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Abstract 22 

Morphometric Similarity Networks (MSNs) estimate structural 'connectivity' as a biologically 23 

meaningful set of statistical similarities between cyto-architectural features derived in-vivo 24 

from multiple MRI sequences. These networks have shown to be clinically relevant, predicting 25 

40% variance in IQ. However, the sequences required (T1w and T2w 3D anatomical, DWI) to 26 

produce these networks typically have long acquisition times, which are less feasible in some 27 

populations. Thus, estimating MSNs using features from only a T1w MRI is attractive to both 28 

clinical and developmental neuroscience. We aimed to determine whether reduced-feature 29 

approaches approximate the original MSN model as a potential tool to investigate brain 30 

structure. Using Human Connectome Project data, we extended previous investigations of 31 

reduced-feature MSNs by comparing not only T1w-derived networks but additional MSNs 32 

generated with fewer MR sequences to their full acquisition counterparts. We produce MSNs 33 

which are highly similar at the edge-level, to those generated with multi-modal imaging. We 34 

also find that, regardless of the number of features, these networks have limited predictive 35 

validity of generalised cognitive ability scores in contrast to previous research. Overall, settings 36 

in which multi-modal imaging is not available or clinically/developmentally appropriate, T1w-37 

restricted MSN construction provides a valid estimate of the MSN. 38 

Keywords: Morphometric similarity networks, Structural, brain development,  39 

 40 

  41 
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1. Introduction 42 

Cortical grey-mater structural covariance networks (SCNs) model the degree to which the 43 

morphology of brain regions (measured by a single morphometric feature, cortical thickness or 44 

volume for instance) statistically co-varies across all possible pairs of regions of interest (ROIs; 45 

(Alexander-Bloch, Giedd, & Bullmore, 2013; Alexander-Bloch, Raznahan, Bullmore, & 46 

Giedd, 2013; Evans, 2013; Mechelli, Friston, Frackowiak, & Price, 2005). Whilst these types 47 

of networks represent region to region similarity of GM region metrics rather than causal 48 

interactions or tracked anatomical connections (Zheng et al., 2019), they are built on the 49 

premise that regions which are cytoarchitecturally similar are more likely to be anatomically 50 

connected (Goulas, Uylings, & Hilgetag, 2017; Wei, Scholtens, Turk, & van den Heuvel, 51 

2019). These whole-brain network approaches to morphometric data, within a graph theoretic 52 

framework (Bullmore & Sporns, 2009), allow us to investigate additional information beyond 53 

that which is offered by univariate, local approaches (Bullmore & Sporns, 2009; Pagani, 54 

Bifone, & Gozzi, 2016). 55 

The potential role of disruption to the SCN to understanding functional outcomes has been 56 

explored within a graph theoretic framework in relation to a range of conditions. These include 57 

broad psychiatric diagnoses such as bulimia, depression and schizophrenia (Chen et al., 2017; 58 

Mak, Colloby, Thomas, & O'Brien, 2016; Palaniyappan, Park, Balain, Dangi, & Liddle, 2015; 59 

Tijms et al., 2015; Westwater, Seidlitz, Diederen, Fischer, & Thompson, 2017), 60 

neurodegenerative disorders, such as Alzheimer’s disease (AD) and multiple sclerosis (Kim et 61 

al., 2016; Pereira et al., 2015; Pereira et al., 2016; Raamana, Weiner, Wang, Beg, & 62 

Alzheimer's Disease Neuroimaging, 2015; Tewarie et al., 2014), epilepsies (Garcia-Ramos et 63 

al., 2017; Sone et al., 2016; Yasuda et al., 2015) and autism spectrum disorders (Balardin et 64 

al., 2015). In all of these studies, the methodology requires multiple participants to sample 65 

enough cortical measurements to generate a correlation between all possible regional pairs. 66 

Thus, this framework approach generates group-level brain networks, expressing population-67 

level covariance in neuroanatomy (Alexander-Bloch, Raznahan, et al., 2013). This limits the 68 

ability of these approaches to quantify network- and system- level deficits within individual 69 

patients, which would benefit stratified diagnosis and prognosis (Zheng, Yao, Xie, Fan, & Hu, 70 

2018). 71 

Existing methodological approaches have attempted to investigate these structural 72 

relationships between regions at the individual-patient level (i.e. (Kim et al., 2016; Kong et al., 73 
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2015; Kong et al., 2014; Tijms, Series, Willshaw, & Lawrie, 2012; Yu et al., 2018)). The 74 

majority of these methodologies have two major limitations; they either divide ROIs into sub 75 

regions that do not respect the underlying structure and convolutions of the cortex (Tijms et 76 

al., 2012), or the edge weights are defined as the simple subtraction of the feature in region A 77 

minus region B, rather than covariance. Both of these methodological deviations represent 78 

marked changes to the structural covariance paradigm under which many of the previous SCN 79 

validation studies have operated, potentially limiting the validity of these studies. 80 

An alternative approach to investigate the covariance structure between multiple morphometric 81 

features can provide individual-level networks of covariance. Morphometric Similarity 82 

Networks (MSNs; Seidlitz et al. (2018)) estimate structural ‘connectivity’ as a biologically 83 

meaningful set of similarities between cyto-architectural properties at both the macro- and 84 

micro- structural level (Morgan et al., 2018). This is achieved through combination of features 85 

derived from a large set of imaging sequences, which may not always be possible in clinical 86 

settings. Data include morphometry measurements (such as cortical thickness, volume, 87 

curvature etc from T1w structural MRI), tissue diffusion properties (such as fractional 88 

anisotropy (FA) and mean diffusivity (MD) from diffusion-weighted images) and myelination 89 

indices (i.e. magnetization transfer from a multi-parameter mapping sequence or T1w/T2w 90 

ratio).  91 

MSNs have been shown to be clinically useful, predicting ~40% variance in IQ, as well as 92 

being biologically meaningful, with edges of the MSN highly aligned with gene co-expression 93 

between regions in human data and with axonal tract tracing data in the rhesus macaque 94 

(Seidlitz et al., 2018). These findings likely reflect the fact that cortical regions that are less 95 

cortically differentiated from one another (that is, more anatomically similar) are more likely 96 

to also be anatomically connected (Goulas et al., 2017; Wei et al., 2019). Given the alignment 97 

between MSNs and other biological networks, these networks represent a new connectivity 98 

phenotype which may provide additional biologically-relevant information beyond existing 99 

network approaches. 100 

MSNs have already been utilised in a small number of studies in clinical populations. For 101 

example,  Morgan et al. (2018) used the multi-feature (grey matter volume, surface area, 102 

cortical thickness, gaussian curvature, mean curvature, FA, and mean diffusivity) network 103 

approach using both T1w and DWI MRI and found a robust and replicable pattern of  104 

differences in cortical grey-matter networks for patients with psychosis compared to controls. 105 
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Galdi et al. (2018) used a similar multi-feature model with macrostructural (volume and T1/T2 106 

ratio) and multiple miscrostructural features (diffusion tensor-derived metrics and Neurite 107 

Orientation Dispersion and Density Imaging (NODDI) parameters). They trained a model to 108 

predict the post-menstrual age of infants born at term or pre-term. This model was able to detect 109 

a dysmaturation of the brain in the preterm infants, consistent with previous findings in similar 110 

cohorts. Seidlitz et al. (2019) also used MSNs to empirically test a ‘transcriptional vulnerability 111 

model’ of neurodevelopmental disorders of known genetic origin, with anatomical disruptions 112 

being spatially associated with regional gene expression within the region of the causal copy 113 

number variant. Overall, these findings seem to suggest that MSNs appear to offer a useful and 114 

clinically-relevant, individualised imaging phenotype.  115 

Despite these existing clinical applications, it is important to note that multiple, high quality 116 

MRI sequences are required to recreate such methodologies. These may not be feasible for all 117 

research requirements and/or settings. For instance, in large existing clinical (‘legacy’) cohorts, 118 

the availability of this ‘advanced’ imaging may be limited or only a minimal number being 119 

consistent across multiple sites for instance. Also, due to the longer acquisition time of these 120 

MRI scans (especially DWI), the risk is that these MRI are more vulnerable to being of lower 121 

quality due to potential of movement artefacts over time for instance, especially in some 122 

paediatric or clinical applications where movement is more prevalent (Rosen et al., 2018).  123 

Subsequently, estimating cyto-architectural similarity based on metrics from a single T1w 3D 124 

anatomical MRI, which is quickly and commonly acquired in clinical settings, is attractive to 125 

the fields of clinical and developmental neuroscience (Batalle, Edwards, & O'Muircheartaigh, 126 

2018). Both Seidlitz et al. (2018) and Li et al. (2017) estimated connectivity in this way and 127 

found the edge weights of these networks to be similar to the multi-modal MSNs (r = .68, 128 

Seidlitz et al. (2018)), with ‘good’ test-retest reliability in terms of network topology (ICC = 129 

.60, Li et al. (2017)). However these networks had reduced precision in their estimation with 130 

greater standard deviation of edge-level weights seen across participants (Seidlitz et al., 2018). 131 

Of these previous studies, limited assessment has been conducted of the performance of these 132 

methods across characteristics of reliability, consistency with group-networks, biological 133 

validity and predictive ability. However very little attention has been given to directly 134 

comparing the performance of models with a reduced number of structural features with which 135 

the network is estimated. No previous study has conducted an assessment of the reliability and 136 

performance of models across a number of models, each using reduced number of 137 
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cytoarchitectural features indicative of a more restricted MRI acquisition sequence. These 138 

networks using only T1w MRI have already been seen in clinical applications. Zheng et al. 139 

(2019) generated networks using seven morphological features from T1w MRI. These 140 

networks were used to predict classification of ASD and controls. A machine learning approach 141 

using individual morphological features produced near-chance prediction accuracy, however, 142 

utilising only connection-weights from multi-feature networks there was a significant 143 

improvement in the model’s prediction. Zheng et al. (2018) conducted a similar classification 144 

task and found that multi-feature MSNs classify patients with AD and mild cognitive 145 

impairment against controls, with a very high accuracy (~96%).  146 

However, without an evidence-based comparison of MSNs constructed from only T1w MRI 147 

features and those constructed from a wider selection of MRI acquisitions, it is unclear as to 148 

whether the addition of added MRI sequences would necessarily lead to more reliable estimates 149 

of the network. If this were the case, then one would also posit that the increased reliability of 150 

MSN estimation would better position MSNs as a biomarker of brain structure, with less 151 

measurement error, and thus provide better prediction than simpler, T1w only models such as 152 

those in Zheng et al. (2019) and Zheng et al. (2018). 153 

Recent research has shown that multi-feature MSNs are biologically meaningful and have 154 

potential clinical applicability, but MSNs generated with T1w features may be more amenable 155 

to certain patient groups/samples. The current study aimed to determine whether reduced-156 

feature approaches approximate the ‘original’ MSN model as a potential tool to investigate 157 

brain structure. We extended previous investigations of reduced-feature MSNs by comparing 158 

not only T1w-derived networks, but additional MSNs generated with fewer MR sequences to 159 

their full-acquisition counterparts. No previous work has specifically investigated three MSN 160 

models, each using fewer metrics from a reduced number of specific MRI scan acquisitions, 161 

assessing a number of replication properties. These models were hierarchically organised, with 162 

reduced acquisition complexity from model a) to c) seen below; 163 

a) MSN (T1w + T1w/T2w ratio + DWI; ten-features (MSN10-feat.)), 164 

b) MSN (T1w + T1w/T2w ratio; eight-features (MSN8-feat.)), 165 

c) MSN (T1w; seven-features (MSN7-feat.)) 166 

Model a), hereto referred to as MSN10-feat., is the best approximation of the Siedlitz (2018) 167 

approach, with magnetization transfer replaced with T1w/T2w ratio mapping (Glasser & Van 168 
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Essen, 2011) in the current study. Thus, for each participant, three connectivity matrices (one 169 

per model) were estimated, across multiple thresholds. We predicted that, for each measure of 170 

reliability/replicability, performance would be ordered in a hierarchical fashion, with MSN10-171 

feat. outperforming MSN8-feat. which subsequently outperforms MSN7-feat.. However, we also 172 

predicted that between model comparisons would suggest that the models themselves were 173 

highly similar. We also predicted that we would conceptually replicate previously found 174 

associations between cognition and MSN organisation (Seidlitz et al., 2018) and that we could 175 

generalise this finding to a novel domain of cognition, specifically executive functioning. 176 

 177 

2. Methods 178 

2.1 Participants - HCP data 179 

The current study uses open access, 3T MRI data provided by the Human Connectome Project 180 

(Van Essen et al 2013, Neuroimage), shared via ConnectomeDB 181 

(https://db.humanconnectome.org) under the HCP1200 and HCP Test-retest release. 182 

Favourable ethical approval for the secondary analysis of this data was granted by the Aston 183 

University ethics panel. 184 

2.1.1 HCP 1200 Release 185 

The HCP 1200 release contains data from n = 1206 subjects (550 Males, 656 Females). 186 

Subjects are grouped into age bins from ‘22-25’ to ‘36+’ (median age = 26-30). Whilst n = 187 

1206 subjects provided behavioural data, only 1113 subjects had MRI data available. These 188 

were the subjects for which data was accessed and downloaded from ConnectomeDB for the 189 

current study.  190 

2.1.2 HCP Test-Retest Release 191 

For 46 subjects from the HCP-1200 release, a second ‘retest’ dataset is available to assess test-192 

retest reliability of analyses. These second MRI visits occurred within time bins from ‘1-2 193 

months’ to ’11 months’ post initial scanning session. The median retest-interval bin was ‘5 194 

months’. Of these subject 45 had available MRI data, and these were the subjects used for 195 

subsequent analyses. 196 

 197 

 198 
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2.2 Methods 199 

2.2.1 Data Quality Control 200 

Subjects were selected for inclusion if, in the 1200-subject HCP release, they had T1w, T2w 201 

and diffusion data uploaded. This led to exclusion of n = 76 cases. 202 

Also, utilising QC data shared by the HCP project, any data labelled as with QC issue code B 203 

(which flags cases as having focal segmentation and surface errors when the corresponding 204 

Freesurfer outputs were checked) was further excluded from the current study (n = 33). The 205 

final dataset consisted of n = 1004 subjects. In the test-retest cohort, only one subject was 206 

excluded as flagged with QC issue B by the HCP project. 207 

2.2.1 MRI Processing 208 

The current study utilises data shared in its pre-processed format, including the output of the 209 

HCP Freesurfer pipeline (Fischl et al., 2002; Glasser et al., 2013; Jenkinson, Bannister, Brady, 210 

& Smith, 2002; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), processed DWI 211 

(gradient non-linearity, eddy-current and EPI distortion corrected (Andersson, Skare, & 212 

Ashburner, 2003; Andersson & Sotiropoulos, 2015, 2016), and calculated T1/T2w ratio myelin 213 

maps (Glasser & Van Essen, 2011). For further details of HCP processing pipelines see Glasser 214 

et al. (2013). 215 

Once cases were selected, measures indexing the underlying cyto-architecture were derived 216 

from multiple imaging modalities (see Table 1). Seidlitz et al. (2018) leverage near-identical 217 

MRI-derived metrics for the construction of the MSN network. However, we are using the 218 

T1/T2 ratio as a proxy for myelin content, rather than the magnetization transfer scan used by 219 

Seidlitz et al. (2018). The rationale for this modification was both pragmatic and clinically-220 

driven; i) the T1/T2w ratio maps are already implemented by the HCP project and thus this 221 

data is available for use with the rest of the high-quality HCP acquisition data and ii) in clinical 222 

populations, for which the methods may provide greatest benefit, multi-parameter mapping 223 

MRI sequences may not be acquired as part of a clinical protocol, whereas T1w and T2w 224 

sequences are. 225 

 226 

 227 

 228 
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Table 1. Morphometric measures and the modality of MRI from which they were derived 229 

Modality Metrics 

T1w Cortical thickness (CT), surface area (SA), mean (extrinsic) curvature (MC), Gaussian 

(intrinsic) curvature (GC), folding index (FI), curvature index (CI) and grey matter 

volume (GMV) 

 T2w Myelination (T1/T2w ratio) 

DWI Fractional Anisotropy (FA), Mean Diffusivity (MD) 

 230 

Preprocessed DWI (b = 1000) in T1w space were fitted to a tensor model using FMRIB’s 231 

‘dtifit’ function, and the subsequent FA and MD maps were mapped to the individual subject’s 232 

Freesurfer generated surface model in MNI space, using the connectome workbench (Marcus 233 

et al., 2011) function ‘volume-to-surface-mapping’. These, and the Tw1/T2w ratio myelin 234 

maps, were parcellated based on the Desikan-Killany atlas (Desikan et al., 2006), by generating 235 

a dense-cifti (using the ‘cifti-create-dense-from-template’ function) and parcellating the output 236 

(using ‘cifti-parcellate’). Freesurfer metrics were also extracted for each parcellated region 237 

using the ‘aparcstats2table’ function. 238 

2.2.2 MSN Construction 239 

To generate MSNs we apply the methods of Seidlitz et al. (2018) to the HCP data. The Desikan-240 

Killany atlas was mapped to the individual subjects with a surface-based registration, using the 241 

Freesurfer pipeline. The Desikan-Killany atlas ROIs were used as the nodes for all network 242 

construction. 243 

Morphometric features (parcellated to the Desikan-Killany atlas) for each participant can be 244 

expressed as a set of n vectors of length 10, with each vector as a different anatomical region 245 

(n = 68), and each element of the vector a different morphometric measure. However, these 246 

features are not all measured at the same magnitude of scale. For instance, volume (mm3) is 247 

measured at the order of 103, whereas folding index is measured to the order of 101. Thus, to 248 

normalize within this length 10 vector, each of these morphometric features is normalized 249 

across the 68 regions, using Z-scores (demeaned and SD scaled). This brings the measures 250 

across the feature vector into a comparable range. 251 
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Using the normalized features, a correlation matrix is generated for each participant, where 252 

each element of the matrix is the correlation between the feature vectors for every possible 253 

pairwise combinations of regions. Because each feature is zero-centred, the resultant 254 

distribution of correlation coefficients is normally distributed about zero. This correlation 255 

matrix represents the MSN-estimated connectivity for each participant. This procedure was 256 

repeated across the three MSN models (MSN10-feat., MSN8-feat., and MSN7-feat.), each using fewer 257 

metrics from a reduced number of scan acquisitions. 258 

2.3 Demographic and Behavioural Data 259 

Demographic variables were selected from the unrestricted data table accessed via 260 

‘ConnectomeDB’. These included age bin, sex recorded at birth and recorded quality control 261 

issues. Behavioural data were also extracted to assess the relationship between the MSNs and 262 

both general cognitive ability (measured with both fluid and crystallized intelligence measures) 263 

and executive functioning. These neuropsychological assessments were conducted 264 

contemporaneously in relation to the MRI scans. Further details of the tasks and measures 265 

acquired in the HCP dataset can be found in (Barch et al., 2013).  266 

2.3.1 General Cognitive Ability 267 

General cognitive functioning is measured with the Cognitive Function Composite (CogComp) 268 

score (Heaton et al., 2014), derived from the average of the normalized, scaled scores of Fluid 269 

and Crystallized cognition measures, then subsequently age-adjusted, and scaled. The Fluid 270 

Cognition Composite score is derived by averaging the normalized scores of each of the fluid 271 

ability measures in the NIH-toolbox (Flanker, Dimensional Change Card Sort, Picture 272 

Sequence Memory, List Sorting and Pattern Comparison), whilst the Crystallized Cognition 273 

Composite score is derived by averaging the normalized scores of each of the crystallized 274 

measures in the NIH-toolbox (Picture Vocabulary and Reading Tests). Higher Cognitive 275 

Function Composite scores indicate higher levels of cognitive functioning.  276 

2.3.2 Executive Functioning 277 

Behavioural executive function (EF) measures were selected based on an evidence-based, 3-278 

factor model of executive function (Karr et al., 2018); measures selected from the HCP 279 

cognitive battery to model EF were  the same as previous studies of EF utilising the HCP data 280 

(Lerman-Sinkoff et al., 2017; Nomi et al., 2017). These tests assessed multiple cognitive 281 

aspects of executive functioning including cognitive flexibility/shifting (Dimensional Change 282 
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Card Sort test,(Zelazo, 2006; Zelazo et al., 2014)), inhibition (Flanker Inhibitory Control and 283 

Attention task, (Zelazo et al., 2014)), working memory (List Sorting task, (Tulsky et al., 2013)). 284 

Age-adjusted scores were used for all behavioural data.  285 

Due to the fact we have only one neuropsychological measure per sub-domain of EF and there 286 

is therefore potential risk of measurement error, a principal component analysis (using the 287 

‘prcomp’ function in the R ‘stats’ base package (R Core Team, 2016)) was used to find a 288 

common EF component across all three EF measures. This produced a single principal 289 

component with an eigenvalue above 1, upon which all measures positively loaded onto, and 290 

thus this component was used as a ‘summary’ score of EF (see supplementary materials for 291 

further details). Higher summary EF scores reflect greater EF functioning.  292 

2.4 Statistical comparison 293 

When comparing weighted networks produced by each model, we use multiple metrics to 294 

assess the (dis)similarity of the subsequent covariance matrices.  295 

To reduce number of comparisons and, based on our premise that the MSN10-feat. is the most 296 

precise estimation of the MSN network  (as shown by Seidlitz et al. (2018)), all inter-model 297 

comparisons were done in a hierarchical fashion in comparison to this ‘gold-standard’ network. 298 

That is to say that model MSN10-feat. was compared to the MSN8-feat. and then the MSN10-feat. 299 

was subsequently compared to the MSN7-feat.. 300 

In order to test differences in the topological organisation of the networks produced by each 301 

model, we calculate average nodal strength for each graph. Nodal strength is the ‘magnitude’ 302 

of structural covariance for each node, this is the sum of the connectivity weights of all edges 303 

connected to node i (Fornito, Zalesky, & Bullmore, 2016). We did not normalize this measure 304 

based on number of edges as we averaged the nodal measures over the graph, where the number 305 

of edges was consistent across models due to density thresholding. This metric was calculated 306 

per subject, per density for each MSN model. For each comparison, we calculate the difference 307 

in distributions of graph strength using a paired t-test test. Due to the large number of 308 

comparisons (across densities, and contrasts) we do not report p-values, but instead report the 309 

effect sizes for comparisons. 310 

We also calculate the Pearson correlation coefficient between all edge weights for both models 311 

(as per Seidlitz et al. (2018)), and also specifically between all non-zero edge weights (those 312 

elements where a zero is present in the correlation matrix for each model are excluded). 313 
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However, because of the symmetric, undirected nature of the correlation matrix, this correlation 314 

coefficient may inflate/bias the supposed ‘similarity’ between the sets of edge weights. Thus 315 

we also employed the Mantel test, which calculates the Pearson correlation on either half of 316 

the off-diagonal elements of the correlation matrix (Mantel, 1967).  317 

To compare the binary networks produced by each model at each density (where edges retained 318 

after thresholding are set to 1 and those excluded are set to zero), we assessed the number of 319 

edges in the reduced model which replicated as a proportion of the fuller model, as per the 320 

following formula: 321 

∑(𝑥$ ≠ 0	&	𝑦$ ≠ 0)
∑(𝑥$ ≠ 0)  322 

where xi and yi represent the correlation matrices estimated from two of the MSN models for a 323 

given subject i. 324 

Secondly, we calculate these similarity measures between the subject-level network and the 325 

group average network, across all densities and models. This allows the assessment of the inter-326 

subject reliability of the networks being constructed by each model. Thirdly, we similarly test 327 

the intra-subject reliability of the produced networks, based on test-retest data from a subset of 328 

the overall dataset. Due to the categorical and inaccurate nature of the ‘binned’ measurement 329 

of time between initial and retest scan, this was not controlled for in this analysis. 330 

In order to assess the functional relevance of these networks, we assess their ability to predict 331 

CogComp and EF scores using a supervised-learning approach, namely partial least squares 332 

(PLS) regression (similarly to Seidlitz et al. (2018)) using the ‘plsRglm’ package in R (Bertrand 333 

& Maumy-Bertrand, 2018). This multivariate approach finds the optimal low dimensional 334 

relationship between a high dimensional set of predictors (in this case the MSN networks) and 335 

a univariate predictor variable (either CogComp or EF). This approach is commonly use when 336 

the number of predictors exceeds the number of observations (Krishnan, Williams, McIntosh, 337 

& Abdi, 2011).  338 

A PLS regression was used to find the maximal low-dimensional covariance between 339 

components derived from the MSN and cognitive outcomes. The PLS regression was used to 340 

decompose the predictor variables into latent variables (components) which simultaneously 341 

model the predictors and predict the response variable (Krishnan et al., 2011). The predictor 342 

matrix consisted of either the degree or strength of each node of the MSN, for each participant. 343 
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Using a linear model, the potential confounding effect of age, gender and age*gender 344 

interaction was regressed out of values for nodal degree/strength (but not our cognitive 345 

outcome variable as these were already age-adjusted within the HCP dataset). For each model 346 

(at each threshold), a PLS regression model was fitted between principal components derived 347 

from the resultant predictor matrix (68 x 991) and the outcome variable. This was repeated 348 

across 100 instances of 9-fold cross-validation.   349 

Cross-validated R2 (R2CV) otherwise known as the Q2 statistic (Consonni, Ballabio, & 350 

Todeschini, 2010; Stone, 1974), was used to select the number of components to retain in the 351 

predictor matrix. Q2 was defined as: 352 

𝑄, = 𝑅/0, = 1 −
𝑃𝑅𝐸𝑆𝑆
𝑇𝑆𝑆 = 1 −

∑ (𝑦7$ − 𝑦$),8
$9:
∑ (𝑦$ − 𝑦;),8
$9:

	 353 

where PRESS is the predictive residual error sum of squares and TSS is the total sum of 354 

squares.  355 

The number of components to retain in the predictive model was selected as the number of 356 

components which resulted in the greatest Q2 value. This was repeated over the cross-357 

validations and resulted in a count measure of the number of times a model with a given number 358 

of components were selected. Hence the final model was the given number of components 359 

which was most commonly selected as having the greatest Q2 statistic. Given the model with 360 

the retained number of components, we report the variance explained by the model and the bias 361 

corrected and accelerated bootstrapped (Bastien, Vinzi, & Tenenhaus, 2005) weightings of 362 

each predictor. This allows us to assess which brain regions are contributing most to the 363 

prediction.  364 

Due to the normal distribution of the cognitive measures (CogComp and EF) data, there may 365 

be an issue of class-imbalance for more ‘extreme’ cases (Torgo, Branco, Ribeiro, & Pfahringer, 366 

2015). As there are fewer subjects who fall within the tails of the continuous distribution on 367 

our cognition measures, the cross-validation approach may lead to training samples where there 368 

are too few ‘extreme’ cases (those with particularly high/low cognitive abilities) to ‘learn’ 369 

from. This may result in a model where there is accurate prediction around the mean but not at 370 

the tail ends of the distribution. To ensure the training samples contain subjects from stratified 371 

sampling approach, we repeated the analyses discretizing the performance on cognitive 372 
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measures into four discrete bins across the distribution and training a model based on equally-373 

sized, random samples from each bin.  374 

3. Results 375 

3.1 Inter-model comparisons 376 

3.1.1 Magnitude of morphometric similarity: graph-level strength 377 

In terms of the topology of the networks, global graph strength for each model, across densities, 378 

can be seen in Figure 1. This plot shows the similar trajectories across densities for all models 379 

tested, however the observed average graph strength was different between models, with lower 380 

strength being see in the MSN models with greater features. The effect size of differences 381 

(estimated with a paired t-test) between MSN10-feat. vs MSN8-feat. and MSN10-feat. vs MSN7-feat. 382 

can be also be seen in Figure 1. Effect sizes (r) were extremely large, especially between 383 

MSN10-feat. vs MSN7-feat..  384 

 385 

 386 

Figure 1 Left: Graph metrics describing average network strength for each MSN model, across all 387 
densities. Right: Effect sizes of differences between a) MSN10-feat. vs MSN8-feat.  and b) MSN10-feat. vs MSN7-feat.. 388 
for differing graph metrics, across densities.  389 
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3.1.2 Edge Weights 390 

Figure 2 shows the inter-model comparisons between MSN10-feat. and MSN8-feat., and between 391 

MSN10-feat. and MSN7-feat.. There is a gradual increase in correlation of edge weights across 392 

densities with the peak mean correlation being found between MSN10-feat. and MSN8-feat. at a 393 

40% threshold (r(M±SD) = .849 (± .025)), with slightly weaker correlations found between 394 

MSN10-feat. and MSN7-feat. (r(M±SD) = .736 (± .031)). When considering only the non-zero edge 395 

weights (only edge weights remaining after thresholding), a slightly weaker peak correlation 396 

was found for both contrasts at 5% threshold (MSN10-feat. vs MSN8-feat.  r(M±SD) = .738 (± 397 

.053); MSN10-feat. vs MSN7-feat.  r(M±SD) = .670 (± .066)). However, as the threshold increased, 398 

the dispersion of individual level non-zero edge correlation decreases, especially in the MSN10-399 

feat. vs MSN7-feat. contrast. 400 

 401 

Figure 2 Violin plot of correlation of edgeweights between a) MSN10-feat. vs MSN8-feat.  and b) MSN10-feat. vs 402 
MSN7-feat.. Midline of the box-plot component of the violin represents the mean of all correlation 403 
coefficients, with the box itself representing the SD of this mean. Individual data points are also plotted. 404 

When considering correlation coefficients calculated using the Mantel test, similarly strong 405 

correlations were found between edge weights across all models however, as predicted, the 406 
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MSN10-feat. vs MSN8-feat. were most similar (At 40% threshold: MSN10-feat. vs MSN8-feat. Mantel 407 

r(M±SD) = .835 (± .028); MSN10-feat. vs MSN7-feat. Mantel r(M±SD) = .715, (± .034)). For the 408 

binarized networks, the proportion of edges replicated also peaked at 40% threshold (MSN10-409 

feat. vs MSN8-feat. proportion of replicated edges = 85%, (± 2%); MSN10-feat. vs MSN7-feat. 410 

proportion of replicated edges = 77%, (± 2%;. Figure 3)).  411 

 412 

Figure 3 Model comparisons across thresholds using a) Mantel-test correlation coefficient and b) 413 
proportion of edges replicated as measures of model similarities. Midline of the box-plot component of 414 
the violin represents the mean whilst the box itself representing the SD 415 

3.2 Intra-model comparisons 416 

3.2.1 Test-retest reliability of MSN models 417 

We compared the MSN models at the initial scan with those calculated from test-retest scans 418 

acquired between 1 and 11 months after the initial MRI. All models showed high test-retest 419 

reliability of the MSN (correlation of all edge weights at 40% threshold: MSN10-feat. r(M±SD) 420 

= .902 (± .032); MSN8-feat.  r(M±SD) = .881 (± .040), MSN7-feat.  r(M±SD) = .857 (± .043)). 421 

This high test-retest reliability of networks held even when networks were binarized (At 40% 422 

threshold: MSN10-feat. proportion of replicated edges = 87 % (± 3%); MSN8-feat.  proportion of 423 

replicated edges = 87% (± 3%), MSN7-feat.  proportion of replicated edges = 86% (± 3%)). See 424 

Figure 3 for plots. 425 

 426 
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3.2.2 Similarity with average MSN 427 

For each model, at each threshold, a group-level network was produced as the mean of the 428 

correlation matrices for all subjects. Across all models (MSN10-feat., MSN8-feat., and MSN7-feat.), 429 

regardless of similarity metric used, the individual-level MSNs were highly similar to the 430 

group-mean network (see Figure 4). Interestingly, the MSN8-feat. model showed greatest 431 

correlation between edge weights (At 40% threshold: MSN10-feat. r(M±SD) = .843 (± .032); 432 

MSN8-feat.  r(M±SD) = .875 (± .029), MSN7-feat.  r(M±SD) = .850, (± .031)). Similar to the inter-433 

model analyses, correlation peaked at the highest threshold tested (40%) for all models. 434 
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Figure 4 Plots showing MSN similarity (across thresholds, with multiple similarity measures) between 435 
a,b,c) individual MSNs generated with test-retest MRI scans and d,e,f) individual-level MSNs and the 436 
group-average MSN network. 437 
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3.3 Relationship with cognitive scores 438 

Only participants who had available a full dataset comprising of the three EF subtests and the 439 

CogComp measure were included in the following analyses (n = 991). For both cognitive 440 

variables, using 100 instances of 9-fold cross validation, the greatest Q2 was found most 441 

frequently when zero-components were retained and thus no models were built. 442 

This suggests that no PLS-derived components of nodal degree, strength or normalised strength 443 

of the MSN provided greater explanation than the intercept alone. After the stratified sampling 444 

of the training cohort, there was no improvement in the result outlined above; cross-validation 445 

still recommended retention of zero components for all MSN models.  446 

 447 

4. Discussion 448 

Within the morphometric similarity network model, we assume that those regions which are 449 

high in morphometric similarity have high concordance of cyto- and myelo- architectural 450 

features at a resolution unobservable in-vivo with current MRI capabilities (Morgan et al., 451 

2018). These cortico-cortico regions which are less cortically differentiated from one another 452 

are more likely to be anatomically connected (Goulas et al., 2017; Wei et al., 2019). However, 453 

the methods presented here are not causal, the represent the region to region similarity in terms 454 

of the GM morphology of the cortex (Zheng et al., 2019).  Whilst Seidlitz et al. (2018) and Li 455 

et al. (2017) performed some assessment of T1w MSNs, the current study is the first to formally 456 

investigate the potential for generation of multiple MSNs based on a reduced number of cyto- 457 

and myelo- architectural features dependant on the complexity of the MRI acquisition 458 

sequence. We found that the weighted networks generated from these models are highly 459 

similar, across a number of correlation measures investigating edge weightings. Overall our 460 

results suggest that these meso-scale relationships can be captured (to a considerable degree) 461 

within a more limited number of cyto- and myelo- architectural features from a lesser number 462 

of MR-sequences. 463 

Seidlitz et al. (2018) investigated the similarity of a T1w MSN (using only 5 morphometric 464 

features compared to our 7) with the full MSN10-feat. model and found a high level of similarity, 465 

although the MSN10-feat. model had a greater level of precision with a lower standard deviation 466 

of edge weights. Seidlitz et al. (2018) also did not systematically investigate the consequences 467 

of removing MRI acquisitions from the features with which to estimate the MSN model.   468 
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In the current study we expanded previous comparisons of T1w MSNs to the ‘origiinal’ MSN 469 

model to include multiple MSN models. We found that the between-model similarity was 470 

nearly always hierarchical between models, with greater similarity seen between MSN10-feat. 471 

and MSN8-feat. compared to that between MSN10-feat. and MSN7-feat.. Weaker similarity was 472 

found for sparser networks at a much lower density (i.e. .05). Even when binarized (that is to 473 

say the edge weightings were ignored) the replication rates were high, suggesting that the 474 

models are sensitive to specific edges within the network.  475 

However, our results show that, in terms of average network strength, the three models differed 476 

significantly in their topology. Whilst previous studies had investigated the correlation between 477 

nodal similarity for full and reduced models of MSN estimation (Seidlitz et al., 2018), this is 478 

the first study to investigate differences in this topology. On average, the magnitude of 479 

morphometric covariance across the nodes of the graph are higher when fewer features are used 480 

to generate the network. The topology of networks generated from different MSN models is 481 

fundamentally different and, dependant on metric used, this difference can be of a large effect 482 

size. Hence, as more cytoarchitechtural features are added to the MSN, specifically estimated 483 

myelin content (T1w/T2w ratio) and macro-structural diffusion properties (FA & MD), regions 484 

appear less similar and more differentiated, hence the lower average graph strength. This may 485 

because these features index cytoarchitectural properties which show greater variation, and are 486 

more discriminatory between regions, across the cortex. This difference in network topology 487 

is important to consider, as it means that network topology between these models is not 488 

comparable across studies. 489 

Each model seemed to achieve high-levels of congruence with the group average network, 490 

suggesting that we are able to use these methods to index individual differences from a 491 

relatively consistent meso-scale-phenotype of the structure of the brain. Li et al. (2017) found 492 

high levels of test-retest reliability of the T1w MSN, we replicated this and found that each of 493 

the reduced-feature MSNs seemingly had similar reproducibility in terms of test-retest MRI. 494 

It is important to consider that none of the models tested in the current manuscript showed 495 

perfect or even near-perfect concordance across these measures of performance. These 496 

between-model differences may be due to the fact that these models are generated with less 497 

features, rather than being specific to the modality of feature being dropped. Beyond the scope 498 

of the current paper but could look at this in future by generating MSN with 10, 8 and 7 499 

randomly selected features, irrespective of modality of MRI sequence used to derive said 500 
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feature. If this is the case, then the ‘gap’ between the MSN10-feat. and MSN7-feat. models could 501 

potentially be rectified using software such as ‘mindboggle’ to generate/sample a larger 502 

number of morphometric features from the T1w image. 503 

Overall, our findings suggest that, even with a reduced number of cytoarchitectural features, 504 

the MSN seems to capture a group-level phenotype of the structure of the brain which shows a 505 

reasonable level test-retest reliability. However, whilst these models may capture enough 506 

shared variance to be meaningful in a number of fields, it must be considered that the loss of 507 

information due to a reduced number of MR-acquisitions may result in a ‘noisier’ measure of 508 

the connectivity phenotype being indexed by the MSN approach. This will inherently limit 509 

generalisability across findings utilising these methods.  510 

However, the main benefit of the reduced MR-acquisition approaches (specifically the MSN7-511 

feat. model) is the applicability to those populations where multiple MR sequence acquisition is 512 

more challenging or difficult. For instance, in clinical populations where research MRI are 513 

acquired alongside routine examination and therefore time is limited, or in developmental 514 

populations where acquisition time needs to be kept short in order to ensure child participants 515 

can remain still for the length of the scan to ensure the images are free of motion artefact. 516 

Estimating cyto-architectural similarity based on metrics from a single T1w 3D anatomical 517 

MRI, which is commonly and quickly acquired clinically, is therefore particularly attractive to 518 

the field of clinical and developmental neuroscience (Batalle et al., 2018). It also validates these 519 

models for use in legacy datasets for instance, where the full array of MRI acquisition 520 

sequences required to estimate the ‘original’ MSN were not acquired and are therefore not 521 

available. Overall, the current study validates the use of these reduced-feature networks in 522 

recent studies estimating cyto-architectural similarity utilising theMSN (Galdi et al., 2018; Li 523 

et al., 2017; Morgan et al., 2018; Seidlitz et al., 2019; Zheng et al., 2019; Zheng et al., 2018). 524 

One could argue that one-acquisition connectivity is already available in the form of DWI 525 

tractography, or even fMRI resting state connectivity. However, these are still much longer 526 

sequences compared to a 3D T1w MPRAGE for instance and therefore face inherent 527 

difficulties in the face of clinical realities of restricted time and potentially greater motion. 528 

Also, both fMRI and DTI inevitably suffer from a lower signal-to-noise ratio and a greater 529 

sensitivity to motion artefacts compared to anatomical MRI (Wang, Jin et al 2016 #614). It 530 

could also be argued that, in terms of legacy/existing datasets, it is more likely that a high 531 

quality, 3D T1w MRI has been acquired than the specific DWI/fMRI protocol required. 532 
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Overall, this therefore positions MSNs as a useful in-vivo connectivity phenotype for studying 533 

both clinical and developmental populations, with the T1w-only model potentially being of 534 

greatest potential benefit. 535 

These approaches have potential utility in these fields of research, with one use being assessing 536 

relationships between brain structure and neuropsychological functioning. The current zeitgeist 537 

in the field of cognitive neuroscience is that the topological organization of the brain networks 538 

(across multiple MR modalities), as quantified within a graph theoretic framework, captures 539 

physiologically relevant information (Bullmore & Sporns, 2009; Fornito, Zalesky, & 540 

Breakspear, 2013; Hahn, Lanzenberger, & Kasper, 2019). However, a recent study failed to 541 

replicate one of the most prominent findings for the field relating rsfMRI connectivity to fluid 542 

and crystallized intelligence in the HCP dataset (Kruschwitz, Waller, Daedelow, Walter, & 543 

Veer, 2018). The current study investigated this by assessing the relationships between 544 

cognition and organisation of the MSN models. 545 

We assessed the predictive validity of the MSN models in the current study by comparing the 546 

predictive validity of the 3 MSN models in relation to general intelligence, with previous 547 

research suggesting the organization of the MSN network (modelled similarly to the MSN10-548 

feat.) was able to predict ~40% variance in WASI IQ (verbal and non-verbal, (Seidlitz et al., 549 

2018)). We were unable to replicate the predictive validity of the MSN with regard to general 550 

cognitive functioning or generalize previous relationships to a novel domain of cognitive 551 

functioning (in this case executive functioning). Our results showed that, when using 9- fold 552 

cross-validation, no model (at any density) recommended retention of any PLS components.  553 

One important strength of the current study is the fact that we used a quantitative methodology 554 

of cross-validation to validate retained number of components whereas previous studies have 555 

retained either a single or two components which explains the greatest amount of variance 556 

(Seidlitz et al., 2019; Seidlitz et al., 2018). This may mean that previous findings are less 557 

generalizable to new datasets, hence why we were unable to replicate findings of Seidlitz et al. 558 

(2018), and instead found that nodal topological characteristics (i.e. strength) did not predict 559 

cognitive abilities in the current sample. 560 

However, there are several other potential hypotheses as to why we were unable to replicate 561 

the previous findings. Most importantly, there were developmental differences between our 562 

sample and that of Seidlitz et al. (2018). The current study investigated a healthy young adult 563 

population between the 3rd and 4th decades of life whereas Seidlitz et al. (2018) studied a late 564 
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adolescent (15-25yrs) sample. The brain undergoes substantial structural change over 565 

development with this adolescent period being a time of peak maturation (Gogtay et al., 2004; 566 

Sowell et al., 2004) It is across these years in which some of the neurocognitive skills 567 

investigated in the current study, executive functioning for instance, are fully established. For 568 

instance, the NIH-toolbox total cognition composite highlights this quite clearly with a greater 569 

magnitude of age effects seen in childhood compared to adulthood (Akshoomoff et al., 2013; 570 

Heaton et al., 2014). This is likely because, throughout childhood, the regions subsuming these 571 

functions are reaching structural maturity. Therefore, it is reasonable to believe that, it is within 572 

the child/adolescent period where the most variance in these neurocognitive skills can be 573 

explained by structural networks (as seen by the ~40% variance in IQ explained by the MSN 574 

in Seidlitz et al. (2018)). 575 

In the age-range that the current study has sampled, the brain should have reached structural 576 

maturity (with only mild age related effects in this age-group) and so there is likely less 577 

between-individual variance in the MSN. This was seen in the fact that there was greater 578 

congruence between individual MSNs and the group-average MSN in the current study 579 

compared to previous adolescent MSNs (correlation of all edge weights: mean r = .60, (Seidlitz 580 

et al., 2018)). Therefore, the limited variance in the MSN within this age group may mean that 581 

there is not enough variance to relate to cognitive functioning, hence our current findings. 582 

We therefore propose that the MSN may in fact be a useful phenotype for assessing 583 

neuropsychological functioning, but only in populations where there is sufficient variation in 584 

the structure of the brain. This may be populations in the infant/child/adolescent period where 585 

structural networks are likely to see greatest variability due to developmentally-mediated 586 

change (such as Galdi et al. (2018) & Seidlitz et al. (2018)) or clinical populations where 587 

atypical brain structure is seen in the pathophysiology of the disorder (such as Seidlitz et al. 588 

(2019), Morgan et al. (2018)& Zheng et al. (2019)). It may be the case that these networks hold 589 

utility in populations such as these, rather than healthy, matured populations (where measures 590 

of brain structure are likely to heavily regress to the mean), where these methodologies may be 591 

of much lesser utility in explaining cognitive functioning. 592 

However, it is also important to consider that the variation in our results could be due to other 593 

variations in analysis. Firstly, differences may be driven as an artefact of using differing 594 

measures of general intelligence, with Seidlitz et al. (2018) utilising the Weschler Abbreviated 595 

Scale of Intelligence (WASI; (Wechler, 1999)), whilst we used the NIH Toolbox Cognition 596 
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composite scores (Heaton et al., 2014). However, it is important to remember that the 597 

composite score shows high convergent validity with other Weschler assessments of general 598 

intelligence (with the Weschler Adult Intelligence Scale (WAIS-IV, (Wechler, 2008)) r = .89 599 

(Heaton et al., 2014), and with the Weschler Intelligence Scale for Children (WISC-IV; 600 

(Wechsler, 2003)) r = .88 (Akshoomoff et al., 2013).  601 

Also, we calculated the MSN at a much lower spatial scale (68 ROIs) compared to this previous 602 

work (308 ROIs). This lower spatial resolution may result in more regionally specific effects 603 

being difficult to detect, however it may also have allowed us to detect more subtle effects due 604 

to increased power. Yet it is important to note that the 308 ROIs are derived by subdividing the 605 

68 ROI atlas used in the current study into equally sized ‘patches’ and thus still respects the 606 

anatomy of the brain in the same way. Therefore, it is highly unlikely that this would explain 607 

our non-replication of previous findings. 608 

One potential issue with these metrics is that these similarity measures only investigate graph 609 

properties which only partially describe the whole network (Schieber et al., 2017). By using 610 

correlational measures of ‘replicability’ we only consider edge-weightings, rather than the 611 

structure of the network, hence why we also included comparisons of network strength to begin 612 

to investigate this in terms of network topology. We could have investigated additional metrics 613 

which characterize network topology (i.e. global efficiency) however, due to the fact that the 614 

SC networks do not adhere to typical assumptions of networks (edges representing definitive 615 

real connections) we utilised strength as a simpler metric which makes less assumptions about 616 

the underlying neurophysiology of the network. Thus, we have taken the assumption that SC 617 

represents a graph of higher-order inter-relationships between morphometry and not 618 

necessarily ‘connectivity’. 619 

Conclusion 620 

We have demonstrated that, when we generate the MSN based on a reduced/limited number of 621 

MR features, we produce correlation matrices which are highly similar to those generated with 622 

multi-modal imaging. However, the networks generated are differentially, topologically 623 

organised based on the number of features. We also find that, regardless of number of features, 624 

these networks have limited predictive validity of generalised cognitive ability scores, although 625 

this may be specific to the current age range under study. Overall, our study recommends that, 626 

in situations where multi-modal imaging is not available or clinically/developmentally 627 

inappropriate, T1w-restricted MSN construction may give a useful estimate of the MSN, 628 
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however between model comparisons should be aware of potentially methodologically-driven 629 

changes to network topology.  630 
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Supplementary Materials 847 

Dimension reduction of Executive functioning task performance 848 

A principal component analysis (PCA, using the ‘prcomp’ function in the base R ‘stats’ 849 

package (R Core Team, 2016)) was used to find a common EF component across all three EF 850 

measures.  851 

Data reduction using the PCA was done for two main reasons; a) to reduce dimensionality, and 852 

the number of multiple predictor models being built and b) to ensure that we were predicting 853 

(a latent variable of) executive functioning ability, rather than ability linked to task-specific 854 

performance.  855 

The PCA suggested a three-component solution, however only the first component had an 856 

eigen-value > 1 (eigenvalue=1.607) and so only this component was retained. This component 857 

explained ~54% variance across our measures. All three measures; list-sort, card-sort and 858 

flanker, positively loaded onto this component (rotated sums of squares loading = .362, .673 859 

and .646 respectively). 860 
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