
Abstract— Biomechanical load assessments are becoming 
increasingly important in the sporting community; however, 
there are still numerous difficulties in monitoring them in a field 
environment outside of specialized biomechanical monitoring 
laboratories. Inertial Measurements Units (IMUs) have been 
showing promising results in the modeling of biomechanical 
variables. This study explores the application of an artificial 
neural network (ANN) in the estimation of runners’ vertical 
ground reaction forces (GRFs) based on the accelerometry 
collected from two wearable motion sensors developed in-house 
and attached on the shanks. Data collected from fourteen 
runners running at three different speeds (8, 10, 12 km/h) were 
used to train and validate the ANN. Predictions were compared 
against gold-standard measurements from a pair of pressure in-
soles. Root mean square error (RMSE) was used to evaluate the 
performance of the models. Further investigations, e.g., the use 
of principal components analysis (PCA) and the impact on the 
estimation of several GRF-related variables, were carried out to 
provide useful insights regarding the portability of the model to 
low-power resource-constrained devices. Findings indicate that 
ANNs in conjunction with accelerometry may be used to 
compute vertical ground reaction forces (RMSE: 0.148 BW) and 
related loading metrics in running accurately. 
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I. INTRODUCTION

Researchers’ interest toward ground reaction forces (GRFs) 
has been growing steadily [1], due to their association with 
overuse-related running injuries from the repeated impact 
loading of the foot [2]. Even though their direct measurement 
in running is feasible via instrumented treadmills and force 
platforms [3] or optoelectronic systems [4], this is only possible 
under controlled conditions in specialized lab settings. 
Wearable technology, therefore, represents an excellent 
alternative for the estimation of GRFs in real-world conditions. 

Pressure-based insoles have been proposed as a solution for 
open-field scenarios; however, despite the numerous studies 
available [5], the commercial products on the market [for 
instance, 6-7] still show several issues in terms of cost and 
performance degradation over time. 

Inertial measurement units (IMUs), due to their low-cost 
and small-size, have been used to record kinematics in any 
environment for prolonged time periods [8]. Numerous 
methodological approaches have been investigated for the 
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estimation of GRFs via IMUs, such as biomechanical models 
[9], artificial neural networks (ANNs) [10], or mass-spring-
damper systems [11]. A recent comparison study has 
highlighted that accelerometry in conjunction with ANNs may 
return the most accurate approximations [12] due to the 
network’s ability to model complex non-linear patterns. 

Three-layered, feed-forward, ANNs with backpropagation 
have been typically adopted for this goal [10, 13]. However, the 
impact of different architectures -i.e. number of neurons in the 
hidden layer or principal component analysis (PCA) - and the 
network’s estimation accuracy on GRF-related variables [14] 
(e.g., impact peak, active peak, loading rate, and impulse) has 
not been investigated yet. Ultimately, models should generalise 
accurately from unseen inputs while being portable for low-
power resource-constrained devices (i.e. foot pods). 

The objective of this research is to extend the work carried 
out in the estimation of running GRFs via optoelectronics [13], 
to IMUs worn on the shanks. Analyses were carried out on 
running trials captured with gold-standard pressure in-soles and 
wearables developed in-house. Hardware development details 
are also provided. Investigations on the most effective ANN 
architecture provided useful insights for portability to low-
power devices and extension to open-field scenarios. 

II. METHODS

A. Hardware Platform

The developed hardware platform (Figure 1) measures 50
× 90 × 10 mm and is equipped with a high-performance low-
power 32-bit microcontroller, a 9 DOF inertial sensor, a 
Bluetooth low-energy transmitter, and a removable micro SD 
card for data storage. The sampling rate is at 238 Hz.   

B. Loadsol Pressure In-soles

The Loadsol system [15] measures vertical GRFs on the
plantar surface of the foot in static and dynamic movements. 
Utilizing three flexible flat sensors (on front, mid, and rear 
foot) the system measures the force between the foot and the 
shoe (Figure 2), regardless of which part of the foot is in 
contact with the insole. The vertical component of the GRFs is 
computed from the overall pressure distribution. The system 
has been recently validated in a number of scenarios [16, 17]. 
Technical specifications involve a force range from 20 to 
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2500N, sampling rate at 100 Hz, and Bluetooth 
communication for data transfer to a tablet. 

 

 
Figure 1.  Hardware platform developed  

 

 
Figure 2.  Loadsol pressure in-soles [15] 

C. Participants and Data Collection  

In order to evaluate the GRF estimation algorithms, 
fourteen healthy volunteers were recruited from Tyndall 
National Institute, community groups and social clubs (14 
subjects; 10 males; mass 70±8 kg; age 29±3.4 years). 
Participants were excluded if they reported any previous 
musculoskeletal disorder. Recruits were between 20 to 40 
years of age and able to comfortably run on a treadmill. 
Participants were asked to attend a single session and run on a 
treadmill at different speeds (8, 10, and 12 km/h) for 
approximately 30s per recording. Each participant was fitted 
with two IMUs attached on the lateral side of the shanks with 
elastic bands and with a pair of shoes (same model) with the 
pressure in-soles. Kinematics and kinetics were stored on the 
IMUs and the tablet used to interact with the pressure in-soles, 
respectively. For each recording, accelerations for each shank 
were logged, along with the vertical GRFs for each leg. Data 
from IMUs and pressure in-soles (Figure 3) were synchronized 
manually in post-processing using a recognizable event (a 
vertical jump generating a spike in both foot pressure and 
acceleration signals) as a reference for alignment. 

Accelerometry data was filtered with a low-pass, second 
order, zero-phase shift Butterworth filter with cut-off 
frequencies of 15 Hz. Angular velocity was used for the 
automatic segmentation of the recorded trials by detecting the 
toe-offs and heel-strikes. A threshold of 20 N in the vertical 
component of the GRFs was also employed for the 
identification of the same events. Vertical linear accelerations 
and GRFs were both scaled to 100 data points from heel-strike 
to toe-off and GRFs were additionally normalised to body 
weight (BW). Overall, 42 running trials of 30s and 60-70 
stance phases each were used for the analysis. 

The study received approval by the Clinical Research 
Ethics Committee at the University College Cork. 

D. Artificial Neural Network 

A feed-forward ANN was developed in Python 3 (Python 
Software Foundation, Delaware, US) using the Tensorflow 
source-platform. The model was fed with the vertical linear 
local component of the acceleration signal of each stance and 

was trained to estimate the vertical GRF component. The ANN 
consisted of an input layer of 100 neurons, a hidden layer 
whose neurons adopt tanh as the activation function and 
dropout as a regularization method, and an output layer with 
100 linear neurons generating predictions scaled to 100 data 
points. Root mean square error (RMSE) was used as loss 
function to compare predicted and measured values. 
Backpropagation and Adam optimizer were used for training. 

The dataset was randomly split into training, validation and 
test sets (8, 3 and 3 subjects, respectively). A grid search on 
the training set attained optimal values for the following 
hyper-parameters: number of training epochs (1000 or 2000), 
batch size (128 or 256), and dropout rate (0.2 or 0.5). For each 
combination of hyper-parameters’ values, a leave-one-
subject-out cross-validation (LOSO-CV) was carried out. The 
combination of hyper-parameters that returned estimates with 
the lower mean RMSEs was considered as the optimum. To 
demonstrate that the networks were able to generalize their 
predictions with the selected set of hyper-parameters’ values, 
the generated models were evaluated using the validation set. 

Consecutively, training and validation sets were merged 
into a single new training set (11 subjects), a LOSO-CV re-
trained the ANN model, and the validation errors were 
calculated. RMSEs evaluated the predictions of the final test 
set (3 subjects) and errors were grouped based on running 
speed. The analysis was repeated for three different number 
of neurons in the hidden layer (3, 5, 10), and when using PCA, 
for several principal components (3, 5, 8, 10, 15, 20, 25, 50).   

E. Ground Reaction Forces Metrics 

Four vertical GRF metrics, easily extrapolated from the 
vertical GRF waveform and commonly reported in the 
literature, were also investigated. They include the vertical 
GRF active and impact peaks, the VALR (vertical average 
loading rate), and the vertical GRF impulse. Further details on 
these can be found in [14]. When the vertical impact peaks 
were not visible, they were timed at 13% of the stance [18]. 

III. RESULTS AND DISCUSSION 

Table I summarizes the performance of the model using 
only ANNs. The architecture adopted in [13] was used as a 
reference and a different number of hidden layer neurons was 
tested. Due to the dropout regularization, the different models 
present similarities at all speeds. RMSEs were comparable to 
those reported in [13], e.g., mean test error (all speeds, 10 
neurons) was 0.148 BW vs 0.134 BW in [13]. Figure 4 (top) 
shows the predicted and measured body-weight normalized 
vertical GRFs averaged for all the stances of the test set at 
separate running condition (8, 10, 12 km/h). It is evident that 
predictions were highly precise for all running speeds. 

 
Figure 3.  Accelerations and vertical GRFs envelopes (training data) 



  

 

 

Figure 4.  Predicted GRFs (orange) vs Actual GRFs (blue): (top) ANN 
model (10 neurons), (bottom) ANN + PCA model 

TABLE I.  ANN PERFORMANCE 

# Neurons 
Hidden 
Layer 

Training 
Error a 

Test 
Error a (8 

km/h)  

Test 
Error a 

(10 km/h) 

Test 
Error a 

(12 
km/h) 

Test Error 
a (all 

speeds) 

3 
0.25 

(0.06) 
0.136 
(0.01) 

0.13 
(0.02) 

0.166 
(0.04) 

0.146 
(0.03) 

5 
0.255 
(0.06) 

0.127 
(0.02) 

0.143 
(0.025) 

0.17 
(0.04) 

0.149 
(0.03) 

10 
0.248 
(0.06) 

0.13 
(0.026) 

0.136 
(0.017) 

0.17 
(0.03) 

0.148 
(0.024) 

a. Training/Test errors expressed in RMSE BW mean (standard deviation) 

Figure 4 (bottom) shows the results of the best ANN + 
PCA model (10 hidden layer neurons and 10 principal 
components). Figure 5 shows an example of the performance 
of the models evaluated in the grid search for different 
principal components. The grid search returned an average 
training error on the initial 8 subjects from 0.239 to 0.265, with 
the best option being the 10 principal components, while the 
impact of the hidden layer size was limited (Table II). 

Evidently, results with and without PCA were largely 
similar (Tables I and II). However, slightly better performance 
was obtained with PCA at low-moderate speeds, with a 
performance decrease at 12 km/h. Nevertheless, the ANN + 
PCA model relies on only 1210, 655, and 433 weights (with 
10, 5, 3 hidden neurons, respectively), against the 2110 
weights of the ANN-only model (i.e. a reduction of 57%, 31%, 
and 20.5%, respectively, with limited loss of performance), 
facilitating the implementation on low-power. 

TABLE II.  ANN + PCA BEST MODEL PERFORMANCE 

# 
Neurons 
Hidden 
Layer 

# Principal 
Components 

Training 
Error a 

Test 
Error a 

(8 
km/h)  

Test 
Error a 

(10 
km/h) 

Test 
Error a 

(12 
km/h) 

Test 
Error a 

(all 
speeds) 

10 10 
0.249 

(0.068) 
0.125 

(0.018) 
0.132 

(0.013) 
0.172 
(0.03) 

0.146 
(0.02) 

5 10 
0.248 
(0.07) 

0.127 
(0.015) 

0.125 
(0.017) 

0.17 
(0.044) 

0.143 
(0.027) 

3 10 
0.252 

(0.068) 
0.129 

(0.024) 
0.13 

(0.015) 
0.175 
(0.04) 

0.148 
(0.027) 

a. Training/Test errors expressed in RMSE BW mean (standard deviation) 

TABLE III.  GROUND REACTION FORCES METRICS 

Metrics 
ANN Model (all 

speeds) 
ANN + PCA Model  

(all speeds) 
Actual Result (all 

speeds) 
Impact Peak 

(BW) 
1.17 (0.17) 1.21 (0.14) 1.17 (0.13) 

Active Peak 
(BW) 

2.28 (0.09) 2.31 (0.10) 2.41 (0.15) 

VALR (BW/s) 10.77 (1.74) 11.15 (1.5) 10.59 (1.31) 
Impulse a 
(BW*s) 

124.47 (5.42) 126.6 (4.24) 127.9 (7.95) 

a. Time-normalised signal was used for integration  

 

Figure 5.  Example of models performance during grid search. RMSE 
training error (for each subject) plotted vs the number of principal 

components (neurons in the hidden layer set to 10) 

Finally, Table III shows the impact of the developed 
models on the estimation of GRF-related metrics. The ANN-
only model tends to be more accurate on the impact GRF peak 
with low errors also on the VALR; however, errors were 
higher on active peak and impulse values. The largest error 
among the metrics was 5.4% (active peak). The ANN+PCA 
shows, instead, higher accuracy on the active rather than the 
impact peaks (largest error: 5.3% for VALR). 

The present study explored the application of ANN models 
in the estimation of runners’ vertical GRFs based on the 
accelerometry collected from two wearable IMUs built in-
house and attached on the shanks of the runner. Findings 
indicate that our models may be used to accurately estimate 
vertical GRF waveforms and loading metrics in running. The 
successful combination of the developed ANNs with a 
wearable system may allow the estimation of GRFs to be 
extended to open-field applications. However, this study 
presents some limitations: the number of recruits was limited 
and with no musculoskeletal injuries; hence, it is impossible to 
indicate if the system could generalize well to injured subjects. 
Moreover, even though the Loadsol pressure in-soles have been 
shown to have performances similar to gold-standard force 
platforms [16, 17], their reduced sampling rate (100 Hz) may 
be a limiting factor in the estimation of high-speed activities. 

IV. CONCLUSION 

This study reports on the potential application of ANN and 
PCA models with accelerometry for the accurate estimation 
of vertical GRFs in running. The predictions were 
accompanied with notably low errors, especially at lower 
speeds. Moreover, the results show the feasibility for the 
portability of the models to low-power resource-constrained 
devices with limited impact on the overall performance. With 
the use of IMUs being on the rise, the presented combination 
of ANN and wearables may potentially lead to the widespread 
measurement of biomechanical loads in open-field. 
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