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INTRODUCTION
Dynamic susceptibility contrast (DSC-) MRI provides esti-
mates of perfusion in the brain,1 by imaging the passage of 

a gadolinium-based contrast agent using a dynamic T2 or 
T2

* weighted imaging sequence.2 The contrast agent causes 
local changes in T2 and T2

*, which dynamically alter the MR 
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Objective: Investigate the performance of qualita-
tive review (QR) for assessing dynamic susceptibility 
contrast (DSC-) MRI data quality in paediatric normal 
brain and develop an automated alternative to QR.
Methods: 1027 signal–time courses were assessed by 
Reviewer 1 using QR. 243 were additionally assessed 
by Reviewer 2 and % disagreements and Cohen’s κ (κ) 
were calculated. The signal drop-to-noise ratio (SDNR), 
root mean square error (RMSE), full width half maximum 
(FWHM) and percentage signal recovery (PSR) were 
calculated for the 1027 signal–time courses. Data quality 
thresholds for each measure were determined using QR 
results. The measures and QR results trained machine 
learning classifiers. Sensitivity, specificity, precision, clas-
sification error and area under the curve from a receiver 
operating characteristic curve were calculated for each 
threshold and classifier.

Results: Comparing reviewers gave 7% disagreements 
and κ = 0.83. Data quality thresholds of: 7.6 for SDNR; 
0.019 for RMSE; 3 s and 19 s for FWHM; and 42.9 and 
130.4% for PSR were produced. SDNR gave the best 
sensitivity, specificity, precision, classification error and 
area under the curve values of 0.86, 0.86, 0.93, 14.2% 
and 0.83. Random forest was the best machine learning 
classifier, giving sensitivity, specificity, precision, classifi-
cation error and area under the curve of 0.94, 0.83, 0.93, 
9.3% and 0.89.
Conclusion: The reviewers showed good agreement. 
Machine learning classifiers trained on signal–time 
course measures and QR can assess quality. Combining 
multiple measures reduces misclassification.
Advances in knowledge: A new automated quality 
control method was developed, which trained machine 
learning classifiers using QR results.
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signal intensity.3 Analysis of the resulting signal–time courses, 
associated with each pixel, can produce estimates of cerebral 
blood volume (CBV), cerebral blood flow (CBF) and vascular 
mean transit time (MTT).4 As well as DSC-MRI, perfusion can 
also be measured using MRI with dynamic contrast-enhanced 
(DCE-) MRI, arterial spin labelling (ASL) and intravoxel inco-
herent motion (IVIM). However, DSC-MRI offers better signal-
to-noise ratio (SNR) and contrast-to-noise ratio, and a faster 
acquisition time.5

Measurement of perfusion can be used to indicate health in a 
range of diseases. In paediatrics, it is used to assess brain tumours, 
which are the leading cause of cancer-related mortality in chil-
dren,6 as well as diseases which affect neurovasculature. Most 
paediatric brain tumour patients have a gadolinium injection to 
allow for post-contrast T1 weighted imaging so the DSC-MRI 
acquisition can be carried out during this injection providing 
information that would otherwise not be available.7 CBV and 
CBF values from DSC-MRI acquisitions in paediatric patients 
have been used to predict long-term survival8 and have been 
shown to correlate with tumour grade.9,10 These applications 
require accurate CBV and CBF values, therefore it is important 
to ensure that the DSC-MRI signal–time courses they are esti-
mated from are of good quality.11

DSC-MRI is prone to motion and susceptibility artefacts, which 
degrade the quality of acquired data.11 The scanner and acquisi-
tion protocol for DSC-MRI also commonly varies from centre-
to-centre, which affects the signal–time courses produced12,13 
and the SNR of the CBV maps,14 limiting the clinical applica-
bility of the technique.15 For example, the field strength of the 
scanner and acquisition parameters such as repetition time (TR), 
echo time (TE), voxel volume and flip angle may vary between 
centres. These factors affect the SNR of the acquired data, whilst 
TR dictates the temporal resolution.16 In brain tumour patients, 
breakdown of the blood–brain barrier (BBB) can lead to contrast 
agent extravasation, where the contrast agent leaks into the extra-
vascular extracellular space (EES).17 Contrast extravasation can 
lead to T1 weighted contamination of the signal–time courses 
and underestimation of the CBV values, or T2

* weighted effects 
leading to overestimation of CBV values.17 These contamination 
effects can be reduced either by administering a pre-bolus of 
contrast agent,18 or using a low flip angle during the acquisition, 
to reduce the T1 weighting of the DSC-MRI sequence.11 Recent 
research has shown that the application of leakage correction is 
essential when using a low flip angle, single-bolus protocol.7,19,20

Currently, the ASFNR recommendation for quality control 
(QC) of DSC-MRI data is to assess signal–time courses by eye, 
using qualitative review (QR). This involves assessing signal–
time courses for the presence of artefacts, including magnetic 
susceptibility (the response of a material to a magnetic field, 
which can result in signal loss21 and motion); for appropriate 
signal drop indicating the quality of bolus administration; and 
for noise spikes in the signal–time curve, suggesting that any 
such time points should be removed.11 There can be discordance 
between reviewers and one DSC data set contains thousands of 
signal–time courses, so it is not practical to assess the quality of 

all signal–time courses manually. In practice this means that a 
subset of the signal–time courses is used to assess the quality 
of a whole data set. An automated process based on QR, which 
could be applied to assess signal–time course quality on a voxel-
wise basis, which could be used to provide an assessment of the 
overall quality of a data set, is desirable.

Previous work has shown that it is possible to define statistical 
thresholds and apply these to quantitative measures calculated 
from DSC-MRI signal–time courses to assess data quality.22 
Machine learning (ML) classification can be used to train models 
to make predictions based on features extracted from a data set.23 
This has plenty of applications in medical imaging. For example, 
it has been used in the pneumonia detection,24,25 detection and 
classification of Covid-19,26 diagnosing colorectal cancer,27 and 
assisting in planning rehabilitation care for stroke patients.28 
ML has also been applied to DSC-MRI data for several applica-
tions, but so far it has not been used for assessing data quality. 
For example, it has been used in place of standard analysis 
techniques for DSC-MRI to provide a quicker and more robust 
method to estimate CBF values from raw signal–time course 
data,29 predict survival in glioma patients,30 and classify tumour 
type.31–36 Therefore, ML could be applied to features extracted 
from DSC-MRI signal–time courses to determine data quality. 
Any new method for assessing data quality should be established 
in normal brain before it is applied to diseased tissues. Under-
taking such a study is a challenge in children due to ethical 
constraints but an appropriate alternative is to uses paediatric 
patients undergoing DSC-MRI scans for brain tumours, and 
selecting signal–time courses from slices of brain which do not 
contain tumour.

The objectives of this paediatric study are: to assess the discor-
dance in QR between two reviewers, to use this QR to determine 
thresholds of quantitative measures of data quality and to inves-
tigate whether QR and quantitative thresholds could be used 
to develop an automated QC process for assessing overall data 
quality of a paediatric data set.

METHODS
Patient data
For this study, a data set containing 25 paediatric patients, 
acquired at 4 UK centres was used. The data were gathered 
from the Children’s Cancer and Leukaemia Group (CCLG) 
functional imaging of tumours database.37 23 of the data 
sets were acquired pre-diagnosis, and 2 of the data sets were 
acquired post-diagnosis. One of the post-diagnosis patients 
underwent a biopsy and chemotherapy, and the other under-
went a surgical resection. The acquisition protocols used are 
summarised in Table 1. The patient data are from an imaging 
study entitled “CNS 2004 10 Functional Imaging of Tumours” 
(NRES REC ref: 04/MRE04/41). This is a multicentre paedi-
atric study with ref: RG_09–028 and ethics ref: ERN_11–1170. 
Informed parental consent was obtained for all patients 
included in the study.

Figure  1 summarises the processes involved in developing an 
automated QC aid. Details of each step are given below.

http://birpublications.org/bjr
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QR of patient data
QR of 1027 signal–time courses, extracted from 25 patients, 
was performed. A large number of patients were used to ensure 
a range of acquisition protocols and artefacts were included. 
Artefacts were those observed in normal clinical practice when 
scanning patients. Table  1 summarises how many signal–time 
courses came from each acquisition protocol. Signal–time 
courses were randomly selected from pre-defined regions within 
each patient, which included: grey matter (GM), white matter 
(WM), the edge of the brain, the edge of the ventricles and the 
cerebellum. All signal–time courses were selected from slices 
which did not contain any tumour, by selecting supratentorial 
signal–time courses from patients with infratentorial tumours 
and infratentorial signal–time courses from patients with supra-
tentorial tumours. Tumour diagnosis information was obtained 
from the CCLG database. All signal–time courses were assessed 
using QR by Author 1 (PhD student with 3 years’ experience), 
and a randomly selected subset of 243 signal–time courses 
were additionally assessed by Author 2 (Clinical scientist with 
8 years’ experience). QR to assess data quality was carried out 
using the guidance from the ASFNR recommendations.11 This 
involved assessing whether a clear signal drop was present and 
the level of noise within the baseline and the rest of the signal. 
Signal–time courses were then given a score of 1 (accepted) or 
0 (rejected) based on this assessment. For the subset of signal–
time courses reviewed by two reviewers, the scores from Author 
2 were considered to be the ground truth and were used for the 
determination of thresholds and in the training of ML classifiers.

The percentage disagreement between the two reviewers and 
the Cohen’s κ for interrater reliability were calculated for the 
subset of 243 signal–time courses assessed by both reviewers. All 

statistical analysis was carried out in R (R Foundation for Statis-
tical Computing, Vienna, Austria, v. 3.5.0).

Calculating the quantitative measures of quality
Signal drop-to-noise ratio (SDNR), root mean square error 
(RMSE), full width half maximum (FWHM) and percentage 
signal recovery (PSR) were used as quantitative measures of 
signal–time course quality. These were calculated for each of 
the 1027 signal–time courses which had previously undergone 
QR. SDNR was calculated using equation 1, with the signal drop 
defined as the difference between the mean baseline and mean 
of the first pass minima and the two adjacent dynamics. This is a 
similar measure to the contrast-to-noise ratio applied in work by 
Digernes et al, except it is calculated from the signal–time course 
instead of the relaxation rate curve.39

	﻿‍ SDNR = SignalDrop
StandardDeviation in Baseline‍� (1)

RMSE was calculated by fitting a version of the simplified γ 
variate function,40 shown in equation 2, to the first pass of the 
signal–time course.

	﻿‍ y
(
t
)
= c− Ktαe

−t
β ‍� (2)

Where y(t) is the fit, t is the time, c is the average baseline signal, 
and α, β and K are shape coefficients. The RMSE value from this 
fit was normalised to the area of the first pass.

The FWHM was calculated as the width of the first pass (in 
seconds) at half the signal drop.

Table 1. A summary of each of the acquisition protocols used, the number of patients who were recorded using that protocol and 
the number of signal–time courses used

Centre
No. of 

patients

No. of 
time 

courses

Field 
strength 

(T) Pre-bolus Sequence

Flip 
angle 

(°)
TE 

(ms) TR (ms)

Voxel 
size 

(mm)
1 3 139 3 Yes GE-EPI 20 40 1829–4865 2.5 × 2.5 

x 3.5

1 5 193 1.5 Yes GE-EPI 20 40 1490–1643 2.4 × 2.4 
x 5

1 3 112 3 No sPRESTO 7 22 15 3.4 × 3.4 
x 3.5

2 5 177 3 Yes GE-EPI 75 40 1335–2343 1.75 × 1.75 
x 4

3 3 166 3 No GE-EPI 45 29 1570 3.4 × 3.4 
x 3.5

4 3 112 3 Yes GE-EPI 20 40 1865 2.5 × 2.5 
x 3.5

4 2 96 1.5 No sPRESTO 7 25 17 3.4 × 3.4 
x 3.5

4 1 16 3 No sPRESTO 7 24 16 1.8 × 1.8 
x 3.5

In the Sequence column, GE-EPI = Gradient Echo – Echo Planar Imaging, and sPRESTO = Sensitivity Encoded (SENSE) Principles of Echo-Shifting 
with a Train of Observations.38
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The PSR was calculated from equation 3, with T2
* recovery 

defined as the difference between the mean post-bolus signal 
and the mean of the first pass minima and the two adjacent 
dynamics.11

	﻿‍ PSR = T∗2 Recovery
SignalDrop × 100‍� (3)

To calculate these measures, it was necessary to define the 
dynamics where the baseline ended, and the post-bolus started. 
The baseline end was determined by calculating the moving 
mean (with sliding window of three) and cumulative mean of 
the signal–time course, starting from the first dynamic, and 
finding the dynamic where the means diverged. The start of the 
post-bolus was determined using the same process but starting 
from the last timepoint. The first pass was defined as the region 

between the end of the baseline and the start of the post-bolus. 
Figure 2 shows an example signal–time course and the features 
used to calculate the quantitative measures.

Thresholds from QR
Quality thresholds for SDNR, RMSE, FWHM, and PSR, were 
determined using the QR results from the 1027 signal–time 
courses that underwent QR (Figure 1). Thresholds were deter-
mined using k-fold cross-validation (CV), with k = 10. Data 
are separated into k equally sized folds, with (k-1) folds used as 
training data, and the remaining fold used as testing data, from 
which the performance metrics are calculated. This process is 
repeated until all folds have been used as testing data.41 The sepa-
ration of signal–time courses into folds was stratified to ensure 
an even distribution of accepted and rejected signal–time courses 

Figure 1. A flowchart summarising the various stages of the work presented within this paper. QR, qualitative review; SVM, support 
vector machine.

http://birpublications.org/bjr
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in each fold. The centre or data set the signal–time courses came 
from was not considered when separating into folds.

For each fold, threshold values were determined from the 
training data. Sensitivity, specificity, precision, classification 
error and area under curve (AUC) from a receiver operator curve 
(ROC) were calculated as performance metrics, by applying the 
thresholds to the testing data. Mean thresholds and performance 
metrics were calculated by averaging across the folds.

SDNR and RMSE quality thresholds were determined using 
sensitivity vs specificity plots. For each fold, the SDNR threshold 
was varied over each SDNR value within the training data, and 
the sensitivity and specificity were calculated from applying the 
threshold to the training data and comparing to the QR results. 
The optimal threshold was the value where sensitivity equalled 
specificity. This process was repeated for the RMSE values.

Upper and lower thresholds of quality were determined for 
FWHM and PSR, respectively. For each fold, the parameter 
values from the training data were ordered in ascending value. 
The signal–time courses with the smallest and largest FWHM or 
PSR values, respectively, that passed QR were identified. These 
values were used as thresholds, with any signal–time course with 
an FWHM or PSR between the two thresholds classed as good 
quality.

Combining quantitative measures using ML
ML classification was carried out using the ML toolbox in Matlab 
(The MathWorks, MA, 2019a).42 Classification was carried out 
using the data set of 1027 signal–time courses used for deter-
mining thresholds from QR. SDNR, RMSE, FWHM and PSR 

values were used as predictors for classifier training and the QR 
scores (1 = passed QR, 0 = failed QR) used as the target outputs. 
Hyperparameter optimisation was applied for each classifier 
and k-fold CV with k = 10 was used. As previously the k-fold 
validation was stratified to ensure that there an even distribu-
tion of accepted and rejected signal–time courses in each fold, 
but the centre or data set the signal–time course came from was 
not taken into consideration, as the aim of this work is to apply 
the final classifier to a wide range of patient data. The classifiers 
used were binary tree, support vector machine (SVM), ensemble, 
random forest, and logistic regression. These classifiers were 
selected to ensure that a wide range of classification methods 
were applied to the data. This will help to ensure that the optimal 
ML classifier is chosen. The average sensitivity, specificity, preci-
sion, classification error and AUC were calculated for each clas-
sifier. Further details on the ML, including the hyperparameter 
optimisation and the results of the hyperparameter optimisation, 
can be found in the appendix.

Application to patient data
Each of the thresholds of the quantitative measures of quality and 
the best performing ML classifier were applied to signal–time 
courses obtained from one slice of patient data acquired using 
the acquisition protocol described in row 3 of Table 1. A quality 
map was created for each method, showing which voxels had 
passed QC and which had failed.

RESULTS
QR of patient data shows good agreement 
between reviewers, and that there is a region of 

Figure 2. Example signal–time course showing which features of the signal–time course are used to calculate the quantitative 
measures. FWHM, full width half maximum.

http://birpublications.org/bjr
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uncertainty where it is difficult to classify signal–
time courses
Table 2 splits the signal–time courses assessed by two reviewers 
into three groups (all signal–time courses, all 1.5 T signal–time 
courses, and all 3 T signal–time courses) and summarises the 
percentage disagreements and Cohen’s κ for each group. Across 
the entire subset, the signal–time courses where there were 
disagreements between reviewers had median SDNR of 5.4 
(range 3.3–56.4), median RMSE of 0.020 (range 0.005–0.058), 
median PSR of 84.5% (range 52.5–107.1%), and median FWHM 
of 7 s (range 4- 15 s).

Figure 3 shows some examples of signal–time courses that failed 
QR for different reasons: 3(a) failed due to a small signal drop 
in comparison to the noise in the baseline, leading to a low 
SDNR; 3(b) failed due to a noisy first pass, leading to a large 
RMSE value; 3(c) failed due to a very narrow first pass, which 
lead to a very small FWHM value; 3(d) failed due to a low T2

* 
recovery, resulting in a low PSR value. Below an SDNR value of 

2.8, no signal–time courses passed QR, whilst above SDNR of 
56.4, no signal–time courses failed QR. Above an RMSE value 
of 0.0846, no signal–time courses passed QR, whilst below an 
RMSE value of 0.0055, no signal–time courses failed QR. No 
signal–time courses with FWHM values less than 3 s or greater 
than 19 s passed QR. No signal–time courses with PSR values less 
than 43% or greater than 131% passed QR.

SDNR is the most important quantitative measure, 
but other measures are needed
Figure  4 shows example sensitivity vs specificity plots for one 
of the folds. Averaging across all folds produced an SDNR 
threshold of 7.6, an RMSE threshold of 0.019, FWHM lower and 
upper thresholds of 3 s and 19 s, and PSR lower and upper thresh-
olds of 42.9 and 130.4%. The average performance measures are 
summarised in Table  3. Figure  5 shows example signal–time 
courses where there were disagreements between the QR results 
and the SDNR threshold for acceptance of quality. Out of the 
three signal–time courses that passed the SDNR threshold but 

Table 2. A summary of the differences between reviewers, in terms of percentage difference and Cohen’s κ, across all time 
courses, all time courses recorded at 1.5 T, and all time courses recorded at 3 T

Group No. of time courses Percentage difference (%) Cohen’s κ
All signal–time courses 243 6.58 0.84

1.5 T signal–time courses 81 12.35 0.73

3 T signal–time courses 162 3.70 0.79

Figure 3. An example of signal–time course that failed QR for differing reasons. (a) has a low SDNR value of 2.7, (b) has a large 
RMSE value of 0.129, (c) has a small FWHM value of 1.8s (d) has a low PSR value of 36.9%. FWHM, full width half maximum; PSR, 
percentage signal recovery; RMSE, root mean square error; SDNR, signal drop-to-noise ratio.
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failed QR, all three passed the FWHM and PSR thresholds, and 
one passed the RMSE threshold. All three signal–time courses 
failed QR because of issues with the post-bolus signal, which was 
not picked up by SDNR. Out of the three signal–time courses 
that passed QR but failed the SDNR threshold, one passed the 
RMSE threshold and two passed the FWHM and PSR thresholds.

Combining quantitative measures to assess 
data quality reduces classification error and ML 
classifiers offer an automated method to do this
Table 4 summarises the average performance measures for each 
of the ML classifiers. The classifier with the lowest classification 
error was the random forest, producing sensitivity, specificity, 
precision, classification error and AUC of 0.94, 0.83, 0.93, 9.3% 
and 0.89, respectively. Figure 6 shows an example of the confu-
sion matrix and the ROC curve from the best performing fold 
of the best performing classifier. Figure  7 shows examples of 
the disagreements between the QR and the ML results. Details 
of the hyperparameter optimisation and its results for the best 
performing classifier can be found in the appendix.

When applied to one slice of patient data ML 
passed more signal–time courses than the SDNR 
threshold
Figure  8 shows the quality maps produced by applying the 
thresholds as obtained from the QR of each of the described 
metrics and the random forest ML classifier, respectively, to one 
slice of patient data. Blue pixels represent signal–time courses 
that passed the respective QC method, whilst orange pixels 

represent those that failed. Table 5 summarises the percentage of 
signal–time courses that passed each method.

DISCUSSION
Our study shows that although QR can be used to assess data 
quality, there are a range of signal–time courses which are diffi-
cult to classify. Automated quality control methods using simple 
metrics can be developed using the results of QR. Combining 
multiple metrics using ML results in fewer signal–time course 
misclassifications than using individual metrics. However, 
selecting a set of metrics to fully describe a signal–time course 
and all of its potential artefacts is challenging. We applied the 
automated QC methods to paediatric data in this work, however 
they are also applicable to adult data.

The signal–time courses assessed by two reviewers show a 
low discordance between reviewers, due to a low percentage 
of disagreements and a Cohen’s κ value of 0.83, which shows 
excellent agreement.43 The two reviewers found it harder to 
agree on whether to pass signal–time curves from data sets 
acquired at 1.5 T, due to their reduced SDNR. For the entire 
subset, the ranges of SDNR and RMSE values for signal–
time courses where there were disagreements between the 
reviewers and for signa–-time courses that were within the 
region of uncertainty are both large. This shows that a signal–
time course with a large SDNR is not guaranteed to be good 
quality, as other factors may also affect quality, including, e.g. 
a distorted first pass.

Figure 4. Sensitivity vs.specificity plots for (a) SDNR, (b) RMSE. RMSE, root mean square error; SDNR, signal drop-to-noise ratio.

Table 3. Summary of the average threshold values, sensitivity, specificity, precision, classification errors and AUCs for each of the 
quantitative measures

Quantitative measure Threshold(s) Sensitivity Specificity Precision Classification error (%) AUC
SDNR 7.6 0.86 0.86 0.93 14.2 0.83

RMSE 0.019 0.79 0.79 0.89 21.8 0.75

FWHM (s) 3, 19 1.00 0.18 0.74 24.8 0.85

PSR (%) 42.9, 130.4 1.00 0.12 0.73 26.4 0.84

AUC, area under the curve; FWHM, full width half maximum; PSR, percentage signal recovery; RMSE, root mean square error; SDNR, signal drop-
to-noise ratio.
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The automated QC methods presented in this work assess data 
quality on a voxel-wise basis, which allows for more data to be 
assessed than in QR. A typical DSC-MRI data set will have tens 
of thousands of signal–time courses. Assessing all of them by 
eye is not possible, so QR generally involves assessing a small 
subset of the whole data set. Our automated QC methods are 
ML classifiers, trained using signal–time courses from “normal 
brain”, which could lead to the exclusion of pathology related low 
perfusion signal–time courses, which may be clinically useful. 
Large amounts of WM, which is suggested by consensus guide-
lines as the tissue to use for normalising rCBV values,19 may also 
be excluded as it is less perfused than GM. A better approach 

may be to use voxel-wise QC to give an overall assessment of 
data quality, which could then be used to decide whether a data 
set is of sufficient overall quality to be included in a study. An 
alternative to this would be to assess the quality of an average 
signal–time course from a data set. This would be quicker than 
a voxel-wise analysis but could produce misleading results—an 
average signal–time course will “average out” noise and regions 
of artefacts from the data.

The SDNR threshold defined the minimum SDNR for data to be 
accepted and was the best-performing individual measure, giving 
the most similar results to QR. This is expected as SDNR defines 

Figure 5. A demonstration of the disagreements between the QR results and the SDNR threshold. The left column (a, c, e) shows 
signal–time courses that passed QR but failed the SDNR threshold. The right column (b, d, f) shows signal–time courses that 
passed the SDNR threshold but failed QR. QR, qualitative review; SDNR, signal drop-to-noise ratio.

Table 4. Summary of the performance metrics for each machine learning classifier

Classifier Sensitivity Specificity Precision Classification error (%) AUC
Binary Tree 0.93 0.80 0.92 11.4 0.87

SVM 0.93 0.84 0.93 9.5 0.89

Ensemblea 0.94 0.82 0.92 9.5 0.89

Random forest 0.94 0.83 0.93 9.3 0.89

Logistic regression 0.93 0.83 0.92 10.3 0.88

AUC, area under the curve; SVM, support vector machine.
aThe Bag method was selected the by the hyperparameter optimisation.
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how visible the signal drop is, which is a key part of assessing 
data quality by QR.11 However, SDNR is reduced in low perfused 
tissues, such as white matter or some low-grade tumours, and 
this may lead to the exclusion of some of these signal–time 
courses, discarding clinically useful information. The RMSE 
threshold gave poorer performance across all the performance 
measures compared to SDNR. The FWHM and PSR thresholds 

give AUC values comparable to the other quantitative measures 
and a similar classification error to the RMSE threshold. Both 
resulted in very good sensitivity but poor specificity.

Multiple factors affect DSC-MRI data quality, and a single 
measure cannot cover them all. Figure 5 illustrates the difficulties 
of trying to classify signal–time course quality purely on SDNR. 

Figure 6. A confusion matrix (a) and an ROC curve (b) from the best performing fold of the best performing classifier (Random 
forest). The ROC curve gave an AUC value of 0.90. AUC, area under the curve; ROC, receiver operating curve.

Figure 7. An example of some of the agreements and disagreements between the ML results and QR: (a, c) show signal–time 
courses that failed ML but passed QR, (b, d) show signal–time courses that passed ML but failed QR. ML, machine learning; QR, 
qualitative review.
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Difficulty in defining a single threshold for each quantitative 
measure shows the need for combined measures to assess data 
quality. This agrees with work by Akella et al22 where multiple 
quantitative measures including, the failure rate of fitting a 
gamma-variate to the first pass, mean FWHM, and mean PSR 
were calculated from the signal–time courses in each data set 
and used to determine data quality. Cut-off values were calcu-
lated using a 99% one-sided confidence interval. Data sets that 
did not fall within the cut-off values for at least one metric were 
classed as poor quality.22 Our work presented here differs in that 

thresholds for quality are determined using QR results instead of 
confidence intervals. Combining measures using ML classifiers, 
leads to improved classification error compared to individual 
thresholds as shown in Table 4. The random forest classifier gave 
the lowest classification error, but offers only a minor improve-
ment in performance measures compared to the other classifiers. 
Therefore, any of the classifiers tested would be suitable.

The ML classifier offers improved sensitivity, classification error 
and AUC, compared to the SDNR threshold. There is little change 
in specificity and precision, suggesting that the main improve-
ment in performance comes from a reduction in the number of 
false negatives, with little change in the number of false posi-
tives. ML also has a similar classification rate to the percentage 
disagreements in QR between reviewers, which implies that it is 
as accurate as QR at least for these data sets. Therefore, when the 
quality control methods are applied to a patient data set, the ML 
classifier passes a higher percentage of signal–time courses than 
the SDNR threshold, as shown in Figure 8 and Table 5. The lack 
of reduction in the number of false positives is likely due to the 
current quantitative measures not being able to identify all the 
artefacts that DSC-MRI is susceptible to.

The ML classifiers were trained using k-fold validation. Strati-
fied k-fold validation was used to ensure that there was an even 
distribution of accepted and rejected signal–time courses in each 

Figure 8. (a) An axial slice from a patient data set recorded at 1.5 T, and the resulting quality maps from applying (b) the SDNR 
threshold, (c) RMSE threshold, (d) PSR threshold, (e) the FWHM threshold, and (f) the ML classifier, as QC methods. Blue pix-
els represent time courses that passed QC and orange pixels represent time courses that failed QC. AUC, area under the curve; 
FWHM, full width half maximum; ML, machine learning; PSR, percentage signal recovery; RMSE, root mean square error; QC, qual-
ity control; SDNR, signal drop-to-noise ratio.

Table 5. % of signal–time courses passed by each quality 
control method

Quality control method

% of signal–
time courses 

passed
SDNR threshold 60.97%

RMSE threshold 66.18%

PSR threshold 99.12%

FWHM threshold 97.44%

Random forest ML classifier 75.55%

FWHM, full width half maximum; ML, machine learning; PSR, 
percentage signal recovery; RMSE, root mean square error; SDNR, 
signal drop-to-noise ratio.
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fold. The centre and data set the signal–time courses originated 
from was not considered so this was applied on a signal basis 
rather than a subject basis. This is because the aim of this work 
is to train a classifier which can be applied to a wide range of 
patient data, so it needs to be capable of handling data from 
different centres acquired with different acquisition parameters. 
Therefore, splitting the data in a subject basis could bias the clas-
sifier and reduce its performance.

Currently, the results of qualitative review are applied to a series 
of quantitative measures which are calculated from the signal–
time courses. If a convolutional neural network (CNN) was used 
in place of the ML classifier, then it could be trained using the 
signal–time courses directly, rather than calculating measures 
from the signal–time courses. However, currently there are not 
enough data to train a CNN type model. This is something that 
could be investigated in the future once more data have been 
acquired.

The use of a pre-bolus or single-bolus injection protocol in 
paediatric data affects the SDNR of the signal–time courses 
by reducing the signal drop. In adults, a pre-bolus of contrast 
agent may be given in addition to a full dose of contrast agent, 
increasing the overall SNR. However, in paediatrics, the Euro-
pean Society for Paediatric Oncology (SIOPE) recommends that 
paediatric patients should only receive a single-dose of contrast 
agent, due to concerns over gadolinium deposition.44 Splitting 
a single-dose in order to give a pre-bolus will therefore cause a 
reduction in SDNR in the DSC-MRI acquisition.

Most DSC-MRI studies use the ASFNR recommendation of QR 
to assess data quality.11 Automated QC using statistical thresh-
olds has previously been presented by Akella et al.22 Our method 
differs as the thresholds and ML classifier are trained on the 
results of QR. An alternative way to assess data quality is for a 
radiologist to assess the quality of the perfusion maps produced. 
This could either mean assessing the diagnostic quality of the 
perfusion maps,45,46 assessing the presence of susceptibility arte-
facts,47 or assessing the visibility of a certain region of the brain.48 
However, these methods are not automated and risk artefacts 
being misinterpreted as pathology.

In order to calculate the metrics presented in this study, it is neces-
sary to establish the end of the baseline signal in each signal–
time course. There are established methods for determining the 
end of the baseline, e.g. Carroll et al49 present a method which 
uses adaptive thresholds calculated from the standard deviation 
of the pre-contrast signal, defining a set number of time points 
from which to calculate the adaptive thresholds.49 The method 
we have presented is better suited to a multicentre data set with 
variable injection protocols, where the number of dynamics in 
the baseline may vary between centres.

There are some limitations to this study. Firstly, the patient 
“training data set does not include every type of artefact, such as 
susceptibility artefacts or insufficient dynamics to capture the full 
passage of the contrast agent. There may be cases where the classi-
fier misclassifies a signal–time course with an artefact appearing for 

the first time. The training data set is also made up of signal–time 
courses acquired with specific and consistent acquisition protocols. 
Any changes in acquisition protocol will affect the signal values and 
therefor the quantitative measures, e.g. PSR can vary with acqui-
sition protocol.13 So, thresholds would need to be recalculated at 
different centres.

Secondly, whilst these methods were tested on signal–time courses 
from slices of brain that did not contain tumour or other definite 
pathology, they may still not be “normal tissue”. The quantitative 
measures may differ in diseased tissue or tissue that has been 
exposed to treatments such as radiotherapy and so the thresholds 
and methods presented may not be suitable to all circumstances. 
For example, PSR has been used to exclude signal–time course 
with unusual post-bolus signals. However, PSR will be affected by 
contrast agent leakage due to the breakdown of the blood–brain 
barrier in tumours. In this case, a leakage correction method, such 
as the Boxerman-Schmainda-Weisskoff method50 could be applied 
prior to quality assessment. In this study, leakage correction was 
not applied as no tumour signal–time courses were included.

Finally, although the classifier offers an automated QC method, 
it is still based on QR so still has an element of subjectivity to it.

CONCLUSIONS
QR of individual signal–time courses by two reviewers showed 
good agreement on the signal–time courses they assessed. ML 
classifiers trained on QR results offer an automated method to 
assess the quality of an entire data set. Although SDNR was a good 
indicator of quality, using only a single measure to determine data 
quality risks misclassification of signal–time courses. Combining 
SDNR with RMSE, FWHM and PSR improves classification, and 
achieves a misclassification rate similar to the discordance rate of 
QR. We have shown that ML classifiers trained on QR can be used 
to assess quality of DSC-MRI signal–time courses obtained from 
normal brain in this paediatric data set.
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