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Abstract: An optimized design for a broadband Raman optical amplifier in standard single-mode
fiber covering the C and L bands is presented, to be used in combination with wideband optical
phase conjugation (OPC) nonlinearity compensation. The use of two Raman pumps and fiber Bragg
grating reflectors at different wavelengths for the transmitted (C band) and conjugated (L band) WDM
channels is proposed to extend bandwidth beyond the limits imposed by single-wavelength pumping,
for a total 10 THz. Optimization of pump and reflector wavelength, as well as pump powers, allows us
to achieve low asymmetry across the whole transmission band for optimal nonlinearity compensation.
System performance is simulated to estimate OSNR, gain flatness and nonlinear Kerr distortion.
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1. Introduction

Multiple solutions have been proposed over the past decades to address the critical
problem posed by Kerr nonlinearity’s cap to capacity in optical fiber communications [1].
Although digital compensation techniques have been successfully applied to the mitigation
of nonlinear effects, they are inextricably associated to an increase in computational cost
and energy consumption, and thus the possibility of finding a solution to the problem
that works on the physical layer, is a very attractive one. Using optical phase conjugation
(OPC) in the middle of the optical fiber link is a particularly effective way to combat the
nonlinearities [1–14], which allowed for the first demonstration of optical communications
above Shannon’s limit [10]. The technique, is, however, not free from technical challenges
in terms of implementation. To maximize its efficiency when applying it to multi-channel
nonlinearity compensation, there are a few approaches which will need to be implemented
on the fiber link. For example, in [15,16], the fiber nonlinearity compensation using a
mid-link OPC can be achieved using a symmetrical chromatic dispersion slope or effective
management of dispersion mapping before and after the OPC. Alternatively, in [17–24],
with a purposefully designed distributed Raman amplification scheme, a symmetrical sig-
nal power profile along the fiber before and after the OPC was demonstrated to maximize
the effectiveness of nonlinearity compensation with a mid-link OPC. In [24], we numerically
optimised the in-span signal power asymmetry for three different advanced Raman amplifi-
cation schemes using a single channel in the middle of the C-band at 1545 nm and identified
that the second-order distributed Raman amplification based on a single-side FBG random
distributed feedback laser is the most convenient design to achieve the best signal power
profile symmetry. Next, in [21] we advanced our simulations to demonstrate the possibility
of WDM transmission across the C band, by optimising symmetry over a broad section
(40 channels with a 25 GHz spacing). Recently, ultra-wideband or multi-band optical
transmission assisted by Raman amplification has been a hot topic of discussion [25–28],
as an efficient tool to fully unlock the potential transmission capacity of single mode fiber
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(SMF). In this context, the possibility of applying the second-order Raman amplification
scheme discussed in [17,29–31] in other transmission bands, using a fiber Bragg grating
in another band with appropriate Raman pump wavelengths, becomes particularly inter-
esting. In particular, in [17] we showed a method for bandwidth extension using a fixed
wavelength Raman pump centered at 1366 nm, while using FBGs at different wavelengths
for the originally transmitted and the conjugated channels. Utilizing this method, we
managed transmission over 6 THz with a 5.9% average asymmetry in a 192–198 THz band
using 60 km SMF span. In [18] we summarized our experimental work reviewing several
configurations of distributed Raman amplifiers designed specifically for fiber nonlinearity
compensation in a mid-link optical phase conjugation system, demonstrating that, for
nearly symmetrical signal power profiles, the Raman schemes in both the single-span and
two-span systems provide a 9 dB enhancement of the nonlinear threshold in a 200 Gb/s
DP-16QAM transmission system using a mid-link OPC

In this paper, we make use of a random distributed feedback fiber Raman laser amplifier
scheme and we significantly extend the working bandwidth to a full C band (before the OPC)
and L band (after the OPC) optimizing the amplifier specifically for dual-band OPC with a
total bandwidth of 10 THz. Unlike in previous theoretical and experimental work, where we
used a fixed single Raman pump wavelength, in this case we consider the wavelengths and
optical power of the primary Raman pumps and the wavelengths of the secondary FBG mirrors
as optimisable parameters to find the best average symmetry in multi-channel C and L band
transmission systems with mid-link OPC.

2. Amplifier Design for Optical Phase Conjugation

In the recent past, the design of optical networks was based exclusively on lumped
amplification and constrained to the C band due to the convenience, reliability and cost
effectiveness of Erbium-doped fiber amplifiers (EDFAs). However, the exponential increase
of data traffic over the internet has pushed further bandwidth extensions towards the optical
L and S bands, which are not easily achievable with doped fibers alone. In this context,
Raman amplification, whether lumped or distributed, offers an attractive alternative.

Higher order Raman amplification is well known for improving transmission perfor-
mance through improved noise performance, achieving extended bandwidth even with
a single pump wavelength [17]. At the same time, distributed amplification allows for a
precise control of signal power variation across transmission fibre [24], which is necessary
to minimize asymmetry for the OPC system. In our previous works [17–24] we compared
several designs of distributed Raman amplifiers: first order, second order and dual or-
der using bi-directional and backward-only pumping schemes. Bi-directionally pumped
distributed Raman amplification with a single FBG at the end of the transmission span
performed best in terms of asymmetry [24] and relative intensity noise (RIN) [30–32], which
is a key design feature for data transmission in a 60 km span, hence we continue with this
design and modifications to meet our bandwidth requirement.

In order for nonlinear impairments to be perfectly compensated in a system with
mid-link optical phase conjugation, the following ideal condition must be fulfilled for each
of the channels:

β2( LOPC − z)
γ(LOPC − z)P (LOPC − z)

=
β
′
2(LOPC + z)

γ′(LOPC + z)P′(LOPC + z)
(1)

where β2 represents the dispersion coefficient for the channel wavelength, β
′
2 is its equiva-

lent for the conjugate channel, γ and γ′ represent the nonlinear coefficients for the original
and conjugate channels and P and P’ indicate the corresponding signal powers. LOPC indi-
cates the position of the optical phase conjugator, and z ranges from 0 to 2LOPC. The key to
maximize performance in OPC-assisted systems lies in reducing signal power asymmetry
between P and P′.

Dispersion and nonlinearity coefficients at the wavelengths of the original and con-
jugated channels depend on fiber characteristics, and can be very similar in modern com-
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mercially available SMFs, so optimization options are limited to signal power evolution,
which must be made as symmetrical as possible before and after the mid-link OPC for the
original and conjugate channels. In practice, and since long-haul communications rely on
the use of periodic amplification cells, the more efficient approach [21,24], is to aim for
symmetric power evolution with respect to the periodic span mid-point, as well as similar
power variation levels on both the original and conjugate channels, defining an asymmetry
parameter to be optimized (see Section 3, below).

In our research to design an amplifier spanning a 10 THz bandwidth we independently
simulated schemes based on different wavelengths for the first and second order pumps
(i.e., the FBG center wavelengths) with various forward and backward pump powers
for a transmitted (5 THz C band) and conjugated (5 THz L band) wavelength division
multiplexed (WDM) grid with a 100 GHz spacing.

The schematic design of an amplifier for the OPC-based transmission system is shown
in Figure 1. Primary forward and backward Raman pump frequencies vp1 , as well as
the central frequency of the FBG, vp2 were chosen accordingly to the target amplification
bandwidth, aiming for the best asymmetry performance in a 60 km span length. Forward
pump powers P+

p1
of the first order Raman laser for both bands were simulated from

0.7 to 1.4 W with a 100 mW step. Backward pump powers P−p1
were simulated to give

0 dB net gain for a channel under test, and then all remaining WDM channels were
simulated with fixed pump powers. The FBG (200 GHz bandwidth) located at the end of
the transmission line reflects backscattered Rayleigh Stokes-shifted light from the backward
pump P−p1

and form a random DFB laser acting as secondary backward pump P−p2
that

amplifies the WDM signal at the C or L transmission band. The transmitted power per
channel is set to −10 dBm.
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Figure 1. Raman fiber laser amplifier for C and L band with a half-open cavity random lasing
designed for a 10 THz OPC-based transmission system.

2.1. C Band: 50 Transmitted Channels with 100 GHz Spacing 191.2–196.1 THz

To study the performance of the amplifier in the 5 THz C band (1528.77–1567.95 nm)
the wavelength of the first order pump is made to range from 1362 to 1374 nm, whereas the
wavelength of the FBG ranges from 1456 to 1474 nm.

2.2. L Band: 50 Conjugated Channels with 100 GHz Spacing 186.2–191.1 THz

To study the performance in the 5 THz L band (1568.77–1610.06 nm) we simulated for
wavelengths of the first order pump ranging from 1402 to 1414 nm, and wavelength of the
FBG ranging from 1492 to 1508 nm.

3. Simulation Parameters

To simulate our 10 THz wide band WDM OPC system we used our model of a second
order Raman amplifier with a single FBG mirror at the end of the transmission span, that
was derived and developed from [33]. The transmission band (C or L) was amplified by
the gain from the primary Raman pump in forward P+

p1
and backward P−p1

directions as
well as secondary pump in the backward direction P−p2

generated at the wavelength of the
FBG reflector.
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dP±p1

dz
= ∓

(
αp1 P±p1

)
∓

gp1→p2

Ae f f

vp1

vp2

P+
p2
+ P−p2

+ 4hvp2 ∆vp2

1 +
1

e
h(vp1−vp2 )

KBT − 1

P±p1
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Ae f f

vp1
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s + n−s + 4hvs∆vs

1 +
1

e
h(vp1−vs)

KBT − 1

P±p1
∓ εp1 P±p1

(2)

dP−p2
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=
(

αp2 P−p2

)
−

gp1→p2

Ae f f

P−p2
+ 2hvp2 ∆vp2

1 +
1

e
h(vp1−vp2 )

KBT − 1

(P+
p1
+ P−p1

)
+

gp2→s

Ae f f

vp2

vs

Ps + n+
s + n−s + 4hvs∆vs

1 +
1

e
h(vp2−vs)

KBT − 1

P−p2
− εp2 (3)

where P±p are the powers of the forward (+) or backward (-) propagating pump, α is the
corresponding attenuation, Ae f f is the effective core area, g is the Raman gain coefficient
depending on the frequency shift of the lasing and each WDM signal’s wavelength for a
standard single mode fiber as in Figure 2.
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Figure 2. Normalized Raman gain spectrum in single mode silica fiber.

n+
s and n−s are the forward and backward noise at the frequency of the signal, v is the

frequency and ∆v is bandwidth of each component: p1 (primary pump), p2 (secondary
pump) and s (signal). h is the Planck’s constant, KB is the Boltzmann constant and T is the
absolute temperature. ε is the Rayleigh backscattering coefficient.

dPD
dz

= −( αDPD) +
gp2→D

Ae f f

(
P−p2

) PD + 2hvD∆vs

1 +
1

e
h(vp2−vD)

KBT − 1

+

gp1→D

Ae f f

(
P+

p1
+ P−p1

) PD + 2hvD∆vs

1 +
1

e
h(vp1−vD)

KBT − 1

+ εsn−D

(4)

Our model also takes into account the accumulated light power PD from all WDM
channels and both pumps that is depleting amplification gain (it is then added or subtracted
to Equations (2) and (3) in our simulations), double Rayleigh scattering (DRS), and amplified
spontaneous emission (ASE) noise (calculated in 0.1 nm bandwidth) from each spectral
component in the transmission band. The values of the Rayleigh backscattering coefficients
for primary pump P±p , lasing P−p2

and at the frequencies of the signal vs channels are
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assumed to be 1.0 × 10−4, 6.5 × 10−5 and 4.5 × 10−5 km−1, respectively. The bandwidth
of the FBG P−p2

in the simulations was set to 200 GHz. With relatively low input power
per channel (−10 dBm) and channel spacing of 100 GHz we do not consider cross-gain
modulation in our simulations. The span length was 60 km. The asymmetry for each
channel was calculated using the formula:∫ L

0 |P1(z)− P2(L− z)|dz∫ L
0 [P1(z) + P2(z)]/2dz

× 100 (5)

where L is the span length, P1 and P2 represents signal power evolution of the transmitted
and conjugated channels, respectively.

The coefficients in the simulations were adjusted to match our experimental measure-
ments of the signal power variation (SPV) in the SMF span. To measure the SPV, a laser
source at 1545 nm with launch power of 0 dBm was used to provide a probe signal whose
power evolution along the 80, 100 and 120 km transmission span was then monitored
using a standard OTDR [34]. Results of the OTDR traces (noisy) and simulations (solid) are
shown in Figure 3.
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Figure 3. Experimental power evolution in 80 km (red), 100 km (blue) and 120 km (green) span taken
using a modified OTDR system and a simulation fit in a SMF span.

To verify the accuracy of the simulations we also measured asymmetry using modified
OTDR system [34] in a 60 km SMF span for various forward and backward pump power
rations. The results of the simulations are shown in Figure 4 (red). There is a very good
agreement between experimental measurements and numerical simulations.
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4. Results and Discussion

To evaluate the optimum configuration for the lowest asymmetry across whole trans-
mission spectrum we verified the results obtained with each original pump wavelength
against different FBG (for original pump 1) and conjugated pump wavelengths and FBGs
(for conjugated pump 2). As an example, below in Figure 5 we show the optimization
process for a primary pump centered at 1364 nm and FBG ranging from 1456–1462 nm. For
clarity, the results for L band pump (pump 2) wavelength (1402–1414 nm) are already given
for the optimum (best average asymmetry match) FBG (simulated from 1492–1508 nm).
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The asymmetry difference between the worst and best performing channels shown in
Figure 6 is heavily biased due to the first WDM channel in the C band (CH1) that is off the
grid of the Raman amplification gain. This is explained and shown with the further results
where we present signal power variation, asymmetry and on-off gain for each individual
channel in a 10 THz band.
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Figure 6. Asymmetry difference between worst and best performing channel in a 50 channels
transmission band based on the results shown in Figure 5.

The best primary pump wavelength offset between the transmitted and corresponding
conjugated WDM grid was found to be 48 nm: for the primary pump in C band centered
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at 1364 nm, the best matching primary pump for the L band was 1412 nm. In Figure 7 we
show the best average asymmetry performance for all 100 WDM channels (50CH in C band
versus 50CH in L band) as a function of primary pump and optimized FBG wavelengths for
the conjugated L band channels. The choice of the wavelength of the FBG was previously
investigated and shown in Figure 5. In this case the best asymmetry performance gave FBG
centered at 1458 nm, with an average asymmetry below 10%.
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Figure 7. Optimum asymmetry optimization for primary C band pump at 1364 nm and FBG 1458
nm as a function of primary L band pump wavelength for conjugated channels with optimized FBG.

Using the same methodology, we evaluated the primary pump wavelengths for trans-
mitted C band channels ranging from 1362 to 1374 nm and for conjugated L band channels
from 1402 to 1414 nm. Additionally, for each pump wavelength we simulated a range of
different FBGs for the transmitted C band: 1456 to 1474 nm and conjugated L band channels
1492 to 1508 nm, with a 2 nm step for all cases, giving us proximately 1.5 × 106 possible
combinations (pump wavelength × FBG × pump power × possible channel optimizations
(50× 50)).

Out of all available combinations, the best performing configuration giving an average
asymmetry of 8.2% across all WDM channels was achieved with the distributed Raman
amplifier settings shown in Table 1 below.

Table 1. Configuration of optimized Raman amplifier.

50 Transmitted Channels
C Band 191.2–196.1 THz

50 Conjugated Channels
L Band 186.2–191.1 THz

P±p Wavelength 1370 nm 1410 nm
P−p2

FBG Wavelength 1458 nm 1498 nm
P+

p1
Pump Power 1.3 W 0.7 W

P−p1
Pump Power 1.838 W 1.717 W

The results of the best performing configuration with primary C band pump at 1370 nm
as a function of primary L band pump for conjugated channels with optimized FBG are
shown in Figure 8 (red). For reference we also show the discussed results for the primary
C band pump wavelength centered at the 1364 nm (blue). We can notice that for a 6 nm
(1364 to 1370 nm) shift in primary pump wavelength for the C band, the choice of the best
matching L band primary pump wavelength would only change by 2 nm from 1412 nm
(blue) to 1410 nm (red). However, we would like to stress that the average asymmetry
is highly biased by the few worst performing channels, with performances that are off
by 20–30%, while the rest varies by +/− 2%, hence the choice of optimal wavelengths
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of the primary pumps and FBGs is not simple, and will depend on system needs and
circumstances. This issue becomes even more evident if we start leveraging the negative
impact of RIN on actual data transmission due to high forward pump powers and the
benefit achieved from lower averaged overall asymmetry performance. In [31], the authors
show that lower signal power variation due to higher forward pumping does not necessarily
translate to better actual transmission performance. This problem can be mitigated using
broadband forward pump power [31], which justifies our choice of higher order Raman
amplification without direct forward lasing, one Stokes down-shifted from the band of the
amplified signal.
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Figure 8. Best performing configuration with primary C band pump at 1370 nm (red) as a function of
primary L band pump for conjugated channels with optimized FBG. The 1364 nm pump (blue) is
plotted as the reference to previous investigation.

The impact of the forward pump power on the asymmetry of each WDM channel in
the OPC system is shown in Figure 9. We can notice that the asymmetries of the first seven
channels are practically immune to forward pumping power and do not vary significantly.
This can be explained with Figure 10, where we the signal power variations (SPV) for each
individual channel in C and L band are displayed. Higher SPV and asymmetry mismatch
are directly related to the gain performance of our amplifier. In Figure 11 we show the
best possible over all on-off gain for all channels (blue) as well gain performance for each
channel at the best asymmetry performance configuration (red) in 10 THz C + L band
distributed Raman amplification. The best gain flatness, with about 3 dB gain variation,
was achieved for the configuration with the primary C band pump centered at 1370 nm
with the FBG at 1460 nm. The primary L band pump was set to 1408 nm with the FBG
at 1498 nm. Gain performance at best asymmetry (blue) is shown for configuration as
in Table 1.

The best asymmetry performance between the transmitted and corresponding conju-
gated channel was channel 18, giving the lowest asymmetry of 2.82%. The power profiles
of both channels are shown below in Figure 12. We may notice a very low signal power
variation of 1.74 dB or less for the transmitted and conjugated channels across the whole
60 km raw distributed Raman transmission span.
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Figure 9. Impact of the forward pump power on asymmetry of each channel in best performing
configuration as in Table 1.
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are marked red, while L band is marked blue.
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Figure 11. Gain performance of proposed Raman amplifier showing best possible on/off gain (blue)
and actual gain (red) for best asymmetry of all 100 channels in a 10 THz transmission.
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Figure 12. Signal power profile of original (blue) CH#18 and corresponding conjugated channel (red)
with asymmetry of 2.82% in a 60 km standard SMF span.

In Figure 13 we show the theoretical prediction of Four wave mixing (FWM) power
comparison using a mid-link OPC configuration (red) and a raw transmission (blue).
The FWM power (defined in ref [20,35]) in the best scenario was suppressed by over 45 dB
in a low frequency range and 40 dB at its peak just below 20 GHz. That demonstrates that
the nonlinear distortion limiting the capacity of long-haul optical communication systems
can be efficiently controlled with the fine optimization of the mid-link OPC in a real time
data transmission. FWM nonlinearity compensation may be also limited by using various
techniques of digital signal processing, however, this solution is computationally expensive
and time consuming which, at the current state of art of the computational power, does not
really allow for an advanced real time transmission.
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Figure 13. Theoretical prediction of Four wave mixing (FWM) power as a function of frequency
separation for mid link OPC link (red) and without OPC (blue) for the best performing channel
shown in Figure 12.

Finally, in Figure 14 we show the optical signal to noise ratio (OSNR) performance
calculated over a 0.1 nm bandwidth as the difference between the signal power and
the noise power as well as nonlinear phase shift (NPS) results for all transmitted and
conjugated channels in an optimized 10 THz WDM grid (186.2–196.1 THz) in a 60 km
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standard single mode span. The OSNR varies from just below 39 dB to 40.5 dB, which
is a very good performance across such a wide bandwidth with a raw Raman amplified
transmission. NPS variation is also very low across all transmission bandwidth, with the
lowest performance in front of C and L bands.
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Figure 14. OSNR (blue) and NPS (red) performance across 10 THz bandwidth covering all C band
(CH1–CH50) and conjugated L band (CH51–CH100) channels.

5. Conclusions

Using numerical simulations based on experimental results, we propose and demon-
strate, for the first time, an amplifier design for C + L band mid-link OPC transmission
achieving the lowest average asymmetry up to date over a 10 THz bandwidth. Using
half-open cavity random DFB Raman laser amplification with two different pump wave-
lengths for the transmitted and corresponding conjugated channels in combination with
different FBGs we successfully extend the operating bandwidth of the mid-link OPC setup,
obtaining very promising performance results. The optimized system is capable of 10 THz
transmission with OSNR values above 38.8 dB and an average asymmetry of 8.2% for all
WDM channels. The best possible configuration shows gain flatness below 3 dB across the
10 THz grid in a raw Raman transmission without any gain flattening filters applied.
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