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Abstract

ANTIMICROBIAL DRUG REPURPOSING
THROUGH MOLECULAR MODELLING

Acquisition, Analysis and Prediction

Nhat Phuong Do
Doctor of Philosophy
Year of submission: 2021

Antimicrobial resistance has sparked unprecedented medical crises around the world,
not only increasing the mortality rate but also impacting nosocomial resources. Methicillin-
resistant Staphylococcus aureus (MRSA) has consistently evaded the available range of
antibiotics and is a typical case study for new generation drugs. Drug development has
been conventionally suffering from exceedingly high costs and overdrawn timelines. Drug
Repurposing can be a solution to alleviate those burdens. Put simply, DR is a mechanism
to identify new usages of existing drugs, typically targeted to treat diseases different to the
ones that these were initially intended for.

This inherently interdisciplinary research targets to identify the best MRSA drug candi-
dates analysing protein (BIG) data, in the process developing a combination of techniques
from stochastic mathematics, statistics and data analytics that can generically identify
drug targets from the databank. Structure-based virtual screening was used to repurpose
an extensive range of marketed drugs and Phase I/II/III trials. Molecular docking meth-
ods were used for virtual screening against MRSA targets based on sequence alignment
to match gene sequences against proteins in the Protein Data Bank (PDB). Ligands from
the Database of Useful Decoys - Enhanced were docked against MRSA-oriented target
proteins using 10 open-source docking programmes for benchmark. The novel consensus
scoring methods prove superior to other reported consensus scores in terms of discrimina-
tion between decoys and active ligands concerning MRSA drug target identification. The
consensus scoring predictions are then applied to docking data between MRSA targets and
compounds from the Repurposing Hub to identify a list of potential drug candidates for
anti-MRSA treatment.

MRSA is currently an apocalypse across the world with limited prevention and medi-
cations. This study provided more potential candidates to help fight against MRSA. The
consensus scoring developed in this study can be generically implemented to unlock other
antimicrobial drug candidates.

Key words: drug repurposing, Methicillin-resistant Staphylococcus aureus, virtual
screening, molecular docking, consensus score.
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Chapter 1

Reader’s Summary of the Thesis
Work

ANTIMICROBIAL DRUG REPURPOSING
THROUGH MOLECULAR MODELLING

Acquisition, Analysis and Prediction

Supervisors:
Dr Amit K Chattopadhyay (PI) and Dr Darren Flower (Col)
Aston University, Birmingham UK

Student: Nhat Phuong Do

1 Introduction

Antibiotics are widely regarded as the antibacterial panacea, magic bullets that can treat
all forms of bacterial infections thereby saving lives. However, indiscriminate overuse as
also natural bacterial immunity against such therapeutics has led to antimicrobial resis-
tance that has sparked unprecedented medical crisis around the world, not only increasing
the mortality rate but also impacting nosocomial resources, including other long-termed
illnesses. Methicillin-resistant Staphylococcus aureus (MRSA) is a poignant case in hand.
This bacterium has consistently evaded the available range of antibiotics and is a typical
case study for new generation drugs.

Drug development and subsequent manufacturing have been conventionally (wet) laboratory-
based, that, apart from the obvious issue of exhausting the chemical space available for
targeting new drugs, suffers from three key issues — cost, overdrawn timelines and side
effects. These limitations have driven attempts to develop new drugs by repurposing the
existing ones, a technology now popularly referred to as Drug Repurposing (DR hereafter).
DR is an area of translational biology that identifies new or different therapeutically use-
ful indications for marketed drugs by targeting alternative diseases. Put simply, DR is a
mechanism to identify new usages of existing drugs, typically targeted to treat diseases
different to the ones that these were initially intended for.

Most drugs have significant off-target activity, thus potential new therapeutic uses
should be identifiable for molecules known to be free of toxicity or side effects. Molecules
that have passed safety evaluation in Phase I trials but proved ineffective for efficacy reasons
in Phase II or Phase III against some other disease can also be repurposed. Successful ex-
amples of drug repositioning abound: thalidomide in severe erythema nodosum leprosum;
antidepressant Zyban, used successfully for smoking cessation; Parkinson’s disease drug
apomorphine, now treats erectile dysfunction; even Viagra began as a heart medicine. Re-
purposing has huge untapped potential for identifying novel, safe, tested, patent-protected
medicines.
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DR is not new though. It has been traditionally implemented using molecular dock-
ing (or simply ‘docking’) that uses computational algorithms to map the detailed confor-
mation of a molecule with reference to another. A typical example could be docking a
protein against a ligand to find possible drug targets. This is a useful method only when
implemented across a very wide range of drug targets through multiple (100+) docking
programmes but otherwise has low accuracy because of shortcomings in current scoring
functions. To alleviate these issues, as also to accommodate attempts to reduce the false
positive and false negative rate, combining information from multiple docking programmes
has been suggested. This method is called “consensus scoring”. In this work, primary
docking scores from a small finite number of randomly chosen docking programmes have
been statistically combined to avail a much wider protein:ligand mapping space than is
accorded by individual molecular docking. For comparison, other consensus scores are also
duplicated using the same data. The proposed novel consensus scoring methods prove
superior to other reported consensus scores in terms of discrimination between decoys and
active ligands concerning MRSA drug target identification.

2 Methodology

Unlike conventional in silico virtual screening, the proposed computational DR methodol-
ogy is based on a biaxial structure: Consensus Scoring. It was independently implemented,
results compared, risk validated against standard results from conventional docking plat-
forms and then a set of (probabilistically) highly accurate MRSA drug targets identified.

Preparations for docking

Starting from the Database of Useful Decoys - Enhanced (DUD-E), latter version with
additional targets as used in conventional (computational) DR, the following steps were
sequentially followed:

e The targets from DUD-E were chosen based on the structural similarity to MRSA
targets. After that, the decoys and active ligands from DUD-E set were docked
to the corresponding MRSA target. To provide a general overview on evaluation,
both receiver operating characteristics and enrichment factor were chosen as metrics
to evaluate the performance of docking programmes as well as consensus scores,
whereas receiver operating characteristics represents the degree of discrimination
between decoys and active ligands with enrichment factor representing the retrieving
of true active ligands among top-scored ligands.

e Essential genes i.e. genes encoded for proteins that play a vital part in the survival
of organisms were identified and analysed. Database of Essential Genes provides a
library of essential genes for Staphylococcus aureus. Sequence alignment was used
to compare these essential genes against protein structures in Protein Data Bank
(PDB). For those hits with a high matching score, the proteins were selected based
on the resolution of the structures and the availability of the co-crystallised ligands.
For those with moderate matching scores, homology modelling is used to predict the
structures of the proteins.

e Repurposing Hub is a library containing candidates for repurposing tasks. After
filtering with Lipinski’s rule, remaining ligands were retained for docking against
MRSA proteins. These ligands were converted to three-dimensional structures us-
ing the programme OpenBabel, followed by energy minimisation. Depending on
each docking programme, the ligand chemical format can be converted to suit the
requirement.

e The docking of ligands against MRSA targets across 10 open-sourced docking pro-
grammes: DOCK, Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, rDock, Smina,
Autodock Vina and VinaXB. These programmes were employed for both benchmark-
ing and data acquisition.
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CS Scoring Method With the success in the benchmark for MRSA targets, the lig-
ands from Repurposing Hub were docked against MRSA hits from essential gene sequence
alignment. Once the docking was done, the docking scores were input in the same fashion
as in the consensus score.

A combination of traditional statistical descriptors such as Minimum, Maximum, Mean,
Median, Euclidean Distance, Cubic Mean and Deprecated Sum Rank as well as newly
developed score Exponential Consensus Rank were used to compare with the proposed
novel consensus scores:

10
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=1
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Sc = Z T4 abS[Si,jn]
=1
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Se = sz; (S; — S)"
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10
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Here S, is the combined score, S; is the docking score of ligands for programmes i =

1,2, ... 10, x;; are coefficients of the docking programmes i (DOCK, Gemdock, Ledock,
PLANTS, PSOVina, QuickVina2, rDock, Smina, Autodock Vina and VinaXB) that are
the weight factors of those docking outcomes in the combinatorics in the jy, iteration, S;
is the mean of the set from the programme i, SD; is the standard deviation of the set from
the programme i, n represents the combinatorial order real values only (n = 1 implies linear
combination). The six equations were iterated over a total of (299) ensembles involving 10
docking programmes, each weighing between 0 and 1, incremented in steps of 0.05 each.
S; represents the arithmetic means of the docking scores of all ligands for the same target
for each docking programme used. The rank of active ligands before and after combining
were then compared to evaluate the improvement produced by the consensus algorithm.
The metrics used for comparison between individual docking programmes and consen-
sus scores include: median rank, receiver operating characteristic and enrichment factor.

3 Results and Discussion

Single docking programme produced average results (AUCROC from 0.495 to 0.623). This
mean the single docking programmes did not provide good discrimination between actives
and decoys. Traditional consensus scores did not significantly improved docking perfor-
mance (AUCROC increased to 0.704 while enrichment factor decreased from 5.5 to 2.1).

The first key outcome of the consensus module is that linearised docking combinatorial
scores provide better active ligand ranking than higher-order consensus formulae as some
previous proponents of the CS method attempted before. Omne more finding was that
odd-ordered CS combinations (formulae la-d) consistently outperform their even ordered
counterparts. This means linearised consensus scores were better at discriminating between
actives and decoys. The findings also indicate that linear combinations using absolute
values in the statistical norm showed the area ratios of the histograms of median ranks
obtained from novel consensus models better than using true value (0.648 compared to
0.532). This results in better consistency in the consensus model.

Another benchmark result of the proposed approach is to establish an improvement
threshold of the CS scoring methodology, in other words, quantify how many individual
docking methods needed. While consensus scoring predictions did initially improve with
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the added number of docking inputs, this improvement did not improve when the number
of docking programmes continued added. Using 5-6 docking programs will improve the
docking power but does not increase running time.

The novel consensus scores using standard deviation produce significant outcomes.
The statistics from ROC and enrichment factor for the proposed CS model are consis-
tently higher than the highest values from single docking programmes. This means using
combined scores from multiple docking programs can recognise actives from an ensemble
of with higher ratio. When using MRSA dataset, the enrichment factor increased from 5.5
to 19.1, which means in the subset, the probability of finding an active was 19 times higher
than in the entire ensemble.

4  Conclusions

MRSA is a malignant pathogen that requires expanding research for more cures. There
are various strategies to overcome the problem, but drug repurposing is an encouraging
approach. Thanks to the availability of a safety profile, drug repurposing can help us
to cut down the cost and time optimise resources. Consensus scoring algorithms were
investigated using MRSA dataset and ten docking programmes (DOCK, Gemdock, Ledock,
PLANTS, PSOVina, QuickVina2, rDock, Smina, Autodock Vina and VinaXB) leading to
the following key conclusions:

e The novel consensus score consistently gives better predictions for active compounds
in terms of AUCROC (0.833 to 0.873 compared to 0.623) than conventional (single
docking based) in silico virtual screening.

e The algorithmic modelling based on Consensus Scores has identified a list of potential
MRSA drug candidates (30 candidates for each target) that are now candidates for
wet laboratory investigation.

e The ’accuracy plots’ establish the strength of the CS method: a) only a handful of
docking programmes (5-6 programmes) are required; b) the choice of these docking
platforms can be completely random; c) the extant results are more accurate than
individual docking.

e The consensus model can be exploited in other virtual screening.
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Chapter 2

Introduction

1 Thesis Overview

Antibiotics were widely regarded as the antibacterial panacea, magic bullets that could
treat all forms of bacterial infections thereby saving lives. However, indiscriminate overuse
as also natural bacterial immunity against such therapeutics has led to antimicrobial resis-
tance that has sparked unprecedented medical crisis around the world, not only increasing
the mortality rate but also impacting nosocomial resources, including other long-termed
illnesses. Methicillin-resistant Staphylococcus aureus (MRSA) was a poignant case in hand.
This bacterium has consistently evaded the available range of antibiotics and was a typical
case study for new generation drugs.

Drug development and subsequent manufacturing have been conventionally (wet) laboratory-
based, that, apart from the obvious issue of exhausting the chemical space available for
targeting new drugs, suffered from three key issues — cost, overdrawn timelines and side
effects. These limitations have driven attempts to develop new drugs by repurposing the
existing ones, a technology now popularly referred to as Drug Repurposing (DR hereafter).
DR is an area of translational biology that identifies new or different therapeutically use-
ful indications for marketed drugs by targeting alternative diseases. Put simply, DR is a
mechanism to identify new usages of existing drugs, typically targeted to treat diseases
different to the ones that these were initially intended for.

Most drugs have significant off-target activity, thus potential new therapeutic uses
should be identifiable for molecules known to be free of toxicity or side effects. Molecules
that have passed safety evaluation in Phase I trials but proved ineffective for efficacy
reasons in Phase II or Phase III against some other disease can also be repurposed. Suc-
cessful examples of drug repositioning abounded thalidomide in severe erythema nodosum
leprosum; antidepressant Zyban, used successfully for smoking cessation; Parkinson’s dis-
ease drug apomorphine, now used to treat erectile dysfunction; similarly, Viagra began as
a heart medicine. Repurposing has huge untapped potential for identifying novel, safe,
tested, patent-protected medicines.

DR is not new though. It has been traditionally implemented using molecular dock-
ing (or simply ‘docking’) that uses computational algorithms to map the detailed confor-
mation of a molecule with reference to another. A typical example could be docking a
protein against a ligand to find possible drug targets. This is a useful method only when
implemented across a very wide range of drug targets through multiple (100+) docking
programmes but otherwise has low accuracy because of shortcomings in current scoring
functions. To alleviate these issues, and also to accommodate attempts to reduce the false
positive and false negative rate, combining information from multiple docking programmes
has been suggested. This approach was called “consensus scoring”. In this work, primary
docking scores from a handful of randomly chosen docking programmes have been statis-
tically combined to avail a much wider protein:ligand mapping space than accorded by
individual molecular docking platforms. For comparison, other consensus scores were also
duplicated using the same data. The proposed novel consensus scoring methods proved
superior to other reported consensus scores in terms of discrimination between decoys and
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active ligands concerning MRSA drug target identification.

The rest of this chapter describes the discovery of antibiotics and the rise of antibiotics
resistance with a focus on a molecular view which is the principle for this study. The
spread of antibiotic resistance has led to a severe loss of lives and expense. Meanwhile,
the treatment and prevention seem not commensurate when the resistance rate is fast
and the productivity of drug discovery and development has been flattened. The main
reason is that drug discovery and development is a costly and lengthy process. Drug
Repurposing is a promising strategy when cutting down the cost and time when utilising
the pharmacological data available.

Chapter 2 summarises the existing DR approaches and the reason why this study
chooses virtual screening for DR. Then it focuses on the main backbone of structure-
based virtual screening, the molecular docking methods. The fundamentals of docking
programmes are summarised and also the limitations of the existing docking programmes.
This lead to the attempts to incorporate data from multiple docking programmes to im-
prove docking competence in this study.

Chapter 3 carries the main works of this study. It describes the methods used to build
the S. aureus protein structures from essential genes. It also describes how to obtain
the collection of compounds to screen against MRSA targets using docking programmes.
Before the main virtual screening is carried out, the docking programmes are benchmarked
using a library of decoys and actives. Also, a number of consensus scores are proposed and
compared with traditional consensus scores to prove their superiority. Finally, the best
version of the novel consensus score is applied to the main dataset of docking to identify
compounds with a high probability of being active against MRSA targets.

Chapter 4 features the main findings and the data obtained. It presents the protein
structure from sequence alignment as well as homology modelling. It also confirms the
performance of chosen docking programmes after benchmarking. Most importantly, the
consensus scores proposed has been proved to improve the docking capability. While many
consensus scores use sophisticated methods but the results dependent on the nature of
target proteins, this study seeks to combine the docking score in a simple way but with
remarkable improvement. Finally, potential compounds for DR are chosen by applying the
consensus score to the docking dataset.

Chapter 5 listed the candidates after applying chosen model to the docking data be-
tween compounds from Repurposing Hub and MRSA proteins. The lists contained 30
ligands for each MRSA target, as a results of 0.5% cut-off from a total of 5902 ligands.

Finally, conclusions are drawn and how the findings in this study can be applied in
Chapter 6. It also discusses the limitations of this study and the suggestions for future
research.

2 Antibiotic Resistance Apocalypse

2.1 Role of Antibiotics

Antibiotics belong to a class of drugs that can act on microorganisms. These are drugs
with antimicrobial activities used in the treatment and prevention of infections caused by
bacteria. To grow and divide, bacteria need to parasitically dominate in the human or
animal body. They consume essential substances available inside the body and excrete
toxic metabolites, causing disorders and diseases to humans, sometimes death. The effects
of antibiotics are demonstrated by the ability to cease or inhibit the cell growth of bacteria
but they do not affect viruses. Their mechanism includes inhibition of the wall synthesis,
inhibited nucleic synthesis and competition with the essential substances for the growth
of bacteria. Before the discovery of the first antibiotics in the 20th century, treatment for
infection was no more than traditional medicine (Lindblad, 2008). Therefore, it led to a
search for a cure to decrease death by wound infections from natural products in the 19th
century.

Many attempts have been made to help fight against the deadly infections caused by
bacteria. Arsphenamine was synthesised by Alfred Bertheim in 1907 (Williams, 2009), as
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an antiseptic agent. The first antibiotic, penicillin, was discovered by Alexander Fleming
in 1928 (Ligon, 2004) and employed pure penicillin for the first time to treat streptococcal
meningitis in 1942 (Fleming, 1943). Thanks to the discovery, Alexander Fleming, Howard
Florey and Ernst Boris Chain shared the Nobel Prize in Physiology or Medicine in 1945.
After penicillin, many antibiotics were discovered and synthesised. The first sulphonamide
Prontosil was developed in 1932 by Bayer Laboratories, (Aminov, 2010) or streptomycin,
a first-line anti-tuberculosis drug, was developed in 1943 by Selman Waksman, for which
he received Nobel Prized in Medicine in 1952 (Woodruff, 2014). The late 19th century
witnessed the outbreak in discovery with hundreds of synthesised antimicrobial drugs.
Antibiotics have brought a new age in the fight against deadly infections.

2.2 Molecular Mechanism of Antibiotics

Antibiotics inhibit the growth or cause the death of bacterial cells by affecting vital bio-
logical processes. To exert such a bactericidal effect, the antibiotic molecules need to bind
to a target within the bacterial cell. For instance, the cell wall of Gram-positive bacte-
ria has the typical characteristics of gram-positive bacterial cell walls. The cell wall is a
firm external structure that encloses the cellular membranes and prevents cell blast due to
osmotic pressure. It appears like a reasonably thick (approximately 20 to 40nm) homoge-
neous layer under the microscope (Kim et al., 2015). The cell wall has been known to be
composed of polysaccharides and peptides the peptidoglycan for a long time (Salton et al.,
2002). The polysaccharide backbone contains N-acetylglucosamine and N-acetylmuramic
acid, with a five-aminoacid peptide, called stem peptide, attached to acetylmuramic acid
(Sidow et al., 1990). The chains are cross-linked by a group of five glycines, bonded to the
lysine (location 3) on one stem peptide and the alanine (location 4) on another, forming
a mesh-like structure around the cell (Labischinski, 1992). The peptidoglycan contains
pentaglycine as a distinctive characteristic in Staphylococci, providing both toughness and
flexibility to endure strong intracellular and external pressure.

Transpeptidases, which are termed penicillin-binding proteins (PBPs) (also call DD-
transpeptidase), catalyse the process of cell wall cross-linking (Labischinski, 1992). To the
current knowledge, although there are eight types of staphylococcal PBPs (Templin and
Holtje, 2013), only four types of PBP are widely documented. There is evidence that PBP-
1 is vital for staphylococci survivability in the presence of -lactams (Beise et al., 1988;
Reynolds et al., 1988). PBP structure contains one domain for transpeptidation (cross-
linking). The [-lactam ring of penicillin blocks the transpeptidation region of PBPs,
inhibiting the cross-linking process by resembling the terminal alanine link of the stem
peptide. The activity of the enzyme is inhibited when bounded to $-lactam and therefore
can no longer catalyse the synthesis of the cross-links. As a result, the cell wall becomes
weak lacking cross-linking of the peptidoglycan, leading to some intracellular contents
leaking out and the cell ceasing to grow (Giesbrecht et al., 1998). Figure 2.1 provides a
visual view of how a penicillin molecule binds to a penicillin-binding protein.

2.3 Antibiotic Resistance

As a result of an evolutionary process that enables living objects to self-sustain, bacteria
have developed a resistance mechanism to survive antimicrobial agents. Bacteria have
obtained resistance via many ways: changes in the permeability of cell membrane, secretion
of enzymes to destroy the structure of drugs, creation of a system to pump out the drug
molecules, changes in biosynthesis, changes in the protein structures which are receptors
for antibiotics. Antimicrobial resistance decreases the success rate of treatment, increase
the cost, the hospital duration. Sometimes inpatients suffer hospital infections more than
the initial reasons of admission. The first case of antimicrobial resistance against penicillin
was reported just 4 years after its mass production (Spink and Ferris, 1947). Methicillin
resistance Staphylococcus aureus (MRSA) was first filed in Britain in 1961 (Barber, 1961,
Jevons, 1961) and has become one of the most common reasons for hospital infections.
Other antibiotics including penicillins, cephalosporins, fluoroquinolones, have been also
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Figure 2.1: The depiction of penicillin G (open form) in the active domain of the penicillin-binding protein
and the intermolecular interaction.The code of protein from Protein Data Bank: 3UDI. 2.1a) penicillin G
molecule (open form) is surrounded by the protein surface, generated by Chimera (Pettersen et al., 2004).
2.1b) The intermolecular interactions between penicillin molecule and protein 3UDI were captured using
PoseView (Stierand et al., 2006).

reported to be resisted by increasing numbers of bacterial strains.

The mechanisms underlying decreased permeability in bacteria differ between Gram-
positive and Gram-negative bacteria. Penicillin resistance in Gram-positive bacteria is
caused by alterations in the cell wall. In S. aureus, for example, the creation of an extra
PBP, known as PBP2a, with a decreased affinity for penicillin and S-lactam antibiotics is
what causes the resistance (Karaman et al., 2020). Mutations in the structure and quantity
of porins cause resistance in Gram-negative bacteria (Breijyeh et al., 2020). The number of
porins is lowered in bacteria such as Pseudomonas aeruginosa; nevertheless, altered porins
such as non-specific porins that cannot transport penicillin are found in bacteria such as
FEscherichia coli, Klebsiella pneumonia and Enterobacter species (Pages et al., 2008).

2.4 Worldwide Antibiotic Resistance

At the present resistance scheme, 23,000 patients were reported dead due to antibiotic
resistance in the US (CDC, 2013) and 25,000 deaths in Europe were recorded for the
same cause (European Centre for Disease Prevention and Control, 2015). According to
the annual report of the World Health Organization, seven bacteria have resisted common
antibiotics at the concerned level: FEscherichia coli, Neisseria gonorrhoeae and Klebsiella
pneumoniae have developed resistance to 3rd generation cephalosporins; Staphylococcus
aureus has been resistant to S-lactams; Staphylococcus pneumonia and Shigella have been
resistant to penicillin and non-typhoidal Salmonella resistant to fluoroquinolones (WHO,
2014). Report of Antimicrobial Resistance Surveillance in Europe also shows the same
theme of these bacteria. K. pneumonia have gained 7.4% in resistance to carbapenem
in 2014. P. aeruginosa was reported with an average resistance of more than 10% to
fluoroquinolones and aminoglycosides. P. aeruginosa also shows resistance to carbapenem
at a rate ranging from less than 10% to more than 50%. This range shows that different
countries have various resistance levels due to their medical control (European Centre for
Disease Prevention and Control, 2015). According to the WHO report, the numbers of
infections and deaths related to antibiotic resistance were 2,036,100 and 22,618 in the
US in 2013, 87,751 and 38,481 in Thailand in 2012, 386,100 and 25,100 in Europe in 2007
(World Health Organization, 2017). Antibiotic resistance has led the community to a point
where medications are less effective against the emerging strains.
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3 Methicillin Resistant Staphylococcus aureus (MRSA)

3.1 Biology of MRSA

Staphylococcus aureus is a Gram-positive, round-shaped bacterium that is commonly present
in the upper respiratory tract and on the skin. Staphylococcus aureus, a Gram-positive coc-
cus belonging to the Micrococcaceae family, has cells that appear individually or in pairs,
tetrads and unique irregular “grape-like” clusters if dividing cells do not split. The name
“staphylococcus” comes from the Greek language “grapes” and the colour of Staphylococcus
colonies is described by the Latin word “aureus”, which means “gold”. S. aureus colonises
usually exposed skin areas and the upper respiratory tract, especially the nasal airways,
in humans. Healthy people are usually unaware that they have the staphylococcal car-
riage, but they can get mild skin diseases like blisters and ulcers. S. aureus, on the other
hand, is an aggressive bacterium that can produce more severe infections under certain
circumstances. S. aureus intrusion is typically seen in burns and post-operative infections,
where the toxin from the bacteria can produce toxic shock, which causes fever, nausea and,
in certain circumstances, fatality. Pneumonia, mammary gland infection, skin infections,
bone infections endocarditis and bacteraemia are all infections caused by S. aureu. S. au-
reus can potentially induce food poisoning as a result of the development of enterotoxins.
If left untreated, S. aureus can lead to pneumonia and bloodstream infections, both of
which can be fatal. S. aureus can access the underlying tissues or the circulation when
the epidermal and mucosal barriers are compromised, such as by chronic skin diseases,
wounds or surgical intervention. S. aureus infection is especially dangerous for people who
have intrusive medical equipment (such as peripheral and central catheterisation) or have
weakened immune systems (Lowy, 1998).

Before the production of penicillin in the early 1940s, the fatality rate of those infected
with S. aureus was around 80% (Skinner and Keefer, 1941). Penicillin helped to fight
against S. aureus after the production of penicillin in 1940 (Tan and Tatsumura, 2015).
However, the first case of penicillin-resistant S. aureus isolate was reported in a hospital in
1942, not too long after penicillin was approved for medical use (Spink and Ferris, 1947).
Penicillin-resistant S. aureus strains were widely discovered in the population later on.
Benzylpenicillin (penicillin G), a lactam antibiotic, was used to treat infections caused by
S. aureus before the 1950s, but by the late 1950s, the resistance of S. aureus variants to
benzylpenicillin were already creating an alarming situation.

Methicillin-resistant Staphylococcus aureus (MRSA), a type of Staphylococcus aureus
that is unsusceptible to antibiotics in the S-lactam class. MRSA was first documented in
Britain in 1961 (Jevons, 1961), shortly after the use of methicillin became commonplace.
[B-Lactamase, an enzyme that inactivated the lactam antibiotics, was produced by resistant
variants. The goal was to develop penicillin analogues that were resistant to S-lactamase
hydrolysis. The synthesis of methicillin, which had the phenyl ring of benzylpenicillin
attached with the two methoxy groups, was accomplished in 1959. Two methoxy groups
created spatial obstacles around the amide link, which reduced the attraction of the amide
link for staphylococcal S-lactamases. Figure 2.2 provides a visual view of how a penicillin
molecule binds to a f-lactamase. Unfortunately, methicillin-resistant S. aureus (MRSA)
strains were recorded not too long after methicillin clinical application. Resistance was
owing to the expression of an extra penicillin-binding protein (PBP2a) obtained from
another organism that was resistant to the action of antibiotic rather than [S-lactamase
formation (Chambers, 1997). Methicillin was once commonly used, but due to its toxicity,
it is no longer licensed for human use and has been mainly replaced by more robust 3-
lactam antibiotics such as oxacillin, flucloxacillin and dicloxacillin. Despite this, the term
methicillin-resistant Staphylococcus aureus is still being in use. MRSA was accountable
for clinical outbreaks in many regions around the world in the dozen years following its
observation (Chambers and DeLeo, 2009).

Staphylococcal resistance to penicillin is caused by the synthesis of penicillinase (a
member of the f-lactamase family), an enzyme that breaks down the [-lactam ring of
the penicillin molecule, making the antibiotic impotent. Methicillin, nafcillin, oxacillin,
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Figure 2.2: The depiction of penicillin G (open form) in the active domain of the S-lactamase and the
intermolecular interactions.The code of protein from Protein Data Bank: 1GHP. 2.2a) penicillin G molecule
(open form) is surrounded by the S-lactamase surface, generated by Chimera (Pettersen et al., 2004). 2.2b)
The intermolecular interactions between penicillin molecule and S-lactamase 1GHP were captured using
PoseView (Stierand et al., 2006).

cloxacillin, dicloxacillin and flucloxacillin are penicillinase-resistant S-lactam antibiotics
that may withstand degradation by penicillinase. To undertake cross-linking processes, the
so-called PBP 2a, which is responsible for staphylococcal methicillin resistance, appears to
require appropriate pentaglycine interpeptide bridges (Kopp et al., 1996). When cultivated
in the vicinity of g-lactam antibiotics, mutant strains with shorter interpeptide bridges
(mono-, di- and triglycine peptides) revealed dramatically reduced resistance and cross-
linking (Ubukata et al., 1989).

The methicillin resistance leads to the remaining choice of vancomycin in the treatment
of S. aureus infections at that point. However, in the 1990s, S. aureus strains with reduced
susceptibility to vancomycin were also reported (Daum et al., 1992; Hiramatsu et al., 1997,
Paterson, 1999). Due to the cross-resistance, now MRSA is also resistant to amoxicillin,
oxacillin and other common antibiotics in the cephalosporin group. If the rapid devel-
opment of antibiotic resistance remains, the possibility of MRSA evolving resistant to all
antibiotics continues growing, making MRSA a more serious epidemiological threat.

3.2 MRSA Threat

With the acquired antibiotic resistance, MRSA has become a huge threat to the community:.
The WHO considered MRSA as a “major cause of morbidity and mortality worldwide”
while the CDC considered MRSA at a serious level and high priority for the Public Health
Agency of Canada (World Health Organization, 2017).

In the United States, an estimated 2.5 million people were found infected with MRSA in
2005 (Graham et al., 2006). In the United States health system, 75% of bacterial infection
cases were due to invasive MRSA infection (Liu et al., 2011). Normal patients paid US$
29,455 while patients with Methicillin-susceptible Staphylococcus aureus infections paid
US$ 52,791 and patients with MRSA surgical site infections paid US$ 92,363 in 2003
(Engemann et al., 2003). According to the US Centers for Disease Control and Prevention
(CDC), there were 80,461 invasive MRSA infections and 11,285 MRSA-related deaths each
year (CDC, 2013). In the United Kingdom, the proportion of isolated samples resistant to
MRSA increased from 2% in 1990 and 1991 to a record of 43% in 2002, with a minor dip in
2004 (Johnson et al., 2005). The number of deaths in the United Kingdom due to MRSA
was estimated to be around 3,000 per year in early 2005 (Johnson et al., 2005). In Europe,
MRSA prevalence varied greatly with percentages ranging from 0.9 per cent to 56.0 per
cent. The EU/EEA population-weighted mean MRSA percentage decreased dramatically
was 17.4% in 2014 (European Centre for Disease Prevention and Control, 2015).
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In the 2013 annual report of the US Centre for Disease Control and Prevention, Clostrid-
ium difficile was held responsible for the death of 14,000 patients out of 23,000 deaths by
antibiotic resistance. Bacterial strains with substantial resistance that cause serious dis-
eases were also listed. Several bacteria were also named in ECDC and WHO reports such
as Enterococcus, P. aeruginosa, non-typhoidal Salmonella, S. pneumonia (CDC, 2013).
MRSA was also listed as one of the most dangerous antibiotic-resistant infections for hu-
mans, according to the US Centers for Disease Control and Prevention (CDC) (CDC,
2013). Besides, the report indicated multi-drug-resistant tuberculosis and MRSA became
less urgent owing to intensive control and prevention. However, these pathogens remained
a threat to the community. In other report, antibiotics infections cost from $10,500 (2004
US dollar) to $111,000 (2006 US dollar) for each patient with transplant. This cost ac-
cumulated up to $17 billion for hospital infections (Klevens et al., 2007). These numbers
were calculated for developed countries with well-administered health programmes. In de-
veloping countries where this problem is not sufficiently addressed, the antibiotic resistance
picture is likely to be more gloomy and unpredictable. 10 million deaths were predicted
every year around the world with ca US$100 trillion expected to be invested in health
prevention regimes by the year 2050 (O’Neill and Grande-Bretagne, 2014).

In particular, Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most
current concerns. According to the CDC, MRSA occupied 8% cases of hospital infections
in 2006 and 2007 (Hidron et al., 2008). Infections by MRSA have increased during the last
ten years and in 2011 there were more than 11,000 deaths related to MRSA (CDC, 2013).
In Britain, deaths by MRSA infections were calculated to be 3,000 in 2005, which turned
out to be a major issue to be debated in the general election in the same year (Koteyko
et al., 2008).

Methicillin-resistant Staphylococcus aureus is expected to exist side-by-side with hu-
mans for the time being. Although the number of hospital cases related to MRSA decreased
from 2012 (401,000 cases) to 2017, it remains high (323,700 cases). Patients with injection
exposed 16 times higher infected with MRSA (World Health Organization, 2017). Despite
numerous attempts to batter the problem, the biomedical scientific community is advised
to pursue a variety of MRSA-related research, including finding new medications. MRSA
was classified into “High priority” group by WHO (World Health Organization, 2017), along
with other multi-drug-resistant micro-organisms, which demands increased endeavour in
the discovery and development of new antibiotics and novel prophylactic strategies.

3.3 Anti-MRSA Antibiotic Research

MRSA infection requires immediate treatment and any postponement might be lethal. An-
tibiotics can be administered by intravenous, oral or a combination of both routes, depend-
ing on the conditions of the patient. Current antibiotics that are effective against MRSA
include clindamycin, daptomycin, linezolid, quinupristin-dalfopristin, rifampin, telavancin,
tetracyclines, trimethoprim /sulfamethoxazole, vancomycin (Liu et al., 2011). Nonetheless,
some antibiotics have been reported to be unsusceptible to MRSA. For instance, some
new MRSA strained were reported resistant to vancomycin and teicoplanin (Sieradzki and
Tomasz, 1997; Schito, 2006).

Due to the rapidly increasing resistance against antibiotics, strict criteria are set out
to restrict the resistance. Antibiotics must be strictly prescribed to confirmed infections,
as well as narrow-spectrum antibiotics, are prescribed with priority. Besides, sufficient
doses must be given from the beginning rather than increased doses. Thanks to intensive
control, MRSA has not developed into an epidemic. However, prevention is not enough to
keep down the rate of resistance and demand for new antibiotics remains high, especially
to treat MRSA infections.

Looking back at the antibiotic discovery timeline from the 1980s to 2010s, the general
trend is a decline in the number of newly approved drugs. During the period 1980-1984,
17 new antibiotics were brought to the market and that quantity is 12 for the 1985-1989
interval. However, the number of new antibiotics from 2005 to 2007 and from 2008 to 2011
remained 2, which mean approximate one antibiotic was approved every year (Bassetti
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et al., 2013).

Substantial efforts are in line to identify and develop new antibiotics. A range of ap-
proaches, involving both conventional laboratory-based experiments as also computerised
tools (Artificial Intelligence) is in line. A conventional approach is to screen a large database
of compounds with antibacterial potential. After that, intensive pre-clinical and clinical
trials will continue to filter the actual drug with relative efficacy. This conventional ap-
proach takes years to bring a new drug to the market, some drugs even take up to 17
years (Ashburn and Thor, 2004). Another approach is extraction and derivatives synthesis
from natural products (Wright, 2014; Genilloud, 2014; Takano et al., 2012; Pitscheider
et al., 2012). Nonetheless, this approach requires knowledge of natural products with an-
timicrobial in addition to intensive laboratory works to bring a new drug to the clinic.
A combination of these approaches can shorten the timescale and cost of new antibiotics
(Pereira et al., 2015; Macherla et al., 2013; Wong et al., 2012). However, the limit of nat-
ural products does not allow much search space for this combination. There are several
minor approaches such as biotechnology with antimicrobial peptide (Gomes et al., 2014)
or quorum sensing (Naik and Mahajan, 2013).

Since MRSA is one of the substantial causes of nosocomial infection, it requires huge
attention in finding new remedies. Although the Infectious Diseases Society of America
and the British Society for Antimicrobial Chemotherapy has provided a strategy for a
prescription for MRSA, it is essential to discover new medicines. The list of drugs on the
pipeline has been reviewed and concluded not encouraging (Kurosu et al., 2013; Liu et al.,
2011; Nathwani et al., 2008). The conventional approach using combinatorial chemistry
and the biological assay was supplanted by modified techniques (Thomas et al., 2008;
Fletcher et al., 2007; Nicolaou et al., 2001; Wilkening et al., 1999; Ratcliffe et al., 1999).
Treatment using phages were proposed and still needs further research (Kurosu et al.,
2013). New macromolecules were also discovered to be potential for MRSA treatment
(Lau et al., 2015a; Tomoda, 2016). Even the genome was investigated for antibacterial
activity (Chu et al., 2016). However, these approaches need further investigation and it
will take some time to bring new results.

4 Drug Repurposing (DR) or Drug Repositioning

4.1 Traditional Drug Discovery

Traditional drug discovery and development mainly relies on the outcome from high through-
put screening, which is an automated procedure to evaluate a large library of substances for

a certain biological target. With the advances in computational power and chemoinformat-

ics, virtual screening became an integral of the process. Nonetheless, the drug discovery

and development processes still consume a massive amount of time and cost while the

efficiency is low. In general, the drug discovery and development processes can take up to

13.5 years (Paul et al., 2010) and more than 2.0 billion dollars (Paul et al., 2010; Adams

and Brantner, Apr) for a drug to go from scratch to the counter.

In a series of articles about research and development costs spanning over a decade,
DiMasi and his colleagues have estimated the cost of drug discovery and development. In
1991, he took a survey of 93 randomly chosen drugs from 12 pharmaceutical companies.
In this survey, the cost of unsuccessful drug candidates was also linked with the cost of
approved drugs. The expense to bring the drug to the market was estimated at $231
million (1987 US dollars) (DiMasi et al., 1991). The clinical trial cost for each drug was
approximately $93 million (DiMasi et al., 1995). In an updated study, this number was
increased to $802 million (DiMasi et al., 2003). In 2016, a new study report the amount
of $2558 million (2013 US dollars) to discover and develop a new drug and the overall
success rate was 11.83% (DiMasi et al., 2016). Other investigators also pointed out similar
figures. Grabowski estimated the costs for each new drug in the late 1990s had increased
more than six times compared to the drug in the 1970s ($802 million versus $138 million)
(Grabowski, 2011). In an independent study, Adam and Brantner estimated the expenses
range from $500 million to $2000 million, depending on the category and company (Adams
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and Brantner, Apr). In another more detailed study, the average expense each year on
drugs in human clinical trials was estimated approximately $27M, with $17M in Phase I,
$34m in Phase II and $27m in Phase III of the human clinical trials (Adams and Brantner,
2010). Wouters also pointed to the cost of a new drug as one ranging from $314 million
to $2.8 billion (Wouters et al., 2020). Another study also indicated a new drug took on
average approximately 13.5 years to reach the market and the cost of a new drug ranged
between approximately $0.9 billion and $2.7 billion (Paul et al., 2010; Mathieu, 2008).

Despite the massive amount of time and cost, the productivity of drug discovery and
development tends to decline. In 2007, 19 new drugs were approved by the FDA, which is
the lowest number since 1983 and the number slightly increased to 21 in 2008 and 24 in 2009
(Paul et al., 2010; Mathieu, 2008). In 2010, DiMasi estimated the approval probabilities
for each clinical stage in the development process. For all compounds, the average clinical
success ratio was 19% and only 16% for self-emerged compounds (DiMasi et al., 2010).
Meanwhile, the rate for a drug to be successfully launched was 11.8% for small molecules
(DiMasi et al., 2010, 2016). This means out of every nine drugs investigated, just one
drug successfully reached approval and other drugs had to stop along the road. In another
study by Ashburn, the success rate was estimated to be less than 10% (Ashburn and Thor,
2004).

Therefore, the traditional drug discovery and development process is a lengthy and
pricey expedition, also involving substantial invasive treatments or therapeutic regimes
even at development stages. On the contrary, Drug Repurposing (DR) could save up to
millions of dollars (Mullard, 2012, 2014) for each new drug since the existing drugs have
been fully investigated pharmacology and toxicity profile. Even drugs that dropped out
at late stages have a certain safe profile after qualifying through phase I clinical trials.
In addition, DR can substantially reduce the timeline of drug development from ca two
decades to less than 5 years. In fact, aided by the new line of Machine and Deep Learning
approaches, the timeline could be further reduced. And this is not restricted to therapeutic
discovery alone, the same approach could well be implemented in vaccine discovery. A
typical case in hand is the range of Covid-19 vaccines that were made available in less
than a year’s time which was only possible through computer modelling (Machine/Deep
Learning) approaches. Last but not least, DR can help patients suffering from rare diseases,
which are not generally the priority of pharmaceutical companies. As a consequence,
Drug Repurposing has now assumed a frontline status in drug discovery and development
strategies.

4.2 Drug Repurposing (also called Drug Repositioning)

Apart from the huge cost and time involved, conventional drug discovery has a very high
attrition rate as well. According to the National Institute of Health (NIH) estimates, ca
80-90% drug candidates get rejected at the Phase I/I1/I1I trial stages, even before market
testing (Waring et al., 2015). Although rejected after Phase I/II/III clinical trials, these
potential drug candidates have by then already obtained their pharmacokinetic and safety
profiles. Both conventional, i.e. laboratory-based and computerised molecular docking
based DR benefit from such abundant pharmaceutical data in lining up prospective drug
candidates from single or assayed molecules.

Serendipitous discovery of off-target indications of many drugs lead to the appeal to
explore the currently approved repository and also the disregarded compounds. There is no
official definition for drug repurposing. In the academic publication, drug repurposing can
be referred to as “drug repositioning”, “drug redirecting”, “drug reprofiling” or “therapeutic
switching”. Some authors have attempted to introduce various definitions, varying from
simple to detailed statements. For example, Dudley et al. define drug repurposing as
“finding a new use for an existing drug” (Dudley et al., 2011a). Endeavouring to give a
full definition, Ashburn and Thor described drug repurposing as “the process of finding
new uses outside the scope of the original medical indication for existing drugs” (Ashburn
and Thor, 2004). The terms “drug repurposing” and “drug repositioning” have been most
interchangeably used in academic articles (Ashburn and Thor, 2004).
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Although the simple term describes “finding new uses for existing drugs”, drug reposi-
tioning is not only limited to approved drugs but also include active substances dropped
out of the clinical trials and drugs withdrawn from the market due to severe adverse re-
actions. This means the substances that have not entered the clinical phases or discarded
should be excluded.

4.3 Polypharmacology/ Drug Promiscuity

Drug repurposing or finding a new indication for an existing drug is possible and widely
applied, thanks to the underlying principle of polypharmacology or drug promiscuity. Tra-
ditional remedies derived from plant and animal sources have been used from time im-
memorial, based on individualised therapeutic evidence provided by persons suffering from
a variety of ailments (Schmidt et al., 2008). Such nature-based pharmaceutical products
extracted from active compounds have been there for centuries in most older civilisations
but the process of lining these up for industrial level medicinal production started just over
a century ago (Ban, 2006). The advances in analytical chemistry and pharmacology led to
the relationship between active compounds, proteins and diseases. Over time, these pro-
teins have been acknowledged as “pharmaceutical targets” for active compounds and the
quest to discover new drugs moved from time-consuming and fortuitous phenotype-based
research to more oriented and governable (Brown, 2007).

Drug development efforts have traditionally aimed to create candidates that are both
extremely selective and effective for a certain biological target. Based on the “one drug-
single target” assumption, the main goal of drug discovery for years was to identify highly
selective (and of course, highly potent) against the biological targets of interest. In addi-
tion, owing to the limit of resources at those times, the investigation to unravel indications
for small-molecule compounds led to incomplete drug’s profile (Mestres et al., 2008). Re-
cently, numerous public and private actions to acquire and archive drug-target interaction
statistics in bibliographical assets have made major contributions to changing this skewed
notion of pharmacological selectivity. Selective medicines are now widely acknowledged
to be the minority rather than the standard, with a large quantity of biologically active
compounds interacting with multiple proteins. Consequently, the phenomenon of one drug
exposing non-selective interaction with multiple proteins is being reviewed in a more holis-
tic view. It has been acknowledged that the majority of medicines work by regulating
several targets and pathways. The philosophy of drug design has been shifted from “one
drug - one target” to “one drug - multiple targets”, termed as polypharmacology (Hopkins,
2008; Apsel et al., 2008; Hopkins, 2009; Brianso6 et al., 2011; Simon et al., 2012; Paolini
et al., 2006).

The term “polypharmacology” was first used by Kenny et al. in 1997 (Kenny et al.,
1997) to describe the non-selectivity of indoramin (poly + pharmakologos: the multiple
knowledge of medications). Polypharmacology is also referred to as functional promiscuity,
cross-reactivity, poly-reactivity, poly-specificity or multi-specificity. At present, the defini-
tion of polypharmacology is recognised and broadly accepted. Another term that is also
used interchangeably is “drug promiscuity”. The difference between “polypharmacology”
and “drug repurposing” is that polypharmacology is a concept that describes a drug that
can bind to multiple targets while drug repurposing is an application of polypharmacology
to find new usage for existing drugs. To exert a biological effect, a drug molecule needs to
bind to a specific location called an active site within the target or protein. Only drugs
that structurally match a cavity can form intermolecular interactions. However, observa-
tion showed that one drug could bind to other targets at other sites rather than at the
expected site. This is also the cause of the side-effects of drugs besides the main indica-
tion. The most common adversity is the side-effects, due to the interaction of drugs with
unexpected targets. On the other hand, it provides an open probability to unveil more in-
dications for existing drugs (drug repurposing) and enhanced efficacy (Mencher and Wang,
2005). Therefore, polypharmacology can be both, a blessing and a curse.

There have been numerous attempts to understand the rationale of polypharmacology.
Most studies exploit the relationship between the extent of polypharmacology and the
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properties of drugs and targets. There are inconsistent conclusions about the correlation
between drug promiscuity and molecular weight. Several found a weak relationship (Azza-
oui et al., 2007) while others concluded inverse correlation (Hopkins et al., 2006; Morphy
and Rankovic, 2007; Mestres et al., 2009; Gleeson et al., 2011). Nonetheless, some works
conclude no clear relationship (Leeson and Springthorpe, 2007; Peters et al., 2009). Re-
gardless of whatever relationship between molecular weight, those aforementioned studies
found a weak correlation between drug promiscuity and drug hydrophobicity. One pos-
sible explanation is that dug molecules accumulate at the phospholipid layer due to the
non-selective nature of hydrophobic intermolecular interaction, leading to interactions with
signalling molecules (Leach and Hann, 2011). However, drug promiscuity appears to have
a weak correlation with drug flexibility and binding site similarity (Haupt et al., 2013).

Attempts were made to search for promiscuous drugs, particularly for complex illnesses
(Hopkins, 2008). This can be undertaken through a variety of ways targeting to discover
new therapeutic targets and chemical pathways (Xie et al., 2012), varying from genome-
wide association research (Sanseau et al., 2012), gene expression information (Dudley et al.,
2011b) and networks (Pujol et al., 2010; Kalinina et al., 2011; Daminelli et al., 2012) to
structural methods (Kinnings et al., 2010; Haupt and Schroeder, 2011). Alignment methods
(Esther et al., 2008; Xie et al., 2009; Konc et al., 2012) and alignment-free techniques, such
as employing fingerprints (Schalon et al., 2008; Liu et al., 2011), are two types of structural
binding pocket comparison strategies. The latter has the benefit of successfully discovering
even distant similarities but does not present an aligned structure. Another application to
find off-targets of the existing compounds is called target fishing (Patel et al., 2015).

Polypharmacology is now heralded as the new dawn of drug discovery (Yildirim et al.,
2007; Hopkins, 2008; Durrant et al., 2010; Oprea and Mestres, 2012; Boran and Iyengar,
2010a,b; Xie et al., 2012). A single drug interacting with several targets of a single disease
pathway, or a single drug interacting with multiple targets related to multiple disease
pathways, are examples of polypharmacology. A number of drugs are notable for their
multi-targeting capabilities, even though their development were serendipitous. Aspirin, for
example, is commonly used as a painkiller to reduce mild pains or as an antipyretic to relieve
fever (Knox et al., 2011); it also has anti-inflammatory effects and is used for rheumatoid
arthritis (Simpson et al., 1966), pericarditis (Berman et al., 1981) and Kawasaki diseases
(Durongpisitkul et al., 1995). It has also been used to prevent transient ischemic attacks
(Grundmann et al., 2003), strokes, heart attacks (Amory and Amory, 2007), miscarriage
(Daya, 2003) and recently cancer (Baron, 2012).

In the past, a drug bound to several targets was unfavourable to the pharmaceutical
industry due to side effects. Nonetheless, not many vastly selective sole-target drugs were
discovered. The high rates of attrition in the late stages of the drug discovery process
and the capacity to bind to different targets of drugs suggested an opportunity to reveal
new indications for known drugs and unsuccessful candidates. Therefore drug repurposing
based on the principle of polypharmacology can potentially provide opportunities for new
indications from existing drugs.

4.4 Advantages of Drug Repurposing

The advantages of drug repurposing are based on the availability of existing drug or chem-
ical safety and pharmacokinetic profiles. Most repurposed drugs, for example, have un-
dergone in vitro and in vivo testing, lead optimisation, toxicological profiling, large-scale
manufacturing, formulation development and even early clinical trials. Even withdrawn
drugs still can be re-used if adverse effects can be avoided. Therefore, drug repurposing
provides the ability to lower the cost, time and raise the success rate of developing a new
medicine compared to conventional drug development strategies. On average, it takes 1-2
years for investigators to uncover new therapeutic targets and 8 years to develop a repur-
posed drug (Sertkaya et al., 2014), compared to 13.5 years in the traditional drug discovery
process (Paul et al., 2010). With reduced time, drug repurposing can be appropriate in
case of an epidemic such as Ebola (Kouznetsova et al., 2014; Veljkovic et al., 2015) or
Zika (Xu et al., 2016; Shiryaev et al., 2017) Moreover, when compared to conventional
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approaches, the cost of research and development for drug repurposing is reduced. For
many nations, drug repurposing alleviates the cost barriers. A drug repurposing approach
costs more than $1.6 billion to produce a new drug, compared to $12 billion for a standard
approach (Deotarse et al., 2015). As a result, drug repurposing allows many companies
to develop drugs with lower expenditures. Furthermore, drug repurposing is a low-risk
method. Ashburn described drug repurposing offers a better risk-to-reward bargain while
the traditional approach gains approximate 10% of success rate (Ashburn and Thor, 2004;
Hay et al., 2014).

Another significant benefit of drug repurposing is the potential to find cures for patients
suffering from rare diseases (or orphan diseases). A rare (or orphan) disease, which is
defined by the US Orphan Drug Act of 1983 (US Food and Drug Administration, 1983),
is a disease that affects only a small proportion of a population. Under the Orphan Drug
Act, a disease is qualified as an orphan drug (or rare disease) if its prevalence is less
than 200,000 in the US. In Europe, a disease is considered rare when 5 people in 10,000
are affected. Because this percentage changes by year and area, it is difficult to give a
global figure (Sardana et al., 2011). Although the number of persons with each specific
rare disease is limited, the number of people suffering from at least one rare disease is
very considerable due to the large variety of these diseases. More than 7,000 rare diseases
have been discovered, affecting more than 300 million individuals around the world (Bloom,
2016). For instance, Hutchinson-Gilford progeria syndrome (HGPS), a genetic abnormality
that causes premature ageing, affects 1 in every 8 million babies born (Prakash et al., 2018),
whereas Huntington’s disease, a well-known rare ailment, impacts 3 to 7 per 100000 people
in Europe (Rawlins et al., 2016). In another publication, 25-30 million patients were
reported suffering these conditions due to the unavailability of treatments (Chakraborti
et al., 2019). Due to their relatively “small” prevalence, rare diseases have drawn little
attraction from the pharmaceutical companies due to the lack of economic motivation. As
a consequence, drug discovery for rare diseases remains a challenge for academia. Drug
repurposing will be a promising way of compensating for the lack of cures for these diseases.

Thanks to the availability of data regarding the safety and pharmacological profile,
drug repurposing can help to find new drugs involving far fewer resources than traditional
drug discovery. It is hence not a surprise that repurposed drugs accounted for 30% of the
51 approved drugs in 2009 (Graul et al., Feb). Drug repurposing has gained more and more
attraction from the scientific community and industrial sector to find more indications.

4.5 Examples of Successful Drug Repurposing

Drug repurposing has proved its effectiveness via typical examples. Although drug repur-
posing gradually received increasing attention with advances in computational methods,
in the beginning, drug repurposing was treated as an accidental coincidence in the clinical
trial stages. Researchers discovered the additional biological effects, which were attributed
to side-effects or otherwise ready for pharmacological use.

A well-known example of drug repurposing is the marketing of sildenafil by its treat-
ment for erectile dysfunctions (trade-name as Viagra). Sildenafil was primarily discovered
by Pfizer with the initial aim of was the treatment of hypertension. Sildenafil inhibits
phosphodiesterase-5, an enzyme to degrade the level of cGMP inside the cells, leading to
the dilation of the vessel. Thus, sildenafil was primarily investigated for the aim of hy-
pertension and angina treatment. However, phosphodiesterase-5 also plays a major role in
hydrolysing cGMP in corpus cavernosum and inhibition of cGMP results in penile erection
enhancement (Terrett et al., 1996; Park et al., 1998). This so-called side-effect has been
reported by a number of subjects and a study on this new exploration was carried out.
The company set up a large-scale trial with more than 3,700 participants who are men
with erectile dysfunction and with a promising outcome, sildenafil became a blockbuster
(Morales et al., 1998; Montorsi, 1998; Wagner, 1998).

Another example is the case of thalidomide which is revived for the treatment of can-
cer. Thalidomide was firstly developed in the 1950s as an anticonvulsant drug. Early
trials showed inefficiency but sedative effect. It was launched in Germany in 1957 under
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the brand name of Contergan and in the United Kingdom in the next year as Distaval
(Smithells and Newman, 1992) with the initial indication for morning sickness in preg-
nant women (Ashburn and Thor, 2004). It was sold over-the-counter in Germany and
on prescription in the UK but was broadly used. Later, combination drugs that combine
thalidomide and others were advertised for a wide range of indications: Asmaval to treat
asthma, Tensival to treat hypertension, Valgraine to treat migraine and so forth. The
introduction of these drugs put great dependence on the safety of thalidomide. Unusual
cases of babies born with limb defects were first observed in Germany in 1960. In 1961
the number of reported cases increased and were linked to thalidomide administration of
pregnant mothers. At the same time, the same inference was made in the UK, Sweden,
Switzerland, Belgium, the Netherlands, Canada and Brazil. Approximate 10,000 babies
around the world were born with limb malformations associated with the administration of
thalidomide (Lenz, 1988). The mortality rate among 'thalidomide babies’ was almost 40%,
mostly due to major internal abnormalities (Lenz, 1988). As a result, the ratio of internal
abnormalities is substantially less among survivors than it was in the general population
at birth. It was withdrawn from the European market in 1961. It was revisited in 1965
since it posed potential to treat erythema nodosum leprosum lesions and, in 1998, the FDA
granted approval for this indication (Teo et al., 2002). Recently, when people understood
its mechanism to cause deformity in babies, it was repurposed for the treatment of can-
cer, particularly multiple myeloma (D’Amato et al., 1994). Recently, thalidomide shows
potential to be repurposed for treatment of SARS-CoV-2 (Sundaresan et al., 2021).

These examples recommend that repurposing is possible for every drug, even when they
are withdrawn.

4.6 Drug Repurposing for MRSA

Given the phenomenal development of antimicrobial resistance coupled with lack of fund-
ing and timing for new laboratory-based MRSA treating drugs, numerous attempts have
been made to find new compounds with anti-MRSA competence. Lau et al. screened 1162
approved drugs by the Food and Drug Administration for activities toward MRSA to treat
MRSA skin infections (Lau et al., 2015b). They have used an experiment-based method
called 10 uM single-point assay on MRSA strain USA100 and found 6 candidates with
Floxuridine as the most promising compound for repurposing for the treatment of MRSA
skin infections. Niu et al. screened a compound collection comprising 1524 compounds
from the Johns Hopkins Clinical Compound Library against MRSA strain USA300 us-
ing a growth inhibition assay. They pinpointed 9 candidates, 5 of which (chloroxine,
thiostrepton, clofazimine, spiramycin and carbomycin) are antibiotics used to treat other
infections and 4 of which (pyrvinium pamoate, quinaldine blue, dithiazanine iodide and
closantel) are drugs used for other indications (Niu et al., 2017), which also need fur-
ther study. Recently, Gilbert-Girard et al. screened 774 compounds from Screen-Well
FDA Approved Drug Library Version 2 against Staphylococcus aureus strain ATCC 25923
and found 45 candidates for further in wvitro tests (Gilbert-Girard et al., 2020). Once
again, such activities again MRSA need further investigation. Prieto et al. screened 1.280
off-patent FDA-approved drugs in the Prestwick Chemical library using high throughput
[B-galactosidase-based screening for inhibition of GraXRS, a two-component system that
determines bacterial resilience against host innate immune barriers and found VER as
a promising candidate for sensitizing S. aureus (Prieto et al., 2020). Sedlmayer et al.
used high throughput screening to screen 5,283 compounds against methicillin-resistant
S. aureus (MRSA) ATCC 43300 for the in vitro inhibition of AI-2, which triggers biofilm
formation. At a dose much lower than that for anti-cancer treatment, they found 5-FU
effectively reduced MRSA adhesion and inhibited biofilm formation in wvitro. In a mouse
model, 5-FU was found to restore antibiotic susceptibility of MRSA infection (Sedlmayer
et al., 2021).

Numerous endeavours have been made in the search for a new drug to treat MRSA
infections. Either the experiment-based or in silico methods have been used in those
studies. These studies are limited to specific target proteins (Prieto et al., 2020) or using
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virtual screening with a specific class of the drug such as ethnomedical drugs (Dou et al.,
2016), salicylanilide anthelmintic drugs (Rajamuthiah et al., 2015), ebselen (Thangamani
et al., 2015), antihistamines (Perlmutter et al., 2014). Some researches utilized a larger
library but aimed for the ordinary S. aureus strains (Lau et al., 2015b; Yeo et al., 2018).

Given the increasing alert of MRSA strain during the past decade and the lack of newly
developed drugs to treat MRSA, it is essential to look for a new approach with an effective
outcome. Drug repurposing with the aim for drugs with MRSA treatment indication is a
promising strategy with a higher prospective success rate while lowering the time and cost.

No study utilising all possible repurposable compounds has been carried out. Fur-
thermore, there has been no research to exploit the entire range of MRSA targets. The
present thesis addresses these two open questions by combining multiple input sources (e.g.
Phase I/II/III MRSA candidates) in a systematic manner and processing them for best
protein:ligand overlap (matching).

An excess of 5900 compounds as possible ligand matches, all from the Repurposing Hub,
were scrutinised and then virtually screened against more than 140 MRSA target proteins
to find the best MRSA drug candidates with anti-MRSA activity. In addition, multiple
docking programmes have been used for screening of drugs that have been approved or
dropped out in late-stage clinical trials against the whole set of receptors from MRSA
strain. Furthermore, to overcome the limitation of the current docking methods, a novel
mechanism of “consensus scoring” (CS), that is essentially a statistical combination of all
available docking outputs from multiple docking programmes to arrive at a holistic 3-
dimensional representation of the molecules, that were established as being superior to any
individual docking architecture, faster in processing and more accurate in prediction. This
CS model boosts up the enrichment ability for potential candidates with antimicrobial
activities, followed by an enumeration of the top ligands.
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Chapter 3

Literature Review

1 Drug Repurposing Approaches and Methodologies

The aim of Drug Repurposing (DR) is to find a new indication for an existing drugs, a late-
stage trial substance or a withdrawn drug. Drug repurposing can use the same methods
as traditional drug research and development, but on a shorter timeline. In general, there
are two basic drug repurposing principles. First, because of the interdependence of various
ailments, medications developed for one disease may also be effective for other diseases.
Second, because medications are inherently confusing, they can be linked to a variety of
pathways and targets (Ashburn and Thor, 2004). As a result, DR research can be divided
into two categories based on where the discoveries come from: drug-based strategies, in
which the discovery is based on drug knowledge and disease-based strategies, in which
the discovery is based on disease information. For forecasting treatment potentials and
innovative indications for current treatments, drug-based techniques rely on data connected
to drugs, such as chemical, molecular, biological, pharmacological and genetic information.

Drug-based strategies are employed when there is a large amount of medication-related
information or a strong need to learn about the contribution of pharmacological properties
to drug repurposing. A greater amount of research in this category shares the proposition
that if two medications have comparable profiles and modes of action and one drug is
utilised to cure a certain disease, the other is a strong candidate for treating the same dis-
ease. The genome strategy and the chemical structure and molecular information strategy
are the two sub-strategies that fall within this category. Data on diseases, such as phe-
notypic features, side effects and indications, is used as the foundation for disease-based
techniques to forecast therapeutic potentials and novel indications for current treatments.
When there is a lack of drug-related data or a motivation to learn how pharmacological
properties can help with drug repurposing aimed for a specific illness, disease-based strate-
gies are applied (Ashburn and Thor, 2004). If two diseases have comparable profiles and
indications and one drug is utilised to cure one disease, then that drug can be considered
a strong contender for curing the other disease. The phenome strategy is the primary
approach that speaks for this category.

Drug Repurposing is carried based on two main approaches: experiment-based and
computer-based. These approaches also resemble approaches in drug discovery and devel-
opment, with the growth of computer-based approach. The experiment-based strategy (or
activity-based drug repurposing) refers to the use of actual experiments to screen chem-
icals or drugs for additional therapeutic usage. The experiments can be carried out in
vitro and /or in vivo, using cell assays, animal models or clinical trials (Oprea and Overing-
ton, Aug; Lionta et al., 2014), without the need for structural data of the target proteins.
Recently, there is a new application called “airway-on-a-chip” that can be used for drug
repurposing (Si et al., 2021). The advantages of experiment-based approaches include a
diverse range of screening assays for targets and cells, simple to evaluate screening re-
sults and the reduced proportion of false positive hits (Shim and Liu, 2014). Nonetheless,
the disadvantages are similar to traditional drug discovery: cost and time consuming;
the prerequisite of physicochemical properties and structural information. On the other
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hand, in silico repurposing carries out computational screening of library of chemicals or
drugs to identify possible active compounds. Similar to computer-aided drug design, this
latter approach has become fruitful since an enormous volume of structural information
on macromolecules has been compiled in recent years in conjunction with the growth of
bioinformatics and computational science. In this approach, the intermolecular interac-
tion between the compounds and the target of interest is exploited (Talevi, 2018). This
approach can reduce time and expense, but it requires knowledge of the structural data of
the target proteins. It also necessitates disease/phenotype data or gene expression profiles
of medicines. Since the growth of bioinformatics and computer power, a large volume
of data about the structure of proteins has been acquired over recent years, this latter
approach has proven fruitful.

The drug repurposing techniques can be classified into three groups: drug-based, (ii)
target-based and (iii) disease-based, based on the quantity and quality of data provided.
In the drug-based methodology, the structural features of drug molecules, bioactivities, ad-
verse reactions and toxicity are investigated to find new biological effects. This approach
is based on traditional pharmacology and drug discovery concepts, in which experiments
are typically undertaken to establish the biological response of drugs without information
of the physiological targets. One well-known successful example in this method is sildenafil
(Koch et al., 2014). Target-based methodology consists of in silico or virtual screening a
library of drugs or compounds against a target protein to identify potential ligands with
possible interactions. Since most pharmacological targets directly reflect disease path-
ways/mechanisms, this methodology has a higher success rate than the drug-based method-
ology (Napolitano et al., 2013). When additional information about the disease model is
available, the use of disease-based technique in drug repurposing becomes relevant. In this
case, drug repurposing can be directed by the illness and/or treatment information that
is provided by disease-related target proteins, genetic data, metabolic pathways/profile as
well toxicity, therapeutical targets, disease pathways, pathological conditions, adverse and
side effects regarding the disease and treatment. As a result, it necessitates the creation of
specialised disease networks, including knowledge of genetic expression, main targets and
disease-induced receptor related to the diseases (Chong et al., 2006).

In comparison to standard techniques, incorporating target information into the drug
repurposing process increases the likelihood of discovering effective medications. Target-
based approaches, such as docking, allow researchers to screen practically all drugs or
chemicals with defined structure information in a matter of days. This is the reason why
many pharmaceutical companies rely on these techniques to discover new indications (Jin
and Wong, 2014). In this work, thanks to the availability of MRSA protein structural
information, it is possible to use molecular docking for virtual screening of drugs and
compounds against these target proteins to identify the potential candidates with anti-
MRSA activity.

Databases for Drug Repurposing

Apart from the available information, drug repurposing mirrors the advantages and
disadvantages of drug discovery and development. Similar to drug discovery and devel-
opment, drug repurposing integrating computational methods is less resource-consuming
than experiment-based methods. Therefore, with the availability of structural information,
virtual screening is favoured over other methods. Thanks to the advances in computer sci-
ence and chemoinformatics and the observation in the correlation between structure and
bioactivity, high speed and cloud computing allow intensive computer calculations. Along
with the enhancement of computational power, the augmentation in chemoinformatics
also allows expanding the chemical space. Millions of compounds yet to be synthesised can
be virtually explored. A number of multi-purpose chemical libraries are freely available:
ZINC (Sterling and Irwin, 2015), Pubchem (Kim et al., 2020), ChEMBL (Mendez et al.,
2019) and commercially supplied: Boehringer Ingelheim’s BI-Claim (Lessel et al., 2009),
Eli Lilly’s Proximal Collection (Nicolaou et al., 2016), Pfizer global virtual library (Hu
et al., 2012), and Merck’s Accessible inventory (Lyu et al., 2019).

For repurposing objective, the main focus is approved drugs, usually by the United
States Food and Drug Association. However, substances at clinical trials also make good
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candidates, as they have passed the tests for safety and proved to exert certain biological
reactions. Withdrawn drugs is also a good source for repurposing. Although they have
been withdrawn due to severe adverse reactions, a new indication is still possible with
appropriate administration. There are many libraries that contain the drugs for repurpos-
ing. One main source containing the FDA-approved drugs is the DrugBank (Knox et al.,
2011). Investigational and withdrawn drugs are also available but limited. Compounds at
clinical trial stages are also available at www.clinicaltrials.gov with untreated information
(Tse et al., 2009; Zarin et al., 2011). A number of libraries have been created with spe-
cific disease-orientation: GCPR-targeted (Sriram and Insel, 2018). Recently, Corsello et al.
have constructed a repository with more than 10,000 compounds, including approved drugs
and substances that have reached the clinical stages, namely Repurposing Hub (Corsello
et al., 2017). Repurposing Hub has been exploited and resulted in a promising candidate,
halicin, with potential broad-spectrum antibacterial activities (Stokes et al., 2020).

Protein structure databases are also expanded, providing necessary information for in
silico experiments. Some repositories are open available: Protein Data Bank (Berman
et al., 2000), ModBase (Pieper et al., 2011), UniProt (The UniProt Consortium, 2019).
PDB is a leading protein and macromolecule database with more than 170,000 experimental
structures contributed by more than 40,000 data depositors around the world (Burley et al.,
2021).

With such an abundance of structural information from databases, drug repurposing
using in silico methods become much easier than before. Thus, drug repurposing using
structure-based virtual screening for MRSA treatments is possible providing the availability
of large libraries containing approved and trial drugs, as well as structural information of
MRSA targets.

2 Virtual Screening

The term “virtual screening” (VS) was first mentioned in a publication in 1997 (Horvath,
1997). This breakthrough precipitated a multitude of publications in the subject. A
simple search for “virtual screening” in Google Scholar produces 1.97 million hits which
obviously indicates to the importance and applicability of the technique in factual terms.
The purpose of virtual screening is to narrow down the portion of lead-like hits against
the chosen target. Virtual screening is a more straightforward and rational drug discovery
strategy than conventional experimental high-throughput screening and it has the benefits
such as low expense and efficient screening (Moitessier et al., 2008; Bailey and Brown,
2001). As no experiments are carried out, neither chemicals are needed nor equipment
to be operated (such as in high-throughput screening). Consequently, virtual screening is
cost-effective. Meanwhile, virtual screening can save time due to the cut of experiments
or compound synthesis. Furthermore, virtual screening is labour efficient owing to the
exclusion of laborious work.

Virtual screening applications works based on the information about the target and
ligands. Depending on the extent of available information, virtual screening can be di-
vided into two main approaches: ligand-based virtual screening and structure-based virtual
screening. In the first approach, the information of the target is not fully provided and that
of ligands is available, usually known as active ligands. Ligand-based virtual screening is
based on the similarity concept that is structurally similar molecules tend to have similar
chemical and biological properties. The chemical library can be scanned for compounds
with similar properties. Therefore, the heart of ligand-based virtual screening methods
is the measurement of similarity, which ranges from two-dimensional descriptors, such as
fingerprints, to three-dimensional descriptors like pharmacophores.

As for structure-based virtual screening, information about the structure of the targets
and compounds within the library that is available are scanned to estimate the probability
of binding with high affinity. The core is commonly used in this approach but is not limited
to molecular docking. Molecular docking is a mathematical technique that relies upon two
components: searching algorithms to search for possible conformations of the compounds
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and scoring functions to evaluate the binding interaction of each conformation and rank the
top scores among them. Molecular docking has been the most used strategy since the early
1980s to present. Structure-based drug design is an essential part of drug discovery and
development (Warren et al., 2012; Merz Jr et al., 2010; Pei et al., 2014). Many commercial
medicines are products from structure-based drug design method (Sliwoski et al., 2014).

In silico investigations, molecular docking is an essential element that is extensively ex-
ploited in current drug design and discovery. Contemporary molecular docking techniques
have developed to the point where they are regarded as a valuable tool in rational drug de-
sign, thanks to substantial developments in terms of innovative computational algorithms
and powerful computational resources. In this method, the magnitude of intermolecular
interaction is attempted to be correctly estimated based on the structural and experimen-
tal data available. It is worth noting that protein docking (or protein-protein docking),
which is the docking of two macro-molecules, is not discussed in this work.

3 Molecular Docking

3.1 Overview of Molecular Docking

The therapeutic effect of the drug molecules in particular as well as the biological effect
of the small molecules in general is due to a mechanism known as molecular recognition,
which is a very basic occurrence. Modulation of biological signals and cellular reactions are
regulated by a range of such recognition events. These processes occur at the molecular
level and shape the principle of ligand-receptor interactions. Non-covalent interactions such
as intermolecular van der Waals, hydrogen bonds and electrostatic interactions are used to
establish connections in physiology and pharmacology (Brooijmans and Kuntz, 2003). The
study of chemical characteristics that are accountable for specific biological responses, as
well as the anticipation of molecule alterations that boost potency, are not trivial tasks. A
better understanding of ligand-receptor recognition can lead to a breakthrough in structure-
based drug design. Molecular docking is one of the useful methods that can give an insight
into such ligand-receptor interactions.

Molecular docking is terminology for the prediction of position, orientation and con-
formation (usually termed as docking pose or pose) of a small molecule in reference to
a biomacromolecule. Molecular docking is used in opposition to protein docking (or
protein-protein docking), docking of two biomacromolecules, which is not discussed in
this study. Docking studies were pioneered during the 1970s and 1980s (Levinthal et al.,
1975; Salemme, 1976; Kuntz et al., 1982). Since the beginning, binding between ligand
and protein was supposed to be between two rigid molecules and many studies followed
the theory “lock-and-key” of Koshland in 1958 (Koshland, 1958). This theory is based on
the model of “lock” and “key”, whereas protein plays a role as lock and ligand as key. A
right “key” to a “lock” will exert the appropriate biological reactions. Nonetheless, the
“lock-and-key” model was not sufficient to explain all the experimental results.

The next theory that was more advanced than the “lock-and-key” was the “induced-fit”
model (Wei et al., 2004). This theory is based on an observation: the protein changed
its conformation to adopt the complex with ligand with the lowest energy. During the
course of the docking process, the ligand and the protein change their shape to obtain a
general "best-fit" state, just like “hand-and-glove”. Another theory is confirmation selection
and population shift which is based on the energy landscape (Knegtel et al., 1997). The
protein structure adopts various conformations from which corresponding energies can be
demonstrated as a map of energies. These conformations are interchangeable and some
adopt local lowest energies and one lowest of all. A ligand can bind to one of the energy
canyons and other conformations will shift to this state, which leads to the lowest energy
complex and with the highest frequency.

At present, docking remains a burgeoning field of study (Kitchen et al., 2004). A quick
PubMed search for articles including the keywords "docking" and "ligand" was under-
taken to gain a better understanding of the extent to which docking investigations have
penetrated the research community. The number of articles regarding docking has steadily
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increased from 1986 to present, with an approximate 2,141 in 2020 and 2,239 by the end
of 2021. This is a rough estimate and the actual figures require further investigation, but
it can bring a general view of how common docking studies are.

3.2 Molecular Components of Molecular Docking

The molecules of receptor and ligand are the two key interacting components in any molecu-
lar docking. The three-dimensional structure of the receptor that is used in the calculation
for a molecular docking simulation is either an experimental (solved three-dimensional
structures of proteins stored in the database of proteins) or an anticipated structure using
different prediction techniques such as “comparative modelling” (homology and threading).
The binding pocket can then be determined using the structural information of the protein.
The binding pocket can be defined with certainty if the target is co-crystallised with the
ligand; or else, the binding pocket must be deduced in one of the other ways, such as using
methods to predict protein function from structural analogues or from the investigation of
physicochemical and geometrical features of the protein geometry. The binding pocket is
not necessarily the biggest, but usually the cavity with the highest physiochemical crite-
ria. The ligand is the other essential element of molecular docking. For ligand processing,
two approaches have been used: whole-molecule approaches and fragment-based methods.
In whole-molecule approaches, the pool of conformations of the ligand is explored and
each conformation is docked into the binding pocket of the protein. In fragment-based
approaches, a library of fragments is prepared from the ligand structure and the docking
is completed using either fragments docked separately before being reconnected or us-
ing fragments as “anchor” gradually enlarge the ligand during the docking phase (Rarey
et al., 1996). Depending on the extent of ligand and protein flexibility, different levels of
approximation will be applied for scoring functions.

3.3 Docking Methodology

In a molecular docking simulation, the flexibility of ligand and protein is determined as
six degrees of translational (along x-, y- and z-axes) and rotational freedom. Furthermore,
depending on the torsion angles of each rotatable bond, conformational degrees of freedom
is also accountable for each ligand and receptor (Gani, 2007; Leach et al., 2006). Because
finding the entire conformational space is a challenging task that takes a lot of time and re-
sources, an approximation for lowering the dimension of the search space is necessary. The
degree of molecular flexibility is usually used to categorise molecular docking techniques.
There are three extents of approximation in docking approaches from the perspective of
flexibility: rigid docking, semi-flexible docking and flexible docking.

The key parameters in molecular docking are accuracy and speed. The oldest and
most basic molecular docking methods had the basic form rigid-body approximation. The
structure of the ligand and protein is not changed in the docking process in rigid docking
and both are treated as rigid objects. The protein is considered to be solid in the second
strategy, semi-flexible docking. In molecular docking, rigid-body assignment of two com-
ponents (i.e. ligand and protein) is speedier than when flexibility is added in the docking
process (Morris and Lim-Wilby, 2008). This is because the search space is relatively small.
Although the speed of a docking simulation is advantageous, the impact of various ligand
and protein conformations in bound and unbound states cannot be overlooked. Major
conformational changes in the protein structure, such as reorganisation of side chains and
movement of loops and domains, can happen when the ligand binds to the target (“induced-
fit” theory) (Wei et al., 2004). As a result, because a real biological structure has multiple
degrees of freedom, the flexibility of both ligand and receptor should be considered for an
ideal scenario. It is critical to developing programmes that are able of addressing these
concerns for this goal. Nevertheless, when the protein is also considered flexible, docking
can take extremely long time, even weeks. As a result, the most typical technique is keep-
ing the protein stiff whereas the ligand undergoes a conformational change during docking,
which is likewise a trade-off between accuracy and computational speed. This methodology
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has been used by almost all docking programmemes and is broadly utilised in numerous
studies (Rarey et al., 1996; Morris et al., 1998).

Nonetheless, flexible ligand and rigid protein have not fully answered the question in
the task of docking. Protein motility is correlated with ligand binding activity (Teague,
2003). Therefore, in flexible docking, both the ligand and the protein conformational
degrees of freedom, as well as translational and rotational degrees of freedom, are taken
into account (Hung and Chen, 2014; Leach et al., 2006; Sousa et al., 2013). However,
introducing protein flexibility into docking poses a huge challenge in computational cost.
To overcome this problem, the protein is not treated fully flexible, but other approximation
methods are applied, such as flexibility of side chains (Morris et al., 2009) or ensemble of
rigid conformations (Knegtel et al., 1997).

3.4 Binding Site Prediction

In addition to three-dimensional protein data, identifying overlapping regions between pro-
teins and ligands is essential for virtual screening. A binding site is a region within proteins
where ligands can form intermolecular iterations. The interaction of small molecules to a
protein at various binding sites may trigger a biological reaction. If this biological reaction
is relevant to a particular disease or disorder, this interaction can be considered as a target
for the treatment of the disease or disorder. If the molecule binds to the protein at the
binding site and exerts a more powerful biological reaction, it can act as an agonist. On
the contrary, if the interaction ceases or weakens an activity, it can be developed as an in-
hibitor. Traditionally, binding sites can be determined by co-crystallisation of a complex of
protein and ligand. However, such co-bound ligands are not always available. In case only
the protein structure is present, the binding site can be detected by comparison to other
structures or sequences with an existing binding site or by prediction using computational
tools.

A wide range of algorithms have been developed to predict binding pockets of ligands to
protein. These algorithms are classified into two categories: residue-based, surface-based
and interaction-based (Ehrt et al., 2018). Some binding site prediction tools available:
IsoCleft Finder (Kurbatova et al., 2013), IsoMIF (Chartier and Najmanovich, 2015), Site-
Hopper (Batista et al., 2014), SMAP (Xie et al., 2009). These prediction tools usually
return a list of putative sockets, ranked in terms of physicochemical or geometrical prop-
erties. Nonetheless, confirmation in conjunction with visualisation is recommended.

3.5 Mechanics of Docking

The objective of molecular docking is to use computer aided techniques to anticipate the
three-dimensional structure of the ligand-receptor complex. Docking is accomplished in
two steps: firstly, sampling ligand poses in the binding pocket of the protein receptor and
then ranking these poses using a scoring function. When addressing various degrees of
freedom, such as translational and rotational freedom, the computational cost of docking
for arranging ligand and receptor near each other is enormously large. As a systematic
method, one could construct and investigate all conceivable binding modes for the re-
ceptors of interest using their three translational and three rotational freedoms, although
this approach would be impractical given the computing capability of recently developed
computer resources. For example, assuming increments of 10 degrees in angle and 6
formations, it will take a processor capable of processing 10000 confirmations per second
around 2 x 10% years to finish the simulations (Taylor et al., 2002). As a result, it is es-
sential to create efficient search algorithms and scoring functions to set a balance between
computing costs and the ligand conformation space.

con-

Search Algorithms

Search algorithms are also preferred to as “matching algorithms” or “sampling algorithms”.
Prior to the prediction of the binding state between a ligand and a protein, docking pro-
grammes have to obtain an ensemble of ligand conformations (and protein conformations
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in case of ensemble docking). These conformations can be generated by translational,
rotational and vibrational changes in the ligand structure. In theory, the search space
is made up of all potential protein and ligand positions, orientations and conformations.
However, with existing computer resources, exhaustively investigating the search space is
inconceivable. Several algorithms have attempted to reproduce the binding mode obtained
via experiments (can be referred to as search algorithm, sampling algorithm or placement
algorithm). Shape-complementary methods use geometric descriptions to map a ligand into
an active location of a protein. Another approach is molecular dynamics, which simulates
the molecular level interaction between all molecules to explore the entire conformational
space, essentially using Newtonian kinetics to quantify collision between any two molecules.
Other widely used genetic algorithms conceptualises the idea of the GA stems from Dar-
win’s theory of evolution. The whole ligand pose is considered as “chromosome” and the
ligand fragments as “gene”. Mutation makes random changes to the genes, resulting in a
new ligand conformation. Monte Carlo algorithms generating random conformations by
rotation or translation of the bonds is another option. These are largely restricted to static
configurations by identifying the lowest energy manifolds (Meng et al., 2011). Recent ad-
vances include generalisation of the original Monte Carlo algorithm to incorporate time
evolution of interacting variables, a method popularly referred to as kinetic Monte Carlo
(Chattopadhyay and Marenduzzo, 2007).

Scoring Functions

In the docking process, a search algorithm may generate a large number of conformations
to be docked into predicted binding sites of protein, depending on the number of rotatable
bonds the ligand possesses. The follow-up target is to identify the correct binding pose
within that ensemble at an acceptable accuracy within reasonable time. Scoring functions
are used in computer-aided drug discovery such as virtual screening, lead optimisation
and structure-based drug design. In molecular docking, scoring functions are methods
to predict the affinity between two molecules, in particular, protein and ligand. Scoring
functions aim to discriminate the true binding poses from false-positive prediction and
to rank the binding strength of non-covalent interactions among the set of results using
approximate algorithms.

Force field is a function to calculate the potential energy of an ensemble of atoms in
molecular mechanics and molecular dynamics simulations. Force field functions consist of
terms to calculate various types of interaction within the system. Force-field-based scoring
functions predict the binding affinity by calculating all the intermolecular interactions
(van der Waals and electrostatic) between ligands and proteins (due to the nature of
interactions between protein and ligand). A force-field-based scoring function generally
takes the following form:
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where b is the interatomic distance, k; is the stiffness of the bond, by is the equilibrium
length of the bond, € is the angle formed by the two bond vectors, the values of 6y and
ko are the stiffness and equilibrium geometry of the angle, respectively. The torsional
potential in the equilibrium is characterized by cosine function, where ¢ is the torsional
angle, § is the phase, and n is the dihedral potential. The last term ¢;j is a parameter
based on the two interacting atoms i and j, ¢; and g; are the effective charge on i and j
atoms, and Rpn,;; is the distance at which the energy of Lennard-Jones equation is at
minimum (Huang et al., 2006a). Since there are versions of scores using a component such
as Poisson—Boltzmann or Generalized Born solvation model not based on the force field.
Some docking softwares use force-field-based scoring functions such as DOCK (Meng
et al., 1992; Allen et al., 2015), GOLD (Jones et al., 1997; Verdonk et al., 2003), AutoDock
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(Morris et al., 2009) and other methods for refinement such as linear interaction energy and
free-energy perturbation. Due to the great number of the pairwise atom interactions that
could be generated within the complex, the force-field-based scoring function is computa-
tionally expensive and time-consuming. Therefore, there is a cut-off in distance to increase
the speed but also lead to a decrease in accuracy. Changes in conformational entropy and
changes in solvational entropy are the two main factors that affect binding entropy. Since
the binding process results in the loss of conformational degrees of freedom for both the
ligand and the protein, the conformational entropy change is often negative. On the other
hand, because of the partial or complete desolvation of the binding cavity during binding,
the solvation entropy is usually always in favor (Huang et al., 2006a; Singh and Warshel,
2010).

The second type of scoring function is empirical scoring functions, which approximate
the binding interactions of a complex based on a set of weighted energy terms. Empiri-
cal scoring functions use the value from a training set of ligand-protein complexes. The
empirical scoring functions take the following form:

AG =) WiAG; (3.2)

In Equation 2.2, AG; may stand for H-bond, vdW energy, electrostatics, desolvation,
entropy and hydrophobicity. Fitting the known binding affinity values of a collection of
protein-ligand complexes with accessible three-dimensional structural data yields the rele-
vant coefficients W;. To fit the experimentally measured affinity values with the calculated
binding score, the coefficients are provided using linear regression, such as multiple linear
regression, or non-linear regression, such as support vector machine methods. The em-
pirical scoring functions are quicker in generating the binding score than the FF scoring
functions due to the simplicity of energy terms, but they may have a restricted applica-
bility area due to the amount and variety of protein-ligand complexes in the training set.
Docking programmes using empirical scoring functions include: FlexX (Rarey et al., 1996),
Glide (Friesner et al., 2004), ICM (Abagyan et al., 1994), Surflex (Jain, 2003).

Another type of scoring function is knowledge-based scoring functions, which take into
account the frequencies of occurrence and distance of various types of atom pair interac-
tions. They are based on the observation that the favourability of interaction is directly
proportional to the occurrence frequency of that interaction and therefore favourably con-
tributes to the binding affinity. The distributions of frequency of interactions from a
training set are used to compute the potential of mean force. Potential of mean force is
the potential which provides the average force across all coordinates. It is also the free
energy profile along a preferred coordinate. Potential of mean force can be used to reflect
the energetics of a range of biological systems, such as interactions between molecules,
conformational changes within a molecule and protein folding and unfolding (Mitchell
et al., 1999b). The knowledge-based scores sum up pair-wise statistical potentials between
protein and ligand and are generally expressed as:

ligand  j

Score = Z Z wij (1) (3.3)

i protein

The inverse Boltzmann formula is used to derive pair-wise potentials (X’) straight from
the occurrence frequency of atom pairs in a dataset.
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where kp is the Boltzmann constant, T is the absolute temperature of the system,
p(r) is the number density of the protein-ligand atom pair at radius r and p* is the pair
density in a reference state where the intermolecular interactions are either assumed zero
or they consist of non-specific interactions that are common to all sorts of the atom. Free
energies are estimated using radial distribution function, g(r), pertaining to the fraction
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@. The most common method for obtaining the requisite pair-wise potentials is to use
a big collection of protein/ligand complex structures as the training set, often known as
the "knowledge base". Atoms of protein and ligand atoms are degenerated and divided
into several categories. The above formula is then used to generate distance-dependent
potentials for each probable atom pair from the occurrence frequency of this atom pair
found in the training set. Knowledge-based scoring functions are far more effective than
FF or physics-based techniques due to their pair-wise features, which frequently require in-
tensive solvent processing. Knowledge-based potentials, unlike empirical scoring functions,
are produced through statistical analysis of structural data without the use of experimen-
tal binding affinity measures. Scoring functions belonging to this category include: PMF
(Muegge, 1999), DrugScore (Gohlke et al., 2000), SMoG (DeWitte and Shakhnovich, 1996),
BLEEP (Mitchell et al., 1999b,a), GOLD/ASP (Mooij and Verdonk, 2005).

Machine learning scoring functions, a new type scoring functions has been proposed
recently. For modelling of diverse physicochemical and biological features, the quantitative
structure-activity relationship technique has traditionally been widely used. The descrip-
tors in quantitative structure-activity relationship are obtained from the representation of
the compounds and contain chemical or topological information that can be used to inves-
tigate protein-ligand interaction mode. In the advancement of docking scoring functions,
descriptors such as traditional ligand-based attributes (number of rotatable single bonds,
number of H-bond donor/acceptor, molecular weight), structural connectivity fingerprints
of protein-ligand complex, geometrical features (surface or shape or volume characteristics)
and specific interactions attributes (hydrogen bonds, electrostatic interactions or aromatic
stacking) can be used. Furthermore, statistical models for generating binding scores can be
developed using linear regression methods or machine learning approaches such as random
forest, Bayesian classifiers, neural networks and support vector machines. Machine learning
scoring functions may resemble empirical scoring functions in appearance, but they nor-
mally have a much higher number of descriptors and are not always in a linear functional
form but mostly rely on the machine-learning technique used. Some scoring functions in
this category such as LigScore (Krammer et al., 2005), RF-Score (Ballester and Mitchell,
2010), NN-Score (Durrant and McCammon, 2010) SFCScore (Zilian and Sotriffer, 2013),
ID-Score (Li et al., 2013).

The criteria for an ideal scoring function include accuracy and promptness. However,
available scoring functions had to sacrifice either accuracy or promptness. This obsta-
cle has not been overcome and an adequately efficient function is still not yet achieved.
According to a review of Liu and Wang, scoring functions can be reconsidered into 4 con-
cepts: physics-based methods, empirical scoring functions, knowledge-based potentials and
descriptor-based scoring functions (Liu and Wang, 2015) since some versions can include
components such as Poisson-Boltzmann or Generalized Born solvation model which are
not covered in conventional terms. Besides these types of scoring functions, consensus
scores that integrate more than one scoring function have been widely reported to improve
the performance of virtual screening.

3.6 Docking Performance Validation

Given the immense types and options available as docking programmemes, it is imperative
that consideration be given as to their quality and a general base level performance. In
other words, given a select set of proteins and ligands, certain docking programmemes
are expected to perform better (meaning more accurate structure classification and faster
convergence) than others. The basic question is how accurate the search algorithms gener-
ate the native pose regarding the known complex and how accurate the scoring functions
rank the correct pose among other poses. If a ligand predicted pose in the active site was
closer than a certain threshold compared to the X-ray structure, docking is declared suc-
cessful. Usually, the threshold is set to 1.5 to ZA(Dixon, 1997; Bissantz et al., 2000). For
instance, FlexX was tested on a sample of 19 protein-ligand complexes before being tested
on a broader sample of 200 complexes (Rarey et al., 1996). Glide’s accuracy was tested
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by redocking ligands from 282 PDB complexes (Friesner et al., 2004), whereas GOLD’s
docking accuracy was tested on 100 and 305 PDB complexes (Jones et al., 1997). DOCK
has been validated on various proteins over the years (Shoichet et al., 1993; Bodian et al.,
1993; Debnath et al., 1999), while LigandFit has been evaluated with 19 protein-ligand
complexes (Venkatachalam et al., 2003). The same test set of 30 protein-ligand complexes
with experimental binding affinities was used to calibrate AutoDock (Osterberg et al.,
2002) and AutoDock Vina (Trott and Olson, 2010). The following criteria were proposed
to evaluate various aspects of docking programmes.

“Docking power” refers to the capability of a docking programme or a scoring algorithm
to distinguish the true ligand binding pose among computationally putative decoys. In an
ideal condition, the top-ranked binding pose should be designated as the native binding
pose. For each protein-ligand complex, a decoy set of ligand binding poses was built.
Then, for each set, each scoring function is used to rank all ligand binding poses. The
distance between the best-scored binding pose and the true binding pose is calculated by
computing the RMSD value using the Hungarian function (Allen and Rizzo, 2014). This
complex was designated as a successful example for the provided scoring algorithm if the
distance between the docked pose and the known native ligand is less than a predefined
threshold (e.g., usually no more than 2.0A(Plewczynski et al., 2011)). The success rate
over the whole test set is estimated as the docking power of a given scoring algorithm or
docking programme (Cheng et al., 2009; Li et al., 2014; Liu et al., 2017; Su et al., 2019)

“Ranking power” refers to the capability of a docking programme or a scoring algorithm
to accurately rank the different know ligands bound to the same protein by their binding
affinities given true binding poses of these ligands are provided. To measure ranking power,
each cluster of complexes in the test set contains three complexes generated by the same
protein with substantially varying binding affinities. The success rate of accurately ranking
the three complexes in each cluster throughout the whole test set is used to determine a
scoring function’s ranking power. Omne point was assigned to a docking programme or
scoring algorithm that correctly score the three members of a complex cluster as the best
> the medium > the lease order of binding affinities. Once this analysis was finished for
the whole test set, an overall success rate was calculated.

Ranking power does not require scrutiny in the correlation between docking scores and
experimental binding affinities like a linear correlation in scoring power, as long as the
rank orders of binding ligands are correctly retrieved. The essence of ranking power can
recompense the shortcoming of scoring functions that is the accuracy of scoring functions
are still far from perfect. However, in virtual screening using molecular docking, the priority
is to enrich the possible actives, which is adequate with ranking power.

“Scoring power” refers to the capability of a docking programme or a scoring algorithm
to compute the binding scores in a linear fashion in accordance with experimental binding
affinities, given the known protein-ligand complexes. On the contrary to ranking power,
scoring power highlights a scoring algorithm’s ability to execute across a variety of protein-
ligand complexes. It assesses a scoring function’s overall capability to estimate binding
affinity, which is perhaps the most challenging task in virtual screening works. The binding
scores of a number of complexes in the test set were computed using each scoring algorithm.
The Pearson correlation coefficient between each scoring algorithm’s predicted binding
values and the observed binding data was used to quantitatively assess its scoring power
on this test set.

“Screening power” refers to the capability of a docking programme or a scoring algorithm
to identify the true binding ligands among a cluster of arbitrary compounds to the same
target /protein. In reported works, screening power was assessed in a cross-docking design.
The test set consists of a number of clusters of complexes, whereas each cluster contains
three or five ligands bound to the same protein. Therefore, ligands bound to other proteins
are hypothesised as non-binders to that protein. The scoring algorithm’s screening power
was measured by how adequately it sorted the native ligands at the top.
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3.7 Database for Benchmark/Computational Validation

Virtual screening hits are predictions that need to be certified both in silico and in vitro or
in vivo to establish their accuracy because virtual screening workflows comprise a course
of computational procedures. Computational validation is frequently carried out by run-
ning virtual screenings on a collection of active compounds and a set of inactive or decoy
compounds altogether.

Actives (or active compounds) are substances that have been confirmed to exert a high
extent of activity against a certain target. The specific threshold at which a compound
is determined active is arbitrary, but compounds with 1C50, K;, or EC50 values in the
range from nM to mM (or nano-molar to the micro-molar range) are frequently termed
actives (Gimeno et al., 2019). The virtual screening methods are more rigorous when the
threshold is set higher. It is acknowledged that a drawback of virtual screening is that
the virtual screening methods may not represent the actual mechanism of the compound
(for example, the ligand may attach to an allosteric location of the protein rather than the
catalytic pocket) (Scior et al., 2012). Because their binding modes are different, the VS
should not be able to recognise these chemicals as actives, as this would weaken the virtual
screening outcome.

Inactives (or inactive compounds) are substances with low (or no) affinity toward a
certain target. Similar to actives, an activity cutoff below which substances are considered
inactive should be chosen (Gimeno et al., 2019). Usually, there should be an interval
between actives and inactive threshold to avoid indetermination (Mysinger et al., 2012).
Information about actives is usually obtained from a common compound database such as
PubChem (Kim et al., 2016) and ChEMBL (Gaulton et al., 2017).

Decoys are substances that share similar properties with actives but haven’t been
confirmed for affinity toward the target of interest. Since they are likely to be inactive,
they are putative decoys (Gimeno et al., 2019). Decoys are typically acquired by scanning
for substances with physical characteristics that are comparable to active compounds but
are chemically distinct. Due to the limited number of reports and the resulting paucity
of information on inactive compounds, decoys are commonly utilised instead of inactives
in benchmark processes (Kirchmair et al., 2008). Analogously to actives, the decoys are
putative inactive substances despite their action profile with the target of interest have
not been reported. Therefore, a modest percentage of them might be positively active,
which leads to reduced performance. This is also known as another intrinsic drawback of
virtual screening methods (Scior et al., 2012). Information about decoys can be accessed
from databases like DUD (Huang et al., 2006b), DUD-E (Mysinger et al., 2012) or through
generating tools like DecoyFinder (Cereto-Massagué et al., 2012), which allows users to
find sets of decoys that match the physiochemical properties of given actives.

For self-evaluation, each developing team used a different training set of proteins and
ligands for docking simulation. Although the selection was made with care, the composition
of these training libraries is skewed towards some families of proteins. To provide a means
for comparison and evaluation of the performance of the docking programmes, a number
of decoy and active libraries have been developed for structure-based virtual screening.
The composition of decoys and actives was made to cover most of the range of protein
families. Some of these libraries are used in studies to benchmark docking programmes. By
introducing a new method garnered from spatial statistics, Maximum Unbiased Validation
(MUV) was developed to offer unbiased samples in respect to both false enrichment and
similar bias, containing 18 targets with a number of 30 active ligands and 15,000 decoys for
every target (Rohrer and Baumann, 2009). Demanding Evaluation Kits for Objective in
Silico Screening (DEKOIS) introduced in 2011 (Vogel et al., 2011) and upgraded in 2013
to a newer version, DEKOIS 2.0 (Bauer et al., 2013), which contained 81 sets of actives
and decoys for 11 target classes, was designed to avoid the biases into the decoy sets, i.e.
analogue bias and artificial enrichment. The Directory of Useful Decoys (DUD), a database
with 2,950 documented ligands for 40 various targets and a ratio of one active to 36 decoys,
was created as a benchmarking collection for docking studies with the goal of reducing
bias (Huang et al., 2006b). Nonetheless, several investigations indicated that particular
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structures were over-represented in the active portion, that charge was not taken into
account when ligand sampling was done and that actual ligands might be detected in decoy
samples (Good and Oprea, Apr; Hawkins et al., Apr; Mysinger and Shoichet, 2010). To
overcome the bias in DUD, Database of Useful Decoys - Enhanced (DUD-E) was introduced
in 2012, spanning from a range of 102 targets and 22886 ligands and decoys (Mysinger
et al., 2012). The Nuclear Receptors Ligands and Structures Benchmarking DataBase
(NRLiSt BDB), which contains 9,905 active ligands interacting with 27 nuclear receptors,
was established to address the shortage of information and pharmaceutical profile in current
nuclear receptor (Lagarde et al., 2014). Despite attempts to build libraries of decoys and
actives with care, existing databases still exert biases, due to the limitation of ligand
selection, the difference between actives and decoys and the putative decoy determination
(Réau et al., 2018).

3.8 Post-docking Evaluation

The goal of virtual screening is to choose a subset of the input library, usually the best-
scored ligands. An ideal docking programme would be able to score or rank the true
active ligands over the inactives or decoys. Nonetheless, such capability of existing docking
programmes is still far from perfect.

Average Rank

The average rank of the active represents the central rankings of all compounds, making it
a more useful and less arbitrary metric of enrichment (Fernandes et al., 2004; Kairys et al.,
2006). Note that a random sample of evenly distributed actives and decoys should produce
an average rank of 50%. The meaning of average rank is that half of the actives would be
found before the threshold set at that value. Average rank can take a value of the mean
or the median rank of active ligands. However, due to its simplicity and dependence on
the number of actives and decoys, average rank is not as common as other sophisticated
metrics.

Receiver Operating Characteristic

The Receiver Operator Characteristic (ROC) curve is an evaluation metric for binary clas-
sification problems.Receiver Operating Characteristic began in psychology and radiology
and is currently used in a variety of disciplines like healthcare, acoustics, meteorology and
criminology to analyse the reliability of a particular sensor system and, as a result, to
make effective choices based on the given measures. Indeed, ROC curve analysis aids in
answering two critical questions: a) In comparison to another system, how successful is
the proposed model at recognising known active ligands and rejecting decoys? b) Where
should the cutoff be established to discriminate between ligands that should be further
investigated and those that should be rejected? (Triballeau et al., 2005)

True active
True False
Positive | True Positive (TP) | False Positive (FP)
Negative | True Negative (TN) | False Negative (FN)

Table 3.1: Confusion matrix of actives and decoys in virtual screening

Virtual creening

A confusion matrix is utilised as a tool to better understand the ROC curve, as it enables
to quickly calculate the sensitivity and the specificity based on a comparison of given
datasets (active/decoy) and subsets from virtual screening (chosen/discarded). Confusion
matrix was used in the area of drug development by Manallack et al. (Manallack et al.,
2002). The elements in the confusion matrix are: a) the number of true ligands found
within the chosen threshold is the true positive (TP), b) the number of inactive or decoys
found within the chosen threshold is the false positive (FP), ¢) the number of true inactives
or decoys found within the discarded fraction is the true negative (TN) and d) the number
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of true ligands found within the discarded fraction is the false negative (FN) (See Table
3.1). Hence, (TP+FN) is the total number of active ligands and (FP+TN) is the total
number of decoys.

Sensitivity (Se) in the area of drug development is defined as the percentage of truly
active ligands chosen from a virtual screening process: the number of true positive (TP)
ligands divided by the total number of true positives and false negatives (FN).

Nselected actives TP

Se = =
Ntotal actives TP+ FN

(3.5)

This percentage can range from 0 (when all active ligands are unavailable) to 1 (when
all active ligands are present). As a result, sensitivity provides information about active
ligands that would otherwise be neglected: false negatives. The lower this value, the higher
the sensitivity and the better the test for choosing active ligands.

Ndiscarded inactives TN
N total inactives TN+ FP

Sp = (3.6)

Specificity can range from 0 (all inactives are picked) to 1 (all decoys are rejected),
providing information on decoys that have been misclassified: false positives. The lower
this value, the higher the specificity and the better the test for removing inactive ligands.

Sensitivity and specificity will develop in opposite directions when different thresholds
are chosen from the lowest to the highest screening score provided by the virtual screening,
ranging between zero and 1. When the cutoff is set to the lowest score, all ligands are
chosen, regardless of whether they are actives or decoys, resulting in (Se = 1, Sp = 0).
When the cutoff is set higher than the highest score, all ligands are excluded, resulting in
(Se = 0, Sp = 1). As a result, optimising both sensitivity and specificity at the same time
is unachievable and a tradeoff should be made. The ROC curve enables the user to make
such a selection by offering a detailed overview of a screening capacity to distinguish across
all selection cutoffs (Zweig and Campbell, 1993).

The ROC curve plots sensitivity against specificity together, Se as a function of (1 —
Sp). In other words, at all possible cutoffs, the percentage of actives is plotted against
the observed percentage of decoys. A diagonal going from the origin to the upper right
corner represents a random classification of the ligands, whereas a virtual screening able
to recognise the true actives will have a ROC plot above the diagonal. In the case of
ideal distribution where all the actives are retrieved before the decoys, the curve goes up
vertically to the upper-left corner (Se = Sp = 1) where actives are fully distinguished
from the decoys and afterwards joins the horizontal line to the upper-right corner. As a
consequence, the stronger the virtual screening result looks like the ROC curve bending
towards the upper left corner.

The ROC curve is not as smooth in fact as it appears in the conceptual depiction, but
rather jagged and bumpy. Since the sensitivity and specificity can only take discrete values,
the confusion matrices would be loaded with integers, resulting in the jagged feature of the
ROC curve. Indeed, as the cutoff increases by one, the increase of a true positive result
in a vertical line, but the addition of a false positive result in a horizontal displacement.
When the ligand library contains more actives and decoys, the curves become less serrated.

The area under the curve (AUROCC) is a useful method of analysing the overall perfor-
mance of the tests compared to the relative locations of ROC plots. The virtual screening
is deemed to be weak if the AUROCC is close to 0.5 (random); the highest feasible AU-
ROCC is 1, which represents an ideal case. The higher the AUROCC, the better the
virtual screening method is in distinguishing between actives and decoys. An AUROCC
of 0.9 indicates that a randomly chosen active has a probability to have a higher score
than a randomly chosen decoy 9 times out of 10. However, this interpretation does not
imply that a positive active is found with a chance of 0.9 or that 90 per cent of the chosen
ligands are actives (Truchon and Bayly, 2007). According to a suggestion by Swets, values
of AUROCC between 0.50 and 0.70 indicate a rather low accuracy while AUROCC val-

ues between 0.70 and 0.90 indicate accuracy that is useful depending on the purpose and
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higher values indicate a high level of accuracy (Swets, 1988). However, it is known that
there is no standard rule to balance the errors (Neyman and Pearson, 1992). The balance
between the number of false positive and false negative is left to the subjective decision
of the investigator (Hubbard and Bayarri, 2003), depending on how large the subset to
be further tested and the available resources. That means choosing a wide threshold can
retrieve more active ligands but also more false positive chosen ligands. In fact, choosing
a point in the left-upper corner where the curve is skyrocketing would give a significant
advantage (Triballeau et al., 2005).

Enrichment Factor

Enrichment Factor (EF) simply describes how many times the actives are found in the
best-scored fraction than in the entire dataset. Depending on the chosen threshold, the
value of the Enrichment Factor may vary. For instance, the EF threshold can be chosen at
1%, 2% or 5%. Therefore, Enrichment Factor at these thresholds can be annotated EF1%,
EF2% or EF5%, respectively. The formula of Enrichment Factor is:

Activegypset

EF = TOtalsubset (37)
Actives

Total

or

TP

TP+ FP
TP+ FN

TP+ FP+TN+ FN

whereas Activegpset and Totalgpset are the number of actives and the number of
compounds at the chosen threshold, Actives and Total are the number of actives in the
entire dataset and the total number of compound in the dataset.

One disadvantage of the Enrichment Factor is that the number is dependent on the
value of actives and decoys. For instance, the EF1% of a library of 100 actives and 1,000
decoys would be different from EF1% of a library of 100 actives and 10,000 decoys with
the same distribution of actives. Thus, it describes the absolute ratio of actives found with
the tested compound library, not for prospective screening. Another disadvantage is that
it equally ranks the actives within the threshold, making it difficult to recognise that all
actives are ranked at the top of the subset and or just before the threshold (Truchon and
Bayly, 2007).

EF = (3.8)

Other Metrics for Early Recognition

It is hard to recognise the distribution of actives within the chosen set with ROC and EF
as they treat the actives evenly. More interest to identify the “early recognition” of actives
has been growing. Robust Initial Enhancement (RIE) is a metric that uses an exponential
weight that decreases as rank increases. The rationale for RIR is that it is less sensitive
to big changes than the EF metric when there is only a limited amount of actives. RIE
succeeds where ROC fails to recognise if the actives are distributed at the beginning, in
the middle or at the end of a set of sorted ligands. RIE takes into account the exponential
function of the negative value of ligand rank. Therefore, if the actives are more prone to
the beginning of the ranked list compared to the case where actives are more prone to
the end, while ROC gives equal values of area under the curves. The meaning of the RIE
metric is similar to EF in that it indicates how many times the exponential average of
the screening distribution is better than that of random distribution (Truchon and Bayly,
2007). Nonetheless, RIE also suffers a similar disadvantage like EF metric, that minimum
value and maximum value are both dependent on the total number of ligands and the
number of actives (Truchon and Bayly, 2007). RIE is also reported to be linearly related
to ROC (Truchon and Bayly, 2007).
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Boltzmann-enhanced discrimination of receiver operating characteristic metric (BEDROC)
is another metric proposed to address the "early recognition" issue by utilising a continu-
ously declining exponential weight as a function of ligand rank (Truchon and Bayly, 2007).
Fundamentally, BEDROC can be regarded as a weighted modification of the AUROCC
value, with the beginning of the ROC curve receiving more weight. As a result, BEDROC
reflects early enrichment rather than the overall performance. BEDROC is biased to report
higher values with smaller decoy sets (Jain and Nicholls, 2008). Furthermore, BEDROC
and RIE are reported to have a linear relationship (Zhao et al., 2009).

In addition, there are other newly developed metrics. Clark et al. presented a new
statistic, pROC, which based on the negative logarithmic function of false positive rates,
rather than relying on the rankings of actives (Clark and Webster-Clark, Apr). Others
metrics that can be counted are Predictiveness Curve (Empereur-mot et al., 2015) or
different transformations of EF and ROC .

Although a number of metrics have been developed to address the issue “early recog-
nition” in virtual screening, most of them suffer from the sophistication and may require
some while for wider recognition from the community. In the meantime, the most well-
documented metrics that are widely employed are Receiver Operating Characteristic and
Enrichment Factor. Therefore, in this study, these two metrics are use in addition to
average rank of active ligands.

3.9 Pitfalls of Docking

The prediction of molecular docking is primarily the estimation of binding likelihood be-
tween small molecules and macromolecules based on the knowledge of intermolecular inter-
actions. Although it has become a more common and essential part of drug design, there
are still questions about the application of molecular docking.

The first factor is the structures of the proteins. Protein structures from repositories
such as Protein Data Bank are usually obtained from experimental methods, such as X-ray
diffraction, nuclear magnetic resonance or electron microscopy. Depending on the method
and the condition of the experiment, the protein can be captured at a single conformation
or an ensemble of conformations. Therefore, such protein structures downloaded from
Protein Data Bank do not necessarily represent the true state of the proteins but rather
just a snapshot. As a consequence, docking using such protein structures does not represent
the true nature of the binding between the ligands and the proteins. The rigid receptor
is one of the most difficult obstacles to overcome in the realm of docking. Depending on
the substrate it binds to, a protein can assume a variety of distinct conformations. As a
result, docking with a rigid receptor corresponds to a single protein conformation, resulting
in false negatives in many cases when the ligand was later discovered to be active. This
occurs because a protein might be in a continual state of motion between distinct structural
states with similar energies, which is typically overlooked in docking.

Another factor is the reliability of docking programmes. Most available docking pro-
grammes have to trade off the speed over the accuracy. Depending on the methods and
scoring functions used in docking, the accuracy may vary across different docking pro-
grammes. However, such expected accuracy is still far from perfection. In fact, many
existing programmes successfully predict the binding mode between the ligand and the
target with various accuracy: DOCKG6 73.3% (Allen et al., 2015), Autodock Vina at 80%
(Trott and Olson, 2010), Gemdock at 79% (Yang and Chen, 2004; Hsu et al., 2011), ADFR
at 74% (Ravindranath et al., 2015), Ledock at 75% (Zhang and Zhao, 2016), PLANTS 72%
(Korb et al., 2012), PSOVina 63% (Ng et al., 2015), QuickVina2 63% (Alhossary et al.,
2015), Smina more than 90% (Koes et al., 2013) and VinaXB 46% (Koebel et al., 2016), in
term of binding pose prediction. However, there is still a poor correlation between docking
scores and binding free energy (Wang and Zhu, 2016). In addition, to achieve sufficient
speed, the docking programmes have to exclude many elements from the environment such
as aqueous solvent, ions or pH.

Other factors that can be taken into account are the lack of environment such as water
molecules and ions, pH condition, the isomerisation of the ligand, the prediction of the
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binding sites. All these aspects affect the final docking performance. Therefore, every step
taken with care can reduce the false positive and false negative rates.

3.10 Consensus Scores Improve Docking Performance

As discussed above, four types of scoring functions were developed to tackle the issue of
imperfect accuracy. Although the new scoring functions claimed to improve the accuracy,
it is still insufficient to use a single scoring function for virtual screening. To overcome this
problem, the idea of combining multiple docking programmes and scoring functions has
been implemented. Over previous decades, consensus scores have gained popularity, due to
their superior performance over individual docking scores (Wang and Wang, 2001; Clark
et al., 2002; Feher, 2006). Consensus scores are now becoming the norm (Perez-Nueno
et al., 2009; Park et al., 2014), reflecting their success in responding to recent epidemic
outbreaks, such as Ebola (Onawole et al., 2018), Zika (Bowen et al., 2019) and SARS-Cov-
2 (Amendola et al., 2021). The success of consensus scores is ascribed to the fact that
repeated observations are statistically expected to lead to the true value (O’Boyle et al.,
2009). A major advantage of consensus scores is the ability to reduce false positives and
false negatives in virtual screening, thereby hugely optimising the time and resource of
testing. Consensus scores have been employed in both structure-based and ligand-based
virtual screening (Oda et al., 2006; Schultes et al., 2015).

Initially conceptualised by Charifson (Charifson et al., 1999), consensus scoring uses one
scoring function to rank the poses and another scoring function to re-score the best-docked
pose. Another approach is to combine the output from multiple docking programmes and
scoring functions for a unique consensus score. Most consensus score protocols use estab-
lished statistical concepts (Ginn et al., 2000) (summation, minimum, maximum and median
of scores or ranks). These values are directly input for the so-called “rank-by-number” and
“rank-by-rank” because of their complete compatibility. The prerequisite requirement for
statistical consensus scores is that the initial scores must be homologous. For instance,
the docking scores were uniformly generated (Wang and Wang, 2001) or rescored with
the same docking engine (Stahl and Rarey, 2001; Bissantz et al., 2000). Another way to
directly combine the docking scores is to used output from docking programmes based on
the same core (for instance, Autodock Vina and Smina) (Masters et al., 2020).

One more method is to combine the output from multiple programmes or scores using
data fusion. However, most docking programmes apply various scoring functions, result-
ing in diverse ranges of docking scores. For instance, docking scores from Autodock Vina
usually range from -15 to 0, while docking scores from DOCK vary from -100 to 0. In
some cases in DOCK, some outliers obtained extremely high positive values. Therefore, it
is essential to bring such different data to a unified scale. In case the docking scores from
different docking programmes have different units and ranges, normalisations are applied
to bring these values to a unified scale. Many authors have used different normalisation
methods for such purposes across the literature. These normalisations include simple nor-
malisations: rank transform (Clark et al., 2002; Feher, 2006), minimum-maximum scaling
(Oda et al., 2006; Carta et al., 2007) and z-score scaling (Vigers and Rizzi, 2004; Jacobsson
and Karlén, 2006) prior to combination. Although the normalisation leads to scale uni-
formity, it may sometimes shift the data to another distribution that may lead to partial
information loss.

Recently, machine learning models were applied to utilise the docking output with
enhanced results (Brylinski, 2013; Fang et al., 2015; Pereira et al., 2016; Ericksen et al.,
2017). These machine learning-based consensus scores are sophisticated models and tend
to favour specific datasets.

As summarised in this chapter, with the advances in biochemistry and chemoinfor-
matics, MRSA target data and libraries of compounds that can be used for repurposing
practice are adequately available or easily obtained. With such an abundance of informa-
tion, structure-based virtual screening is an appropriate approach. Molecular docking is a
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substantial method to exploit the interactions between the compounds and MRSA targets
to explore new targets for those compounds. Although molecular docking has been widely
recognised by the scientific community and has been integrated into the drug discovery and
development process in past decades, the performance of existing docking programmes is
still far from perfect. Consensus scores using multiple docking programmes is an alternative
way to improve the ability to identify the active compounds but still make use of docking
information. Many attempts have been made to address the early enrichment of active
compounds in screened libraries via various metrics but Receiver Operating Characteristic
and Enrichment Factor are still favoured due to their long establishment.

The next chapter will discuss how the study was carried out. The target proteins were
built from S. aureus essential genes using sequence alignment and homology modelling.
The ligands including approved drugs and compounds from clinical trials that are ready
to use for repurposing and were obtained from a tailored library named Repurposing Hub.
Ten docking programmes were used to predict the binding likelihood between the ligands
and targets. A database of decoys was put in use to benchmark the ability of docking
programmes to recognise the active ligands amongst others. Traditional consensus scores
were computed to compare with the single docking programmes. After docking, a proposed
consensus score was applied to improve the performance of docking methods. Finally, this
consensus score was applied to obtain the subset of the potential candidates for repurposing.
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Chapter 4

Methodology

1 MRSA Protein Acquisition

1.1 S. aureus Essential Genes

The starting point for the task of drug repurposing for MRSA treatment is the Database
of Essential Genes (Zhang et al., 2004; Luo et al., 2014), which is a repository containing
the essential genes of organisms. These genes are vital to the existence of micro-organisms
since they are encoded for structures and functions that play important roles in the growth
and reproduction (Itaya, 1995). The collections of essential genes deposited to Database
of Essential Genes were determined by experimental methods, whereas the first version
MRSA essential gene collection, namely N315, was obtained by antisense RNA method
(Ji et al., 2001). The collection was expanded using Transposon-Mediated Differential
Hybridisation in 2009, named NCTC 8325 (Chaudhuri et al., 2009). In this work, the
revised version of S. aureus essential genes are used in the sequence alignment to search
for the corresponding protein structures from PDB.

1.2 Gene Sequence Alignment

A list of 351 S. aureus gene sequences from the Database of Essential Genes was used
to scan throughout Protein Data Bank to find the encoded proteins using the NCBI Ba-
sic Local Alignment Search Tool (BLAST) programme (Altschul et al., 1990). BLAST
is an application that can identify sequence similarities between known sequences and
sequences within a database. The ability to find sequence analogue make it possible to
identify prospective proteins from a gene sequence. The Basic Local Alignment Search
Tool (BLAST) identifies areas where sequences are locally similar. The program com-
putes the statistical significance of matches between nucleotide or protein sequences and
sequence databases. BLAST operates in three steps. Firstly, it cleaves the query sequence
into small sequences of typically 3-4 amino acids for proteins or 10-12 nucleotides for DNA
sequences. Secondly, these short sequences are used to search for perfect matches across
all the entries in the database. Thirdly, when a match is found it then tries to extend the
alignment to determine whether this match is part of a longer matching sequence. For
each new pair of letters, it evaluates whether it is a good match. If it is a good match
then the score is increased and if it is a bad match the score is reduced. The score ta-
ble for each pair of amino acids or nucleotides is precomputed and incorporated into the
BLAST algorithm. When testing on a database of actual sequences, BLAST was effective
at rapidly identifying alignments with high scores (Altschul et al., 1990). Here the lasted
stand-alone version, BLAST+ (Camacho et al., 2009), was used for sequence alignment of
S. aureus genes against protein structures from Protein Data Bank. The command line
for the alignment was:

blastp -query input -db pdb -remote -out output -entrez query “Staphylococcus au-
reus”
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whereas blastp is the built-in module to search and compare with protein structures,
-query is the option for input sequence, input is the query file containing the gene sequence,
-db is the option for the target database and pdb stands for Protein Data Bank, -remote is
the option to search for an online database, -out is the option for the outcome and output
is the file containing the results; -entrez query is the option for a specific organism and
Staphylococcus aureus is the bacterium of interest.

After the sequence alignment, there can be several possible outcomes: i) The outcome
protein has one protein with high identity and full coverage. That protein is chosen as the
matching protein of MRSA genes. ii) There is more than one matching protein. Those
structures are inspected and selected based on the resolution and availability of the co-
crystallised ligand, with favour to the availability of the ligand. iii) The sequence has no
matches in PDB. The corresponding gene is kept unattended. iv) The sequence has one or
more proteins with moderate identity and coverage. Homology modelling will be applied
to identify the structure of the protein.

1.3 Homology Modelling

When there are no structures from PDB that adequately match the S. aureus gene se-
quence, homology modelling was used to build their structures. Homology modelling is
a method for the construction of an unknown protein structure from its sequence and an
existing structure of homologous proteins. In this study, SWISS-MODEL was used for this
particular purpose (Waterhouse et al., 2018). SWISS-MODEL is a web-based server for
homology modelling of protein structures. The four major processes in creating a homol-
ogy model are i) finding protein template(s), ii) aligning the query sequence and template
structure(s), iii) model construction, and iv) model quality assessment. SwissModel will
automatically choose templates based on the most closely aligned protein sequence that
has a three-dimensional structure available for it. When the template search is finished, the
output page includes a main table showing the list of available templates ranked according
to the expected quality of the resulting models. There are multiple templates which cover
the complete sequence and share a considerable sequence identity with our target sequence.
Depending on the reference of the user, the template with best match to the query can
be choose for modelling. Models can be displayed interactively using the 3D viewer. By
default, models are coloured by model quality estimates assigned by QMEAN to highlight
regions of the model which are well- or poorly modelled. The target/template alignment
is used as input for ProMod-II to create an all-atom model for the target sequence once
templates are chosen for model creation, either via the automated or manual selection
option Guex and Peitsch (1997). If loop modeling using ProMod-II does not produce sat-
isfying results, MODELLER is used to construct an alternate model (Sali and Blundell,
1993). S. aureus gene sequences with low identity and coverage from the previous stage
were inputted to the SWISS-MODEL server to search the templates. The template with
the best coverage, identity and Global Model Quality Estimate (GMQE) score was then
selected for the modelling.

2 Benchmark using Ranking Order as Evaluating Metric

2.1 Ligand and Protein Selection

Since molecular docking methods use known molecular interactions to predict the bind-
ing affinities between ligands and proteins, the ability to recognise active compounds is
highly dependent on the protein structures utilised and the extent of similarity between
the screened ligands and native ligand from the protein-ligand complex (Broccatelli and
Brown, 2014; Pinzi et al., 2018; Jain, 2009; Verdonk et al., 2008). To favour the findings
toward MRSA treatment, this benchmark intentionally chose the targets that feature the
MRSA structural information. The structures of MRSA targets retrieved by sequence
alignment and DUD-E targets were compared using the Dali server (Holm and Rosen-
strom, 2010). Those targets that share similar structures were extracted and clustered.
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Then the DUD-E decoys and actives were cross-docked against MRSA targets that share
similar structures with their targets from DUD-E.

For each ligand set in DUD-E, after filtering with Lipinski’s rule, 999 decoys and one
active were randomly chosen. Only one active chosen as the median rank, a simple metric,
was used to evaluate the docking performance. After docking, for each target, the active
was ranked amongst the decoys and the median of all ranks of the ligands was calculated.

2.2 Ligand Preparation

Before the docking against protein targets, ligands needed to be properly prepared. The
preparation processed mostly involves three-dimensional (3D) structure generation, proto-
nation and energy minimisation. This was done using OpenBabel (O’Boyle et al., 2011), a
computational tool mainly used for chemoinformatics and interconversion between chemical
file formats. OpenBabel is a popular and open chemical toolkit to for the inter-conversion
of computational chemistry file formats as well as the processing of physiochemical proper-
ties of the molecules. Other chemical toolboxes includes RDKit (Landrum, 2010) and CDK
(Steinbeck et al., 2003; Willighagen et al., 2017), that also offer quick access to molecular
information. One advantage of OpenBabel is being written in C++ and the source code
and bindings are available to allow coding using Bash or Python. Up to date, OpenBabel
was cited in the reference of more than 3600 articles (Web of Science). OpenBabel has
been validated with the error rate in chemistry format conversion and canonicalization
algorithm decreased to less than 0.01% and 0.001%, respectively (O’Boyle et al., 2011).
Subsequently, OpenBabel was chosen for the processing of chemical properties in this study.
Conversion from string formats like SMILES to 3D formats like SDF is made possible by
coordinate creation in 3D. The 3D structure generator creates linear elements from the
ground up using geometrical rules based on atom-atom hybridization. Ring systems em-
ploy single-conformer ring templates. From largest to smallest, the templates are iterated
through in the template matching algorithm in search of matches. The process continues
if a match is found, but it won’t match any previously templated ring atoms unless there
is a single overlap (the two ring systems of a spiro group) or an overlap involving precisely
two nearby atoms (two fused ring systems). The stereochemistry (cis/trans and tetrahe-
dral) is adjusted to match the input structure after an initial structure has been produced
(O’Boyle et al., 2011).

Decoys and actives were already available in MOL2 and SDF formats with hydrogen
atoms added. Therefore, only chemical format conversion was needed. Depending on
the requirement of each docking programme, an appropriate format was obtained using
the OpenBabel programme. ADFR, PSOVina, QuickVina2, Smina, Autodock Vina and
VinaXB require the input ligands in PDBQT format. DOCK, Ledock and PLANTS use
MOL2 as the default format of the ligands. SD format is required by rDock while Gemdock
prefers MOL extension.

2.3 Protein Preparation

The preparation of MRSA protein targets mainly consisted of residue correction, proto-
nation, binding site prediction and grid generation. First, the protein structures were
inspected for any wrong or collided residues. Next, the protonation was accomplished us-
ing a built-in DockPrep module in Chimera (Pettersen et al., 2004). The prepped structure
was saved in MOL2 or PDB format. Protein structure in MOL2 format was required for
DOCK and rDock and PDB was for Gemdock and Ledock. PLANTS also needed MOL2
but the preparation was conducted using its own companion SPORES (ten Brink and
Exner, 2009, 2010). Ledock also used its preparation tool lepro (Zhang and Zhao, 2016)
to automatically process the protein and generate an input file for docking. Conversion
to PDBQT for ADFR, PSOVina, QuickVina2, Smina, Autodock Vina and VinaXB was
carried out in AutodockTool4 (Morris et al., 2009). For ADFR, it used its own Autosite
(Ravindranath and Sanner, 2016) module to predict the binding site.

For other programmes, binding site prediction mainly relied on the FTSite server (Ngan

N.P.Do, PhD Thesis, Aston University 2021 51



Antimicrobial Drug Repurposing through Molecular Modelling

et al., 2012). The output included three predicted clusters with an order from high to low
measure. These predicted clusters were visually compared with the co-crystallised complex.
Usually, the predicted cluster (or clusters) that coincided with the ligand from the complex
(if present) was assigned as a binding site with confidence. In case more than one cluster
coincided with the ligand, all of them were selected.

Autodock and other derivatives required an input configuration file containing the in-
formation about the receptor, the ligands and the binding site instead of putting all details
in the command line. The binding site parameters were generated using AutodockTools4
(Morris et al., 2009). The chosen clusters from FTSite output were used to define a box
with a minimum site that contains all the residues in the clusters. The grid box format is
with one centre (X, y, x coordinates) and sizes. Meanwhile, Ledock also accepted the same
box but is defined with coordinates of 8 corners. PLANTS required a sphere with the same
centre and the radius is calculated as half of the main diagonal. This was to ensure the
least dissimilarity in the binding pocket between each docking programme.

2.4 Docking of Ligands and Proteins

Ten docking programmes were chosen in view of their ease of use and prominence: ADFR
(Ravindranath et al., 2015), UCSF DOCK (Allen et al., 2015), Gemdock (Yang and Chen,
2004; Hsu et al., 2011), Ledock (Zhang and Zhao, 2016), PLANTS (Korb et al., 2012),
PSOVina (Ng et al., 2015), QuickVina2 (Alhossary et al., 2015), Smina (Koes et al., 2013),
Autodock Vina (Trott and Olson, 2010) and VinaXB (Koebel et al., 2016). All protein
structures chosen above were downloaded from the Protein Data Bank (PDB) (Berman
et al., 2000, 2002). Prior to docking, protein structures were stripped off small molecules,
ion and water molecules, followed by protonation. Decoys and ligands were prepared in a
three-dimensional structure with an appropriate format.

Binding site prediction was carried out using FTSite server (Ngan et al., 2012) for
ADRF, DOCK, Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, Smina, Autodock
Vina and VinaXB while rDock used its own package (Ruiz-Carmona et al., 2014). Finally,
999 decoys and one active ligand were docked against each chosen MRSA target. Each
docking programme generated various conformation of ligands within the binding pocket
and used its underlying scoring function to estimate the likelihood of binding for each
ligand conformation. Only the best-scored pose was retained for each decoy and ligand.
All protein structures used here were downloaded from the Protein Data Bank (PDB)
(Berman et al., 2000, 2003). All decoys and actives were docked against 29 targets using
10 docking programmes. These programmes have been benchmarked in other works but
inconsistent due to various dataset. Therefore in this study, benchmark of these docking
programmes was carried but oriented to MRSA targets. The parameters were set in line
with those used in published works to prevent the abundance of docked poses and excess
amount of running time.

2.4.1 ADFR

ADFR (Ravindranath et al., 2015) used its package Autosite (Ravindranath and Sanner,
2016) to generate a TRG file containing the geometry information. The docking procedure
also required target and ligand in PDBQT format. PDBQT ligands were docked against the
PDBQT receptor. In ADFR, the ADFR score uses an energy function which is a weighted
sum of terms representing van der Waals, hydrogen bond, electrostatic, and desolvation
contributions, computed between pairs of atoms.
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ADFR uses this energy formula to estimate the affinity between atoms from three
groups: Ligand (L), Rigid Receptor (RR) and Flexible Receptor (FR). The final score is
the summation of these interaction terms:

Saprr =FEr-1 +Er—rr+ Er—rr+ Err-rr+ Err—rr (4.2)

Only the first two terms, ligand intramolecular and ligand-rigid receptor intermolecular
interactions—are taken into account when a rigid receptor is involved. When receptor
atoms are appointed flexible, the additional terms (ligand-flexible receptor inter-molecular,
flexible-flexible receptor inter-molecular, and flexible-rigid receptor inter-molecular interac-
tions) are automatically incorporated into the scoring functions. Each term in the scoring
function can have a weight assigned to it.

2.4.2 DOCK

UCSF DOCK (Allen et al., 2015) uses standard protein preparation starting from two
structures, one of which encapsulates a protein appended with hydrogens and charges, using
the Dock Prep module in software Chimera (Pettersen et al., 2004) and saved in MOL2
format for docking performance. The other structure represented a hydrogen-stripped
protein prepared for the generation of a molecular surface using module DMS in Chimera.
The molecular surface of the protein was then generated by rolling a ball of the size of
a water molecule over the Van der Waals surface of the protein. Next, collections of
overlapping spheres at surface invaginations were produced using SPHGEN and only the
largest sphere associated with each surface atom is kept. The sphere collection was then
clustered using a linkage algorithm. All spheres within 10Aof each atom within the co-
crystallised ligand with the protein were retained for grid generation. Finally, the module
GRID was used to prepare Van der Waal and electrostatic energy grids, which were used
to speed up docking calculations. MOL2 ligands were docked against receptors using rigid
docking. The primary energy scoring component of DOCK is a type of force field scoring,
consisting of van der Waals and electrostatic components similar to the terms in ADFR:

b lig rec @ % 332%% (43
_ZZ re. b4+ D 3)

i=1 j=1 i,J Tij

where each term is a double sum over ligand atoms i and receptor atoms j. In latest
version, DOCK was added with new scores, including Hawkins score, Poisson—Boltzmann
with solvent-accessible surface area solvation score and Amber score (Goodford, 1985; Meng
et al., 1992; Lang et al., 2009; Allen et al., 2015).

2.4.3 Gemdock

Gemdock (Yang and Chen, 2004; Hsu et al., 2011) used target protein structures down-
loaded from the PDB removing all water molecules and irrelevant atoms. The position
and size of the binding site were determined by taking into account all protein atoms with
a distance less than 8Afrom each atom of ligand. The ligand was then removed. Dock-
ing of ligands and protein was carried out with module mod _ga which defines the core of
Gemdock. Gemdock initialised the orientation and conformations of ligands to generate an
initial population size of 200. For each ligand screened, Gemdock stopped when the gen-
eration number reaches 70. The score and pose for each ligand were then saved. Gemdock
used an empirical scoring function given as:

Etot = Einter + Eintra + Epenal (44)

where Fipter and Ejpirq are the intermolecular and intramolecular energy, respectively,
and Epepq is a large penalty number if the ligand is outside of the search range. Ejepq is
set to the value of 10,000.
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The intermolecular energy is defined as:

lig pro

Einter = 3 [F (rljj> + 332.0?@} (4.5)

i=1 j=1

where r;; is the distance between the atoms i and j, ¢; and ¢; are the formal charges, and
332.0 is a converting factor from the electrostatic energy into kilocalories per mole. The
lig and pro are the numbers of the heavy atoms in the ligand and receptor, respectively.
F <r§” > is a simple atomic pairwise potential function. (7“5” ) is the distance between the
atoms i and j with the interaction B;; made by the pairwise heavy atoms between ligands
and proteins where B;; is either a hydrogen or a steric bond.

The intramolecular energy of a ligand is:

lig lig dihed
Bi;
Eintra=3 3 F (rij ) + 3" AL — cos(mby — o)) (4.6)
i=1 j=it2 k=1

where F <r5“ ) is atomic pairwise potential function but the value is 1000 to reject un-

realistic conformations when <r5“ > is less than 2.0 Aand dihed is the number of rotatable

bonds (Yang and Chen, 2004; Hsu et al., 2011).

2.4.4 Ledock

Ledock (Zhang and Zhao, 2016) used protonated conformations with hydrogens stripped
from proteins using lepro. Ledock requires a configuration file including a binding cavity
box. Binding pockets were detected using the FTSite server (Ngan et al., 2012). The
binding cavity box was defined by a lower and upper coordinate in the x-axis, y-axis and
z-axis. Ligands in MOL2 format were docked into protein with default parameters and
docked poses were returned in DOK format.

AGyina = a 3 (B + BMO(Eey — B/ — B+ 8(r) > > B9 4 qpgen (47)

lig
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i€lig i€lig jEpro

The first term is the summation of van der Waal interaction E,q4, and hydrogen bonding
energy Epp, where theta is the Heaviside step function and FE, is the limit energy to enable
soft docking. The second term is the electrostatic interaction energy with a distance
function

B(r)

accounting for both electrostatic screening and desolvation effects, where q is the partial
atomic charge and r is the distance between pairwise atoms. The third term is the ligand
conformational strain upon binding, and is made up by the intramolecular clash and/or
torsion strain. Coefficients «, 8 and v were empirically identified (Zhang and Zhao, 2016).

2.4.5 PLANTS

To confirm compatibility with PLANTS (Korb et al., 2012), protein targets and the ligands
were protonated with SPORES (ten Brink and Exner, 2009, 2010), mode = complete. The
binding site sphere was defined using the same coordinates from FTSite (Ngan et al., 2012),
with a little modification. PLANTS required a sphere defined by a centre and radius. The
centre of the binding site sphere was the same as the centre of the grid box from FTSite and
the radius was calculated as half of the internal diagonal. The virtual screening of PLANTS
was done with mode = screen. Two empirical scoring functions are offered in PLANTS:
the CHEMPLP scoring function and a modified piecewise linear potential PLP version.
The PLP scoring function, fprp, used in PLANTS is modelled after those described in
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Gehlhaar et al. (1995) and Verkhivker (2004) using just distance-based potentials. It has
the following structure:

fPLP = fplp + ftors—lig + fclash—lig + 0~3fscore—p7’ot —20.0 (48)

In the first component, called f,,, steric interactions between the protein and the ligand
are primarily modeled. Metal ions in the protein binding site are taken into account, as
well as the occlusion of polar atoms by nonpolar ones via distance-based potentials. The
parameter r represents the Euclidean separation between a ligand and a protein atom, and
the resultant potential value is PLP(r). Depending on the type of protein and ligand atom,
parameters A to I define the form of the potential. A simple clash term ( feiqsn—iig), Which
prevents the atoms of the ligand from getting too close together, plus a torsional potential
make up the intramolecular ligand scoring function (fiors—iig) (Korb et al., 2007). The
scoring function CHEMPLP, abbreviated as fogrymprp, has the functional form:

fCHEMPLP = fplp + fchem—hb + ftors—lig + fclash—lig + O'stcore—prot —20.0 (49)

The PLP scoring function mentioned above is used in the first part (fu;) of the
intermolecular score, despite utilizing different parameter settings. In the second part
(fehem—nb), the hydrogen bonding and metal-acceptor interactions between the protein
and the ligand are taken into account. The protein and intramolecular ligand terms are
the same as those that were mentioned in the PLP case (Korb et al., 2007). Finally, a
penalty term is introduced to both PLP and CHEMPLP scoring functions if the ligand
falls outside the predetermined binding site of the protein (Korb et al., 2007).

2.4.6 Autodock Vina

For Autodock Vina (Trott and Olson, 2010) and other derivatives (PSOVina (Ng et al.,
2015), QuickVina2 (Alhossary et al., 2015), Smina (Koes et al., 2013), VinaXB (Koebel
et al., 2016)) both proteins and ligands were prepared in PDBQT format. The docking was
carried out with parameters from the configuration file. The maximum iteration of running
with the option exhaustiveness was set to 20. The output files included a PQDBQT file
which contained the same number of docked poses as in the option ezhaustiveness and a
log file which contained all of the binding affinities and RMSD scores. The first pose was
regarded as the best-docked pose in the Autodock Vina output log file and had the RMSD
value of 0A. The RMSDs of the rest of the poses were calculated from this pose. The sum
of distance-dependent atom pair interactions is used to predicte the binding energy.

E=>epair(d) (4.10)

Here d is the surface distance calculated of the pairwise atoms. Every pair of atom
interacts through a steric interaction. Depending on the type of the atoms, additional
hydrophobic and non-directional H-bonding interactions could be added:

wy * Gaussy(d)+
wy * Gausse(d)+
epair = { w3 * Repulsion(d)+ (4.11)
wy * Hydrophobic(d)+
ws * HBond(d)

whereas wy, wa, ws, wy, ws are predefined weights for each term (Trott and Olson,
2010).

2.4.7 PSOVina

To address the conformational search problem in docking, PSOVina merged the parti-
cle swarm optimization (PSO) algorithm with the effective Broyden-Fletcher-Goldfarb-
Shannon (BFGS) local search approach used in AutoDock Vina. The position, orientation,
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and torsional angle of each rotatable bond collectively produce a solution vector, which
is a potential ligand conformation, in the flexible ligand approach. The current search
challenge is to identify the solution vector that produces the lowest Vina scoring function
score (Ng et al., 2015).

2.4.8 QuickVina2

Autodock Vina uses the BFGS method and the Markov chain of the modified Monte
Carlo algorithm with restart, respectively, to explore the molecular docking search space.
The element of optimization that requires the most time is local search. The first-order-
necessary-condition heuristics in QVina2 limit the use of local search to docked conforma-
tion candidates that are considered important. This is made possible by maintaining a
circular database of 10N last-assessed docked conformations, where N is the total number
of design variables. As many as 2N nearest (in terms of Euclidean distance) neighbors for
each newly randomized candidate of docked conformation are obtained from the database,
and then a significance test is run to assess whether a local search from docked conformation
is required. (Alhossary et al., 2015)

2.4.9 Smina

In addition to the Gaussian, repulsion, hydrogen bonding, and hydrophobic terms that
make up the Autodock Vina scoring function, an electrostatic term, an AutoDock4 desol-
vation term (Morris et al., 2009), a non-hydrophobic contact term, and a Lennard-Jones
4-8 van der Waals term are added to the scoring function. Only heavy atom interactions
between the ligand and protein atoms are considered in docking (Koes et al., 2013).

2.4.10 VinaXB

VinaXB uses an halogen bond scoring function based on Autodock Vina scoring function.
An empirical scoring function for halogen bonding is presented along with its implementa-
tion in AutoDock Vina. The halogen bonding term is defined based on the overlap of van
der Waals radii of interacting atoms. Due to the anisotropic charge on halogen, an angle
term accounts for the varying positive charge on the atom. The XBSF scoring function
(E) is defined using these three terms: weight, angle factor, and distance factor as follows:

E =W6D (4.12)

where W = weight, § = angle factor, D = distance factor. (Koebel et al., 2016)

2.5 Traditional Consensus Scores

To compare with individual docking programmes and other consensus scores, the most
common methods of normalisation were applied to bring docking scores to their united
representations before combination. The three most common normalisation procedures
were employed:

i) Rank normalisation - Ranks represent docking scores for each target assigned against
ascending ranks. This implies that ligands with more negative scores rank higher on this
scale. Each docking score in one ligand set was replaced by its position (rank) in the
ordered array counted from the smallest value (most negative).

ii) Minimum-maximum normalisation (henceforth referred to as min-max normalisa-
tion), also known as min-max scaling or [0-1] scaling, is a simple method of transforming
the entire range of values to the range of [0, 1. The normalised docking scores were
computed by:

gt min(x) (4.13)

maz(z) — min(z)
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where x’ is the normalised docking score, x is a primary docking score, min(x) and
max(x) is minimum and maximum docking score from the same ligand set for each target,
respectively.

iii) z-score normalisation (or standardisation) is a method to transform data to a dis-
tribution with a mean of zero and a standard deviation of 1. The meaning of a z-score
gives an idea of how far from the centre of the data. The z-score of each docking score was
calculated by:

o = (4.14)

where x’ is the normalised docking score, x is a primary docking score, p is the mean of
the docking score set for each target and o is the standard deviation of the docking score
set.

A drawback of these normalisation methods is that they shift the relative distribution
of scores towards each other. This may cause a loss of information. For example, in a set
of ligands [A, B, C] with docking scores of [-8 -4, -6], rank normalisation will return a list
of ranks [1, 3, 2]. This normalisation method gives a rough idea of the relative position of
a ligand of interest in the entire list. However, the above list will get the same list of ranks
with a set of ligands [a, b, b] with docking scores of |-10, -4, -6]. Hence, the difference in
the absolute value is lost after rank normalisation.

Traditional consensus score refers to those scores using statistical concepts such as
minimum, mean, maximum to combine the docking scores from multiple programmes or
scoring functions. These consensus scores have been used in numerous virtual screening
studies. In this study, 8 consensus scores were used to compare the joint performance of
docking programmes compared to the individual programmes. The scores Mean (MEAN),
Median (MED), Minimum (MIN), Maximum (MAX) (Ericksen et al., 2017), Deprecated
Sum Rank (DSR) (Willett, 2013) and Euclidean Distance (EUC) (Feher, 2006) were most
common amongst publications. Cubic Mean score (CBM) was added in line with Euclidean
Distance score. A newly developed score Exponential Consensus Rank (ECR) (Palacio-
Rodriguez et al., 2019) was also exploited. These consensus score lines across ten sets of
normalised docking scores (5;) were calculated as follows:

MFEAN = mean{5S1,S2,S3,54,S5,S6, 57,58, 59, S10} (4.15a)
MED = median{Si,Ss,Ss,S4, S5, S¢, 57,58, 59, S10} (4.15b)
MIN = minimum{Sl,52,5'3,54,5’5,56,57,58,59,5'10} (4.15C)
MAX = maximum{Sl,SQ,Sg,S4,S5,56,57,5875'9,510} (4.15d)

EUC = [Zsﬂ] (4.15¢)
=1

1/3

10
CBM = [ZSS] (4.15f)
=1
10
ECR = ) exp(S) (4.15g)
i=1
B >SS

Here the traditional consensus scores were calculated based on normalised docking
scores across 10 docking programmes for each ligand:target pair. The MEAN, MEDIAN,
MIN and MAX scores take the mean, median, minimum and maximum values of such
normalised docking scores, respectively. The Euclidean Distance and Cubic Mean scores
take the root mean square and cubic mean of the scores accordingly. The Exponential
Consensus Rank takes the rank of the docking scores or in another way, rank-normalised
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scores, assuming that each docking score is scored with the best pose of each ligand.
Similarly, the Deprecated Sum Rank calculates the sum value of the rank of the docking
scores, after discarding the worst rank.

Finally, the active ligands were ranked amongst each ligand set and the median rank
was calculated for each consensus score.

2.6 Novel Consensus Scores

Molecular docking is a procedure to generate different conformation of poses of ligands for
predicting the intermolecular interactions based on varying sets of physicochemical proper-
ties, e.g. hydrogen bonding, hydrophobicity, hydrophilicity and a multitude of others. The
consensus scoring approach takes into account these interactions to design an overall score
that depicts the ensemble representation of the 3D molecule rather than its pose specific
description. To avoid information loss while using normalisation methods, in this work, the
novel consensus algorithms statistically combined raw information from all docking plat-
forms and then outlined four independent optimised functional ensemble representations
of the real molecule in the real solvent:

10
Sc = Z mei" (4.16&)
i=1
10
Sc = in’j abs[Si"] (4.16b)
i=1
10
Sc = Zmi’j (Sz — §Z>n (4.16C)
i=1
10
Sc = Z T 4 abs[(Si — Sz)n] (4.16d)
i=1

Here S, is the combined score, S; is the docking score of ligands for programmes i =
1, 2,... 10, z;; are coefficients of the docking programmes i (ADFR, DOCK, Gemdock,
Ledock, PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina and VinaXB) that are
the weight factors of those docking outcomes in the combinatorics, in the j** iteration, S is
the mean of the score set from the programme i, n represents the combinatorial order real
values only (n = 1 implies linear combination). Equations 4.16a-4.16d were iterated over
a total of approximate (299) ensembles involving 10 docking programmes, each weighing
between 0 and 1, incremented in steps of 0.05 each. The rank of active ligand before and
after combining was then compared to evaluate the improvement produced by the novel
consensus algorithm. The pseudo-code for these models provided in Appendix 6.

In this benchmark, primary docking scores from diverse docking platforms were di-
rectly combined representing the entire ensemble. For comparison purposes, various nor-
malisation methods were also used to bring the diverse docking output to a unified scale
for traditional consensus scores. Although consensus scores were widely used in virtual
screening, it is not clear how many programmes should be inputted to achieve the most
efficient consensus outcome. One computational experiment was carried out by O’Boyle
by generating putative scores and suggested at least 4 programmes should be used for
consensus scores (O’Boyle et al., 2009). In this work, the effect of the number of docking
programmes over the novel consensus models was also exploited.

3 Benchmark using ROC and EF as Evaluating Metrics

After running docking with ADFR, the running time for docking was reported particularly
prolonged compared to other docking programmes. For that reason, ADFR was substituted
with rDock in this benchmark.
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3.1 Ligand and Protein Selection

In order to benchmark docking programmes for MRSA targets, the same subset of MRSA
proteins and ligands from the Database of Useful Decoys - Enhanced (DUD-E) were selected
like in the previous benchmark (Section 2.1. However, in this section, the metrics Receiver
Operating Characteristics (ROC) and Enrichment Factor (EF) were used instead of median
rank. The combinations of possible targets and the corresponding set of decoys and actives
resembled the combinations in the previous benchmark. A set of 1000 decoys and 40 active
ligands were randomly chosen for each target.

3.2 Ligand and Protein Preparation

The ligands and targets were prepared similarly as in the previous benchmark (Section
2.2 and 2.3. The ligands were undertaken conversion to the three-dimensional structure
along with protonation and energy minimisation using OpenBabel. Meanwhile, the target
structures were prepped with protonation, residue corrections and appropriate chemical
format conversions.

3.3 Docking of Ligands and Proteins

Ten docking programmes were chosen in view of their ease of use and prominence: UCSF
DOCK (Allen et al., 2015), Gemdock (Yang and Chen, 2004; Hsu et al., 2011), Ledock
(Zhang and Zhao, 2016), PLANTS (Korb et al., 2012), PSOVina (Ng et al., 2015), QuickV-
ina2 (Alhossary et al., 2015), rDock (Ruiz-Carmona et al., 2014), Smina (Koes et al., 2013),
Autodock Vina (Trott and Olson, 2010) and VinaXB (Koebel et al., 2016). As mentioned
above, ADFR was substituted with rDock, due to the lengthened running time.

All MRSA protein structures chosen were downloaded from the Protein Data Bank
(PDB) (Berman et al., 2000, 2002). After the preparation of ligands and proteins, the lig-
ands were docked into protein at the binding site. Docking of 9 other docking programmes
was carried out similar to docking in the previous benchmark (Section 2.4).

rDock

For rDock (Ruiz-Carmona et al., 2014), the search space was automatically created with
the following conditions, using the crystal structure ligand coordinates as a reference:
small sphere = 1.0, max cavities = 1; radius = 6.0; small sphere = 1.0; max cavities =
1; radius = 6.0; small sphere = 1.0; small sphere = 1.0 To allow some motion for target
H-bond donors and acceptors, rDock was run with receptor flex = 3.0. rDock returned
SCORE.TOTAL and SCORE.INTER for each pose. Although these scores are highly as-
sociated, SCORE.INTER performed somewhat better on average (Ericksen et al., 2017),
hence it was utilised for all evaluations. In this project, the number of the maximum run
was set to 100 which is the recommended setting for exhaustive docking. Docking files
consisted of an SD file containing docked poses. The intermolecular (Sipter), ligand in-
tramolecular (Sjpirq), site intramolecular (Sge), and external constraint terms (Syestraint)
are weighted sums that make up the rDock master scoring function (Sitq;). The ma-
jor term of importance is sinter, which stands for the protein-ligand interaction score (or
RNA-ligand interaction score). The ligand conformation’s relative energy is represented
by Sintre. Similar to S, this term denotes the relative energy of the active site’s flexi-
ble regions. Srestraint 1S a set of non-physical restraint functions that can be used to the
docking calculation to influence it in a number of beneficial ways (Ruiz-Carmona et al.,
2014).

Stotal = Sinter + Sintra + Ssite + Srestraint (417)

3.4 Traditional Consensus Scores

In addition to rank normalisation, min-max normalisation and z-score normalisation, quan-
tile normalisation was added to provide more diversity. Quantile normalisation is a statis-
tical technique for making two datasets statistically equal. To quantile normalise two or
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more datasets, first, they are sorted, then the average (often, the arithmetic mean) of the
datasets is calculated. Next, the greatest value in all is turned into the mean of the highest
values, the second-highest value is turned into the mean of the second highest values, and
so forth. Quantile normalisation was preferred over the more popular z-score and min-max
normalisation, because modified score distributions reach a common shape, ensuring equal
weights among programme scores, hence docking score outliers were likewise unaffected
(Ericksen et al., 2017). This makes up to 4 normalisation schemes to bring docking scores
to a unified distribution.

Eight traditional consensus scores were used (Mean (MEAN), Median (MED), Mini-
mum (MIN), Maximum (MAX), Euclidean Distance (EUC), Cubic Mean (CBM) (Feher,
2006), Exponential Consensus Rank (ECR) (Palacio-Rodriguez et al., 2019) and Depre-
cated Sum Rank (DSR) (Willett, 2013)) across ten sets of normalised docking scores,
similar to previous benchmark (Section 2.5).

3.5 Novel Consensus Scores

In addition to Equations 4.16a-4.16d in the previous benchmark, in this section, a new
descriptor is additionally explored to examine the ability to discriminate between active
ligands and decoys. Standard deviation is used in two models, along with previous models
without descriptor and with mean.

10
Sc = in’j (Sz — Sbl)n (4.18&)
=1
10
Sc = Z xi,j abs[(Si — sz)n] (4.18b)
=1

Here S, is the combined score, S; is the docking score of ligands for programmes i =
1, 2,... 10, z;; are coefficients of the docking programmes i (DOCK, Gemdock, Ledock,
PLANTS, PSOVina, QuickVina2, rDock, Smina, Autodock Vina and VinaXB) that are the
weight factors of those docking outcomes in the combinatorics, in the j* iteration, SD; is
the standard deviation of the score set from the programme i, n represents the combinatorial
order real values only (n = 1 implies linear combination). Equations 4.18a-4.18b were
iterated over a total of approximate (299) ensembles involving 10 docking programmes,
each weighing between 0 and 1, incremented in steps of 0.05 each. AUROCC and EF05
of each ligand set (containing decoys and actives) before and after combining were then
compared to evaluate the improvement produced by the proposed consensus algorithm.
The pseudo-code for these models provided in Appendix 6.

3.6 Consensus Score Evaluation

For post-docking analysis, the docking scores are sorted from the best to the worst in
terms of favor to binding affinity. In most of the cases, ligands with best docked scores
are usually selected up for further investigation. It is expected that the active ligands or
the true drugs are found within the list of top scores. If the docking performance is good
enough, a large proportion of active ligands would be found with a small fraction of total
docked ligands.

In this benchmark, two typical metrics were used to highlight the improvement. The
first one is Receiving Operating Characteristics (ROC), a well-established metric to mea-
sure the discrimination between two populations. A Receiver Operating Characteristic
curve is a graphical representation of the analytical performance of a binary classifier
methodology at various classification cutoffs whereas the area under the ROC curve (AU-
ROCC) represents the extent or measure of discrimination. Although AUROCC is a global
measure of overall performance and it is independent of the number of actives and inactives,
it does not emphasise early recognition, which is a concern in virtual screening practice.
Therefore, Enrichment Factor (EF), a measure to estimate how good one subset shifted
toward one extremum of the entire dataset is additionally employed. EF is measured by

N.P.Do, PhD Thesis, Aston University 2021 60



Antimicrobial Drug Repurposing through Molecular Modelling

the ratio of positively predicted actives in the chosen percentage of best-ranked ligands,
divided by the ratio of active equally spread among datasets.

There is no standard for how large is the subset of best scored ligands. It is subjected
to the experience of the performer and the trade-off between the number of ligand retrieved
and the cost to test the subset. When the threshold is bigger (for example 10%), more
active ligands are retrieved but the time and cost would increase. If the threshold is too
small (for example 0.1%) very few active ligands are found within the top scored ligands,
hence insufficient. Usually a threshold is set for a subset depending on how the researchers
are willing to sacrifice the cost over the ratio of active ligands retrieved. It is advised to
choose a threshold of 0.5%, 1%, 2% or 5% of the entire ensemble (Jain and Nicholls, 2008).
In this study, the cut-off was was chosen at 0.5% without sacrifice the number of active
ligands. The AUCROC and EF at the threshold of 0.5% (abbreviated as EF05), were
calculated, resulting in approximate 30 chosen ligands for target.

AUROCC and EF05 were computed for each ligand set across all targets. The mean
values of AUROCC and EF05 were calculated to represent each docking programme and
consensus scores, including traditional and novel consensus scores. Here the mean values
were calculated instead of median values since for EF05, in some consensus scores, a large
number of ligand sets return an EF05 value of zero, resulting in a median of zero too.

4 Docking of Repurposable Ligands to MRSA Targets

4.1 Ligand Selection

After benchmarking with MRSA targets and a compound library containing decoys and
actives from DUD-E, the exact procedure was applied to the prospective set of ligands and
the full range of MRSA proteins.

The ligands were selected based on the library from Repurposing Hub, a library specifi-
cally developed for drug repurposing. Repurposing Hub is a repository containing approved
drugs and clinical trial drugs that can be exploited for repurposing intention. Initially
launched in 2017, Repurposing Hub contained 5691 compounds and this number has in-
creased to 6798 compounds (16 September 2021, https://clue.io/repurposing) (Corsello
et al., 2017). Recently, Stokes et al. discovered a compound, halicin, which is a potential
broad-spectrum antibiotic from Repurposing Hub (Stokes et al., 2020).

In order to cut down unnecessary time by discarding the compounds unlikely to be
drugs, drug-like properties are usually applied to increase the successful rate. There are a
number of rules attempted to generalise the drug likeness, such as Lipinski’s rule (Lipinski
et al., 1997), Viber rule (Veber et al., 2002), Waring rule (Waring, 2009) or Golden Triangle
rule (Johnson et al., 2009). These rules generally cover physiochemical properties which
are essential for a drug such as absorption, permeability or distribution. Lipinski’s rule is
the most commonly used rule for an oral drug. It is a rule in which an oral drug has to meet
at least 3 out of 4 following criteria: the number of hydrogen bond donors is no more than
5 (the total number of nitrogen—hydrogen and oxygen-hydrogen bonds), the number of
hydrogen bond acceptors is no more than 10 (all nitrogen or oxygen atoms), the molecular
mass is less than 500 daltons and the octanol-water partition coefficient (log P) is no more
than 5. Additionally, a threshold of 10 rotatable bonds was set for the compounds. After
filtering, 5092 compounds remained.

Next, the same procedure is applied to generate a three-dimensional structure from
the SMILE format. First, the SMILE string was used by the OBBuilder to create a
3D structure using rules and fragment templates. Then, 250 steps of a steepest descent
geometry optimisation with the MMFF94 forcefield were carried out. Next, 200 iterations
of a Weighted Rotor conformational search (optimising each conformer with 25 steps of
the steepest descent) were performed. Finally, 250 steps of conjugate gradient geometry
optimisation were implemented. Depending on the input requirement, the formats of these
ligands were converted to suit each docking programme.
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4.2 Protein Selection

MRSA is a malignant pathogen and is named in WHQ’s priority list for medication. In
order to reduce the cost and time of the drug discovery process for MRSA, in this work, the
drug repurposing approach with the help of structure-based virtual screening is exploited.
The MRSA targets are obtained based on the list of MRSA essential genes. Essential genes
are those that are essential for cellular survival. These genes make up the bare minimum
of a live cell’s gene set. As a result, the functions encoded by this gene set are critical
and could even be called a basis of life (Itaya, 1995). Critical gene products of microbial
cells are attractive novel targets for antibacterial medications because essential cellular
functions are the targets for most antibiotics. Therefore, in this work, essential genes are
the source for finding MRSA antibiotics.

The Database of Essential Genes is a repository containing an indispensable set of
genes for a wide range of microorganisms. It was initially launched in 2004 and frequently
updated, it contains 53,885 essential genes and 786 essential non-coding sequences from
85 species, including bacteria, archaea and eukaryotes (Luo et al., 2021). Specifically, for
MRSA, the first version included 302 essential genes in 2001 (Ji et al., 2001; Forsyth et al.,
2002) and was updated to 351 genes in 2009 (Chaudhuri et al., 2009). Sequence alignment
was carried out for MRSA essential genes against the Protein Data Bank using BLAST
(Camacho et al., 2009) to find the matching proteins. Those hits with high identity and
coverage were directly processed with docking. The sequences with no hits were discarded
and those with moderate identity and coverage were input for SWISS-MODEL (Waterhouse
et al., 2018) for the prediction of the protein structures.

4.3 Docking of Repurposable Ligands Against MRSA Hits

The docking of ligands from Repurposing Hub against MRSA targets was carried out in the
same fashion as in the benchmark of MRSA targets. Prior to docking, overlapped residues
(if available) were also corrected and the protein structures were stripped off the water,
ion and trivial molecules, followed by protonation and the binding site prediction (See
Section 2.3). The ligands were processed through three-dimensional structure generation,
protonation and energy minimisation (See Section 2.2). Ten docking programmes were
chosen in view of their ease of use and prominence: UCSF DOCK, Gemdock, Ledock,
PLANTS, PSOVina, QuickVina2, rDock, Smina, Autodock Vina and VinaXB.

Finally, the docking scores were ready to be processed with an appropriate consensus
score to choose potential ligands for repurposing. The best setting of the novel consensus
score was applied to raw docking scores to obtain one single combined score. A cutoff is
chosen at 0.5% of the best-ranked compounds to subset a list of potential activities against
MRSA targets.
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Chapter 5

Results and Discussions

1 Ligand and Protein Selection

1.1 Sequence Alignment of MRSA Essential Genes

The library of MRSA proteins was built with the starting point of the essential genes from
S. aureus, obtained from the Database of Essential Genes using BLAST+, a standalone
version of BLAST. For each sequence, BLAST+ returned either a list of “hits” (proteins)
with significant similarity to the query sequence or an empty list with “No hits”. The
matching protein was a singular protein chain rather than a full protein. For example, a
BLAST+ execution gives the result of chains A and B of the same protein, if they share
a similar residue sequence. If the protein contained chains with different compositions,
BLAST-+ returned the only matching protein chain or chains. In the BLAST+ output,
the matching proteins were listed in descending order of measure “Score” which calculates
the number of pairwise matchings between the query sequence and the protein sequence
and “expect value” (E-value) that measures how many matches would have been returned
at a given score by chance (Camacho et al., 2009). Another measure also calculated was
the length of the matching protein chain. Those hits with the same length and “Score”
were clustered into the same entry. This means these protein chains shared a similar
composition and can be referred to interchangeably. The full version of BLAST+ results
is available in Appendix A.2.

For docking purposes, the protein chains with the approximately same length and
with highest “Score” and E-value were inspected and chosen based on the availability of
an adequate co-crystallised ligand and the resolution of the structure. To help with a
better preparation for subsequent docking, the hits with a co-crystallised ligand was more
favourable to the hit with a better resolution. For instance, protein A which has a ligand
and a resolution of 2.5 A is more favourable than protein B with a resolution of 1.6A but
without ligand. Finally, 78 MRSA genes with PDB code and chain were retained as target
proteins for corresponding gene sequences. These protein structures were then prepared
for molecular docking (See Table 5.1).

Table 5.1: MRSA target hits

Protein target hits from sequence alignment of MRSA essential genes against PDB. The column
from left to right: ID of gene sequence from the Database of Essential Genes; length of the input
sequence; length of the matching protein in PDB, Score represents the number of matching pairs;
Identity is the extent to which two (nucleotide or amino acid) sequences have the same residues
at the same positions in an alignment, expressed as a percentage; E-value, PDB code of matching
protein. The letter after the PDB code represents the chain of the protein.

DEG ID Query Length Protein length Score Identity E-value PDB code

DEG10170006 428 449 890 100 0 6RIN.A
DEG10170023 205 205 417 100 4E-151 4HLC.A
DEG10170029 190 198 390 100 8E-141 4YLY.A
DEG10170032 267 291 532 95 0 6CLV.A
DEG10170033 121 121 246 99 3E-86 2NM3.A
DEG10170034 158 161 322 99 6E-115 5ETR.A
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Continuation of Table 5.1

DEG ID Query Length Protein length Score Identity E-value PDB code

DEG10170048 693 693 1434 100 0 2XEX.A
DEG10170051 328 331 640 98 0 4E4R.A
DEG10170053 306 308 621 99 0 2X71L.A

DEG10170054 327 331 682 100 0 2HK2.A
DEG10170057 124 127 246 100 TE-86 2FRH.A
DEG10170062 132 132 268 100 2E-94 2B7L.A

DEG10170067 307 326 625 100 0 1HSK.A
DEG10170073 311 312 610 98 0 4GCM.A
DEG10170075 195 203 400 100 2E-144 5VZ2.A
DEG10170077 336 338 689 100 0 3LVF.O
DEG10170078 396 403 783 100 0 4DG5.A
DEG10170079 253 254 518 99 0 3MIY.A
DEG10170080 505 513 1037 100 0 4QAX.A
DEG10170081 434 442 880 100 0 5BOE.A
DEG10170094 124 127 256 100 9E-90 4M20.A
DEG10170096 443 446 885 98 0 3FF1.B

DEG10170098 313 313 632 99 0 1ZOW.A
DEG10170099 414 437 847 100 0 2GQD.A
DEG10170104 256 282 514 99 0 4D44.A

DEG10170105 493 501 1014 99 0 4C12.A

DEG10170108 397 397 800 99 0 5ZH8.A
DEG10170109 88 88 175 100 8E-59 1KA5.A
DEG10170112 183 194 369 99 1E-132 1LM4.A
DEG10170116 160 160 330 100 5E-118 4NAT.A
DEG10170122 104 106 207 99 4E-T1 3DIE.A

DEG10170123 266 286 545 99 0 2JFQ.A
DEG10170130 470 484 932 99 0 3WQT.A
DEG10170131 390 396 776 100 0 4DXD.A
DEG10170133 917 917 1896 99 0 1QU2.A
DEG10170134 207 210 423 100 6E-155 4QRH.A
DEG10170143 308 316 621 99 0 3IM9.A

DEG10170144 244 252 495 100 2E-180 3SJ7.A

DEG10170145 7 101 149 100 2E-48 4DXE.H
DEG10170150 245 269 506 99 0 3KYT7.A
DEG10170152 294 301 596 100 0 6G15.A

DEG10170159 256 256 526 99 0 4HSE.A
DEG10170161 567 567 1161 99 0 5ZNJ.A
DEG10170180 61 63 125 100 5E-40 2X4K.A
DEG10170181 420 426 863 100 0 1LRZ.A
DEG10170184 159 157 321 100 1E-114 6PBO.X
DEG10170185 318 321 665 99 0 4DQ1.A
DEG10170190 323 330 657 99 0 6NDL.A
DEG10170193 90 98 180 100 1E-60 4QJU.A
DEG10170195 219 219 442 100 2E-160 2H92.A

DEG10170202 451 451 929 100 0 2VPQ.A
DEG10170204 185 185 379 100 3E-138 6RK3.A
DEG10170217 189 189 392 100 1E-141 2H29.A

DEG10170228 420 420 866 99 0 1QE0.A
DEG10170237 106 106 215 100 3E-74 4PEO.A
DEG10170248 645 645 1337 99 0 INYR.A
DEG10170252 585 606 1170 99 0 3TOT.A
DEG10170253 307 330 622 100 0 5XZ7.A
DEG10170254 314 327 640 100 0 5KDR.A
DEG10170255 285 285 593 100 0 5KDR.B
DEG10170260 420 420 866 100 0 1JIL.A

DEG10170270 252 252 517 100 0 1QXY.A
DEG10170271 243 243 494 100 0 5NIM.A
DEG10170272 437 437 909 99 0 6H5E.B
DEG10170273 315 337 613 97 0 2QV7.A
DEG10170274 475 483 978 100 0 31P4.B

DEG10170275 485 485 982 99 0 3IP4.A

DEG10170276 100 100 202 100 3E-69 3IP4.C

DEG10170281 309 317 624 99 0 4RPA.A
DEG10170290 119 143 246 100 9E-86 4DXE.A
DEG10170292 356 360 735 100 0 2180.A
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Continuation of Table 5.1
DEG ID Query Length Protein length Score Identity E-value PDB code

DEG10170299 286 292 581 100 0 4TO8.A
DEG10170301 267 273 546 100 0 5JIC.A
DEG10170303 451 455 917 100 0 6GYZ.A
DEG10170312 72 72 149 100 5E-49 2N8N.A
DEG10170343 130 130 266 100 2E-93 5X1X.A
DEG10170346 388 388 799 99 0 1XPK.A
DEG10170350 117 119 229 98 2E-81 6D1R.A

Certain hits from BLAST+ results were chains of ribosomal proteins, mainly the com-
ponent chains from the 30S and 50S ribosomes. Since the docking of small ligands to
multiple ribosomal chains has been a challenge for many docking programmes, in this
study, these hits were retained for future research. The list of hit ribosomal proteins is
available in Appendix 3. The gene sequences without any hit in the PDB were discarded.
Those with moderate identity and coverage were inputted for homology modelling.

1.2 Homology Modelling of MRSA Essential Genes

MRSA genes with moderate values of coverage and identity were inputted for SWISS-
MODEL (Waterhouse et al., 2018). SWISS used both BLAST (Altschul et al., 1990) and
HHblits (Remmert et al., 2012) to search for the templates with the highest similarity
to the query sequences. Although some authors suggested that with good coverage, an
identity of more than 30% can be sufficient for homology modelling (Xiang, 2006), the
rate of false-negative was reported to significantly increase in the “twilight zone” (identity
from 20% to 35%) (Rost, 1999). To avoid the decreasing accuracy at such an edge, the
threshold of identity was set at 40%. In addition, since the coverage of MRSA genes varied,
the cutoff was set at 90%. Another measure, the Global Model Quality Estimate (GMQE),
which combines features from the target-template alignment and the template structure
(Biasini et al., 2014), was set at 75%. The list of 72 templates that met these cutoffs is
listed in Table 5.2. There was one noticeable result from DEG10170188 where the identity
was 100% and the coverage was 92%. However, the corresponding results from BLAST +
in sequence alignment were 98% and 92%, respectively. Although the identity and the
coverage were quite high, the GMQE from DEG10170188 was just 0.79. Therefore, it was
considered not a hit but inputted for modelling.

Table 5.2: Results from template searching in SWISS-MODEL
Results from template searching in SWISS-MODEL. The column from left

to right: code name of gene sequence from the Database of Essential Genes;
identity; coverage of the matching protein in PDB, GMQE of the sequence
alignment method; QMEAN of the sequence alignment method; PDB code
of matching protein used as the template. The letter after the PDB code
represents the chain of the protein.

DEG ID Identity Coverage GMQE QMEAN Template

DEG10170002 55.2 0.99 0.8 -1.25 4TR6.A
DEG10170006 52.25 0.99 0.79 -1.74 2DQ3.A
DEG10170012 62.71 0.99 0.77 -1.57 4JIS.A

DEG10170015 56.92 0.99 0.8 0.41 4DD5.A
DEG10170020 58.82 0.99 0.78 -0.48 4E1L.C
DEG10170022 53.85 0.99 0.76 1.93 1YBX.A
DEG10170026 49.11 1 0.77 -0.49 1G97.A
DEG10170027 77.53 0.98 0.8 -0.34 1DKU.E
DEG10170035 72.56 0.99 0.81 -0.88 3AT4.A
DEG10170039 49.15 0.98 0.75 -1.84 5EUL.C
DEG10170040 63.04 0.99 0.75 -2.91 4VI9H.T
DEG10170041 52.19 0.99 0.79 0.42 3QO0Y.A
DEG10170043 59.17 0.98 0.81 0.15 1DD4.A
DEG10170045 56.67 0.96 0.75 -2.41 5TW1.E
DEG10170049 73.79 1 0.9 0.22 2C78.A

DEG10170052 51.39 0.99 0.78 -1.93 2P5L.A
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Continuation of Table 5.2

DEG ID Identity Coverage GMQE QMEAN Template
DEG10170070 61.39 0.99 0.77 -2.33 1TF2.A
DEG10170071 48.94 0.98 0.77 -1.15 1GQE.A
DEG10170072 86.27 0.99 0.86 0.23 1KO7.A
DEG10170074 79.46 1 0.9 0.41 2PPV.A
DEG10170084 63.01 0.97 0.78 -0.53 2D2E.A
DEG10170086 60.84 0.98 0.84 0.01 5J8Q.A
DEG10170092 62.34 0.99 0.79 -0.39 4BPF.A
DEG10170101 62.5 1 0.81 -1.22 1I6K. A
DEG10170102 79.39 1 0.81 0.25 1Z3E.A
DEG10170103 57.2 0.98 0.82 0.18 4DY6.A
DEG10170113 75.21 0.98 0.84 -0.12 1W85.A
DEG10170121 77.63 1 0.87 -0.5 2RHS.B
DEG10170128 46.85 0.99 0.79 -0.92 3LK7.A
DEG10170139 44.29 0.98 0.78 -0.72 5UMF.A
DEG10170142 53.61 0.97 0.79 0 1U7N.A
DEG10170153 48.31 0.99 0.79 -0.81 4XX0.B
DEG10170156 45.91 0.96 0.76 -1.53 3AVX.A
DEG10170158 48.07 0.98 0.81 -0.1 1IS1.A
DEG10170161 56.21 0.99 0.76 -1.37 2J3M.A
DEG10170165 50 0.91 0.75 -0.87 3VTQ.A
DEG10170169 44.34 1 0.79 -0.35 372Q4.B
DEG10170172 76.24 0.99 0.87 -0.9 4LNILH
DEG10170174 49.84 0.98 0.79 -1.99 5ND6.A
DEG10170188 100 0.92 0.79 -1.09 20LV.A
DEG10170194 73.39 1 0.77 -1.07 4DCS.A
DEG10170197 74.32 1 0.92 0.62 1IWTF.A
DEG10170200 43.36 0.98 0.77 -1.77 1H9A.A
DEG10170201 66.88 0.99 0.81 -0.82 27ZYA.B
DEG10170204 54.35 0.99 0.79 0.13 1YBY.A
DEG10170206 40.63 1 0.75 -1.52 3GNL.A
DEG10170210 46.21 0.97 0.77 -1.44 3IEV.A
DEG10170214 59.15 0.93 0.79 0.87 4B9Q.A
DEG10170221 59.12 0.96 0.79 -2.09 1VHX.A
DEG10170222 54.12 0.99 0.81 -2.11 5US5.A
DEG10170224 67.6 0.97 0.79 0.04 2HMA.A
DEG10170225 87 1 0.95 1.13 2HMA A
DEG10170226 43.88 0.99 0.76 -1.69 1P3W.A
DEG10170227 52.01 0.97 0.78 -1.52 1LOW.A
DEG10170233 58.59 0.98 0.79 -0.41 6BLB.A
DEG10170242 59.07 0.98 0.8 -0.52 1SUL.A
DEG10170253 52.15 0.99 0.8 -1.41 1ZXX.A
DEG10170266 64.47 0.96 0.81 -0.34 5T8S.A
DEG10170279 60.38 0.97 0.78 -0.25 3HMQ.A
DEG10170280 59.14 1 0.79 -0.91 2F7F.A
DEG10170284 58.85 1 0.8 0.01 4V40.M
DEG10170285 54.26 1 0.78 -1.26 4V40.0
DEG10170287 42.17 0.97 0.76 -1.91 3ZET.B
DEG10170294 45.07 0.97 0.78 -1.51 3AZ9.A
DEG10170295 63.16 0.99 0.82 -1.07 3R38.A
DEG10170297 59.04 0.99 0.75 -1.64 1ZBT.A
DEG10170300 54.41 0.99 0.79 -0.84 4ZDK.A
DEG10170303 68.16 0.99 0.82 -0.99 3PDK.A
DEG10170304 58.85 1 0.8 0.01 4V40.M
DEG10170313 73.95 1 0.88 0.25 5G40.A
DEG10170339 45.98 0.98 0.77 -1.38 1LK7.A
DEG10170348 53.8 0.97 0.76 -1.85 27ZXI.A
DEG10170349 42.34 0.97 0.75 -2.19 1XZQ.A

SWISS-MODEL used the templates listed in Table 5.2 to create the structures of cor-
responding MRSA genes. The remaining templates with insufficient coverage, identity or
GMQE values were discarded. The same reason for those sequences without appropriate
templates was due to the lack of experimentally determined structures deposited in the
protein database.

Certain templates from SWISS-MODEL results were chains of ribosomal proteins, sim-
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ilar to hits from BLAST+ results. These hits were also retained for future research. The
list of hit ribosomal proteins was available in Appendix 3.

2 Results and Discussions of Benchmark using Median Rank
as Evaluation Metric

There were 102 targets from DUD-E and 78 MRSA proteins structurally cross-compared
using the Dali server (Holm and Rosenstrém, 2010). The results show that there were 6
clusters in which 3 clusters contained more than one DUD-E or MRSA protein sharing
a similar structure. To fully estimate all possibilities, all possible matching targets were
paired and docking was run of DUD-E ligands against corresponding MRSA protein. For
instance, DHI1 and INHA (DUD-D proteins) shared structural similarities with 30SU and
4D44 (MRSA proteins). Therefore, decoys and actives of DHI1 and INHA targets were
interchangeably docked against 30SU and 4D44 proteins. As a result, there were 29 sets
of [protein:ligand group pairs| obtained (Table 5.3).

Table 5.3: List of structurally similar targets of DUD-E targets and MRSA targets. For each column,
the targets from DUD-E and MRSA targets shared a similar protein structure, which means two DUD-E
targets or two MRSA targets in the same column also had similar structures. Those targets of the same
column were cross-paired for docking of DUD-E ligands again respective MRSA targets.

ADA, ALDR

DUD-E targets | DEF | DYR GLCM, PYRD DHI1, INHA HXK4 TYSY
3M9Y, 3T05

MRSA target | 1LM4 | 2WOH | ot op o | 308U, 4D44 | 3WQT, 5JIC | 4DQ1

The set of decoys and actives were obtained from the DUD-E repository. For each
target, 999 decoys and one active ligand were randomly chosen. The total amount of 1000
ligands was then docked against each corresponding target using ten docking programmes
(ADFR, DOCK, Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, Autodock Vina and
VinaXB), producing 10 matrices of 1000 x 29. For consensus scores, docking results of
each ligand:target pair were combined using Eqns. 4.16a-4.16d. While analysing a new set
of combined scores, for each target, all combined scores were picked in descending order,
starting with the best binding energy score and then progressing towards the worst (that
is negative infinity to positive infinity). The medians of these re-positioned values were
then used to calculate the histogram leading to the probability distribution function.

2.1 Statistical Ranking of Docking Scores (DUD-E Database)

In this study, the median ranking order was used for evaluation. First, active ligands for
29 targets were ranked among 1000 ligand (docked) arrays. The anticipated median rank
of a subset of randomly chosen actives out of 1000 ligands is 500. The ability of consensus
scores to improve the ranks of the actives when the ranks of the active scores varied from
the top to the bottom was tested. The average rank of a set of actives for each target would
result in an average value (Kairys et al., 2006; Truchon and Bayly, 2007). Therefore, only
one active was randomly chosen for each target. For each docking programme, the docking
score of activities for each target was ranked among 1000 ligands, resulting in a set of 29
ranks of active ligands. The median ranks obtained from 10 docking programmes verified
that median ranks of active ligands (e.g. 250 from ADFR) were better than a median from
a random selection. For simplicity, each set of ranks (for 10 programmes) was represented
by a single median rank, as detailed in Table 5.4.

Smina returned the best median rank of 150, followed by PLANTS with the median
rank of 163 and 185 in QuickVina2 while Autodock Vina and Gemdock showed comparative
median ranks of 191 and 192. Surprisingly, the highly popular DOCK turned up the worst
program (median rank of 423). This can be explained that DOCK was not particularly
sensitive to MRSA-related targets. On the other hand, Autodock Vina and its derivatives
showed promising results. Based on this evaluation, Smina was the single best performing
docking station for the DUD-E set of ligands. In another word, if only a single docking
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programme Median rank
ADFR 337
DOCK 423
Gemdock 192
Ledock 387
PLANTS 163
PSOVina 375
QuickVina2 185
Smina 150
Autodock Vina | 191
VinaXB 224

Table 5.4: The median rank of actives across 29 targets using 10 docking programmes. The active ligand
for each target was ranked together with other 999 decoys. The median rank takes the median value of 29
ranks of the actives across 29 targets for every single programme.

programme is designated for the task of virtual screening against MRSA-related targets,
Smina is a suitable choice. The median rank can be expressed as the recovery rate or
the threshold for the retrieval of 50% of the actives. Recovery rate is defined as the
ratio of the actives that can be recovered when screening a certain fraction of the whole
dataset in ranked order. Therefore, the recovery rate of ADFR, DOCK, Gemdock, Ledock,
PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina and VinaXB were 33.7%, 42.3%,
19.2%, 38.7%, 16.3%, 37.5%, 18.5%, 15%, 19.2% and 22.4%, respectively. This means,
should Smina be chosen for virtual screening, 15% of the best-ranked ligands after docking
would contain half of the active ligands. The first plot of Figure 5.1a showed the individual
performance of docking programmes across 29 sets of target:ligands.

In an attempt to improve the ranking of actives over the full dataset, the docking
scores from 10 docking programmes were combined in the so-called consensus scores. Here
ten traditional consensus scores were computed: MEAN, MEDIAN, MIN, MAX, EUC,
CBM, ECR and DSR. One obstacle was that the docking scores from different docking
programmes span across various scales. For that reason, the three most common methods
including rank normalisation, min-max normalisation and z-score normalisation were used
to bring the docking scores to a unified scope. 8 consensus scores were calculated based
on normalised docking scores. That made up to 24 possible combined scores. Here the
traditional consensus scores that are commonly used in the literature were used to compare
the ability to improve the ranking of the actives.

MAX | MIN | MEAN | MEDIAN | EUC | CBM | ECR | DSR
min-max | 228 | 246.5 184 202.5 206 201 217 224
rank 191 195 271 205.5 176 174 | 207.5 | 183
z-score 203 209 256 231 1000 | 220 192 205

Table 5.5: Median rank of traditional consensus scores over normalisation methods. The median ranks were
obtained in the same manner as the median rank from each individual docking programme. Each median
rank represented the combination of 10 docking programmes after normalised with respective methods.

As demonstrated in Figure 5.1, these conventional consensus scores showed no no-
ticeable improvement over the individual programmes across three different normalisation
methods (Figures 5.1b, 5.1c and 5.1d. In fact, the best median the Cubic Mean score could
reach was 174 while all other consensus scores declined, compared to 150 in Smina. This
was probably due to the lack of sensitivity of MRSA data to these consensus scores.

2.2 Novel Consensus Scores

For each docking programme, the median ranks of active ligands across 29 targets were
obtained and histograms plotted for visual presentation. To establish the improved per-
formance of consensus scores (CS) over individual docking, the scores from the individual
best performer Smina were compared against the CS score line. This was estimated from
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Figure 5.1: Box plots demonstrate the ranks of actives from programmes and consensus scores. Each box
plot illustrates the ranks of active ligands across 29 targets using each docking programme or consensus
score. The lines parallel to the x-axis in each box represents the median ranks or the quantitative measure
for the performance of each docking programme or consensus score. a) Ranks of the actives from individual
docking programmes. b) Ranks of the actives from various consensus scores after rank normalisation. c)
Ranks of the actives from various consensus scores after min-max normalisation. d) Ranks of the actives
from various consensus scores after z-score normalisation.

the area patches to the left (since binding energy is negative) of the best performing in-
dividual docking platform (Smina, identified by the solid line close to the maxima of the
histograms). The greater the patch area, the better the CS score line (compared to Smina).

As clearly demonstrated in Figures 5.2 and 5.6, the linear consensus model consistently
turned the best performer, with CS docking score progressively declining with increasing
values of n, where n is the exponent in the statistical norm. It was noted that three out of
four linear combinations (n = 1) demonstrated higher ranks compared to the individual best
performer Smina (82, 83 and 82 for model 4.16a, 4.16b and 4.16¢, respectively). Another
suggestive trend was the dominance of the odd n values against their even counterpart.
This was expected as the docking scores were energy affinity measures, hence negative, that
could be compensated by the absolute (consensus) values (as in models in Eqn. 4.16b and
Eqn. 4.16d). Model 4.16d was the worst scorer, while linear combinations of models 4.16a,
4.16b and 4.16c showed similar behaviour with approximate best ranks and comparable
histograms (non-normalised probability density functions).
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Figure 5.2: Consensus scores, defined as area fraction (to the left of the best performing individual docking
score marked with the vertical red line) of the total histogram area, evaluated for order ranging from 1 to
3 as in Eqns. 4.16a (left)-4.16b (right).

As explained, the solid red lines in these histograms represent the individually best-
performing docking standard while the blue patches to the left of these red lines (docking
scores represent attractive energy measures which are negative, hence to the left) represent
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the fractional betterment in docking scores due to the CS methodology. The grey patches
to the right or left of the red lines indicate “no shows”, implying that the CS method did
not improve the individual best (docking) scores in those regions. The histograms are
non-scaled representations of the Probability Density Functions (PDFs), or in other words,
Figures 5.2, 5.3, 5.4, etc pictorially demonstrated the improvement in docking standards
by the usage of the CS method as opposed to individual best scorers.
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Figure 5.3: Consensus scores, defined as area fraction (to the left of the best performing individual docking
score marked with the vertical red line) of the total histogram area, evaluated for order ranging from 4 to
6 as in Eqns. 4.16a (left)-4.16b (right).
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Figure 5.4: Consensus scores, defined as area fraction (to the left of the best performing individual docking

score marked with the vertical red line) of the total histogram area, evaluated for order ranging from 7 to
9 as in Eqns. 4.16a (left)-4.16b (right).
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Figure 5.5: Consensus scores, defined as area fraction (to the left of the best performing individual docking

score marked with the vertical red line) of the total histogram area, evaluated for order 10 as in Eqns.
4.16a (left)-4.16b (right).

The lack of any blue patch in Figure 5.5 indicates that the individual docking standard is
the best and the same as the CS scoreline.
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Figure 5.6: Consensus scores, defined as area fraction (to the left of the best performing individual docking

score marked with the vertical line) of the total histogram area, evaluated for order ranging from 1 to 3 as
in Eqns. 4.16¢ (left)-4.16d (right).
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Figure 5.7: Consensus scores, defined as area fraction (to the left of the best performing individual docking

score marked with the vertical line) of the total histogram area, evaluated for order ranging from 4 to 6 as
in Eqns. 4.16¢ (left)-4.16d (right).
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Figure 5.8: Consensus scores, defined as area fraction (to the left of the best performing individual docking

score marked with the vertical line) of the total histogram area, evaluated for order ranging from 7 to 9 as
in Eqns. 4.16¢ (left)-4.16d (right).

N.P.Do, PhD Thesis, Aston University 2021 7



Antimicrobial Drug Repurposing through Molecular Modelling

area= area=

L et
c 0 c 0
= -
o o
(3] (8]
05M 05M
0.om 0.0Mm
rank rank
10 20 10 20
10 _
(@) Se=>_> wi;(Si—5) (b) Se =3 > @i abs[(S; — 5]
i=15=0 i=14=0

Figure 5.9: Consensus scores, defined as area fraction (to the left of the best performing individual docking
score marked with the vertical line) of the total histogram area, evaluated for order 10 as in Eqns. 4.16¢c
(left)-4.16d (right).

As evident from Figures 5.6, linear regression over the set of 10 docking scores involving
the ligand:protein sets returned a better docking score than equations with higher order.
When the order value increased, the median ranks tended to converge a center, for instance,
around median rank of 112 in case of equation 1.2. and 179 in case of equation 1.4. This
effect was more obvious in cases of equations 1.1. and 1.3 due to the fluctuation. However,
when n value increased, the best median rank deteriorated (the left end of the blue patch),
ignoring the even values of n, which is not in favor of virtual screening. The same trend
was observed for the area ratio.

Eqgn. 1.1 Eqn. 1.2 Egn. 1.3 Eqn. 1.4
Power | Best rank | Area ratio | Best rank | Area ratio | Best rank | Area ratio | Best rank | Area ratio
1 82 0.532 83 0.648 82 0.532 119 0.02
2 558 0 109 0.541 395 0 152 0
3 109 0.45 109 0.413 112 0.107 177 0
4 579 0 109 0.289 399 0 174 0
5 110 0.295 110 0.18 118 0.085 177 0
6 572 0 111 0.117 399 0 17 0
7 111 0.137 111 0.078 116 0.086 177 0
8 556 0 112 0.047 399 0 182 0
9 112 0.07 112 0.038 119 0.087 179 0
10 543 0 112 0.005 399 0 179 0

Table 5.6: Table of best ranks and area ratios from the histograms. The rank improvement is the differ-
ence between the best rank that each novel consensus score can reach amongst 10015005 combinations,
represented by the far left end of the blue shaded portion of the histogram, and the median rank by the
best programme, milestoned by the red vertical line. The area ration the area of histogram of median rank
that is counted better than the supposedly best docking programmes. The Best rank is the highest rank
that 10015005 combinations achieved.

2.3 Consensus Model Accuracy Convergence

For enumerating the strength of linear combination in each model, the correlation between
the number of docking programmes and the consensus performance was estimated. Two
types of measures were calculated: area ratio and rank improvement, a relative comparison
of which are encapsulated in Table 5.6. An additional measure, rank improvement, was
calculated to assess the advancement of consensus scores. Rank improvement is defined as
the difference between the best rank each model can achieve and the rank from the best
individual programme (Smina). The model in Eqn. 4.16a defines an explicit correlation
between the number of docking programmes and consensus outcome. The area ratio con-
siderably increased from 2 to 7 programmes and then saturated after around 8 docking
combinations (Figure 5.10b). Similarly, rank improvement drastically increased from 2 to
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4 programmes and flattened after 5 programmes (Figure 5.10f). Comparison between these
two measures suggested that numerous docking programmes do not necessarily contribute
to the overall performance. Models 4.16a and 4.16c¢ showed similar saturation patterns
both for area ratio and rank improvement. The consensus effect tends to increase from
combinations of 2 programmes and maximise after 5 or 6 programmes (Figures 5.10a, 5.10c,
5.10e, 5.10g). Model 4.16d showed poor improvement in both area ratio and rank, area
ratio mostly remaining zero (Figure 5.10d) while rank showed negative changes around n
= 8 programmes (Figure 5.10h), indicating no improvement.

A possible reason for the lack of convergence in Figures 5.10b and 5.10f was the lack
of fluctuations due to the consideration of absolute values, causing gradual increments
(“accumulation” effect) with increasing number of docking programmes unlike in models
4.16a and 4.16a for which the consensus accuracy converges faster by 4 or 5 programmes.
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The ideal way to enumerate the CS coefficients would be through probabilistic mod-
elling of the data for each docking programme, ideally using machine learning or deep
learning, an approach that was taken in the later subsection. Here, small incremental
changes to the relative weights were used and compared each against the other, retaining
only the top scoring ones. The quality of this prediction has been favourably compared
against the machine-learning outcome, as shown in the next section.

2.4 Conclusion

Consensus scoring algorithms using MRSA datasets and ten docking programmes (ADFR,
DOCK, Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina and
VinaXB) were investigated. The performance benchmark was the median rank of active lig-
ands. The individual docking programmes with conventional consensus scores (minimum,
maximum, mean, median, reciprocal rank and Euclidean distance) were also compared in
this section, including the newly reported Exponential Consensus Rank score.

Before consensus scoring, the distribution of docking scores was altered with three nor-
malisation methods (rank, min-max scaling, and z-scores) to offer a direct combination
with commonly used statistical consensus scores. Comparisons show that insensitivity
of the MRSA dataset to conventional consensus scores and no improved rank compared
to 150 from Smina. Nonetheless, the novel consensus scores consistently perform better
than individual docking programmes on the MRSA benchmark dataset. In this work,
the raw docking scores from ten docking programmes (ADFR, DOCK, Gemdock, Ledock,
PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina and VinaXB) were directly com-
bined. Due to an exhaustive search of combinations, there was no obligation for data
normalisation. Results showed that the novel model gave better rankings of active ligands
across benchmark datasets.

A key outcome of the novel consensus module is the preponderance of linear combina-
tion of docking scores towards improved active ligand ranking over higher-order consensus
formulas. Given that such complex systems are known to be inherently higher-order, such
a linear mapping is interesting and potentially more efficient than higher-order scores. As
of the higher-order scores, as in Eqns. 4.16a-4.16d, odd ordered combinations show con-
sistently better combinatorics than their even ordered counterparts. These findings also
indicate that linear combinations using absolute values (model 4.16b) converge towards a
better functional relationship between the number of docking programmes and consensus
performance. While consensus prediction accuracy does increase with an increasing num-
ber of docking associations, as shown in Figure 5.10, that number is not a monotonically
diverging quantity, rather it saturates beyond a certain finite number of docking programs,
typically 5-7 for the sets of ligands and MRSA proteins. This is a remarkable feature of
the consensus approach. It should allow for the systematic substitution of weaker docking
programmes with programmes exhibiting a higher scoring accuracy, as they arise over time
since consensus scoring will always outperform even the best performing individual docking
programime.

3 Results and Discussions of Benchmark using ROC and EF
as Evaluation Metrics

In the previous benchmark using median rank as an evaluation metric, the running in
ADFR was particularly time-consuming. Therefore in this section, ADFR was substituted
with rDock. The docking evaluation metrics were also changed to Receiver Operating
Characteristic (ROC) and enrichment factor (EF). Therefore, more actives were needed for
each target. Similar to the previous benchmark, 29 sets of target:ligands were obtained from
the DUD-E repository. For each target, 1000 decoys and 40 active ligands were randomly
chosen. The total amount of 1040 ligands were then docked against each corresponding
target using ten docking programmes (DOCK, Gemdock, Ledock, PLANTS, PSOVina,
QuickVina2, rDo