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Abstract: Parametric amplifiers relying on the nonlinear four-wave mixing process are known
for their signature symmetric gain spectrum, where signal and idler sidebands are generated
on both sides of a powerful pump wave frequency. In this article we show analytically and
numerically that parametric amplification in two identically coupled nonlinear waveguides can
be designed in such a way that signals and idlers are naturally separated into two different
supermodes, hence providing idler-free amplification for the supermode carrying signals. This
phenomenon is based on the coupled-core fibers analogue of intermodal four wave-mixing
occurring in a multimode fiber. The control parameter is the pump power asymmetry between
the two waveguides, which leverages the frequency dependency of the coupling strength. Our
findings pave the way for a novel class of parametric amplifiers and wavelength converters, based
on coupled waveguides and dual-core fibers.
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Optical parametric amplifiers are promising devices for signal amplification and wavelength
conversion [1,2]. The physical principle underpinning their operation is four-wave mixing
mediated by Kerr nonlinearity in presence of a powerful pump wave [3]. They have been
demonstrated in silica fibers [2] and in integrated waveguides too [4–6]. The characteristic single-
pump parametric amplifier gain spectrum exhibits two main sidebands symmetrically located with
respect to the pump frequency. In the phase-insensitive (PI) mode, signal waves to be amplified
are injected in the amplifier at frequencies different (blue or red detuned) from the pump one. Idler
waves are then spontaneously generated on the other side of the pump frequency due to the nature
of the four-wave mixing process. In the phase-sensitive (PS) operational regime [7,8], instead,
idlers, with an appropriate phase relation with respect to pump and signals, have to be injected at
the amplifier input to provide adequate interference with the signals in order to achieve larger gain.
In both scenarios, in the context of optical communications, idlers have to be filtered out after
the amplification to prevent detrimental nonlinear interaction during information transmission.
Idler amplification is dictated by the signature symmetric nature of the parametric gain spectrum
which is governed at the leading order by the second-order dispersion coefficient. Asymmetric
gain spectrum in parametric amplifiers has been studied and observed as a consequence of either
third-order dispersion [9–11], gain saturation [12], Raman gain [13,14] or asymmetric losses
for signal and idler waves [15–17]. However, these asymmetries are not pronounced enough to
reduce to a negligible value the idlers gain over a large bandwidth. Multimode fibers offer an
appealing alternative way to provide amplification to signals while confining idlers in a separate
optical mode. This occurs through the so-called intermodal four-wave mixing process [18–22].
In this work, we demonstrate analytically and numerically a parametric amplifier consisting of a
dual-core silica fiber, showing that an operational regime exists where signals carried by one
supermode of the system experience substantial gain, while idler waves amplification is negligible
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in the same supermode. The physical principle underpinning this process is the analogue of
intermodal four-wave mixing for a multicore fiber system.

Parametric amplification in coupled nonlinear waveguides, suggested in pioneering contri-
butions several decades ago [23,24], can provide broadband flat gain and low noise figure in
both PS and PI operational mode [25–27]. It also enables compensation of pump attenuation
induced phase-matching degradation via spatially dependent coupling [28]; as well as dispersion
compensation through coupling dispersion engineering [29].

In this article, we show instead that coupled-core fibers parametric amplifiers operated in the
regime when the two cores are pumped with different power, thanks to the frequency dependency
of the coupling, can provide frequency asymmetric gain for the two supermodes of the system.
This results in negligible idlers amplification in the supermode carrying the signals, relying on a
purely conservative nonlinear dynamics. In Fig. 1 the amplifier concept is illustrated pictorially.
Intermodal dispersion has been observed experimentally [30] and also studied in the context
of soliton formation and parametric amplification [31,32] in arrays of coupled waveguides.
Furthermore, modulation instability in coupled nonlinear Schrödinger equations (NLSEs) has
been studied analytically [24,33] including the role of frequency-dependent coupling and in
particular of the first order term in its Taylor expansion around the pump frequency [34,35] (see
also [36–39] for various generalized cases). However, the remarkable frequency asymmetric gain
spectrum for different supermodes which we report here has never been described so far to the
best of our knowledge.

Fig. 1. Amplifier concept. Schematic of the difference between the standard parametric
amplifier, which amplifies signals and generates idlers in the same optical mode, and the
asymmetrically pumped dual-core fiber parametric amplifier, for which the signals encoded
into one supermode are amplified and no idlers are generated in the same supermode.

The model for our system consists of two coupled NLSEs ruling the propagation of the electric
field amplitudes A1,2 along two identical linearly coupled waveguides:
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βn and Cn are the n-th coefficient of the Taylor expansion of the frequency-dependent propagation
constant β(ω) and coupling C(ω) respectively, while γ is the nonlinearity coefficient, t is the
temporal coordinate, and z is the spatial evolution coordinate along the longitudinal dimension
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of the waveguides. Despite here we consider only up to second-order Taylor expansions of
waveguide and coupling dispersion, our theoretical framework can be naturally generalized to
include higher-order terms too. In this system, the four-wave mixing process can be described
using 6 coupled equations for the pump (up1,p2), signal (us1,s2) and idler (ui1,i2) wave amplitudes
oscillating with angular frequency ω0, ωs = ω0 +Ω and ωi = ω0 −Ω respectively. In this article,
we follow the convention of considering the signals having larger frequency than the pump, i.e.
Ω>0 (in Supplement 1, S6, the case of signals red detuned with respect to the pump is discussed
too). The equations for waveguide 1 read:

∂up1
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iβ0 + iγ |up1 |

2
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up1 + iC0up2, (2a)
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where the small sidebands approximation |us,i |
2/|up |

2 ≪ 1 has been considered. C0 is the
coupling at the pump frequency. Exchanging the indexes 1 and 2 provides the equations for the
second waveguide. We consider the power asymmetric pump waves solution with common initial
phase ϕ0, i.e.

up1,p2 =
√︁

P1,2eiφp , ϕp = ϕ0 + β0z + γPpz, (3)

where P1,2 =
1
2 (Pp ± Pd), Pp is the total pump power, and Pd =

√︂
P2

p − (2C0/γ)2 is the power
asymmetry parameter. It is important to notice that, unlike the symmetric power stationary
solution, the asymmetric one does not exist for arbitrary input power. It requires conditions
which are more restrictive — but not prohibitive from an experimental point of view — namely
that the total input power should exceed a certain threshold, satisfying Pp>2C0/γ. Then, by
introducing es1,s2,i1,i2(z) defined by

us1,s2 = es1,s2eiβoddzeiφp , ui1,i2 = ei1,i2e−iβoddzeiφp , (4)

where βodd = [β(ωs) − β(ωi)] /2, (2b) and (2c) can be rewritten as
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Here we defined E± = (es±, e∗i±)
T = (es1 ± es2, e∗i1 ± e∗i2)

T , so that the sidebands of supermodes
A± = (A1 ± A2)/

√
2 can be expressed as
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The submatrices M±, which describe the evolution of E±, and Mc, representing the coupling
between the modes E± induced by pump power difference Pd, read respectively
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where K± = ∆β/2 ± ∆C/2 ± C0, ∆β(Ω) = β(ωs) + β(ωi) − 2β0, ∆C(Ω) = C(ωs) + C(ωi) − 2C0
and Codd = [C(ωs) − C(ωi)] /2. E± can be computed at an arbitrary propagation distance z as
(E+(z), E−(z))T = N(E+(0), E−(0))T with matrix N = eiMz.

https://doi.org/10.6084/m9.figshare.22041284
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We now focus on the input regime where signal waves have opposite phases in two coupled
waveguides so that es1(0) + es2(0) = 0 and study the output of the supermode A−. Thus the gain
spectrum for the sidebands can be defined as

G(z) =

{︄
|es−(z)|2/|es−(0)|2, Signal
|ei−(z)|2/|es−(0)|2, Idler.

(8)

According to our definition of the gain, G(z)<1, at the amplifier output for idlers implies
that idlers have not reached a power equal to the input signals. Firstly we considered C2 = 0
to better highlight the necessary conditions for idler-free parametric amplification. We have
compared the analytical predictions with numerical simulations of the coupled NLSEs (Eqs. (1))
performed using a split-step Fourier algorithm. In the PI regime, considering ei1(0) = ei2(0) = 0,
the analytical gain reads

GPI(z) =

{︄
|N33(z)|2, Signal
|N43(z)|2, Idler

(9)

where Nij is the element of the matrix N at i-th row and j-th column. The matrix elements need
to be calculated numerically due to their cumbersome form resulting from the matrix exponential
eiMz.

We show the dependence of the amplifier gain spectrum versus C1 in Fig. 2 for anomalous
(a) and normal (b) waveguide dispersion respectively, while an example of the idler-free
operation for the A− supermode is shown in panels c) and d). In the latter case, the idler-free
operational mode is limited to the high-frequency range only, and the signal gain is smaller for
the parameters considered. For the particular parameters selected, the idler-free regime exhibits
a remarkable ≈20 dB gain difference between signal and idler sidebands in the anomalous and
in the normal dispersion regime too. As in the normal dispersion scenario, the asymmetric
gain coexists with symmetric low-frequency sidebands — which would require additional
filtering — to quantify the amount of useful signal power contained in the idler-free spectral
lobe, for input signal waves in the interval (0,Ωm], we have computed the following quantities:
I+ =

∫ +Ωm

0 S−(Ω′)dΩ′
/︁ ∫ +Ωm

−Ωm
S−(Ω′)dΩ′ and Is =

∫ s2
s1 S−(Ω′)dΩ′

/︁ ∫ +Ωm

−Ωm
S−(Ω′)dΩ′. I+ is the

ratio between the integral of the output spectral power S−(Ω′) of the supermode A− computed
for frequencies larger than the pump one and the total power contained in the full simulations
window [−Ωm = −2π · 6,+Ωm = 2π · 6] rad/ps, excluding the pump. Is is the ratio between
the integral of the supermode A− output spectral power computed in the interval around the
asymmetric signal spectral lobe delimited by s1 and s2 and the total power contained in the full
simulations window. For the anomalous dispersion case — (Fig. 2(c)) with C1 = −7.5 ps · km−1

— we obtain I+ = 0.96 and Is = 0.79 meaning that 96% of the power of A− supermode is
contained in the signal spectrum and that 79% of the power is in the asymmetric spectral lobe in
the interval [s1 = 2π · 3.85, s2 = 2π · 5.61] rad/ps. Performances are less significant in the normal
dispersion regime — (Fig. 2(d)) with C1 = 7.5 ps · km−1 — due to large power contained in the
low-frequency symmetric sidebands. In that case, we obtain I+ = 0.58 and Is = 0.9 meaning that
58% of the power of A− supermode is contained in the signal spectrum and that 9% of the power
is in the asymmetric spectral lobe in the interval [s1 = 2π · 4.10, s2 = 2π · 5.53] rad/ps. Similar
results are obtained for the PS amplifier shown below.

The PS operational mode in two coupled waveguides parametric amplifiers can be implemented
in various different scenarios [25,26]. Here, without loss of generality, we focus on the initial
condition: es1(0) = ei1(0) = −es2(0) = −ei2(0), and assume that the initial phase of signal wave
in waveguide 1 is ϕs + ϕ0, then the gain reads:
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Fig. 2. PI amplifier. Map of analytical parametric gain for A− versus frequency and C1 in
anomalous a) and normal b) dispersion regime, and comparison of gain spectrum versus
frequency between theory (continuous line) and numerics (dots) for anomalous c) and normal
d) dispersion regime with C1 = ∓7.5 ps · km−1 (C1 = 0) shown in orange (gray). Other
parameters used are β2 = ∓0.5 ps2km−1, γ = 10 W−1km−1, Pp = 5.4 W, C0 = 15 km−1,
C2 = 0, and z = 0.1 km.

GPS(z) =

{︄
|N33(z)eiφs + N34(z)e−iφs |2, Signal
|N43(z)eiφs + N44(z)e−iφs |2, Idler.

(10)

The characterization of the PS amplifier is shown in Fig. 3. We have furthermore investigated
the dependency of the gain spectrum on the pump power difference Pd which is shown in Fig. 4
for both PI and PS operational mode, as playing with pump power is a practical way to control the
amplifier gain experimentally. Results show that there is a trade-off between maximizing the gain
and keeping negligible idler amplification. It is important to stress that the gain asymmetry for
signal and idler waves between different supermodes reported in this work is not related to odd
dispersion terms βodd, which in our system results in a simple phase factor as it can be appreciated
from Eq. (4). Furthermore, while the impact of C1 on the MI spectrum in asymmetrically pumped
dual-core fibers has been investigated in [34,35], in those works the frequency asymmetric gain
spectrum for different supermodes was not observed, possibly because the focus was on the
eigenvalue spectrum of the continuous wave stability problem (which is symmetric in frequency)
and the parametric gain was not calculated by fully solving the signals and idlers equations. Both
in the PI and PS regime, the amplifier asymmetric gain spectrum is due to the combined action
of the unbalanced pump power distribution between the two waveguides and of the frequency
dependency of the coupling. Notably, Pd ≠ 0 causes supermodes mixing as it can be clearly
seen from Eqs. (5) and (7) showing that the supermode coupling matrix Mc is nonvanishing
only if Pd ≠ 0. In that case, even if one supermode only is injected inside the amplifier, the
nonlinear dynamics couples energy into the other supermode too. If C1 ≠ 0 too, while the
four-wave mixing process keeps its symmetric spectral feature, then the signals remain located
in one supermode while the idlers are located in the other supermode. In S2 of Supplement
1 we prove this point by showing indeed examples of the gain spectrum for the sidebands of
supermode A+ obtained for the same parameters of Fig. 2, which corresponds to initial conditions

https://doi.org/10.6084/m9.figshare.22041284
https://doi.org/10.6084/m9.figshare.22041284
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Fig. 3. PS amplifier. Map of analytical parametric gain for A− versus frequency and C1 in
anomalous a) and normal b) dispersion regime with ϕs = 0, and versus frequency and ϕs in
anomalous c) and normal d) dispersion regime with C1 = ∓7.5 ps · km−1; gain spectrum
versus frequency comparison between theory (continuous line) and numerics (dots) for
anomalous e) and normal f) dispersion regime with ϕs = 0 and C1 = ∓7.5ps · km−1 (C1 = 0)
shown in orange (gray). Remaining parameters are like in Fig. 2.

(es+(0) = 0, es−(0) ≠ 0), and similarly the gain for A− and A+ with initial conditions (es+(0) ≠ 0,
es−(0) = 0) too. We stress again that for normal dispersion the signal-idler separation between
supermodes is not complete and it does not apply in the low-frequency range. This makes the
anomalous dispersion regime the most attractive for a full separation of signals and idlers. An
analytical expression for the gain difference in dB between the two supermodes as a function of
the dominant eigenvector v1 = (v1, v2, v3, v4)

T of matrix M has been derived (see Supplement 1,

S7) and reads: Gdiff
± = 10 log |es± |

2

|ei± |2
= 10 log

|︁|︁|︁ v2∓1
v3∓1

|︁|︁|︁2. A further intuitive picture of the reason for
the frequency asymmetric gain of the two supermodes can be provided by considering that in
the asymmetric operational regime signal waves for the individual waveguides modes (us1,s2)
exhibit a π phase difference, while idlers (ui1,i2) have no phase difference (see Supplement 1,
S8). We can attribute the origin of this phase-shift to the interplay between the asymmetric
pump power distribution between the two cores and Codd — the odd part of the frequency
dependent coupling — which are the necessary ingredients for the intermodal four-wave mixing
to occur. As supermodes “±" are defined by the sum/difference between individual waveguides
modes respectively, i.e., A± = (A1 ± A2)/

√
2, this unequal phase difference translates, due to

https://doi.org/10.6084/m9.figshare.22041284
https://doi.org/10.6084/m9.figshare.22041284
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Fig. 4. Pd-dependency. Map of PI analytical parametric gain for A− versus frequency and
Pd in anomalous a) and normal b) dispersion regime; and map of PS parametric analytical
gain versus frequency and Pd in anomalous c) and normal d) dispersion regime with ϕs = 0.
Other parameters used are C1 = ∓7.5 ps · km−1, β2 = ∓0.5 ps2km−1, γ = 10 W−1km−1,
C0 = 15 km−1, C2 = 0, and z = 0.1 km. The variation of Pd depicted corresponds to a
change of Pp in the interval [3, 8.5] W.

interference, into the fact that one supermode is idler-free and the other one is signal-free (at
least in a certain frequency bandwidth). While the supermode carrying the signals can be used
for idler-free amplification purpose, the supermode carrying the idlers, A+ in our examples, can
be used for wavelength conversion applications. The two supermodes can be easily extracted
at the amplifier output by a simple combination of a phase shifter and a coupler, as shown in
S1 of Suppelment 1, where a potential experimental setup schematic is illustrated. Presence of
coupling second-order dispersion (C2 ≠ 0) and changing magnitude of waveguide dispersion
(β2) do not affect qualitatively and significantly the amplifier performances and their impact is
briefly summarised in Supplement 1, S4 and S5.

We have furthermore verified through numerical simulations that the undepleted pump
approximation assumed in the analytical theory is excellent for the parameters used in this study
(input signals power ∼ 10−12 W) as pump depletion is negligible, resulting in an about 10−9% of
pump power reduction between output and input. The validity of this assumption can also be
appreciated indirectly from the nice agreement between theory and simulations across the whole
paper.

In conclusion, we have described parametric amplification enabled by intermodal four-wave
mixing in a dual-core optical fiber. We have shown how the interplay between frequency-
dependent coupling and pump power unbalance in two coupled nonlinear waveguides constitutes
the leading factor to achieve signals and idler separation through a frequency asymmetric gain for
the two system supermodes. We have shown that the latter is possible for realistic dual-core fiber
parameters. Our rigorous analytical theory, in excellent agreement with numerical simulation
results, will provide a guide for future design of experimental demonstrations of the concept
presented, for optimising idler-free amplifier performances (including bandwidth, maximum
gain, energy efficiency), and for studying possible impairments. Furthermore, our framework

https://doi.org/10.6084/m9.figshare.22041284
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can be adapted to describe coupled waveguides made of different materials such as silicon and
silicon nitride. The results discussed in this work will potentially enable a more efficient use
of the bandwidth in optical parametric amplification and may find applications for wavelength
conversion too.
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