:
The role of coupling dispersion

Minji Shi1, Vitor Ribeiro1† and Auro M. Perego1*
1Aston Institute of Photonic Technologies, Aston University, Birmingham, United Kingdom

We present the theory of parametric amplification in coupled nonlinear
waveguides considering the frequency dependency of the coupling strength.
We show that coupling dispersion can indeed compensate for the uncoupled
individual waveguides dispersion enabling a substantial tailoring of the gain
spectrum. Our theory describes both phase-sensitive and phase-insensitive
operational modes, it can be straightforwardly generalized to include arbitrary
higher-order waveguide and coupling dispersion and its predictions agree very
well with numerical simulations both in the presence and in the absence of
waveguide losses. It provides a tool for the design of novel versatile parametric
amplifiers based both on coupled integrated waveguides and dual-core fibers too.

KEYWORDS

parametric amplification, coupled waveguides, coupling dispersion, nonlinear couplers,
four wave mixing effects

1 Introduction

Optical parametric amplifiers are devices with great technological potential for signal
amplification in optical communications. This is due to their broad bandwidth, low noise
figure and exploitation of waveguides intrinsic Kerr nonlinearity, not requiring any
particular rare-earth based material doping. Parametric amplification is based on the
four-wave mixing process where two photons from a powerful pump wave are
annihilated and two photons are created at different frequencies called signal and idler
respectively, provided that certain phase-matching conditions are satisfied (Stolen and
Bjorkholm, 1982; Mahric, 2007). Parametric amplification has been demonstrated in a
variety of configurations in nonlinear optical fibers (Hansryd et al., 2002; Takasaka et al.,
2012; Gordienko et al., 2017; Olsson et al., 2018; Andrekson and Karlsson, 2020; Gordienko
et al., 2023). However it can be achieved also in silicon and silicon nitride waveguides which
are promising for optical amplification in integrated devices (Ye et al., 2021a; Ye et al.,
2021b).

Parametric amplification in two coupled nonlinear waveguides has been suggested
very generally in the past in the context of nonlinear optical couplers (Mecozzi, 1988;
Trillo et al., 1989). It has been recently proposed as a promising practical solution for
optical communications featuring: flat gain profile, phase-matching in the normal
dispersion regime thanks to the coupling contribution, and 0-dB noise figure in the
phase-sensitive operational mode (Ribeiro et al., 2017; 2018). Preliminary experimental
results in a dual-core highly nonlinear fiber have been obtained too (Szabo et al., 2021;
Ribeiro et al., 2022). Some of the authors of the present paper have furthermore shown
that if the coupling is chosen with a proper spatial dependence, it can compensate for the
mismatch dynamically arising due to the pump attenuation (Ribeiro and Perego, 2022a;
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Ribeiro and Perego, 2022b), which could solve a substantial
problem in integrated amplifiers where the attenuation is of
the order of 1 dB/m (Karlsson et al., 2021). The latter coupled
waveguides geometry can lead, for specific parameters choice, to
superior performances in terms of bandwidth and bandwidth-
gain product, compared both to the standard and to the tapered
single waveguide silicon nitride parametric amplifiers (Zhao
et al., 2020).

In the present work, we show that the frequency dependency
of the coupling, and in particular the coupling dispersion—the
second derivative of the coupling strength with respect to
frequency evaluated at the pump frequency—can play an
important role in compensating for the chromatic dispersion
of the individual waveguides. This is due to the collective
behavior of the interacting waves propagating along coupled
waveguides. The justification of the relevance of this particular
effect is grounded on the fact that coupled nonlinear waveguides
can be fabricated in such a way that the contribution of the
coupling dispersion is strong enough to compensate for the
individual waveguide dispersion. Indeed, the role of the
frequency dependent coupling strength has been explored in
the past especially in the study of coupled silicon waveguides. In
that context it enables the existence of solitons and modulation
instability in conditions where these phenomena would not be
possible in the single uncoupled waveguide (Benton and
Skryabin, 2009; de Nobriga et al., 2010; Ding et al., 2012).
However, the role of coupling dispersion in parametric
amplification has not yet been investigated analytically to the
best of our knowledge. The impact on the modulation instability
spectrum of the first coefficient in the Taylor expansion of the
coupling around the pump frequency has been theoretically
studied in the past for two evanescently coupled core fibers
(Li et al., 2011; 2012) and also in generalized forms of the two
coupled nonlinear Schrödinger equations (Nithyanandan et al.,
2013; Nair et al., 2018; Li et al., 2020a; Li et al., 2020b). It has
been shown that this term can lead to the generation of
additional spectral sidebands both in the normal and in the
anomalous dispersion regime, provided that the pump power
distribution is asymmetric in the two waveguides. In this work
we show a different phenomenon and, namely, that the second-
order term in the expansion can enable complete compensation
of the group velocity dispersion of the single waveguide in the
case when the pump power distribution is symmetric in the two
waveguides. We provide analytical formulas for the parametric
gain in the phase-sensitive (PS) and phase-insensitive (PI)
regime too, considering characteristic parameters for both
lossless coupled core fibers and lossy integrated silicon nitride
waveguides amplifiers. This provides a novel tool for dispersion
engineering to be exploited in the design of broadband, flat gain,
low noise figure, and energy efficient parametric amplifiers.

2 Materials and methods

The starting point of our theory consists of the two
nonlinear Schrödinger equations which rule the propagation
of the electric field amplitudes A1,2 along two identical coupled
waveguides:
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βn and Cn are the n-th coefficient of the Taylor expansion of the
frequency-dependent propagation constant β(ω) and coupling C(ω)
respectively, γ and α are the nonlinearity and attenuation
coefficients, t is the temporal coordinate and z is the spatial
evolution coordinate along the longitudinal waveguides
dimension. In the context of degenerate four-wave mixing, the
electric field amplitudes A1,2 can be expressed as combinations of
pump, signal, and idler waves oscillating with angular frequency ω0,
ωs = ω0 + Ω and ωi = ω0 − Ω, and with amplitudes up1,p2, us1,s2 and
ui1,i2 respectively, reading

A1,2 z, t( ) � up1,p2 z( ) + us1,s2 z,Ω( )e−iΩt + ui1,i2 z,Ω( )eiΩt. (2)
The substitution of Eq. 2 into the coupled NLSEs (Eq. 1a and 1b)
yields six coupled equations governing the propagation of the six
waves. The equations for waveguide 1 read
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where the small sidebands approximation |up|
2 ≫|us,i|

2 has been
considered. Swapping indexes 1 and 2 gives other three equations for
waveguide 2.

We focus on the case where the pump waves are identical in the
two waveguides with common initial phase ϕ0, i.e.,

up1 � up2 �
���
Pp

2

√
e−

α
2 zeiϕp , (4a)

ϕp � ϕ0 + β0 + C0( )z + γ

2
Ppzeff , (4b)

where Pp is the total input pump power and zeff � ∫z

0
e−αz′dz′ (in the

lossless case, zeff→ z). A continuous wave solution with equal power
but π relative phase between the two pumpwaves exists too, however
we will focus here on the symmetric phase solution as it enables the
flat gain profile for one of the system supermodes. By introducing
es1,s2,i1,i2 defined by

us1,s2 � es1,s2e
iβoddze−

α
2 z+iϕp , (5a)

ui1,i2 � ei1,i2e
−iβoddze−

α
2 z+iϕp , (5b)

where βodd � β(ωs)−β(ωi)
2 , signal and idler equations can be separated

into two sets of uncoupled equations which in matrix form read
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with E± � (es±, epi±)T � (es1 ± es2, epi1 ± epi2)T being the sidebands of
supermodes A± � (A1 ± A2)/

�
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√
, K± � (Δβ2 ± ΔC
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2 e
−αz,

Δβ(Ω) = β(ωs) + β(ωi) − 2β0, ΔC(Ω) = C (ωs) + C (ωi) − 2C0 and

Codd � C(ωs)−C(ωi)
2 . Eq. 6 admits an exact solution in the lossless case
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and an approximate one in the lossy scenario resulting in the appearance of

the effective length zeff (see (Alem et al., 2015; Ribeiro and Perego, 2022a;

Zhao et al., 2022) for various applications of this approximation in the

context of parametric amplification and modulation instability). The

solution is formally E±(z,Ω) � e
i∫z

0
M±(z′)dz′E±(0,Ω), where the

exponential expressions read as follows

e
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3 Results

To highlight the role of coupling dispersion in the parametric
amplification process we calculated analytically the z-dependent
gain for us− = us1 − us2 — the signal of supermode A− —, defined as
the ratio between the value of us− square modulus at coordinate z to
its value at the input of the amplifier: G(z) � |us−(z)|2

|us−(0)|2. Considering
the solution E±(z,Ω) � e±iCoddzN±E±(0,Ω), one has an expression
that depends on theN−matrix elements and on the initial conditions
for the supermode signal and idler amplitudes as

G z( ) � e−αz
|N−

11es− 0( ) +N−
12e

p
i− 0( )|2

|es− 0( )|2 , (8)
whereN−

11 andN
−
12 are elements of the matrix defined in Eq. 7, while

the factor e−αz comes from the definition of amplitudes us1,s2 as a
function of es1,s2 as described by Eq. 5a. In our study we focus on the
“−” supermode as, unlike the “+” one, it can exhibit a flat gain
spectrum which is appealing for applications (Ribeiro et al., 2017).
We have compared these analytical predictions with numerical
simulations of the coupled NLSEs (Eq. 1a and 1b) performed
using a split-step Fourier algorithm. In simulations the gain has
been computed as G(z) � |Â−(z)|2

|Â−(0)|2, where Â− is the Fourier transform
of A−. In simulations we have considered a time window defined by
[−41.7, 41.7] ps with 1,024 grid points, resulting in a time separation
Δt = 0.0814 ps. This corresponds to a frequency window of [−6.144,
6.132] THz · 2π with a frequency separation dΩ = 0.012 THz · 2π.
The integration step size dz is specified in each figure caption for the
various scenarios considered. The initial conditions for the
simulations correspond to combinations of pump waves with
vanishing initial phase (ϕp = 0) and signal waves, that is
A1,2(0, t) � ����

Pp/2
√ +∑nus1,s2(0)e−indΩt + ∑nui1,i2(0)eindΩt, where

the input signal and idler amplitudes us1,s2,i1,i2 (0) will be
specified case by case later and n is an integer. The gain has been
calculated for signals having higher/lower frequency compared to
the pump by considering positive/negative n in the sums only.
Despite our theory being valid for an arbitrary order of waveguide
and coupling dispersion, in the following particular examples we
have considered the expansions up to the second order only. We also
notice that the odd terms in the coupling Taylor expansion,
described by Codd, do not enter the gain expression for the
supermodes when the two waveguides are pumped with equal

FIGURE 1
Phase insensitive lossless amplifierMap of parametric analytical
gain versus frequency and C2 in anomalous (A) and normal (B)
dispersion regime; and gain spectrum versus frequency comparison
between numerics and theory for anomalous (C) and normal (D)
dispersion regime with C2 = 1 ps2km−1 (corresponding to dashed lines
in (A,B). Other parameters used are β2 =±0.5 ps2km−1, γ = 10 W−1km−1,
Pp = 6 W, C0 = 15 km−1 and z = 0.1 km. The input signal wave into
waveguide 1 used in simulations is us1(0) � 10−4 ��

W
√

and the
integration step is dz =10–3 km.

FIGURE 2
Phase insensitive lossy amplifier Map of parametric analytical
gain versus frequency and C2 in anomalous (A) and normal (B)
dispersion regime; and gain spectrum versus frequency comparison
between numerics (circles) and theory (solid lines) for anomalous
(C) and normal (D) dispersion regime with C2 = 0.07 ps2m−1

(corresponding to dashed lines in (A,B). Other parameters used are
β2 = ±0.05 ps2m−1, γ = 1.2 W−1m−1, Pp = 6 W, C0 = 1.8 m−1, z = 1.5 m
and α=0.69 m−1 corresponding to 3 dBm−1. The input signal wave into
waveguide 1 used in simulations is us1(0) � 10−4 ��

W
√

and the
integration step is dz = 10–3 m.
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power. A small pump power imbalance between the two waveguides
can result in modifications and degradation of the amplifier gain as it
has been analyzed in detail in (Shi et al., 2023a). Alternatively the
amplifier can be intentionally pumped with different power in the
two waveguides, as asymmetric continuous wave solutions exist too
(Li et al., 2011; Shi et al., 2023b). In the latter case the interplay
between power asymmetry and odd terms of the frequency
dependent coupling causes supermodes interaction leading to
intermodal four-wave mixing and to the separation of signal and
idler waves between the two different supermodes too (Shi et al.,
2023b). Firstly, we focus on the PI regime, selecting as initial
conditions ui1 (0) = ui2 (0) = 0, and us2 (0) = −us1 (0)
corresponding to the excitation of “−” supermode only. This
configuration provides the best performance in terms of noise
figure (Ribeiro et al., 2018), flat gain profile for identical pump
power and phase in the two waveguides, and the compensation of
second-order group velocity dispersion by second-order coupling
dispersion parameter as will be further shown in this paper. The PI
gain is therefore given by

GPI z( ) � e−αz|N−
11|2 � e−αz 1 + S2( ), (9)

where S � γ
Pp

2 zeff
sinh(ρ−)

ρ−
. The C2 dependent gain for lossless (using

parameters typical of coupled core fibers) and lossy (using
parameters typical of silicon nitride waveguides) PI parametric
amplifiers are shown in Figures 1A, B and in Figures 2A, B
respectively considering both anomalous and normal dispersion

waveguides. The agreement between theory and simulations is
excellent as the examples shown in Figures 1C, D and in Figures
2C, D clearly demonstrate. We observe that coupling dispersion, if
properly chosen, is able to compensate for individual waveguides
dispersion hence substantially improving the amplifier gain
bandwidth. The largest bandwidth is achieved when C2 = β2 as it
can be clearly seen from Figures 1A, B, and from Figures 2A, B. PS
operation in coupled waveguides parametric amplifiers can be
implemented in a large number of different scenarios (Ribeiro
et al., 2017; 2018). Here, without loss of generality, we focus on
one particular case to illustrate the predictive power of our theory
and the role of C2 in this regime too. After fixing us1 (0) we choose
the initial condition as follows, ui1 (0) = us1 (0), us2 (0) = ui2
(0) = −us1 (0). If we assume that the initial phase of es1 is ϕs, the
analytical gain expression reads

GPS z( ) � e−αz|N−
11e

iϕs +N−
12e

−iϕs |2. (10)
The dependency of the gain on the initial phase ϕs is shown in
Figures 3A, B for the lossy amplifier. We then fixed ϕs to maximize
the gain, and calculated the gain spectrum both analytically and
numerically, which is shown in Figures 3C, D, where the PI gain is
also reported as a reference. An excellent agreement between theory
and simulations is achieved in this case too. We note that in this
work we have considered the signal of “−” supermode as the
amplifier output. If the signal of “+” supermode us+ = us1 + us2 is
chosen instead, then analogous dispersion compensation effects
arise but requiring C2 with the opposite sign.

It is furthermore important to mention that the performances of
the lossy parametric amplifier with frequency dependent coupling
could be improved in terms of gain-bandwidth product by
exploiting the benefits of spatially dependent coupling to
compensate for pump attenuation induced phase-matching
degradation. This has been demonstrated in (Ribeiro and Perego,
2022a; Ribeiro and Perego, 2022b) for coupling having a constant
frequency profile. A detailed analysis of the coupled waveguides
parametric amplifier with both spatially and frequency dependent
coupling will be presented in a future work.

4 Discussion

Compared to a recent numerical study of parametric
amplification in coupled waveguides, also considering
wavelength dependency of the coupling strength (Su and
Biaggio, 2022), our work provides elegant, practical and easy-
to-use analytical expressions for the design of an effective dual-
waveguide parametric amplifier, accounting for coupling
dispersion of an arbitrary order. Considering terms of order
greater than 2, both in the single waveguide and in the coupling
dispersion, is particularly relevant when the net combined
contribution of both single waveguide group velocity and
second-order coupling dispersion is close to zero, and there is
a need to describe parametric amplifiers operating over a larger
bandwidth. In that case, higher-order waveguide dispersion and
coupling dispersion terms in the expansion must be taken into
account and constitute the limiting factors for the gain
spectrum. These terms can be straightforwardly included in

FIGURE 3
Phase sensitive lossy amplifier Map of parametric gain
calculated analytically versus frequency and ϕs in anomalous (A) and
normal (B) dispersion regime; gain spectrum versus frequency for
anomalous (C) and normal (D) dispersion regime with ϕs = 0.35π
(corresponding to dashed lines in (A,B) comparing numerics
(diamonds) with analytics (red solid lines). The phase insensitive gain
spectrum from Figure 2 is also shown as a reference. Other
parameters used are β2 = ±0.05 ps2m−1, γ = 1.2 W−1m−1, Pp = 6 W, C0 =
1.8 m−1, z= 1.5 m,C2 = 0.07 ps2m−1 and α= 0.69m−1 corresponding to
3 dBm−1. The input signal wave into waveguide 1 used in simulations is
us1(0) � 10−4eiϕs

��
W

√
and the integration step is dz = 10–3 m.
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the theoretical framework presented in this work and their
magnitude would depend on the particular fabrication
geometry and materials, which should be evaluated on an
individual basis. Furthermore our theory can be also
generalized to include the effects of free carrier dispersion
(Chaturvedi et al., 2017) and two-photon absorption (Tsoy
et al., 2001) which are relevant in silicon waveguides.

In conclusion, we have shown that coupling dispersion is a
fundamental physical effect that enables dispersion engineering
in dual-waveguide parametric amplifiers, determining
substantial tailoring of the gain spectrum and offering the
possibility of broadband parametric amplification also when
the individual waveguides have normal dispersion. This
powerful tool adds a substantial degree of versatility to the
already promising features of dual-waveguide parametric
amplifiers such as flat gain spectrum, 0-dB noise figure, and
compensation of loss induced mismatch. Further developments
in the study of frequency dependent coupling for dispersion
compensation can be relevant for fiber amplifiers with a large
number of cores and for arrays of integrated waveguides with
different coupling topologies, as well as for other photonic
devices that involve multiple coupled modes.
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