
electronics

Article

Complete Path Planning for a Tetris-Inspired
Self-Reconfigurable Robot by the Genetic Algorithm
of the Traveling Salesman Problem

Anh Vu Le 1,2 , Manimuthu Arunmozhi 1, Prabakaran Veerajagadheswar 1, Ping-Cheng Ku 1,
Tran Hoang Quang Minh 2,*, Vinu Sivanantham 1 and Rajesh Elara Mohan 1

1 ROAR Lab, Engineering Product Development, Singapore University of Technology and Design,
Singapore 487372, Singapore; leanhvu@tdt.edu.vn (A.V.L.); maniasaldhinesh@gmail.com (M.A.);
prabakaran@sutd.edu.sg (P.V.); pingcheng_ku@sutd.edu.sg (P.-C.K.); vnu.619@gmail.com (V.S.);
rajeshelara@sutd.edu.sg (R.E.M.)

2 Optoelectronics Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

* Correspondence: tranhoangquangminh@tdtu.edu.vn

Received: 8 October 2018; Accepted: 12 November 2018; Published: 22 November 2018
����������
�������

Abstract: The efficiency of autonomous systems that tackle tasks such as home cleaning,
agriculture harvesting, and mineral mining depends heavily on the adopted area coverage strategy.
Extensive navigation strategies have been studied and developed, but few focus on scenarios with
reconfigurable robot agents. This paper proposes a navigation strategy that accomplishes complete
path planning for a Tetris-inspired hinge-based self-reconfigurable robot (hTetro), which consists
of two main phases. In the first phase, polyomino form-based tilesets are generated to cover the
predefined area based on the tiling theory, which generates a series of unsequenced waypoints
that guarantee complete coverage of the entire workspace. Each waypoint specifies the position
of the robot and the robot morphology on the map. In the second phase, an energy consumption
evaluation model is constructed in order to determine a valid strategy to generate the sequence of the
waypoints. The cost value between waypoints is formulated under the consideration of the hTetro
robot platform’s kinematic design, where we calculate the minimum sum of displacement of the four
blocks in the hTetro robot. With the cost function determined, the waypoint sequencing problem is
then formulated as a travelling salesman problem (TSP). In this paper, a genetic algorithm (GA) is
proposed as a strong candidate to solve the TSP. The GA produces a viable navigation sequence for the
hTetro robot to follow and to accomplish complete coverage tasks. We performed an analysis across
several complete coverage algorithms including zigzag, spiral, and greedy search to demonstrate
that TSP with GA is a valid and considerably consistent waypoint sequencing strategy that can be
implemented in real-world hTetro robot navigations. The scalability of the proposed framework
allows the algorithm to produce reliable results while navigating within larger workspaces in the real
world, and the flexibility of the framework ensures easy implementation of the algorithm on other
polynomial-based shape shifting robots.

Keywords: motion planning; cleaning robot; reconfigurable system; energy saving; area coverage;
genetic algorithm

1. Introduction

With the increasing pace of technology and robotic developments, our lifestyle has become
more dependent on service robots, especially when it comes to the cleaning and maintenance of
households. It is estimated that cleaning robots could reach a market value of USD 4.34 billion in
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2023, of which floor-cleaning robots will hold a larger share [1]. The need for such applications has
become imperative, as cleaning is considered by some as a dull, tedious, and mundane process. A key
criterion while developing a cleaning robot is its capacity to demonstrate autonomous operation
abilities. Having a consciousness of nearby obstacles is crucial while traversing autonomously in
uncertain environments with complex settings. The overall efficacy of the robot is usually determined
by the accuracy of the sensor module [2], the flexibility of control systems [3], and the intelligence
of area coverage path planning strategies [4]. Among these autonomous aspects, the path planning
strategy adopted determines whether the robot is capable of achieving effective area coverage while
avoiding obstacles in a given environment. During the path planning phase, the shortest accessible
route for smooth manoeuvring in the environment while preserving energy is strongly desired to
amplify the performance of service robots. Coverage path planning is an interesting field of study
for robotic scientists with numerous studies available in the research literature. Recently, various
complete coverage-based path planning algorithms have been developed and implemented on robots
to accomplish various objectives.

In a complete coverage path planning setup, grid-based coverage methods have been commonly
used to create a workspace environment. In this type of setup, a captured map is treated as multiple
areas, and each area contains a value that describes the target environment, stating whether an
obstacle is present or whether there is an unoccupied space. There are numerous algorithms that
realize a grid-based area coverage approach, such as hexagonal grid decomposition [5], wavefront
algorithm [6], the neural network-based area coverage algorithm in Reference [3], and the spanning
tree method [7]. A graph-based area coverage path planning approach was presented by Xu et al.
in [8], where the mapped region is considered as a graph, and robot motion planning is applied to
reach every point in the graph. Numerous 3D area coverage methods for service robots have been
proposed and demonstrated in recent years. Jin et al. proposed a 3D area coverage technique for
agricultural purposes [9]. Cheng et al. [10] presented the application of 3D area coverage for urban
structure inspection. E Galceran et al. [11] presented a bathymetric 3D map to inspect ocean floors.

When it comes to area coverage by obstacle avoidance and non-overlapping of the covered region,
cellular decomposition is the most preferred and frequently used path planning method [12–14].
In this method, the grid-based workspace environment is broken down into small uniformly-shaped
cells of the same size with motion planning applied that helps to achieve area coverage. Past studies
have developed different strategies to decompose the given area, like the trapezoidal decomposition
method [15,16], boustrophedon decomposition [17], and Morse-based cellular decomposition [18].
Wong et al. [19] presented a topological area coverage method that uses the cloud point of landmarks
as nodes to cover the area. Butler et al. [20] proposed an area coverage method based on sensors, where
the sensed data are used to generate paths that allow the robot to navigate by achieving maximum
area coverage. In [15], Timo et al. proposed a simple path planning method in agricultural applications
using a trapezoidal decomposition method.

Among all coverage path planning techniques, the commonly used motion planning algorithms
include spiral motion and boustrophedon motion (i.e., back and forth). Lie Tang et al. [9] propose
a decomposition method where simple motion (e.g., zigzag) patterns are required to sweep and
cover the whole cellular regions in order to cover the farming field using boustrophedon paths.
Hameed et al. [21] utilized a boustrophedon path and presented a genetic algorithm for an area
coverage path planning technique. In relation to spiral motion, Gabriel et al. used spiral motion in
a cellular decomposition coverage technique [22]. In another work, a more energy- and time-efficient
online coverage path planning technique is presented in [23], where they adopt a high-resolution
grid map representation and utilize spiral path motion to perform efficient coverage. In works
related to backtracking spiral motion, E. Gonzalez et al. utilized backtracking spiral motion in
a cellular decomposition area coverage method [24]. Additionally, in order to consider the obstacles
inside the grid space, they proposed an improvised spiral algorithm [25]. Generic reward-based
algorithms are proposed in [26], which focused on autonomous shortest path planning while avoiding
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obstacles. Even though many studies have been done demonstrating the advantages of different
motion techniques with respect to the context of coverage path planning, none of them have been
applied to robots that have a reconfigurable capability. In particular, the hinged tetro (hTetro) robot
requires a unique motion planning algorithm in order to achieve better performance. The research
interest in reconfigurable robots has increased over the past two decades thanks to the evolution in
electronic devices and information technologies. Reconfigurable robots are generally classified into
inter-reconfigurable, intra-reconfigurable, and nested reconfigurable robots. In intra-reconfigurable
robots, an individual robot changes its morphology by reconfiguration on its own. Scorpio [27],
a bio-inspired robot, is an example where the robot has the capability of switching between rolling,
wall climbing, and crawling forms. Another example of this is Robomods [28], a reconfigurable
under-actuated legged robot which has the capability of generating distinct walking patterns.
Inter-multiple reconfiguration robots come together to assemble and disassemble to form global
morphologies. There are many precedencies, including CEBOT, M-TRAN, Molecube, CKBot, and
ATRON. The third major category is nested reconfigurable robots where the robots have the ability
to perform the functions of both inter- and intra-reconfigurable robots. hTetro (hinged tetro) [29] is
an example of this, where the robot can change its morphology on its own and can also change its
global morphology by attaching and detaching with a team of other hinged tetro robots [30]. With
numerous studies that cover different aspects of reconfigurable robots, their application in the field of
floor cleaning could become more meaningful. When it comes to area coverage and path planning
strategies in reconfigurable robots, there are limited studies in this field. To accomplish this task, in our
previous work, a novel coverage path planning strategy was proposed [31] for the hTetro robot based
on the polyomino tiling theory. The method proposed here demonstrates the capability of the hTetro
robot to generate a global tileset to cover the area where the robot is deployed. While assuming suitable
morphology on each tile piece during navigation, the hTetro robot achieved maximum area coverage.
In our previous works, the hTetro robot was controlled by a human operator during the process of
area coverage where the robot changes its morphology at each tile piece without the implementation
of any motion planning strategies.

In this paper, we investigate the crucial requirements of autonomous complete area coverage
by understanding the generation of the tileset according to tiling theory [32], its applications in
gaming [33], and computer graphics [34]. Then, the proposed complete path planning framework
is derived from the analytical tiling methodology through the logical process into systems that are
demonstrable on the real Tetris-mimicked reconfigurable floor cleaning robot. In this framework,
after generating the tileset, a novel technique called tiling-based local motion planner for the considered
robot platform is the core technology. Specifically, the proposed planner can autonomously create
an optimal navigation route on the generated tileset with the objective of covering the unified area
using the least energy. The order of the navigation sequence is modeled with respect to robot kinematic
design and optimized by the generic algorithm of the traveling salesman problem (TSP) [35,36], which
is well-known for finding the shortest route to connect predefined locations. Moreover, this paper
concludes with experimental results that validate the efficacy of the approach through a systematically
benchmarked performance evaluation compared with other conventional motion planning techniques
(i.e., spiral and boustrophedon, greedy search) used in coverage path planning concerning total
traveled distance and recovered areas. Based on the dynamics model and the inverse kinematics of
robot configuration, the represented complete path planning framework with the proposed motion
planner technique in this paper for the new class of reconfigurable robots has the capability of
autonomously producing a global tileset, determining correlated local trajectories that are feasible,
and generating appropriate motion signals to the motors.
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2. Tiling-Based Complete Path Planing Framework for hTetro

The robot navigation and area coverage are directly proportional to its energy consumption.
Thus, the desired algorithm satisfying the two criteria: firstly, maximum area coverage, and secondly
minimum energy consumption, must be simultaneously applied in hTetro.

The motion planner framework for the hTetro robot over complete coverage tasks is shown
in Figure 1. Note that the choices of the global tileset, the feasible local trajectory, and the mechanism
morphology of the robot are critical for achieving the area covering targets. It allows a customized
robot to evaluate the geometry of the environment, compute desired body morphology as a global plan,
select associated local optimal trajectories, and generate appropriate motor primitives. The process
of the proposed tiling motion planner is divided into a set of different stages. The first stage is the
planning stage where the high-level global coverage planning will be based on the tiling theory.
The second set is the execution stage which produces the trajectory based on TSP (i.e., motion planning)
to complete the tileset and then generates the control commands making the robot navigate for optimal
locations with appropriate morphologies.

Figure 1. The proposed tiling-based motion planning framework for hTetro: hinged tetro robot.

Specifically, The tiling theory [32] used to create patterns of polyominoes such as dominos,
triminos, and tetrominoes assists in completely covering a given workspace. The hTetro platform in this
paper can change its morphology to seven tetrominoes and adapt into particular tileset plans. However,
this tiling-based generated set can have the flexibility of random ordering. Thus, the navigation
algorithm applied with the class of shape-shifting robot must select the shortest route with the least
energy to visit each waypoint defined at the location of the tileset precisely once. Typically, we use
the TSP to model this class of problem. By following the solution of the TSP, less energy with the
shortest Euclidean distance is achieved. Note that in this paper, the TSP cost functions are derived
with respect to hTetro kinematic design during shapeshifting and navigation inside the testbed with all
predefined tiling patterns. The main difficulty of the TSP is the immense number of possible trajectory
options: n(n− 1)!/2 for n waypoints. There are numerous algorithms to solve the TSP aiming the
shortest path and runtime optimization, such as zigzag, spiral, and greedy search [37]. However,
real-time path planning and control logic on decisions made dynamically for the shortest distance in
the prescribed path is highly required. Thus, to speed up the processing time for deriving the optimal
solution, the genetic algorithm (GA) [36] is a feasible solution.
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3. The GA for the TSP-Based Local Motion Planner

3.1. hTetro in a Workspace

To create the local path planner from the global tileset, the robot footprint inside the workspace
should be defined by considering the robot’s kinematic design. The hTetro hardware architecture is
shown in Figure 2, while Figure 3 represents hTetro’s location in the workspace and one example
of shapeshifting to an O shape. Specifically, the hTetro consists of four blocks named a, b, c, and d
in world frame w. Each block of hTetro is provided with DC motors for its stable and balanced
locomotion. Three high-torque servo motors hm (m = {1, 2, 3}) present at the hinge position are
responsible for shapeshifting. Each DC motor and servomotor (at hinge positions) operate at 7.4 V
and 14.8 V, respectively. The hTetro robot consists of navigational components in each block, which
benefit smooth locomotion. Since the robot base is reconfigurable, achieving differential movement is
very challenging. Hence, we developed linear locomotive gaits and made the robot traverse forward,
backward, leftward, and rightward directions. In order to achieve the mentioned motion capability,
we established omnidirectional wheels in each block of the hTetro robot.

The servomotors hold the four blocks together and assist in reconfiguration by adjusting the
rotating angles θBl (l ∈ {a, b, c, d}) with respect to the workspace frame. The possible rotational
angles that can be achieved by each block locally are θBl = {0, π/2, π}. However, the angle θBb will
be constant whereas the block b acts as a foothold for the hTetro platform. As a result, block b is
typically the center of focus, and it helps to maintain stability by holding two of the three servomotors.
By changing the rotating angles, hTetro can changed into seven morphologies (i.e., O, Z, L, T, J, S, I)
as in Figure 4. One example of a tileset with tetromino patterns where hTetro fits inside the tileset
of an 8 × 8 workspace is shown in Figure 5b,c. Specifically, tiling theory [32] with several lemmas
that provide the suggestion of what tiling patterns should be used to completely tile the predefined
workspace. If the size of the coverage area is not a multiple of hTetro blocks, we can segment this
workspace into two partially overlapping sub-workspaces and both can be tiled by tiling theory.
Figure 5d–f provide an example of how to tile a workspace with the size of 6 × 7, which is not
a multiple of the hTetro blocks. The appropriate location and orientation inside the workspace of
the selected tile among suggested tiling patterns is determined by the backtracking algorithm [38].
After the considered tile is identified, the algorithm tries to tile the rest of the tileset in the workspace. If
the next tile cannot be located by the algorithm, then the other possible placements are tried. Even after
trying all possible placements, when the algorithm departs from tile combinations, then it backtracks
to the previous tiling pattern and executes the same procedure with the new tiling pattern among
the tileset. The same process continues until the fully tiled defied workspace is obtained. Note that
using this approach, we can make sure that the defined workspace can be tiled completely without
any revisited areas by using several tileset options.

The proposed block diagram in Figure 6 describes the steps to give the order of navigation to cover
the entire surface by applying tiling theory. To fit the morphologies inside one specific tileset, firstly,
the navigation sequence for this tileset is generated by the proposed local planner of the complete path
planning framework. At each waypoint location, hTetro assumes its shape according to the tileset plan
by rotating the servo motors at the hinges connecting blocks, then hTetro travels to the next defined
waypoints by the locomotion modules in the four blocks. When block b arrives at the desired location,
the same process is repeated until all the patterns of the workplace tileset are visited.

Typically, in order to accomplish this sequence of planning and navigation, the robot must know
the location on the map where it needs to move in real-time. In most grid-based coverage path planning
techniques, each cell represents the full robot (i.e., each cell is robot-sized). So, the path planning
scheme needs to pass the grid coordinates to achieve the full coverage. Since the hTetro platform is
unique in its reconfiguration ability, the hTetro’s four blocks occupy a single cell in the grid at any point
in time. To know the road map, the path planning technique should generate reference coordinates as
waypoints. These coordinates will act as waypoints for the robot that aid it in achieving full coverage.
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Thus, block b is chosen as a reference on the 2D map and the other blocks will determine its relative
position with respect to block b. The generated coordinates will be tagged with block b for all seven of
hTetro’s configurations. The algorithm undergoes row-wise search to account the reference block b for
each generated tileset.

Figure 2. hTetro platform with hardware component setting.

Figure 3. hTetro platform location on workspace and shifting mechanism to O shape.

Figure 4. hTetro platform with seven configurations.
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Figure 5. Tilesets by tiling theory and hTetro morphologies fitting inside the tilesets. (a) 8 × 8
workspace; (b) tileset; (c) hTetro morphologies fit in platform; (d) partially overlapped sub-workspaces
of 6 × 7 workspace; (e) tileset for sub-workspace; (f) tileset for 6 × 7 workspace with overlapped cells.

Figures 7 and 8 show the locations of blocks a, c, and d with respect to block b for different shapes.
For asymmetrical morphologies T, J, and L, as a result of the kinematic design constraints of hinges,
each tiling pattern has only one possible option of block locations, as seen in Figure 7. On the other
hand, for the symmetrical morphologies (i.e., O, I, S, Z), the options of block locations are provided as in
Figure 8. Because of the symmetrical characteristics, there are two options for block location associated
with I, S, and Z tiling pattern, and there are four options for the O tiling pattern. Furthermore, to
locate the block locations for one morphology, the robot orientation in the grid-based workspace is
also considered. Figure 9 provides an example of blocks’ locations with respect to the orientations of
the T morphology.

Given one waypoint Wi, the 2D locations of blocks a, b, c, and d in the global frame are marked as
(ia

x, ia
y), (ib

x, ib
y), (ic

x, ic
y), (id

x, id
y), respectively. Using this hTetro location definition, the displacement

between two corresponding blocks l where l ∈ {a, b, c, d} of two tiling patterns is modeled as Euclidean
distance and is found as in (1). As shown in Figure 10, in order to find the cost weight associated
with moving the robot from waypoint Wi to another waypoint Wj, the block displacement as the
summation of Euclidean distances of all four hTetro blocks are considered. Specifically, the cost
function C of pair Wi and Wj (i.e., ρ(Wi, Wj)) is calculated as in (2), where k ranging from 1 to n − 1
represents the pair order of n waypoints and the coefficients α, β, λ, γ (whose summation is always 1)
are used to adjust the role of each block displacement to the associated cost. Based on the importance
of each block, we can assign the corresponding coefficients. The higher the coefficient, the more
importance associated to the considered block. If the four blocks of hTetro are considered as having
the same weight, the coefficients are set equal to 0.25. The proposed cost function represents the total
displacement between the positions of any two tiling combinations in the workspace.

Algorithm 1 is used to find the block locations and orientations for any predefined workspace ws
with size wrow, wcolumn and completely filled with the appropriate tileset. Specifically, the algorithm
undergoes row-wise search in order to visit all the tilesets. At each tiling pattern p, if it is of the
asymmetric type, the locations of each block as in Figure 6 are assigned to this tiling pattern. On the
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other hand, if the visited tiling pattern p is of the symmetric type, the morphological orientation as in
Figure 8 having the block locations yield the nearest Euclidean distance as per Equation (3) with all
blocks of the previous waypoint is selected. In detail, given the orientation options of one symmetric
morphology Ω, Equation (2) is used to locate the blocks of W(i + 1). Figure 11 gives an example of
filling the block locations of tiling pattern O given the block locations of the previous symmetrical
tiling pattern S. As one can see, the block locations of the O morphology as in Figure 11b yielded
the nearest distance with previous tiling pattern S. As a result, this option was selected for the block
location of O in this case.

Algorithm 1: Assigning block locations for each tiling pattern
1 Function BLOCK LOCATIONS{workspace, tileset}:
2 workspace{ws(wrow, wcolumn)}
3x←0, j←0, y←0, p←0
4 for all x, x←0, to do
5 for all y, y←0, to do
6 if ws(x, y) is the location of tiling pattern p then
7 if tiling pattern p is asymmetrical morphology then
8 Assign: Wi blocks locations: Wi{(ia

x, ia
y), (ib

x, ib
y), (ic

x, ic
y), (id

x, id
y)} according

to Figure 7
9 elseif tiling pattern p is symmetrical morphology then
10 Search: for tiling pattern as in Figure 8 having blocks yield the nearest

distance with blocks of pattern with Wi−1
11 Assign: Wi block locations: Wi{(ia

x, ia
y), (ib

x, ib
y), (ic

x, ic
y), (id

x, id
y)} according

to Figure 8
12 end
13 end
14 end
End Function

Figure 6. Block diagram of proposed local motion planing strategy for tiling-based complete
path planning. TSP: traveling salesman problem.

Figure 7. The tiling pattern and corresponding other blocks’ locations considering block b as a reference
point for hTetro asymmetric mythologies. (a) T shape; (b) J shape; (c) L shape.
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Figure 8. The tiling pattern and corresponding other blocks’ locations considering block b as a reference
point for hTetro symmetrical morphologies. (a) I shape; (b) O shape; (c) Z shape; (d) S shape.

Figure 9. Unique shape matrix with respect to hTetro orientation.

Figure 10. Finding block location for the symmetrical morphology O.
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Figure 11. The distance between each block of two sample shapes of hTetro.(a) option 1; (b) option 2;
(c) option 3; (d) option 4.

Dl =
√
(ii

x − jix)2 + (ii
y − jiy)2 (1)

Ck
ρ(Wi ,Wj)

= αDa + βDb + λDc + γDd (2)

Ŵi = argmin
Wi∈Ω

(Ck
ρ(Wi−1,Wi)

) (3)

4. Trajectory Generation

In the case of n tiling patterns generated to cover the workspace completely, after locating the
blocks of hTetro inside the workspace, the desired path ζ is the set of n − 1 segments where each
segment connects a pair ρ(Wi, Wj). The objective function of the path searching problem is formulated
as in (4) given as a list of tiling patterns, locations, and the cost weights between each pair of waypoints
with respect to block b, the shortest possible route where each waypoint is visited exactly only one
time is obtained. To get the output value of (4), the GA of TSP is applied. Reference [36] explains the
GA of TSP in detail. GAs are suitable for dealing with big searching candidates and autonomously
finding the optimal solution.

Specifically, the GA as in Algorithm 2 for tiling motion sequence generation starts with a set
of trajectories within the defined workspace, called the population. Since there is a high chance
that the new population will be more suitable than the previous one, the temporal route from one
population is considered to create a new population. Solutions are selected according to their fitness
by producing and mutating the processes to form new solutions called children of parents—the lower
their weights, the more chances they have to reproduce. The best children are added to the final route.
If the termination condition as the improvement of the current best solution is satisfied, this process is
stopped, and the best order of individual waypoints is output. The population size defines the GA’s
convergence speed. If the size of populations is large, then the GA slows down [36].

During the GA construction process, we chose 60 chromosomes as the initial population since
a population size of 50–100 is commonly used in normal GA problems and this population size
provides a decent diversity in chromosome genes and it is a considerably small size, which speeds up
the computational process.

Currently, the setup of chromosomes in our GA is straight-forward. Since all the waypoints
have already been labelled, each chromosome consists of a sequence of the indices of the waypoints
that the robot is going to visit. In this scenario, performing a single locus gene change for the
mutation process will result in a waypoint being visited twice while another waypoint is unvisited.
Therefore, we perform a mutation swap similar to a 2-opt algorithm during the GA process. This
process produces an offspring that inherits most of its parent’s genes but with two random waypoints
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swapped. During the GA process of our proposed scenario, crossover is not included in the pseudocode
due to a similar waypoint re-visiting issue.

Moreover, the cost weight between waypoints affects the decision for selecting the best children.
The proposed cost function as per Equation (2) is feasible to model our hTetro platform. As a result,
the GA with TSP works well with all dynamic environments, and is applicable in reconfigurable robots
with specific angular movements.

ζ(∩ρ(Ŵi, Ŵj)) = argmin
ρ(Wi ,Wj)∈∩ρ

n

∑
k=1

Ck
ρ(Wi ,Wj)

(4)

Algorithm 2: Genetic Algorithm
1 Function GENETIC ALGORITHM {tileset, tiling waypoints locations}:
2Define the location of the reference block
3Define the cost function between two waypoints.
4Initialize the random waypoints of the population.
5 While (Stop condition is not satisfied) DO
6 Select parents: possible trajectories to connect all waypoints from the population.
7 Produce children: from the parent trajectories which are selected.
8 Mutate: perform swap mutation between two random waypoints.
9 Extend: the population size by adding the best children to the population.
10 Reduce: the population extension.
11 end
12Output the optimal order of each waypoint.
End Function

5. Experimental Results

To evaluate the performance of the proposed motion planning framework to cover the predefined
areas given the generated tilesets, the experimental workspaces on the simulated environment were
partitioned as grids. The workspaces without obstacles had the column × row sizes 10 × 10, 8 × 7,
and 6 × 6, and the workspace with obstacles presented as the number −1 had the size of 11 × 11.
Specifically, the proposed technique was benchmarked with three conventional motion planning
techniques used in complete path planning: zigzag, spiral, and greedy search. The comparison criteria
included efficient path generation, time, and re-covering workspace to complete the generated paths.
The simulations were conducted using MATLAB Simulink.

In part one of the experiments, we evaluated the path generation for each test, and the generated
tiling patterns for workspaces are shown in Figure 12. Depending on the workspace size, the tiling
theory can select the appropriate tiling shapes and orientations, that is, in Figure 12a the 9 tilesets of L,
Z, J, O, and in Figure 12b the 25 tilesets of Z and T were used. Furthermore, considering the workspace
with obstacles as in Figure 12d, the tileset was generated by selecting the appropriate tetromino types
to cover all of the cells without obstacles. As a result of the row-wise search in Algorithm 1, in order to
number the reference block b for each generated tileset as in Figure 13, each block location (a, b, c, d)
on the workspaces is clearly visible. After four blocks of hTetro are located for each tiling pattern,
the optimal path searching algorithm (GA for TSP) can generate the robot’s navigation trajectory
to connect all the b blocks in each tiling pattern. The total associated costs and generated trajectory
(directions) for each testbed are shown in Figure 13. Note that the cost weights as per Equation (2)
with coefficients α, β, λ, γ = 0.25 were applied to all the testbeds.
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Figure 12. Generated tileset for tested workspaces. (a) 6× 6 workspace; (b) 8× 7 workspace; (c) 10× 10
workspace; (d) 11 × 11 workspace with obstacles.

Figure 13. Path generated for the different workspaces with different shapes. (a) Optimal path for
6 × 6; (b) Optimal path for 8 × 7; (c) Optimal path for 10 × 10; (d) Optimal path for 11 × 11.
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Figure 14 shows the trajectories, and Table 1 provides the cost weights and running time generated
by zigzag scanning, spiral scanning, and the greedy search method with 10,000 iterations and the
proposed method for an 11 × 11 workspace grid with 28 waypoints, respectively. Note that the
zigzag scanning method connects the waypoints by the one-row or two-rows-wise nearest searching.
The spiral scanning methods connect waypoints from out-to-in by one-row (or column) and two-rows
(or columns) based nearest searching. Zigzag and spiral are being mentioned and evaluated because
they are the most prominent algorithms implemented in current mobile floor cleaning robots (especially
the zigzag pattern algorithm). Demonstrating a different approach that has the potential to outperform
existing robot navigation models is crucial for our future implementation. The greedy search provides
only the choices for random trajectories from the initial waypoint and continuously searches for the
next nearest reference waypoint to connect all the waypoints and selects the path with the lowest
associated cost. As a result, the proposed method required a slightly longer running time than zigzag
or spiral scanning and had a significantly lower running time than the greedy search. Regarding cost
weight, the proposed method could generate the path with the lowest value.

Although the zigzag and spiral scanning methods could give the solution to tile the predefined
area almost instantly, they produced the longest travel path regarding the hTetro block movement.
As a result, to finish the generated trajectory of these methods, time spent to travel was significantly
high. Besides, the greedy search took the most time to create a path connecting all waypoints and
its generated cost weight was also higher than the proposed method. Although taking a slightly
longer time than zigzag and spiral scanning to generate the path as a results of optimization processes,
the proposed method yielded the lowest cost function and it could considerably reduce the time and
energy consumed when robot traveled to cover the workspace. It can be said that the proposed method
gives a compromise solution between time spent to generate the traveling sequence and time spent
to complete the plan. This proves that the TSP in combination with GA is feasible and suitable to
generate navigation trajectories for this reconfigurable robot.

The effects of changing the coefficient values in cost function (2) were considered. Figure 15
and Table 2 show the results of different coefficient settings. As one can see, the different paths with
corresponding associated costs were generated for different coefficient values. Figure 15a where value
β was set to one and others (i.e., α, λ, γ) were set to zero shows that if we consider one given optimal
path generated with the cost function of only b, the cost weight considering four blocks of this path
is considerably higher. Furthermore, considering one workspace size, tiling theory worked well to
generate different tiling patterns. Figure 16a,b show the two tilesets with their optimal path planning
and corresponding costs required to cover the 6× 6 grid space by tiling theory, and Figure 16c is the
tileset for only the O configuration. Given the tiling pattern O and the workspace as in Figure 12,
the O configuration could completely tile Figure 12a by the path in Figure 16c without re-visited
areas, yielding lower cost weight than paths with several tiling patterns generated by the tiling theory
in Figure 16a,b. Hoverer, the O configuration could only completely tile Figure 12b,c with several
revisited areas, and failed to completely tile Figure 12d with obstacles. In this paper, we suggest
the tiling theory as the autonomous framework to ensure complete tiling of the workspace without
revisiting grid cells since these are two of the most important aspects of cleaning robots. Table 3 gives
the results of cost weights for two possibilities of tileset for each tested workspace. Based on the
available options of tiling patterns suggested by the tiling theory, several of the optimal navigation
sequences associated with the minimum of the defined cost weight for different tilesets were acquired
by proposed trajectory generation. Then, the robot could choose the appropriate tileset considering
the minimization the sum of each block displacements and according to our preferences in terms of
time efficiency and energy efficiency to cover the predefined workspace.
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Figure 14. Comparison results between methods for an 11 × 11 workspace. (a) Zigzag scanning 1 row
order; (b) Zigzag scanning 2 row order; (c) Spiral scanning 1 row order; (d) Spiral scanning 2 row order;
(e) Greedy search; (f) Proposed method.

Table 1. Comparison results of path planning strategies.

Cost Weight Path Generating Time (s)

Zigag 1 row order 71.642 0.012
Zigag 2 row order 70.124 0.155
Spiral 1 row order 68.175 0.158
Sprial 2 row order 67.124 0.522

Greedy search 65.216 30.240
Propsed method 62.368 1.150
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Table 2. Cost weight comparision between cost function of blocks for 10 × 10 workspace.

Coefficient Value Settings Meaning Cost Weight of Considered Blocks Cost Weight of 4 Blocks

α = 1, β = 0, λ = 0, γ = 0 Only block a 50.124 55.435
α = 0, β = 1, λ = 0, γ = 0 Only block b 50.365 56.321
α = 0, β = 0, λ = 1, γ = 0 Only block c 51.321 56.891
α = 0, β = 0, λ = 0, γ = 1 Only block d 52.013 58.432

α = 0.5, β = 0.5, λ = 0, γ = 0 Only blocks a, b 51.864 53.224
α = 0, β = 0, λ = 0.5, γ = 0.5 Only blocks c, d 51.315 54.863

α = 0.25, β = 0.25, λ = 0.25, γ = 0.25 All four blocks 51.417 51.417

Table 3. Cost weight comparison between different tilesets for the same workspace.

Workspace Size Tileset Cost Weight

6 × 6 Tileset 1 includes L, S, J, O, N 10.901
Tileset 2 includes O, I, J, L 10.152

8 × 7 Tileset 1 includes J, L, I 30.761
Tileset 2 includes O, T, L, I 31.434

10 × 10 Tileset 1 includes T, Z 51.417
Tileset 2 includes Z, T, J, I 52.325

11 × 11 Tileset 1 includes J, L, T, S 63.122
Tileset 2 includes O, J, L, I 61.1368

Figure 15. Paths generation for hTetro. (a) Path considering only block b; (b) Path considering all
four blocks.

Figure 16. Paths generation for different tilesets with the same 6 × 6 workspace. (a) Optimal path
consisting of L, S, J, O, Z; (b) Optimal path consisting of O, I J, L; (c) Optimal path consisting of only O.

In part two of the experiments, the simulator initiated the robot’s navigation right after applying
the specific path planning technique to complete the predefined tileset. The testbed square area was
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converted into an 11 × 11 grid with the obstacles set similarly to the arrangement in Figure 13d. Since
the workspace cell was equal to a 25 × 25 cm hTetro block, the dimension of the workspace was
275 × 275 cm. The performance of the strategies was evaluated based on two criteria, including the
total distance traveled and the average grid coverage time of each algorithm. Figure 17 shows the
simulation workspace environment, the waypoints are marked as red dots, and robot’s navigation
path to clear the waypoints one-by-one were tracked. The paths generated by all test methods are
shown in Figure 14. The total distance traveled was determined based on the trajectories of all four
hTetro blocks throughout the navigation process and calculated by averaging the final values of the
trajectories once the navigation terminated. To calculate the average grid coverage time of a navigation
strategy, we assumed that each grid in the workspace required at least 1 s to be covered by an hTetro
block. Since the robot moved at a constant speed during the simulation, the Simulink could calculate
the total time spent by hTetro blocks on an individual grid, and the average grid coverage time
accordingly. The average grid coverage time is an important criterion which determines the efficiency
of the proposed path planning algorithm in terms of area re-covered.

During the robot’s navigation, the simulator generated a grid coverage heat map. The robot
coverage heat map includes the areas that were covered by the hTetro robot and are represented in
a color spectrum between green to red and normalized to the range from 0 to 255. The intensity of the
red increases when more time is spent by the robot to cover the area, indicating that the corresponding
grid is being visited several times throughout the entire navigation process. The coverage heat maps
generated for all tested variants (i.e., zigzag, spiral, greedy search navigation technique, and the
proposed method) are shown in Figure 18. The numerical results of grid traveling distance and the
grid coverage time are provided in Table 4. According to the results demonstrated in Table 4, our
proposed path planning strategy had an advantage compared to the other coverage algorithms, with
the smallest average grid coverage time, and the shortest distance traveled. In order to have the
additional information from the heat map of Figure 18, Figure 19 illustrates the recovered area traveled
versus all four algorithms by plotting the color values in Figure 18 which were larger than 100 and
150. Note that the 11 × 11 workspace consisted of 121 cells, and the average pixel values of cells were
considered to determine the re-covered areas. Since the intensity value of cells increased if the robot
spent time to stay or re-visited the cells during navigation and transformation, the greater the number
of cells in Figure 19, the more re-covered areas in the considered method. We added the results in
Table 5 to summarize the re-covered grid cells in percentage format for the 11 × 11 workspace with
obstacles. It was observed that the re-covered distance traveled in the proposed method yielded the
lowest value of re-coverage percentage. The re-covered distance traveled of the proposed method was
approximately 5% less than greedy search and approximately 12% less than zigzag and spiral methods.

Figure 17. Simulation workspace environment. (a) Robot at first waypoint; (b) Robot transformation
on workspace; (c) Robot navigate to clear the next waypoint.
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Figure 18. Heat map output of each considered algorithm for 11 × 11 workspace. (a) Zigzag scanning
1 row order; (b) Zigzag scanning 2 row order; (c) Spiral scanning 1 row order; (d) Spiral scanning 2 row
order; (e) Greedy search; (f) Proposed method.

Table 4. Path planning performance of navigation simulation.

Method Avg. Grid Time (s) Distance Travelled (cm)

Zigzag 1 row order 5.1439 2976
Zigzag 2 row order 3.9856 2272
Spiral 1 row order 5.3063 3050
Spiral 2 row order 3.3869 1994

Greedy search 3.2904 1922
Proposed method 3.2290 1890

Table 5. Comparison results of percentage re-covered area from the heat-map, with different simulation
environment thresholds.

Threshold of 150 Threshold of 100

Zigzag 1 row order 34.71% 38.01%
Zigzag 2 row order 25.61% 28.92%
Spiral 1 row order 30.57% 32.23%
Spiral 2 row order 27.27% 29.75%

Greedy search 20.66% 23.96%
Proposed method 15.70% 18.18%
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Figure 19. The area re-covered comparison.

6. Discussion and Future Works

In the present paper, we would like to address that the proposed shape-shifting robot could
accomplish complete area coverage through tiling theory together with waypoint sequencing that
connects the Tetris patterns. Our contribution is that we modeled the navigation sequence generation
for our special Tetris-inspired reconfigurable floor-cleaning robot to complete tilesets by tetromino
tiling theory as a TSP problem. Note that in our previous work, the benchmark outperformed hTetro
with fixed-form robots in terms of the percentage of area coverage. The present work is the first time
we considered the efficiency of navigation distance to completely cover a given workspace. Our main
focus was to present a reliable and scalable framework that is capable of achieving these goals and
is applicable to other reconfigurable robots in order to achieve maximum area coverage tasks while
minimizing energy consumption. GA fills in the missing link between the unsequenced waypoint
series to a full path for robot navigation since it is one of the fastest approaches to reach the solution
for the TSP, and is scalable.

For real-time deployment, besides using GA as one of the fastest algorithms to solve the TSP,
we suggest that cellular decomposition as in [9] can be applied to segment large and complicated
workspaces to several simple grid-based sub-workspaces before applying the proposed path planning
framework. Furthermore, to balance the cost weight and path generating time, a running time
threshold can be set for drawing the GA’s solution to a given sub-workspace. We can deploy the
trial-and-error approach within our hTetro platform system configuration to find the optimal path
generation time for each workspace size.

Moving forward, we have identified the efficiency optimization of the entire process as a definite
priority for future works. Since the proposed complete path planning framework is essentially
a two-step process (i.e., waypoint generating and waypoint sequencing), consider the following
example: the waypoint generator can tile a square-shaped area using all O-shaped morphology,
all L-shaped morphology, and a combination of several morphologies. The path planning strategy has
to ensure the maximization of area coverage while limiting the revisited areas, and it is one of the most
important tasks of a cleaning robot. However, it is apparent that the fewer times the robot changes its
morphology during the navigation process, the total cost of the entire process is lower. The current
tiling strategy based on tiling theory that we implemented herein is unable to identify this, since it
simply focuses on the generation of a tileset that covers the area completely, which makes the search
for an optimal algorithm with ideal parameters for pure waypoint sequencing a priority for further
research in the future. The formulation of this entire efficiency optimization problem is interesting,
and will be the within scope of another paper. Once the model is constructed, genetic algorithms
with different mutation rates and crossover rate settings will be considered, and other evolutionary
algorithms such as ant colony algorithms will be evaluated to identify the best optimization technique
that yields the ideal results.
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7. Conclusions

Tiling theory in combination with GA and the TSP is applied in robotics as a feasible method
for complete path planning, and is utilized during the shifting mechanism of the Tetris-inspired
self-reconfigurable robot hTetro in this paper. The proposed tiling motion planning algorithm
exploiting robot kinematic design had the shortest distance traveled and shortest grid coverage
time compared to the other algorithms tested in most scenarios during navigation without revisiting
the same grid twice. With the reliable and consistent outcome of the proposed algorithm in this
simulation, we can safely conclude that this is currently a feasible algorithm that can be adapted into
physical robots for integration and real-world experiments. The proposed framework can extend
to other polyomino-based robot platforms. Future research will focus on developing cost functions
considering the obstacles in between pairs of waypoints, effects of friction, motor type, robot mass,
and the real-time testing of hTetro with these considerations.
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