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Abstract: A thermoelectric generator (TEG) is used for converting temperature difference and into DC
directly to electric energy based on the Seebeck effect. This new technology has attracted researchers
of sustainable energy. The energy obtained from the TEG depends on the temperature difference
between the two sides of the TEG. A reliable MPP “maximum power point” tracker (MPPT) is
mandatory to guarantee that the TEG is working close to the MPP under different operational
conditions. There are two common methods that have been widely used to track the MPP: hill
climbing (HC) and incremental conductance (INR). The HC method is very fast in tracking the
MPP; however, oscillation can occur under a high steady state. On the contrary, the INR method
needs more time to track the MPP but does not oscillate around the MPP. To overcome these issues,
fractional control is adopted. Furthermore, the proposed MPPT requires only a single current sensor,
as opposed to conventional MPPTs, which require at least two sensors: current and voltage sensors.
The cost of the control system is reduced when the number of sensors is reduced. Hunger games
search optimization is used to estimate the parameters of a single sensor optimized fractional MPPT
(OFMPPT). During the optimization process, three parameters were assigned as decision variables:
proportional gain, integral gain, and order, with the objective function being the TEG’s energy. The
results demonstrated the superiority of OFMPPT in both transient and steady state compared to HC
and INR.

Keywords: thermoelectric generator; single sensor; MPPT; fractional control

1. Introduction

The rapid advancement of fossil fuel utilization has resulted in significant environmen-
tal consequences, which are evident in abnormal climate change [1,2]. Various methods for
controlling climate change have been developed, including: (1) increasing the efficiency of
current processes through heat recovery [3,4], especially in energy intensive consuming
industries [5,6]; (2) using efficient and environmentally friendly energy conversion devices
such as fuel cells [7,8]; (3) and/or relying on sustainable renewable energy sources with
low or no environmental impacts [9,10]. In the current stage, waste heat recovery is the
most credible solution until commercial renewable energy sources are developed at rea-
sonable prices compared to those of conventional fuels. Significant advances in waste heat
recovery have recently been made [11,12]. Thermoelectric generators are used to convert
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temperature differences and direct current to electric energy using the Seebeck effect. The
improved materials and geometry of the thermoelectric generator of the thermoelectric
generator (TEG) have increased its efficiency [13]. Many thermoelectric materials are being
explored for power generation applications, such as GeTe [14], PbTe [15], Bi2Te3−xSex [16],
Bi2Te3 [17], and silicides [18]. Despite this, TEG efficiency is low. Additional developments
and efforts are still necessary to improve the TEG’s performance. One possible solution
for increasing TEG efficiency is the development of novel materials. The obtained TEG
energy is primarily determined by the temperature difference between the two sides of
the TEG. A second approach is to increase its harvested energy by employing maximum
power point (MPP) trackers (MPPTs) [19]. MPPTs are now essential components in the
construction of a low-cost TEG power source. MPPT control is typically accomplished
through the use of DC–DC converters [20]. Based on the maximum power theorem, the
MPPT forces the TEG to work near the MPP by adjusting the load to be balanced by the
TEG’s internal resistance [20].

Various MPPTs for TEG systems have been discovered in the literature, ranging from
traditional techniques to modern intelligent techniques [21,22]. The hill climbing (HC)
method has previously been the most frequently used for photovoltaic or TEG systems [21].
Although the HC MPPT can rapidly reach the MPP, it oscillates around the MPP at steady
state conditions. On the other hand, the incremental resistance (INR), under steady state
conditions, has a slow dynamic performance but no oscillations around the MPP. The
fundamental idea behind the INR MPPT is that the power–current derivative is zero at
MPP. Because the error signal is very small around the MPP, the INR step size is chosen
according to the error signal to reduce steady state oscillations. An integrator is used to
model the INR in this case, and the error signal is fed into the integrator input [23].

Recently, fractional control has been used in a variety of scientific and engineering
fields. The fractional order is commonly used to improve controller performance in both
linear and nonlinear systems (closed-loop). The “fractional order control” (FOC) method is
based on the fractional calculus principle. Because of its advantages, the FOC is desired
compared with the integer order control method [24]. Compared to integer-order control,
fractional control is flexible in design and has demonstrated superior results [25]. As a
result, fractional control has been used to improve the performance of conventional INR
by replacing the discrete integrator with a discrete fractional PI controller. To increase the
performance of optimized fraction MPPT, three main parameters must be defined correctly:
integration gain (KI), proportional gain (KP), and fraction order (λ).

Reducing the number of required sensors for tracking the MPP, on the other hand,
reduces the cost of the controller. Most MPPTs require at least two [26,27] or three [28]
sensors for TEG applications: a current sensor, a voltage sensor, and a temperature sensor.
Park et al. [28] proposed a TEG MPPT that employs three sensors: two temperature sensors
and one voltage sensor. This will raise the cost of the control system. As a result, the
goal of this paper is to address all of the issues mentioned above in one configuration:
improving transit response, eliminating oscillation around the MPP, and reducing the
number of sensors. To accomplish this, the hunger games search (HGS) optimization
algorithm was used to determine the best parameters for single-sensor optimized fractional
MPPT (OFMPPT). The KI, KP, and λ are used as decision variables during the parameter
identification process, whereas the harvested energy from the TEG is the objective function
that must be maximized.

The main contributions of the paper can be outlined as follows.

3 For first time, a single-sensor MPPT has been applied with a TEG power source;
3 Optimal parameters of OFMPPT have been defined using hunger games search opti-

mization;
3 Reduction in the number of sensors;
3 Steady state and dynamic tracking responses are improved simultaneously.

The second section describes the TEG power system. MPPTs with a single sensor
have been examined in Section 3. Section 4 defines the procedure for identifying OFMPPT
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parameters using hunger games search optimization. Section 5 contains a discussion and
presentation of the results. Section 6 provides a summary of the primary findings.

2. TEG’s Power Conversion System

The power conversion process for the TEG system is shown in Figure 1. It has a
battery bank, a boost DC–DC converter, an MPPT controller, and a TEGs array. The
boost DC–DC converter takes the low output voltage of the TEG array and raises it to
an appropriate DC voltage level that can be used by the battery bank or the DC link. In
addition to this, it is responsible for maximizing the energy that can be harvested from the
TEG by using an MPPT algorithm to update the duty cycle (D) so that it corresponds to the
MPP [21]. As shown in the following equation, the output voltage of the boost converter,
which represents the voltage of the battery (Vb), is correlated to the input voltage, which
represents the voltage of the TEG (Vteg).

Vb =
1

1− D
×Vteg (1)
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Figure 1. TEG system’s power stage with the suggested MPPT controller.

The TEG is a semiconductor device that generates a DC voltage via the Seebeck effect.
Figure 2a depicts the common TEG view. As seen in Figure 2b, the TEG’s basic unit is
a thermocouple made up of n-type and p-type semiconductors. The p-type and n-type
units are coupled in series to increase the output voltage. To reduce thermal resistance, the
p-type and n-type units are thermally coupled in parallel [28] and the units are sandwiched
between two ceramic sheets to form hot and cold sides. To form cold and hot sides, the
units are sandwiched among two ceramic sheets.
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When a temperature variance appears between the two sides of the TEG, the Seebeck
effect generates a DC voltage. Figure 2c depicts a simple equivalent-circuit of the TEG. The
open-circuit voltage is primarily determined by the difference in temperature between the
cold and hot parts, and this can be calculated as follows:

VO·C = αsb(Thot − Tcold) = αsb·∆T (2)

where αsb is the Seebeck coefficient

Thot is the cold side temperature
Tcold is the hot side temperature

Heat flow from the high-temperature side (Qh) to the low-temperature side (Qc) can
be estimated using the heat–energy equilibrium theory [27] in the following way:

Qh = αsb ItegThot + K∆T − 0.5I2
tegRint (3)

Qc = αsb ItegTcold + K∆T + 0.5I2
tegRint (4)

where the thermal conductivity coefficient is K. To a large extent, the TEG output power,
Pteg, is determined by the temperature difference between the two sides of the TEG. The
following equation can be used to determine this value:

Pteg = Qh −Qc = (αsb·∆T − ItegRint)Iteg = Vteg Iteg (5)

based on Figure 2, and using KVL, a formula for the voltage produced by the TEG, Vteg,
could be written as follows:

Vteg = αsb·∆T − ItegRint = VO·C − ItegRint = ItegRL (6)

To summarize, Pteg is expressed as follows:

Pteg = (αsb·∆T)2 RL

(RL + Rint)
2 (7)

3. Single-Sensor MPPTs

As previously stated, most MPPTs used to track the MPP of the TEG require at least
two or three sensors: a current sensor, a voltage sensor, and possibly a temperature sensor.
According to Equation (1), the TEG voltage is proportional to (1−D) under constant battery
voltage or DC-link voltage in DC grids. As a result, rather than using a voltage sensor, the
value (1 − D) can be used to substitute the TEG voltage. As a result, this concept has been
implemented in this work. Three MPPT strategies, including incremental resistance, hill
climbing, and optimized fractional MPPT, are examined.

3.1. Hill Climbing MPPT

The main HC-MPPT’s benefit is that it is easy to implement. HC-MPPT has been used
in a wide variety of contexts and is therefore very common. During the tracking process,
HC adjusts the boost converter’s duty cycle [21]. The Matlab model of HC-MPPT combined
with the TEG and boost converter is shown in Figure 3. TEG current is measured and
multiplied with (1 − D) to obtain the objective function required to be maximum. Based on
the change in the objective function, the duty cycle will be revised, raising the duty cycle
with positive change in the objective function. On the other hand, by reducing the duty
cycle with a negative change in the objective function, the main drawback of HC-MPPT is
that it exhibits significant oscillations around the MPP in steady state conditions.
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3.2. Incremental Resistance MPPT

The INR-MPPT is based on the fact that the derivative of the power over current
(dP/dI) is zero at MPP. Further details regarding INR-MPPT can be found in [23]. Con-
sidering that the TEG voltage is proportional with (1 − D), the error signal e(t) could be
estimated by the following relations.

dp
dI

@MPP =
d(V × I)

dI
=

d([1− D]× I)
dI

= [1− D] + I
d[1− D]

dI
= 0, (8)

d[1− D]

dI
+

[1− D]

I
=

[1− D](t)− [1− D](t− 1)
I(t)− I(t− 1)

+
[1− D](t)

I(t)
= 0. (9)

Moreover,

e(t) =
[1− D](t)− [1− D](t− 1)

I(t)− I(t− 1)
+

[1− D](t)
I(t)

. (10)

Because e(t), or “the error signal”, is small in the vicinity of the MPP, the steady
state oscillations can be reduced by adjusting the step size of the INR-MPPT. A discrete
time integrator (DTI), as described in Figure 4, is used to accomplish this modeling of the
INR-MPPT. The error signal is used as DTI’s input.
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3.3. Optimized Fractional MPPT

Fractional order control (FOC) was used to overcome the slow dynamic of conven-
tional INR-MPPT. As shown in Figure 5, the DTI is replaced by a discrete fraction PI
controller to form the OFMPPT. The FOC “a non-integer order” offers high robustness and
design flexibility.
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The fractional PI transfer function can be expressed using the following equation [29]:

Tc(s) = kp + kIs−λ (11)

where

Tc controller transfer function
kI is integral gain
λ denotes the fractional order
kp is proportional gain

4. Parameters Identification Process of OFMPPT
4.1. Objective Function

The proportional and integration gains as well as the fraction order of single-sensor
OFMPPT must all be correctly determined. The hunger games search optimization algo-
rithm was used to accomplish this issue. The proportional and integration gains together
with fraction order are utilized as decision variables through the optimization process,
whereas the energy generated from the TEG is the objective function that needs to be
maximized. The objective function problem argument is as follows:

f = arg
x∈R

max
{∫ t

0
Iteg(1− D)dt

}
(12)

where t is the simulation time and x is the set of input variables.

4.2. Hunger Games Search

To express the contraction mode’s approaching behavior mathematically, the following
relations are suggested [30]:
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→
X(t + 1) =



→
X(t)·(1 + randn(1)), r1 < l

→
W1·

→
Xb +

→
R·
→

W2·
∣∣∣∣→Xb −

→
X(t)

∣∣∣∣, r1 > l, r2 > E
→

W1·
→
Xb −

→
R·
→

W2·
∣∣∣∣→Xb −

→
X(t)

∣∣∣∣, r1 > l, r2 < E

(13)

where
→
R denotes a random value [−a, a].

r1 and r2 are randoms in range between [0, 1].
randn(1) denotes a random number.
t denotes the current iteration.
→

W1 and
→

W2 are the hunger weights.
→

X(t) is the portion of every particle.

The expression of E is presented as in Equation (14).

E = sech(|F(i)− BF|) (14)

where i ∈ 1, 2, . . . , n, F(i) displays each individual’s fitness value; BF represents the
best fitness

Sech denotes the hyperbolic function
(

sech(x) = 2
ex+e−x

)
.

The expression of
→
R is defined in Equation (15)

→
R = 2× a× rand− a (15)

a = 2×
(

1− t
Max_iter

)
(16)

where rand denotes a random value

Max_iter is the maximum number of iterations.

The expression of
→

W1 and
→

W2 are presented in Equations (17) and (18), respectively.

→
W1(i) =

{
hungry(i)· N

SHungry × r4, r3 < l
1 r3 > l

(17)

The formula of
→

W2 in Equation (18) is shown as follows:

→
W2(i) = (1− exp(−|hungry(i)− SHungry|))× r5 × 2 (18)

where hungry denotes the hunger of every particle

N denotes the number of particles
SHungry is the sum of hungry feelings of all particles.
r3,r4, and r5 denote random values.

The expression of hungry(i) is presented below:

hungry(i) =
{

0, AllFitness(i) == BF
hungry(i) + H, AllFitness(i)! = BF

(19)

where AllFitness(i) is the fitness of each individual in the present iteration.
The expression for H is defined as in Equation (20).

TH =
F(i)− BF
WF− BF

× r6 × 2× (UB− LB) (20)
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H =

{
LH × (1 + r), TH < LH

TH, TH ≥ LH
(21)

where r6 is a random number between [0, 1]; F(i) denotes the fitness value of every individ-
ual. BF denotes the best fitness.

The worst fitness is denoted by WF, and the maximum and minimum limits are
denoted by UB and LB, respectively. The hunger sensation H has a lower bound, LH.

5. Results and Discussion

A Matlab code has been developed to investigate the TEG power as temperature
differences change. In the simulations, the type of TEG (TEG1-12611-6.0) is used. The
rated current, power, and voltage for a single TEG are 3.4 A, 4.2 V, and 14.6 W, respectively,
with cold and hot-side temperatures of 30 and 300 ◦C, respectively. Figure 6a depicts
the power against current of TEG as the hot-side temperature is varied while the cold
temperature remains constant at 30 ◦C. In Figure 6a, Matlab’s model data are matched
with datasets. Furthermore, the position of the MPP is primarily affected by temperature
differences. Figure 6b indicates the power versus current of TEG while maintaining a
hot temperature (300 ◦C) and altering the cold temperature. Every operation state has
a unique MPP. To enhance the energy gained from the TEG, the MPPT must constantly
follow the MPP, regardless of temperature and/or load demand. Figure 7 depicts the
matched load parameters (voltage, power, resistance, and current) as the change in cold
and hot temperatures.
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To define the best paraments of OFMPPT, a hunger games search is used. The max-
imum number of iterations and the population size are set to 10 and 25, respectively.
Throughout the parameter identification process, the objective function presented in (12) is
maximized, whereas the unknown parameters of the OFMPPT are used as decision vari-
ables. The variation of the objective function during the optimization process is presented
in Figure 8. The HGS optimizer needs around 15 iterations to reach the maximum objective
function. The optimal values are 0.9, 0.0023, and 0.96, respectively, for the integration gain,
proportional gain, and fractional order.
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Once the best parameters for OFMPPT have been determined, the OFMPPT’s dynamic
and steady state tracking performance is evaluated and compared to INR-MPPT and
HC-MPPT. The Matlab TEG power systems for HC-MPPT, INR-MPPT, and OFMPPT
are described in Figures 3–5, respectively. The TEG power system consists of three TEG
modules (total power 43.8 W), with cold and hot-side temperatures of 300 C and 30 C,
respectively. The input inductance and output capacitor are 1 mH and 47 F, respectively, and
there are three series batteries (total voltage is 21.6 V). The three MPPTs under consideration
are used as a controller to provide a suitable duty cycle to the DC converter. The gain
of the discrete integrator is set to 0.8 for the INR-MPPT. Moreover, the parameters of
fractional PI for OFMPPT are 0.9, 0.0023, and 0.96 for the integration gain, proportional
gain, and fractional order, as defined by HGS. The dynamic response of TEG power for
HC-MPPT, INR-MPPT, and OFMPPT is shown in Figure 9. The proposed OFMPPT extracts
the maximum power of 43.8 W in 0.07 s with no oscillations around the MPP. Moreover, the
INR-MPPT takes approximately 0.33 s to catch the MPP. This means that using OFMPPT
reduced tracking time by 78% when compared to INR-MPPT. On the other hand, HC-MPPT
reaches the MPP in a short period of time; however, there are significant oscillations around
the MPP. This demonstrated the OFMPPT’s superiority in tracking the MPP under both
dynamic and steady state conditions. The resulting variations in TEG voltage, TEG current,
and duty cycle are depicted in Figures 10–12, respectively.
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(4.2 V for each TEG module), which matched with the datasheet of TEG1-12611-6.0, as
shown in Figure 7.

Considering Figure 12, at steady state, the duty cycle value using OFMPPT is fixed at
0.52, whereas, using HC-MPPT, there are fluctuations around the MPP.
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Figure 12. Duty cycle response while tracking the MPP.

6. Conclusions

The best parameters for a single-sensor fractional maximum power point tracker
for a thermoelectric generator have been identified. This paper accomplishes two major
goals: reducing the number of sensors and improving tracking performance. The fractional
control is used to improve the dynamic response of incremental resistance (INR-MPPT)
and eliminate oscillations around the MPP when using the hill climbing (HC-MPPT)
method. Three unknown parameters of optimized fractional (OFMPP); three parameters;
proportional gain, integral gain, and fractional order must be correctly identified to ensure
an improvement in tracking performance. The hunger games search is used to complete
the parameter identification process. During the optimization process, the unknown
parameters have been assigned as decision variables, whereas as the objective function
is the harvested energy from the TEG. The results confirmed the superiority of OFMPPT
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in both transient and steady state compared to HC-MPPT and INR-MPPT. The proposed
OFMPPT succeeded in extracting the maximum power of 43.8 W exactly and very quickly
at 0.07 s and no oscillations were recorded around the MPP. Moreover, the INR-MPPT
requires about 0.33 s to catch the MPP. This means that, when using OFMPPT, the tracking
time decreased by 78% compared to INR-MPPT. On the other hand, HC-MPPT reached the
MPP in a short amount time; however, there are high oscillations around the MPP. In future
work, the OFMPPT will be used to extract the MPP of the hybrid photovoltaic/TEG system.
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