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Abstract: The complex zeros of the canonical (fixed walk-length) partition function are calculated for
both the self-avoiding trails model and the vertex-interacting self-avoiding walk model, both in bulk
and in the presence of an attractive surface. The finite-size behavior of the zeros is used to estimate
the location of phase transitions: the collapse transition in the bulk and the adsorption transition in
the presence of a surface. The bulk and surface cross-over exponents, φ and φS, are estimated from the
scaling behavior of the leading partition function zeros.
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1. Introduction

The interacting self-avoiding walk (ISAW) is the canonical lattice model for a polymer in dilute
solution, which takes solvent quality into account [1,2]. In this set-up, the polymer is modelled by a
random walk on a lattice. The strong entropic repulsion in the polymer is modelled by adding the
constraint that lattice bonds and sites may only be visited once. The quality of the solvent, determined by
the difference between the monomer-monomer affinity and the monomer-solvent affinity, is modelled by
introducing an attractive interaction energy, ε < 0, between pairs of non-consecutive, nearest-neighbor
visited sites [3]. This model has been much studied, and is now believed to be well understood, particularly
in two dimensions [1]. The arguments that led to the ISAW model are quite general (an excluded volume
interaction and short-ranged attraction) and are satisfied by other models, in particular, the interacting
self-avoiding trail (ISAT) model [4] and the vertex-interacting self-avoiding walk (VISAW) model (which
corresponds to the n → 0 limit of an O(n) model proposed by Blöte and Nienhuis) [5]. In both models
the self-avoidance is modelled at the level of the lattice bonds (the walk is only allowed to visit a lattice
bond once). The walk may visit lattice sites more than once (up to twice on the square lattice), and an
interaction energy is attributed to multiply visited sites. The difference between the two models is that
the ISAT walk is allowed to cross at a site while the VISAW is not. These two models are sub-models of a
generalized ISAT model where the crossings and collisions have different energies εc for collisions and εx

for crossings. In what follows, it is convenient to think in terms of Boltzmann weights τx = exp(−βεx)

for crossings and τC = exp(−βεc) for collisions (β = 1/kT with k the Boltzmann constant). This model
can be generalized further to include a stiffness, realized by associating a Boltzmann weight p with sites
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where the walk carries on in the same direction (p > 1 encourages straight sections over corners while
p < 1 favors corners). For the model see Figure 1. The weights are chosen to be consistent with Blöte and
Nienhuis [5]. We also consider the situation where the trail can interact with a surface. When a surface is
present, an additional surface weight ω ≥ 1 is added for every contact with the surface. The weight ω

drives an adsorption transition at a particular value ωc(τx, τc).
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Figure 1. The generalized trail model. Weights τC and τX are introduced for collisions and crossings at a
site, respectively, and weights p and ω are introduced to model chain stiffness and attraction with a surface
(dotted line).

It is often convenient to think of these walk models in the grand-canonical ensemble, where a
Boltzmann weight linked to the chemical potential required to add a step to the walk, otherwise called the
fugacity, K is introduced. This fugacity controls the average length of the chain in the grand-canonical
ensemble. For a given value of the other weights, the length of the chain increases as K is increased
from zero until, at some value of K = K? the length of the chain diverges. For small values of τc/x this
happens smoothly in a second order transition, while for larger values of τc/x this happens discontinuously
(indicating a first-order transition in length). The surface defined by K?(τc, τx) separates a finite-density
region (K > K?) from a zero-density phase (K < K?). For the ISAW model, the upper region is one
finite-density critical phase and there is a special point separating the second order transition line from
the first-order transition line. This point is a tricritical point, called the Θ-point, and occurs at a particular
value of τΘ = 1.93± 0.03 [6]. If we briefly consider what happens for very long (infinite) walks of fixed
length, then we can see that as τ is increased, the walk will have zero density for τ < τΘ and a finite
density for τ > τΘ. The density will become non-zero continuously at τ = τΘ. The tricritical point τΘ
is identified as the collapse transition for the walk. We can calculate the correlation length exponent,
ν for the model for τ < τΘ and τ = τΘ. In both these cases the correlation length exponent ν may be
identified with the fractal (Hausdorf) dimension of the walk through dH = 1/ν. For τ > τΘ the transition
seen when K is increased is first-order, and so the correlation length does not diverge (hence no critical
exponent is defined); however, in walk models it is usual to continue to define ν via the fractal dimension.
In two dimensions, the dense walk will have a dimension 2 in this phase, and so νcollapsed = 1/2. It is well
known that for τ < τΘ the value of ν is the same as for the (non-interacting) self-avoiding walk model,
νSAW = 3/4 [1] and at the collapse transition (Θ-point) νΘ = 4/7 [7].

For both the ISAT model (τ = τc = τx) and the VISAW model (τ = τc, τx = 0) the finite-density region
is separated into two phases, separated by a transition line, ending at the collapse transition. See Figure 2.
What is interesting is that both models may be naively thought to be in the same universality class as the
ISAW model, but clearly are not, as the collapse point is not tricritical anymore. Foster and Pinettes [8]
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showed using density-matrix RG (DMRG) methods that the multi-critical point in the VISAW model is
first-order in nature if the transition is approached along the K?(τ) line, as it would be in the finite-length
ensemble. This has been confirmed more recently using Monte Carlo [9]. Similar first-order behavior
was observed for the ISAT [10]. Both these models are therefore different from the standard ISAW model.
To understand this apparent non-universality, we need to consider that the first-order character of the
collapse transition in the VSAW and ISAT models indicates that the walk is space-filling at the multi-critical
(mc) collapse transition, while at the Θ-point of the ISAW model, the fractal dimension of the walk is
dH = 7/4 < 2, and so here the walk is not space-filling, and so the walk does not see the underlying lattice
for long-enough walks. The conclusion is that the Θ-point will not depend on the underlying lattice,
but only the dimensionality of the problem. For the other models, however, the walks, being the same
dimension as the lattice, will be sensitive to the details of the underlying lattice. Doukas et al. [11] have
verified that the ISAT model on the triangular lattice has different behavior from the square lattice. In what
follows we will only be considering the square lattice. The ISAT and VISAW models are models showing
effects of geometric frustration, which also makes them more challenging to investigate than the traditional
ISAW model. Studies of the ISAT have given rise to a plethora of apparently contradictory results [12–14],
but it is clear that the behavior is not like the ISAW model, and a picture is beginning to emerge [10,15,16].
The VISAW model in two dimensions seems to be going in the opposite direction. While it initially seemed
that the critical exponents were well understood with the Bethe-Ansatz solution [17], recent numerical
evidence indicates that the situation is more complicated [18,19], although some clues about this are
beginning to emerge [9].
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Figure 2. Schematic bulk phase diagram in the τ, K plane. K is the step fugacity, which controls the average
length of the walk, and τ is the Boltzmann weight for the monomer-monomer interactions.

2. Method

Another way of studying the phase transition in lattice models is to look at the complex zeros of
the partition function. If we study the grand-canonical partition function, and look for the zeros in the
complex plane, following the seminal work of Lee and Yang [20,21], it can be shown that there are no
zeros on the positive real axis for finite system sizes, but that as the thermodynamic limit is approached
there is a condensation of zeros which pinch the real axis at the transition point, leading to the required
singular behavior in the thermodynamic limit. These zeros are known as Lee-Yang Zeros. In this article,
we reexamine these models by investigating instead the finite-size scaling behavior of the zeros of the
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canonical (fixed-length) partition function (Fisher zeros) calculated by stochastic enumeration, using the
FlatPERM method [22]. Fisher zeros are likewise expected to pinch the real axis at the correct phase
transition point [23]. It is often considered that the real part of the leading zero leads to a more accurate
estimate for the critical temperature and, since the imaginary part is known to vanish in the thermodynamic
limit, the finite-size behavior is more easily analyzed.

The canonical partition function for walks of length N for all these models may be written as

ZN = ∑
NI

cN,NI τ
NI , (1)

where τ = exp(−βε) with ε < 0 is the interaction energy and NI is the number of doubly visited lattice
sites and cN,NI is the number of walks of length N with NI interactions. A grand-canonical partition
function may also be defined through

Z = ∑
N

KN ZN , (2)

= ∑
N

cN,NI K
NτNI , (3)

where K is the fugacity, which controls the average length of the walk through

〈N〉 = ∂ lnZ
∂ ln K

. (4)

In the limit N → ∞, the walk changes from a “swollen” configuration to one which is compact,
passing through the collapse temperature (or θ temperature). The swollen configuration has a Haussdorf
(fractal) dimension, dH < d, leading to a density ρ = 0, for high temperatures (low-τ). The compact
dimension has ρ 6= 0 and dH = d. This transition may be seen to be a higher-order critical point in the
grand-canonical formalism (tricritical in the ISAW model, but more complicated in the ISAT and VISAW
models). We will denote the location of the multi-critical collapse transition as (K?, τ?).

The Haussdorf dimension is defined through

〈RG〉 ∼ N1/dH , (5)

where RG is the radius of gyration. By identification of the correlation function in the high-temperature
expansion of the O(n) spin model in the n→ 0 limit, it may be seen that in the swollen phase, the correlation
length exponent is ν = 1/dH . It is usual to extend this definition to the collapse transition and low
temperature phase. For τ > τ? the transition as K is increased is first-order, and so the geometric definition
for ν does not give a critical exponent. It is widely accepted that at the collapse transition, the geometric
definition of ν corresponds to the correct critical exponent. This appears not to be always the case, however.
The collapse transition for both the ISAT and VISAW models where shown to have first-order character if
approached from a specific direction [8,10], a result which has been recently confirmed by Bedini et al. [24]
for the ISAT model and by Vernier et al. [9] for the VISAW model. This gives rise to a disconnection
between the geometrical definition and the standard definition. Monte-Carlo simulations always calculate
ν = 1/dH = 1/2 while transfer matrices have access in principle to the real correlation length exponent.
For the ISAT model it is now believed that these two are the same with ν = 1/2 [25], but that the VISAW is
likely to have non-trivial correlation exponent value with ν = 12/23 6= 1/2 [9].
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It also explains the difference in reported exponents from Monte-Carlo methods, where ν = 1/2 is
calculated using Equation (5) with ν = 1/dH , and Transfer-Matrix approaches, which deliver ν = 12/23
through the finite-size scaling of the correlation length.

In this paper, we propose to reexamine this model through the Fisher zeros [23] of the canonical
partition function, ZN . These zeros, in the complex plane, are expected to accumulate and approach the
real axis at τ?. For a general spin model, it is expected that the leading complex zero of the partition
function will approach the real axis as follows [23]:

Im [τ0] ∼ L−
1
ν , (6)

|Re [τ0]− τ?| ∼ L−
1
ν , (7)

where L is the linear dimension.
Near the collapse transition, the singular part of the free energy is expected to scale as [26]:

fs(K, τ, L) = L−d f̃ (a1|K− K?|L1/ν, a2|τ − τ?|L1/ν2), (8)

where ν2 is the exponent which describes the divergence of the correlation length when the tricritical
point is approached for fixed K = Kc. The relevant linear dimension here is the radius of gyration
(L = RG ∼ Nν). When substituted into Equation (8) and using that N ∼ |K− K?|−1, we find:

fs(K, τ, L) = N−dν f̃ (b1, b2|τ − τ?|Nν/ν2). (9)

the ration ν/ν2 = φ is known as the cross-over exponent, and shows that for walk models, when the zeros
of the canonical partition function are considered, the real and imaginary parts of the leading zero of the
partition function scales as [27]:

Im [τ0] ∼ N−φ, (10)

|Re [τ0]− τ?| ∼ N−φ. (11)

The same argument leads to the identification α = 2− 1/φ used in the canonical formulation of the
walk models.

This method was used recently to verify τ? and value of φ for the two-dimensional ISAW model
using exact enumerations up to N = 34 [28]. In their paper they give a value of φ ≈ 0.422± 0.012 in good
agreement with the known exact value for the ISAW (φ = 3/7 ≈ 0.429) but they give an estimate for
τΘ = 2.16± 0.02 which is not close to the previously calculated value τΘ = 1.93± 0.03 [6]. This discrepancy
is simply due to an error in extrapolation, as the data given in the figures are consistent with the previously
known values.

3. Results

For the models studied in this article, the finite-size effects are more pronounced and the walk
lengths available from exact enumeration calculations are not sufficient to obtain meaningful results.
To overcome this difficulty, we use the FlatPERM method introduced by Prellberg and Krawczyk [22]
to stochastically enumerate the coefficients of the polynomial ZN for sizes up to N = 500 (trails) and
N = 1000 (VISAW). How far we went in practice depended on the model, as different models required
different convergence times.

The canonical partition functions are calculated stochastically, resulting in stochastic variations in the
estimates for their coefficients and hence in the position of the zeros. Therefore, the issue of convergence
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arises. Since we are interested in critical behavior, we only need to verify convergence for the zero closest
to the real positive axis (the leading zero). Figure 3 shows the zeros calculated for the ISAT model with
N = 500 from four different simulations of 108 iterations. While there is scatter in the zeros for the different
simulations, the leading zero is superposed for the four simulations, and the second closest zero also
overlaps, though with enough scatter for the different symbols to be seen. Similar results are found for the
other models.
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Figure 3. Zeros of the canonical partition function for self-avoiding trails for N = 500 calculated for four
different simulations. If we label the leading zero (the one closest to the positive real axis) τ0, the x-axis
gives the real part of the zero and the y-axis the imaginary part. The complex zeros can clearly be seen to
pinch the real axis near τ? = 3.0, where in the thermodynamic limit the zero will sit on the axis and denote
the critical point.

Since we are also interested in looking at the behavior of the walk in the presence of an attractive
surface, we need to introduce a surface interaction energy εS and associated (attractive) Boltzmann weight
ω. For a given τ, as omega is increased, an infinite walk will undergo an adsorption transition at a given
value of ω = ω?(τ). Of particular interest is the adsorption transition which occurs simultaneously with
collapse, located at (ω?, τ?).

To be able to investigate this, we need to extend the canonical partition function in terms of
two parameters:

ZN = ∑
NI ,NS

cN,NI ,NS τNI ωNS , (12)

with NI interactions, NS is the number of steps in the surface, and cN,NI ,NS is the number of walks with N
steps, NI interactions and NS steps in the surface.

If τ is known, then we can define the polynomial

PN(ω) = ∑
NS

c̃NS ωNS , (13)

where c̃NS are effective coefficients, which can be calculated directly using FlatPERM in the usual way.
Using the same analysis as above, the zeros of PN give the critical value ω? and their finite-size behavior
gives an estimate of φS.
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For the ISAT model, the collapse transition is known exactly: τ? = 3 [29]. The zeros of PN for the
ISAT model for N = 650 are shown in Figure 4.
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Figure 4. Zeros of the canonical partition function for self-avoiding trails for N = 650. Again, it can
clearly be seen that the leading complex zeros pinch near ω? = 2.45, giving the estimate of the critical
adsorption point.

Looking at the Figures 3 and 4, we can see that the zeros pinch the real axis near the known values of
τ? = 3 [29] and ω? ≈ 2.45± 0.05 [15].

Figure 5 shows the positions of the real parts of the leading zeros (τ0) of the partition function ZN(τ).
This gives finite-size estimates for τ?. It is clear that exact enumeration to a maximum length of N ≈ 30
would be largely insufficient to estimate the value of τ?, since the evolution of τ0 with N is not monotonic.
For the lengths obtained by FlatPERM we can see that the estimates extrapolate well to the previously
found value, τ? = 3 for the ISAT model for large enough N. The points are fitted following Taylor and
Luettmer-Strathmann [30], who fitted the real part of the zero as a polynomial of the imaginary part.
As the imaginary part goes to zero as the length of the walk goes to zero, the asymptotic estimate is given
by the constant part of the constructed polynomial. In this case, giving τ?

est = 3.01± 0.01, which compares
well to the exactly known value, τ? = 3. In the models presented here we found the best fit occurred when
we fitted the real part of the leading zero to a quartic polynomial in the imaginary.

While the real part of the leading zero behaves in a non-monotonic fashion, making it difficult to
reach an asymptotic regime from which to calculate φ, the imaginary part is better behaved. Additionally,
the imaginary part extrapolates to zero in the limit N → ∞. We can try and estimate φ in two different
ways. The first is to take Equation (10) which gives:

Im[τ0(N)] ≈ AN−φ + higher order terms. (14)

Eliminating A, and ignoring the higher-order terms leads to an effective value φeff

φeff =
Im[τ0(N1)]/Im[τ0(N2)]

N1/N2
. (15)

In the limit N1, N2 → ∞, we would expect φeff → φ. Since there are strong parity effects in these
models, it is necessary to take N1 and N2 to be both even or both odd. In Figure 6 we show two series
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of estimates, one with N1 = N, N2 = N − 2 and the other N1 = N, N2 = N − 4. Both sets of curves
plotted against 1/N lead to estimates of φ = 0.83± 0.01. The quality of this method depends crucially
on the coefficients being calculated very accurately, and so is sensitive to the errors induced by stochastic
enumeration. This method did not work so well for the other models.
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Figure 5. Fisher zeros for the canonical partition function of the interacting self-avoiding trail model for
sizes from N = 30 to N = 500 fitted with a quartic function, showing the extrapolation to the critical
interaction strength τ = 3.01± 0.01 to compare with the exact value of τc = 3.
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N,N-2
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Figure 6. The effective bulk cross-over exponent for the trails model, φeff plotted against 1/N where
the exponent is calculated using two lattice sizes. Due to parity effects, we have looked at two cases:
N1 = N, N2 = N − 2 and N1 = N, N2 = N − 4.

Otherwise, we can estimate directly by taking the log of Equation (14), giving log(Im[τ0(N)]) =

−φ log(N) + A+ ( h.o. terms). For the ISAT model, this is shown in Figure 7, and leads to an estimate
φ ≈ 0.83 as well. As the line is not quite straight, the quality of the fit depends on only using the most
asymptotic part of the line. There is a risk that if the length of walk considered is not sufficient, the estimate
might still be evolving. This appears not to be the case here.
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Figure 7. log Im(τc) vs. log N for Trails O(n). The slope of the best fit gives an estimate of φ = 0.83± 0.02.

Figure 8 shows the finite-size estimates of the zeros for PN go the ISAT model with τ = τ?, giving an
estimate of ω? ≈ 2.45± 0.02, to be compared with 2.45± 0.05 found from transfer matrices [15]. Fitting
the log-log curve with a straight line gave an estimate of φS ≈ 0.52± 0.01. In reference [15], it was found
that νS = 1.275± 0.005, which along with the geometric exponent ν = 1/2 would give φS = 0.393± 0.002.
These results differ significantly, but φS is one of the more difficult exponents to estimate. The location of
the critical point is however in good agreement.
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Figure 8. A cubic fit of the Re(ωc) against Im(ωc) for the surface interaction of Trails at the special surface
transition with τ = τ? = 3.

Figures 9 and 10 give the locus of the leading zeros and the imaginary part of τ0 vs. N on a log-log
plot for the VISAW model. These give estimates τ? = 4.76± 0.04 and φ = 0.89± 0.01 (compared with
4.69± 0.01 found using DMRG [8] the result here seems a little high).

Comparing the estimates φ = 0.89 ± 0.01 for VISAW and φ = 0.83 ± 0.01 for the ISAT model,
we find that these two model have different cross-over behavior, unlike that found by Bedini et al. [24],
who found the two values to be very close at φ ≈ 0.84 (φSAT = 0.84± 0.3). The error bars are estimated
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using reasonable extremal fits. There is always a possibility that the slope of the line is still evolving, so,
in Figure 10, we show lines of the two slopes and argue it is unlikely that asymptotically the line will move
sufficiently to reach the required slope for φVISAW = φISAT , although this cannot be excluded.

2 2.5 3 3.5 4 4.5 5 5.5 6

Re(τ)

0
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4

6

8

Im
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Figure 9. Fisher zeros for the canonical partition function of the VISAW model fitted with a quartic function,
showing the extrapolation to the critical interaction strength τ = 4.76± 0.04 to compare with the value of
τc = 4.69± 0.01 calculate from Transfer Matrices and DMRG.
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Figure 10. log Im(τc) vs. log N for the VISAW model. The red line gives the slope of best fit, giving an
estimate of φ = 0.89± 0.01. The points appear to lie on a straight line, and the blue line (of slope 0.83± 0.02,
as found for the Trails) is shown as reference. While it is possible that the line evolves further to reach the
slope of the blue line, we would argue that this supports the hypothesis that the ISAT and the VISAW are
in different universality classes.

The interesting feature of the VISAW generalized to include stiffness (p 6= 1) it that it contains an
integrable point [5]. It was expected that the critical behavior of this integrable point was the same as the
general VISAW at the collapse transition, and in particular the VISAW model with p = 1. The advantage
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numerically of investigating this integrable point is that its location is known exactly: τ? = 2.630986 · · · ,
p? = 0.275899 · · · and K? = 0.446933 · · · . The Bethe-Ansatz led to a conjecture on the exact exponents
at the critical point, notably the correlation length exponent ν = 12/23 and the cross-over exponent
φ = 10/23 [17]. These exponents were conjectured true for the standard VISAW model as well, but have
never been observed numerically, either by transfer matrix/DMRG [5,8] or in Monte Carlo [24]. Indeed,
the behavior at the integrable point seems to be very different from the normal VISAW model. Numerically,
both DMRG [18] with a surface and Monte Carlo [19] investigations at the integrable point find strong
evidence of ν ≈ 0.576 being close or the same as the standard ISAW model. This has been investigated by
Vernier, Jacobsen and Saleur [9], who have identified the integrable point with an infinitely critical point,
and have argued that this leads to finite-size correction terms which would make the identification of the
exact exponents extremely difficult numerically. While it is not yet fully understood how this point fits in
with the rest of the phase diagram, it is unclear if the standard VISAW is in the same universality class.

The zeros of the partition function again reproduce the location of the collapse transition for this
integrable point very well (see Figure 11) as τ? ≈ 2.64± 0.02 (cf. exact value of 2.630986...), and the best fit
for the cross-over exponent, shown in Figure 12, is φ = 0.73± 0.01, although, in light of the preceding
discussion, this value needs to be taken with a lot of caution about what it actually means. Putting in the
τ? and p? for the integrable point, it was possible to identify ω? = 3.42± 0.04 at the adsorption transition
to be compared with a value of ω? = 3.41± 0.01 from transfer matrices [18]. A cubic fit of the real part
of the finite size estimates for ω? as a function of the imaginary part is shown in Figure 13, showing the
extrapolation to ω? ≈ 3.42.
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Figure 11. Fisher zeros for the canonical partition function of the Integrable VISAW model at the
integrable point fitted with a quartic function, showing the extrapolation to the critical interaction strength
τ = 2.64± 0.02 to compare with the exact value of τc = 2.630986 · · · .
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Figure 12. log Im(τc) vs. log N for the Integrable VISAW model. The slope of the best fit gives an estimate
of φ = 0.73± 0.01.
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Figure 13. A cubic fit of the Re(ω?) against Im(ω?) for the surface interaction of the Integrable VISAW
model at the collapse transition with p = p? and τ = τ?.

4. Conclusions

In this article, we looked at using the stochastic enumeration of series to generate partition functions
of finite-length walks to investigate performance in locating the critical points (surface and bulk) and
to calculate cross-over exponents. The cross-over exponents compared favorably with values found by
other methods, notably looking at the scaling behavior of the specific heat. The models presented here are
numerically particularly difficult, and the complex zeros performed very well in identifying accurately the
transition points for the different models. This method has an advantage that for a given size, the location
of the leading zero is well defined and less sensitive to error than, say, the peak of a specific heat curve.
It provides direct access to the finite-size scaling behavior. We believe it provides a useful tool to exploit
the FlatPERM method in investigating lattice walk models.
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With good quality values of the zeros (Yang-Lee and Fisher) for different sizes of polymer length
should enable access to more information about the models being studied, see for example E J Janse van
Rensburg [31]. This, along with a detailed finite-size study of the adsorption transitions, will be the object
of further work. Similar questions on the accuracy of the surface exponents exist for the three-dimensional
self-avoiding walk model, see for example reference [32] and references therein.
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