1	Type of submission:			
2	Original Research Paper			
3	\$			
4	Title:			
5	Role of waveform signal parameters in the classification of children as relatively slow			
6	and fast myopia progressors in children			
7				
8	Authors and affiliations:			
9	Wan Kin ^a , Wolffsohn James Stuart ^b , Cho Pauline ^a			
10	^a School of Optometry, The Hong Kong Polytechnic University, HKSAR, China			
11	^b School of Optometry, College of Health Life Sciences, Aston University, UK			
12				
13	Running title			
14	Waveform signal and myopia progression			
15				
16	Key words			
17	Myopia, Orthokeratology, Corneal biomechanics			
18				
19	Contact author:			
20	Name: Kin Wan; (+852) 3400 2931; <u>kkinwan@polyu.edu.hk</u>			
21	Address: Optometry Research Clinic, A136-137, School of Optometry, The Hong			
22	Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China			
23				

24 Abstract

25 **Clinical Relevance:** Identification of the baseline characteristics for children

26 undergoing orthokeratology with relatively fast myopia progression can allow a more

27 accurate determination of the risk/benefit ratio.

28 Background: This study aimed to investigate if baseline corneal biomechanics can

29 classify relatively slow and fast myopia progression in children.

30 Methods: Children aged six to 12 years with low myopia (0.50 to 4.00 D) and

31 astigmatism (less than or equal to 1.25 D), were recruited. Participants were

32 randomised to be fitted with ortho-k lenses of different compression factors [0.75 D

33 (OK-CCF) n=29 or 1.75 D (OK-ICF) n=33]. Relatively fast progressors were defined as

34 participants who had axial elongation of 0.34 mm or above per two years. A binomial

35 logistic regression analysis and a classification and regression tree model were used

36 in the data analysis. The corneal biomechanics were measured with a bidirectional

37 applanation device. Axial length was measured by a masked examiner.

38 **Results:** As there were no significant between-group differences in baseline data (all

p > 0.05), data were combined for analysis. The mean \pm SD axial elongation for

40 relatively slow (n=27) and fast (n=35) progressors were 0.18 \pm 0.14 mm and 0.64 \pm

41 0.23 mm per two years, respectively. p2area1 was significantly higher in relatively

42 fast progressors (p = 0.018). The binomial logistic regression and classification and

43 regression tree model analysis showed baseline age and p2area1 could differentiate

44 slow and fast progressors over two years.

45 Conclusions: Corneal biomechanics could be a potential predictor of AE in ortho-k
46 lens wearing children. A further investigation with a larger sample size is warranted

47 to confirm the applicability of the finding.

48

49 Introduction

50	Axial elongation (AE) is the major structural change affecting myopia development.
51	Studies using animal models have demonstrated that the biomechanics of the
52	posterior ocular tissue are altered during myopia development, with increases in
53	scleral elasticity ¹ and extensibility (creep) being observed. ²⁻⁴ The biomechanics of
54	the cornea, whose extracellular matrix shares similar composition with posterior
55	ocular tissues, were hypothesized to be able to reflect the biomechanics of posterior
56	ocular tissues ^{5,6} , but this could not be confirmed as it was not feasible to non-
57	invasively measure the biomechanics of posterior ocular tissue.
58	The bidirectional applanation device (Ocular Response Analyzer, Reichert
59	Ophthalmic Instruments, Buffalo, NY) is a commercially available device, which can
60	measure corneal biomechanics in vivo under clinical settings. It generates two
61	corneal biomechanics parameters according to the pressure differences between the
62	first (P1) and second (P2) corneal applanation, namely, corneal hysteresis (CH) and
63	corneal resistance factor (Figure 1). However, determination of corneal hysteresis
64	and corneal resistance factor has a limitation in that they depend on the pressure
65	difference at P1 and P2, so different morphologies of the waveform signal could
66	generate the same corneal hysteresis and corneal resistance factor values. Analysis of
67	the morphologies of the waveform signal could provide additional information
68	compared with only the interpretation of the values of corneal hysteresis and corneal
69	resistance factor. ⁷ Thirty-seven waveform signal parameters can be generated

70 according to the morphology of the waveform signal (Table 1).

71	Severity of myopia and axial length were reported to be associated with corneal
72	hysteresis. ⁸⁻¹² Several studies have reported that corneal hysteresis is lower in
73	subjects with high myopia. ^{8, 11-12} In related studies, Song et al. reported that children
74	with longer axial length had a lower corneal hysteresis, ⁹ Chang et al. observed that
75	the between-eye difference in corneal hysteresis was associated with the between-
76	eye difference in axial length, ¹⁰ and Wan et al. demonstrated that lower baseline
77	corneal hysteresis was associated with higher AE in children wearing single-vision
78	spectacles over two years. ¹³ However, the role of waveform signal parameters in
79	myopia progression has not received any attention.
80	This study aimed to investigate the role of baseline waveform signal parameters
81	in the classification between relatively fast- and slow-progressors by using a decision
82	tree model.
83	
84	Methods
85	This was a longitudinal clinical trial [ClinicalTrials.gov (NCT02643342)]
86	investigating the baseline differences of corneal biomechanics between relatively
87	fast- and slow-progressors. All procedures were performed according to the tenets of
88	the Declaration of Helsinki. Ethics approval was obtained from the Departmental
89	Research Committee of the School of Optometry of The Hong Kong Polytechnic
90	University. Written informed consent was obtained from the parents after thorough
91	explanation of the purpose, nature, and possible consequences.
92	Healthy children (6 to <12 years old) without prior history of myopia control

93 treatment were recruited. All participants had myopia of 0.50 D to 4.00 D, 94 astigmatism of less than 1.50 D (with-the-rule; ≤ 0.50 D for other axes) in both eyes, 95 and anisometropia of less than 1.00 D. The participants were randomly assigned to two ortho-k groups using either a conventional (OK-CCF; 0.75 D) or increased (OK-96 97 ICF; 1.75 D) compression factor (Table 2). Data collection visits were scheduled for all 98 participants at baseline and every six months. All data collection visits were 99 scheduled about the same time of the day (within two hours) as the baseline visit to 100 minimize the potential effects of diurnal variation. 101 Only Ocular Response Analyzer measurements with a waveform score of 4.0 or higher were regarded as valid ¹⁴. The first four measurements (not more than 12 102 103 consecutive measurements) with the highest waveform score were recorded and 104 averaged. Lenstar LS 900 (Haag-Streit AG, Koeniz, Switzerland) was used to measure 105 central corneal thickness. IOL Master (Carl Zeiss Meditec AG, Germany) was used to 106 measure axial length. The first five consecutive axial length readings (betweenreading difference of less than 0.02 mm) were regarded as valid and recorded. ^{15,16} 107 108 Axial length measurements were performed by a masked examiner to eliminate 109 potential bias.

110

111 Statistical analysis

SPSS software (version 23; IBM Corp., Armonk, NY, USA) was used to
perform statistical analysis. The Shapiro-Wilks test was used to test the normality of
all data. The baseline between-group differences were tested with unpaired t-tests or
Mann-Whitney U tests, as appropriate. Only data from participants (right eye only)

116 who had completed the whole study with valid Ocular Response Analyzer data were 117 used in the analysis. Only h2, h21, p1area, p1area1, p2area, and p2area1 were used 118 in the analysis since they had been shown to be repeatable (intraclass correlation 119 coefficient > 0.80) in children (Figure 3).¹⁷ 120 Participants with AE of 0.34 mm or above per two years were defined as relatively fast progressors and the remainder as relatively slow progressors. ¹⁸ To 121 122 determine if baseline characteristics could classify between relatively fast and slow 123 progressors over two years, a binomial logistic regression analysis and the classification and regression tree analysis ^{19,20} were employed. Classification and 124 125 regression tree is a decision tree method, using binary splits of all parameters 126 (baseline age, corneal hysteresis, corneal resistance factor, h2, h21, p1area, p1area1, 127 p2area, and p2area1) in the training set. Firstly, a maximal tree was constructed 128 including all parameters. Secondly, trimming was performed to prevent overfitting 129 and a Gini index was used to measure the impurity of the split. The selection of child 130 node depended on the best reduction of the Gini index between the parent and child nodes.²⁰ The tree model was validated by using a 10-fold cross validation.²¹ 131 132 133 Results 134 The baseline between-group differences in age, refractive errors (spherical 135 equivalence refraction), axial length, central corneal thickness, Goldmann-correlated

136 intraocular pressure, corneal-compensated intraocular pressure, corneal hysteresis,

137 corneal resistance factor, h2, h21, p1area, p1area1, p2area, and p2area1 were not

138 significant (all p > 0.05) (Table 3). The mean \pm SD age for OK-CCF and OK-ICF were

9.12 ± 1.05 and 9.49 ± 1.08 years, respectively. Since the between-group differences
of baseline data were insignificant, the baseline data from both ortho-k groups were
pooled together. Twenty-seven participants were classified as relatively slow
progressors (AE: 0.18 ± 0.14 mm) and 35 participants as relatively fast (AE: 0.64 ±
0.23 mm) over two years.

144 For the six waveform signal parameters, only p2area1 was significantly different 145 between relatively slow and fast progressors (p = 0.018) (Table 4). A logistic 146 regression model, which consisted of baseline age and p2area1 was statistically 147 significant (p < 0.001). The model explained 30.3% (Nagelkerke R²) of the variance in 148 classification of relatively slow and fast progressors. Increasing age (Odds ratio: 149 0.391) was associated with a decreased likelihood of being relatively fast 150 progressors, whereas increasing p2area1 (Odds ratio: 1.002, 95% confidence 151 interval: 1.0001 to 1.004) was associated with an increase in the likelihood of being 152 relatively fast progressors.

153 Figure 4 shows the final classification and regression tree model, which 154 consisted of four nodes. Baseline age was the best predictor and p2area1 was the 155 second predictor to differentiate between relatively slow and fast progressors. The 156 majority (17/20; 85%) of participants with baseline age younger than 8.92 years, 157 were relatively fast progressors. Of the participants older than 8.92 years and with baseline p2area1 lower than 951.39, 88% (14/16) were relatively slow progressors. 158 159 This model classified 51.9% of relatively slow progressors and 94.3% of relatively fast 160 progressors. The estimated error (standard error) after 10-fold cross-validation was

161 0.44 (0.63).

162

163 **Discussion**

The results of this study showed that baseline p2area1 was significantly higher 164 in relatively fast progressors. p2area1 represents the area under the curve of the 165 166 waveform signal at the second peak (second corneal applanation during Ocular 167 Response Analyzer measurement) and has been previously hypothesized to be related to the ability of cornea to dissipate energy. ²² A larger p2area1 could 168 169 represent a larger area of corneal applanation, which could indicate a higher amount 170 of energy being stored in the cornea, during the outward corneal movement towards 171 the end of Ocular Response Analyzer measurement. It also implies that greater 172 internal energy was required for the cornea to return to its convex shape. These 173 alterations of energy storage of use suggest that a cornea with larger p2area1 has 174 poorer energy damping abilities. The morphology of the second peak of the 175 waveform signal has been shown to be useful in the diagnosis or detection of multiple ocular conditions, including keratoconus, ^{23,24} glaucoma, ²² and after corneal 176 cross-linking surgery. ²⁵ According to the binomial logistic regression model, every 10 177 178 units of p2area1 could result in a 2% increase in odds of being a relatively fast 179 progressor. From the classification and regression tree model, baseline age was the 180 best predictor for AE after two years in a group of ortho-k lens wearing children. 181 Previous studies also showed that participants with younger baseline age tended to progress more rapidly over two years ^{15,16} and five years. ²⁶ p2area1 could further 182 183 differentiate between relatively slow and fast progressors, as older children (> 8.92

184 years) with a higher p2area1 (> 951.39) tended to have a higher AE.

185	Although the biomechanics of the cornea differ from those of posterior ocular
186	tissues, corneal biomechanics were hypothesized to be able to reflect the
187	biomechanics of posterior ocular tissues as they share similar extracellular matrix
188	compositions. ^{5,6} In addition, corneal hysteresis and the morphology of the second
189	peak of the waveform signal have been shown to be related to the stiffness of the
190	sclera. ^{27,28} A stiffer sclera could yield a smaller area under the second peak of the
191	waveform signal. ²⁸ Mechanical stresses, which act on the eye, especially the
192	posterior ocular tissues, could potentially lead to AE. ^{29,30} Intraocular pressure is one
193	source of ocular mechanical stress. Elevation of IOP for a short period of time can be
194	caused by many daily life activities. ³¹⁻³³ An increase in IOP has been suggested to be
195	associated with AE. ³⁴ An eye with a better ability to resist the change induced by
196	mechanical stress could potentially have less AE.
197	The ocular rigidity of myopic eyes has been demonstrated to be lower
198	compared with emmetropic and hyperopic eyes. ^{35,36} The reduction in the diameter
199	of the scleral collagen fibrils, a lower level of collagen content and proteoglycan
200	synthesis have been suggested to be associated with myopia progression. ^{1,37-39} The
201	differences in the scleral composition between relatively slow and fast progressors
202	could lead to measurable differences in the waveform signal generated by the Ocular
203	Response Analyzer. This could help to explain why p2area1 may be a potential
204	predictor for AE.
205	

In the current study, a decision tree model was adopted. The advantage of this
approach is the ability to identify sub-grounds with the highest risk, rather than

207	focusing on the main effects across the entire sample. ⁴⁰ The results of both linear				
208	regression and the decision tree model indicated that age and p2area1 were				
209	potential predictors of AE in ortho-k lens wearing children. Baseline p2area1 differed				
210	between relatively slow and fast progressors, which could aid in choice of myopia				
211	control interventions. The main limitation for current study was relatively small				
212	sample size so that a further stratification of subjects into different age groups to				
213	investigate the association between age, p2area1, and myopia progression was not				
214	able to perform. It would be worthwhile to carry out further investigations with				
215	larger samples of children of different ethnicities to confirm the applicability of the				
216	findings.				
217					
218	Acknowledgements				
219	The authors thank Jason Lau for the assistance with Ocular Response Analyzer				
220	measurement. The authors also thank Dr Maureen Boost for her advice in the				
221	preparation of the manuscript.				
222					
223	References				
224	1 Phillips J, McBrien N. Form deprivation myopia: elastic properties of sclera.				
225	Ophthalmic Physiol Opt 1995; 15: 357-362.				
226	2 Siegwart Jr JT, Norton TT. Regulation of the mechanical properties of tree				

- shrew sclera by the visual environment. *Vis Res* 1999; 39: 387-407.
- Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased
 scleral creep in chick and tree shrew eyes. *Invest Ophthalmol Vis Sci* 2000; 41:
 2028-2034.
- Avetisov E, Savitskaya N, Vinetskaya M et al. A study of biochemical and
 biomechanical qualities of normal and myopic eye sclera in humans of
 different age groups. *Metab Ophthalmol* 1983; 7: 183-188.

234	5	Medeiros FA, Meira-Freitas D, Lisboa R et al. Corneal hysteresis as a risk factor
235		for glaucoma progression: a prospective longitudinal study. <i>Ophthalmol</i> 2013;
236		120: 1533-1540.
237	6	Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodeling
238		in normal ocular growth and myopia development. <i>Exp Eye Res</i> 2015; 133:
239		100-111.
240	7	Kerautret J, Colin J, Touboul D et al. Biomechanical characteristics of the
241		ectatic cornea. J Cataract Refract Surg 2008; 34: 510-513.
242	8	Shen M, Fan F, Xue A et al. Biomechanical properties of the cornea in high
243		myopia. Vision Res 2008; 48: 2167-2171.
244	9	Song Y, Congdon N, Li L et al. Corneal hysteresis and axial length among
245		Chinese secondary school children: the Xichang Pediatric Refractive Error
246		Study (X-PRES) report no. 4. Am J Ophthalmol 2008; 145: 819-826. e811.
247	10	Chang P-Y, Chang S-W, Wang J-Y. Assessment of corneal biomechanical
248		properties and intraocular pressure with the Ocular Response Analyzer in
249		childhood myopia. British Journal of Ophthalmology 2010; 94: 877-881.
250	11	Jiang Z, Shen M, Mao G et al. Association between corneal biomechanical
251		properties and myopia in Chinese subjects. <i>Eye</i> 2011; 25: 1083.
252	12	Del Buey MA, Lavilla L, Ascaso FJ et al. Assessment of corneal biomechanical
253		properties and intraocular pressure in myopic Spanish healthy population. J
254		<i>Ophthalmol</i> 2014; 2014.
255	13	Wan K, Cheung SW, Wolffsohn JS et al. Role of corneal biomechanical
256		properties in predicting of speed of myopic progression in children wearing
257		orthokeratology lenses or single-vision spectacles. BMJ open ophthalmology
258		2018; 3: e000204.
259	14	Lam AK, Chen D, Tse J. The usefulness of waveform score from the ocular
260		response analyzer. Optom Vis Sci 2010; 87: 195-199.
261	15	Chen CC, Cheung SW, Cho P. Myopia control using toric orthokeratology (TO-
262		SEE study). Invest Ophthalmol Vis Sci 2013; 54: 6510-6517.
263	16	Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study:
264		a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 2012; 53: 7077-
265		7085.
266	17	Wan K, Cheung SW, Wolffsohn JS et al. Repeatability of corneal biomechanics
267		waveform signal parameters derived from Ocular Response Analyzer in
268		children. Cont Lens Anterior Eye 2021; 44: 101373.

269	18	Cheung S-W, Boost MV, Cho P. Pre-treatment observation of axial elongation
270		for evidence-based selection of children in Hong Kong for myopia control.
271		Contact Lens and Anterior Eye 2019; 42: 392-398.
272	19	Lemon SC, Roy J, Clark MA et al. Classification and regression tree analysis in
273		public health: methodological review and comparison with logistic regression.
274		Annals of behavioral medicine 2003; 26: 172-181.
275	20	Breiman L, Friedman JH, Olshen RA et al. Classification and regression trees:
276		Routledge, 2017.
277	21	Friedman JH. The elements of statistical learning: Data mining, inference, and
278		prediction: Springer, 2017.
279	22	Aoki S, Murata H, Matsuura M et al. The relationship between the waveform
280		parameters from the ocular response analyzer and the progression of
281		glaucoma. Ophthalmol Glaucoma 2018; 1: 123-131.
282	23	Luz A, Fontes BM, Lopes B et al. ORA waveform-derived biomechanical
283		parameters to distinguish normal from keratoconic eyes. Arq Bras Oftalmol
284		2013; 76: 111-117.
285	24	Ventura BV, Machado AP, Ambrósio Jr R et al. Analysis of waveform-derived
286		ORA parameters in early forms of keratoconus and normal corneas. J Refract
287		Surg 2013; 29: 637-643.
288	25	Spoerl E, Terai N, Scholz F et al. Detection of biomechanical changes after
289		corneal cross-linking using Ocular Response Analyzer software. J Refract Surg
290		2011; 27: 452-457.
291	26	Hiraoka T, Kakita T, Okamoto F et al. Long-term effect of overnight
292		orthokeratology on axial length elongation in childhood myopia: a 5-year
293		follow-up study. Invest Ophthalmol Vis Sci 2012; 53: 3913-3919.
294	27	Taroni L, Bernabei F, Pellegrini M et al. Corneal biomechanical response
295		alteration after scleral buckling surgery for rhegmatogenous retinal
296		detachment. Am J Ophthalmol 2020; 217: 49-54.
297	28	Roberts CJ. Corneal hysteresis and beyond: Does it involve the sclera? J
298		Cataract Refract Surg 2021; 47: 427-429.
299	29	Greene PR. Mechanical considerations in myopia: relative effects of
300		accommodation, convergence, intraocular pressure, and the extraocular
301		muscles. Am J Optom Physi Optic 1980; 57: 902-914.
302	30	McMonnies CW. Intraocular pressure spikes in keratectasia, axial myopia, and
303		glaucoma. Optom Vis Sci 2008; 85: 1018-1026.

304	31	Bakke EF, Hisdal J, Semb SO. Intraocular pressure increases in parallel with	
305		systemic blood pressure during isometric exercise. Invest Ophthalmol Vis Sci	
306		2009; 50: 760-764.	
307	32	McMonnies CW, Boneham GC. Corneal curvature stability with increased	
308	intraocular pressure. Eye Cont Lens 2007; 33: 130-137.		
309	33	Gandhi PD, Gürses-Özden R, Liebmann JM et al. Attempted eyelid closure	
310		affects intraocular pressure measurement. Am J Ophthalmol 2001; 131: 417-	
311		420.	
312	34	Greene PR, McMahon TA. Scleral creep vs. temperature and pressure in vitro.	
313		Exp Eye Res 1979; 29: 527-537.	
314	35	Berisha F, Findl O, Lasta M et al. A study comparing ocular pressure pulse and	
315		ocular fundus pulse in dependence of axial eye length and ocular volume.	
316		Acta Ophthalmol 2010; 88: 766-772.	
317	36	Lam AK, Wong S, Lam CS et al. The effect of myopic axial elongation and	
318		posture on the pulsatile ocular blood flow in young normal subjects. Optom	
319		<i>Vis Sci</i> 2002; 79: 300-305.	
320	37	Rada JA, Nickla DL, Troilo D. Decreased proteoglycan synthesis associated	
321		with form deprivation myopia in mature primate eyes. Invest Ophthalmol Vis	
322		<i>Sci</i> 2000; 41: 2050-2058.	
323	38	McBrien NA, Gentle A. Role of the sclera in the development and pathological	
324		complications of myopia. Prog Retin Eye Res 2003; 22: 307-338.	
325	39	He M, Wang W, Ding H et al. Corneal biomechanical properties in high myopia	
326		measured by dynamic scheimpflug imaging technology. Optom Vis Sci 2017;	
327		94: 1074-1080.	
328	40	Fernández L, Mediano P, García R et al. Risk factors predicting infectious	
329		lactational mastitis: decision tree approach versus logistic regression analysis.	
330		Matern Child Health J 2016; 20: 1895-1903.	
331			
332	Corres	ponding author:	
333	Name: Kin Wan; (+852) 3400 2931; kkinwan@polyu.edu.hk		
334	Address: Optometry Research Clinic, A136-137, School of Optometry, The Hong Kong		

335 Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Table 1. Summary and definitions of Ocular Response Analyzer waveform signal

337 parameters.

Peak 1	Peak 2	Definition
slew1	slew2	ratio between dive1/2 and w1/2
mslew1	mslew2	maximum single continuous increase in the rise
dive1	dive2	backside of downslope of peak until first break
aindex	bindex	the smoothness of the peak,
alphf		the smoothness of the signal between the peaks
p1area, p1area1	p2area, p2area2	area under the curve
h1, h11	h2, h21	height of the peak
w1, w11	w2, w21	width of the peak, descriptor of the time course
aspect1,	aspect2,	aspect ratio of the peak
uslope1,	uslope2,	rate of increase from base to peak
dslope1,	dslope2,	rate of decrease from peak to base
path1, path11	path2, path21	the path length around the peak

338

Table 2. Characteristics of orthokeratology lenses used in current study.

Manufacturer	NKL Contactlenzen		
Material	Siloxanylstyrene fluoromethacrylate		
Design	Parallel reverse geometry		
Back optic zone radius (mm)	7.2 - 9.50 (0.05 mm step)		
Back optic zone diameter (mm)	6		
Lens power	Plano		
Compression factor (D)	0.75(OK-CCF)/1.75(OK-ICF)		
Overall lens diameter (mm)	10.2/10.6/11.00		
Tangential angle (degree)	50 - 65 (1° step)		
Peripheral Curve	Tangential periphery		
Sagittal depth (mm)	0.50 - 0.99 (0.01 mm step)		
Central thickness (mm)	0.24		
OK-CCF: conventional compression factor group; OK-ICF increased compression			

342 factor group

343

Table 3. Baseline data in groups wearing orthokeratology lenses with conventional

345 compression factor (OK-CCF, 0.75 D) and increased compression factor (OK-ICF,

346 1.75D).

	OK-CCF (n=29)	OK-ICF (n=33)	Р*
Age, year	9.12 ± 1.05	9.49 ± 1.08	0.175
SER, D	-2.34 ± 0.76	-2.39 ± 0.93	0.805
AL, mm	24.34 ± 0.66	24.47 ± 0.83	0.498
ССТ <i>,</i> µm	548.00 ± 28.83	548.03 ± 29.35	0.997
IOPg, mmHg	14.66 ± 3.46	14.23 ± 2.60	0.587
IOPcc, mmHg	15.83 ± 3.18	15.20 ± 2.66	0.399
CH, mmHg	9.87 ± 1.49	10.13 ± 1.39	0.486
CRF, mmHg	9.71 ± 1.75	9.80 ± 1.44	0.813
h2	354.67 ± 51.64	383.51 ± 77.06	0.093
h21	236.45 ± 34.43	255.67 ± 51.37	0.086
p1area	4111 ± 733	4241 ± 1,054	0.581
p1area1	1725 ± 345	1855 ± 502	0.246
p2area	2331 ± 636	2523 ± 693	0.262
p2area1	999 ± 287	1100 ± 321	0.199

347 Data are presented as mean ± SD or median (range).

348 SER: spherical equivalence refraction, AL: axial length, CCT: central corneal thickness,

349 IOPg: Goldmann-correlated intraocular pressure, IOPcc: corneal-compensated

350 intraocular pressure, CH: corneal hysteresis, CRF: corneal resistance factor

351 *Probability values of unpaired t-test for between-group difference.

352

	Slow (n=27)	Fast (n=35)	P*
Age, year	9.81 ± 0.86	8.94 ± 1.08	0.001
CCT, μm	542 ± 29.58	553 ± 27.87	0.156
IOPg, mmHg	14.93 ± 3.03	14.05 ± 2.99	0.256
IOPcc, mmHg	16.03 ± 3.15	15.08 ± 2.68	0.201
CH, mmHg	9.91 ± 1.30	10.09 ± 1.54	0.636
CRF, mmHg	9.82 ± 1.32	9.71 ± 1.77	0.781
h2	363.57 ± 70.34	374.99 ± 65.73	0.513
h21	242.38 ± 46.89	249.99 ± 43.82	0.513
p1area	4138 ± 1124	4213 ± 725	0.753
p1area1	1795 ± 553	1793 ± 330	0.987
p2area	2273 ± 648	2555 ± 667	0.100
p2area1	966 ± 291	1147 ± 292	0.018

Table 4. Baseline data in relatively slow progressors and relatively slow progressors

355 Data are presented as mean ± SD.

356 CCT: central corneal thickness, IOPg: Goldmann-correlated intraocular pressure,

357 IOPcc: corneal-compensated intraocular pressure, CH: corneal hysteresis, CRF:

358 corneal resistance factor

359 *Probability values of unpaired t-test for between-group difference.

363 **Figure 1.** The double-peak waveform of the Ocular Response Analyzer signal. Green

line: pressure of the air-puff; Red line: infrared signal; P1: first corneal applanation

365 (peak 1); P2: second corneal applanation (peak 2).

Figure 2. Study flowchart.

Figure 3. Illustration of waveform signal parameters (h2, h21, p1area, p1area1,

p2area, and p2area1). P1: first corneal applanation (peak 1); P2: second corneal

- applanation (peak 2).

- **Figure 4.** The classification tree of relatively fast and slow progressors using the
- 379 classification and regression tree model.