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a b s t r a c t 

We spend much our lives interacting with others in various social contexts. Although we deal with this myriad of 
interpersonal exchanges with apparent ease, each one relies upon a broad array of sophisticated cognitive pro- 
cesses. Recent research suggests that the cognitive operations supporting interactive behaviour are themselves 
underpinned by several canonical functional brain networks (CFNs) that integrate dynamically with one another 
in response to changing situational demands. Dynamic integrations among these CFNs should therefore play a piv- 
otal role in coordinating interpersonal behaviour. Further, different types of interaction should present different 
demands on cognitive systems, thereby eliciting distinct patterns of dynamism among these CFNs. To investi- 
gate this, the present study performed functional magnetic resonance imaging (fMRI) on 30 individuals while 
they interacted with one another cooperatively or competitively. By applying a novel combination of analytical 
techniques to these brain imaging data, we identify six states of dynamic functional connectivity characterised 
by distinct patterns of integration and segregation among specific CFNs that differ systematically between these 
opposing types of interaction. Moreover, applying these same states to fMRI data acquired from an independent 
sample engaged in the same kinds of interaction, we were able to classify interpersonal exchanges as cooperative 
or competitive. These results provide the first direct evidence for the systematic involvement of CFNs during 
social interactions, which should guide neurocognitive models of interactive behaviour and investigations into 
biomarkers for the interpersonal dysfunction characterizing many neurological and psychiatric disorders. 
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. Introduction 

To interact effectively with others and conduct ourselves appropri-
tely in interpersonal contexts, we must perform a broad range of so-
histicated cognitive operations in a carefully coordinated manner. Even
 fleeting exchange with a stranger, for example, requires us to process
ultiple social cues simultaneously (e.g., their verbal and non-verbal ex-
ressions) to infer their intentions, motivations and emotions, and use
his information to adjust our own behaviour in a context-appropriate
anner. This is complicated further by the reciprocal nature of so-

ial interactions; our fellow interactant(s) continuously modify their be-
aviour in response to our own, giving rise to an interpersonal context
hat evolves unpredictably and imposes time-varying demands on so-
ial cognitive systems. To support interactive behaviour, then, the brain
ust be capable of deploying and switching flexibly between the dif-

erent functional brain networks that transiently link distributed neural
ystems underpinning these social cognitive processes. Moreover, the
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anner in which such dynamic functional connectivity unfolds should
eflect the specific type of social exchange being supported; distinct
orms of interaction will impose different demands on cognitive systems,
equiring distinct patterns of reconfiguration among functional brain
etworks. The present study investigated this by examining if opposing
ypes of social interaction give rise to systematic patterns of dynamic
unctional brain connectivity. 

High-level cognitive operations are underpinned by widespread and
ften overlapping brain networks that connect discrete neural systems
 Braun et al., 2015 ; Bressler and Menon, 2010 ; Gonzalez-Castillo and
andettini, 2018 ). This is true particularly for social cognitive processes.
eta-analytic data indicate that inferences about others’ mental (e.g.,

ntentional) states are supported by a diffuse brain network encompass-
ng medial and ventro-lateral prefrontal as well as temporo-parietal cor-
ices ( Molenberghs et al., 2016 ; Schurz et al., 2013 ). Similarly, infer-
ing and sharing in others’ affective states (empathy) recruits a network
omprising medial and ventro-lateral prefrontal cortices, anterior insu-
iences, Aston University, Birmingham B4 7ET, UK. 
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ae and inferior parietal cortices ( Arioli et al., 2021 ; Lamm et al., 2011 ;
immers et al., 2018 ); and processing the actions of others engages a
etwork consisting largely of lateral prefrontal and inferior parietal cor-
ices ( Diveica et al., 2021 ; Hardwick et al., 2018 ). The overlap among
hese neural systems engaged during social cognitive processes appears
o reflect the common involvement of canonical functional brain net-
orks (CFNs; Feng et al. 2021 , Schurz et al. 2020 ) - stable, intrinsi-

ally connected neural circuits linking distributed brain regions. Dy-
amic integrations among CFNs are believed to subserve more founda-
ional cognitive processes that together orchestrate adaptive behaviour
n both social and non-social domains ( Menon and D’Esposito, 2022 ;
ddin et al., 2019 ). One example is the lateral fronto-parietal net-
ork (or central executive system) - a set of frontal and parietal struc-

ures that are functionally coupled during a diverse range of general-
urpose cognitive processes (e.g., working memory, task switching;
ssem et al. 2019 , Duncan 2010 , Seeley et al. 2007 ). Another is the
efault mode network - inter-connected brain regions spanning medial
nd lateral parietal, medial prefrontal, and medial and lateral tempo-
al cortices. Within this network, brain activity is suppressed during
xternally oriented attention but increased during internal mentation
e.g., autobiographical memory retrieval; Buckner and DiNicola 2019 ,
aichle 2015 , Raichle et al. 2001 ). Social cognitive processes also en-
age core nodes of three distinct brain networks that operate in con-
ert to control the allocation of attention: the ventral attention network,
onsisting of ventro-lateral prefrontal and temporo-parietal cortices; the
orsal attention network, comprising dorso-lateral prefrontal and pari-
tal cortices ( Vossel et al., 2014 ); and the salience network, encompass-
ng anterior insulae, dorsal anterior cingulate and various subcortical
tructures ( Seeley et al., 2007 ). 

Given the extensive overlap between functional brain networks im-
licated in social and domain-general cognitive processes, it might be
hat the latter provide fundamental support to higher-level social cogni-
ion and interactive behaviour (e.g., Binney and Ramsey 2020a ). Recent
eta-analyses support this notion: Schurz et al. (2020) report that social

ognitive processes, such as inferences concerning others’ intentional
tates, appear to involve a balanced interplay of functional integration
nd segregation among several CFNs. Likewise, Feng et al. (2021) iden-
ify many of the aforementioned CFNs from a synthesis of brain imaging
nvestigations into social interaction, and their functional profiling sug-
ests a role of general-purpose cognitive processes during interactive
ehaviour (e.g., working memory). Importantly, however, these meta-
nalytic studies provide only static snapshots of CFN involvement during
ocial cognition and interactive behaviour, providing little insight into
heir dynamic involvement; it remains to be seen how dynamic connec-
ivity among these functional brain networks unfold during social inter-
ctions, or if discrete types of interpersonal exchange elicit dissociable
atterns of dynamism among them. The present study investigated if
nd how systematic patterns of dynamic functional connectivity (inte-
ration and segregation) among CFNs are elicited during different types
f interpersonal behaviour. 

Various analytical techniques have been developed to capture time-
arying changes in functional brain connectivity from neuroimaging
ata ( Hutchison et al., 2013 ; Iraji et al., 2021 ; Lurie et al., 2020 ).
any are based on a sliding-window approach, whereby a window of
xed length is advanced across a time-series and patterns of covari-
nce among localised signals is estimated within each time segment.
iscrete windows of functional connectivity are then subjected to clus-

ering techniques to identify distinct or repeating patterns of covariance
hat emerge during the entire time-series. Although this approach has re-
ealed time-varying patterns of functional connectivity associated with
istinct cognitive operations (reviewed in Iraji et al. 2021 ), it fails to
ccount for the non-stationarity of functional brain networks; it cannot
apture the continuous evolution of brain states over time in response to
oment-by-moment changes in task demands ( Hutchison et al., 2013 ),

uch as those encountered during interpersonal contexts. An alternative
pproach is offered by state-space models, which seek to identify the
2 
atent brain states that generate observed patterns of continuous time-
arying co-activations. Latent states are identified in a data-driven and
ultivariate manner through matrix factorisation, thereby circumvent-

ng the need for arbitrarily sized moving windows or temporal bound-
ries. Furthermore, state-space models estimate various spatio-temporal
haracteristics of latent states that provide mechanistic insights into the
rocesses generating observed brain dynamics: their underlying func-
ional circuitry, probability of occurrence (occupancy) and stability over
ime (lifetime), and the probability with which different states transition
mong one another. 

To investigate the dynamic connectivity of CFNs during social in-
eraction, it is necessary to examine them while they operate online
uring real interpersonal exchanges ( Iraji et al., 2021 ; Redcay and
chilbach, 2019 ; Schilbach, 2014 ; Schilbach et al., 2013 ; Shamay-
soory and Mendelsohn, 2019 ). To achieve this, in the present study we
cquired functional brain imaging data from individuals while they per-
ormed the interactive Pattern Game (iPG; Š piláková et al. 2019 , 2020 ) -
 joint-action task in which pairs of individuals interact with one another
nterdependently across a series of exchanges, in either a cooperative or
ompetitive manner. Since both interactants necessarily have a mutually
eciprocal influence on each other’s behaviour, each round of interper-
onal exchanges evolves unpredictably and progressively. In a simple
daptation of this task, we also allowed players to determine the nature
f a given interaction by choosing whether to cooperate or compete
ith one another. The “two-person ” set-up of the iPG thereby captures

ome of the defining characteristics of social interaction ( Misaki et al.,
021 ) that are inaccessible to the “single-person ” paradigms utilised
ommonly in social neuroscience ( Hari and Kujala, 2009 ; Hari et al.,
015 ); it goes beyond the “spectator science ” of measuring the brains of
ndividuals situated in decontextualized environments while they pas-
ively observe social stimuli, allowing us instead to investigate the dy-
amics of brain networks subserving social information processing while
hey operate in real-time to support social interaction. Achieving such
cological validity is important when we consider neuroscientific re-
earch that has shown differences in the way the brain responds during
he passive observation of social stimuli compared to when individu-
ls are engaged actively in social interaction (e.g., Alkire et al. 2018 ,
edcay et al. 2010 , for related discussions see Schilbach et al. 2013 ,
edcay and Schilbach 2019 ). 

By applying a state-based model to brain imaging data acquired from
ndividuals engaged on this adapted iPG, we investigated properties of
ynamic functional connectivity among seven well-defined CFNs dur-
ng interactive behaviour. Since the iPG dissociates cooperative from
ompetitive exchanges, it allowed us to investigate more specifically
hether these opposing types of interpersonal context elicited system-
tic differences in states of dynamism among these brain networks. We
hen assessed whether states that differentiate systematically among
hese different types of interaction can be used to predict the type of
nteraction in which pairs of individuals were engaged in an indepen-
ent dataset. 

. Methods 

.1. Data availability 

All experimental materials, protocol and analysis codes are available
ublically at https://osf.io/s2jmh/. All fMRI data are available upon
equest to the corresponding author, following approval for data sharing
rom the Research Ethics Committee of Masaryk University. 

.2. Participants 

Forty individuals (22 males; mean age = 26.45 [SD = 2.84] years)
olunteered for the study, all of whom were recruited from Brno,
zechia. Due to a lack of behavioural responses, resulting partly from
echnical failures, data from 10 of these participants were omitted from
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Fig. 1. The interactive Pattern Game. A : Schematic of round (trial) structure. B : 
Examples target patterns and required token placements in cooperative (COOP), 
competitive (COMP), and non-interactive control (CTRL) rounds. In all exam- 
ples, the Builder is assigned the same colour as the target pattern located above 
the playing board, and scores by placing tokens in locations that recreate the 
pattern (indicated by solid red lines). In COOP and COMP rounds, the Other 
scores by placing their tokens in locations that serve to help (dashed red lines) 
or hinder the Builder; since the latter is achieved by placing tokens within the 
pattern space, thereby obstructing the Builder, the scoring location of Others 
and Builders are the same in COMP rounds. C : Example event sequence from 

one pair, showing the even distribution of round types determined by Others’ 
choices, and undefined rounds (UNDEF) in which Others did not indicate their 
choice with a button press. Note : this event sequence had the highest autocor- 
relation of all the pairs, showing a fairly even distribution of rounds types even 
in this worst case. 
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ny analyses (see Supplementary Table S1). The remaining 30 individ-
als (16 males; mean age = 26.03 [SD = 2.41] years) were all right
anded, and were paired into 15 same-sex dyads (8 male-male) matched
n age (mean intra-dyad difference = 5.07 [SD = 3.78] months) and
ducation (highest qualification achieved). The participants comprising
ach dyad were unfamiliar with each other prior to the experiment;
hey were introduced briefly to one another for the first time on day of
canning while they were instructed together about the task and scan-
ing procedure. All participants gave their informed consent prior to the
canning procedure, which was approved by the Research Ethics Com-
ittee of Masaryk University. Participation was rewarded with 200 CZK

approx. €8). 

.3. Interactive pattern game 

The interactive Pattern Game (iPG; Š piláková et al. 2019b , 2020 ) is a
oint-action task on which two players interact with one another repeat-
dly over several rounds (trials) to reconstruct various target patterns
omprised of blue and yellow tokens. At the beginning of the game, each
layer was assigned to one of two colours - blue or yellow - which re-
ained fixed throughout. At the start of every round, one player was

ssigned the role of the Builder whose goal was to recreate a target pat-
ern as closely as possible. Due to the layout of the target patterns, the
uilder could never recreate a pattern perfectly on their own; they re-
uired supporting tokens to be placed by their co-player - the Other.
n interactive rounds, the Other was free to choose either to help the
uilder or hinder them from reconstructing the pattern - their only in-
truction prior to the procedure was to distribute their choices as evenly
s possible. This choice defined two types of interactive rounds (condi-
ions): Cooperation (COOP) and Competitive (COMP), respectively. In
on-interactive Control (CTRL) rounds, the Other simply observed the
uilder attempting to recreate the target pattern, with no opportunity
o help or hinder them. Participant roles alternated on each of 32 inter-
ctive rounds, such that each player acted as the Builder or Other on
n equal number of exchanges. In 16 non-interactive CTRL rounds, the
ole of lone Builder was played by either the blue or yellow player. 

Fig. 1 presents examples of the three round types and a schematic
ime-course. At the start of each round, an instruction was presented
or 3 s that allocated each participant to a player role. On interactive
ounds, the Other was then given 4 s to decide whether they would help
r hinder the Builder and indicate their decision by way of a button
ress. The Other’s decision was not communicated to the Builder. This
as followed immediately by a white fixation cross for 1 s, signaling to

he players that a round was about to begin. Every round started with
he Builders’ first token presented on one side of the stimulus display,
bove the playing board. The Builder then moved this token either left
r right to the desired columnar location before releasing it into the
owest empty row. Tokens were moved via a four-button response box
perated by both hands. On interactive rounds, the Other’s first token
as subsequently presented on the opposite side of the stimulus display,
nd they placed their token in a helpful or hindering position. In every
nteractive round, each player had five tokens to place within 25 s. Once
his time had expired, a new round began regardless of how many tokens
emained. The Other received no tokens on CTRL rounds; Builders had
5 s to recreate the target pattern as closely as possible with only their
ve tokens. Before the scanning session, both participants performed

our practice CTRL rounds to familiarise themselves with the task. 
The iPG was programmed entirely in MATLAB (v2016b, The Math-

orks, Inc.) using the Cogent 2000 toolbox (Cogent 2000 team; Func-
ional Imaging Laboratory and Institute of Cognitive Neuroscience). 

.4. MRI acquisition 

Structural and functional brain images were acquired using two
dentical 3T Siemens Prisma scanners housed within the same fa-
ility, each equipped with a 64-channel HeadNeck coil. High res-
3 
lution T1-weighted anatomical images were first recorded with a
PRAGE sequence (TR/TE = 2000/2.33 msec; flip angle = 8°; ma-

rix = 240 × 224 × 224; 1 mm 

3 voxels). Functional time-series were
hen recorded in a single run containing 600 volumes ( ∼20 min).
lood oxygen-level dependent (BOLD) images were obtained with T2 ∗ -
eighted echo planar imaging with parallel acquisition (i-PAT; GRAPPA
cceleration factor = 2; 34 axial slices; TR/TE = 2000/35 msec; flip an-
le = 60°; matrix = 68 × 68 × 34; 3 × 3 × 4 mm voxels). Axial slices
ere acquired in interleaved order, and synchronised between the two

canners by way of an external programmable signal generator (Siglent
DG1025; www.siglent.com ). Both scanners were connected to a single
timulation computer. 

.5. Pre-processing 

Using FEAT v6.00, functional time-series were high-pass filtered
cross time (Gaussian-weighted least-squares straight line fitting; sigma
0.0 s), spatially smoothed using an 5 mm FWHM Gaussian kernel,
lice-time corrected for interleaved acquisition, and intensity normal-
zed using grand-mean scaling of the entire 4D dataset by a single mul-
iplicative factor to minimize unspecific time effects. Functional time-
eries were motion corrected using MCFLIRT ( Jenkinson et al., 2002 ).
iven the detrimental effect of residual motion artifacts on measures

http://www.siglent.com
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f functional connectivity ( Power et al., 2015 ; van Dijk et al., 2012 ),
nd to minimise the occurrence of spurious dynamics resulting from
ovarying physiological sources (e.g., heart rate, respiration; Gonzalez-
astillo and Bandettini 2018 ), we also identified and removed any such
rtifactual signals: using MELODIC ( Beckmann, 2012 ; Beckmann et al.,
004 ), we applied a probabilistic independent component analysis (ICA)
o decompose the time-series into 50 independent spatial and tempo-
al components. Artifactual components were then identified automat-
cally with the Spatially Organized Component Klassifikator (SOCK;
haganagarapu et al. 2013 , 2014 ), and signal relating to these nui-
ance covariates were regressed from the time-series using the fsl_regfilt

tility. Importantly, dyad-specific event sequences (onsets and dura-
ions of round types) were entered into the ICA applied to each pair
f time-series, and post-hoc regression analyses ensured that no task-
elated component was classified as artifactual. Although other ICA-
ased strategies for the removal of artifactual signals have been shown
o outperform SOCK in terms of sensitivity to detect motion-related sig-
als, it is more effective than nuisance regression and highly reliable in
ts detection of remaining CFNs ( Pruim et al., 2015 ). 

.6. Regions of interest 

From the pre-processed functional images, we extracted aver-
ge time-series across all voxels contained within each of the
00 non-overlapping elements of the cortical parcellation from
chaefer et al. (2018) . Derived from a fusion of local gradient and global
imilarity approaches, each cortical parcel expresses high connectional
omogeneity - that is, all voxels assigned to a given parcel exhibit similar
atterns of connectivity with the rest of the brain. Moreover, this par-
ellation preserves the topographical structure of seven CFNs detected
eliably in the brain at rest ( Yeo et al., 2011 ): it encompasses every cor-
ical node of the visual (Vis) and somatomotor network (SM), dorsal
nd ventral attention networks (DAN and VAN), limbic network (Lim),
ronto-parietal network (FP) and the default mode network (DMN). This
arcellation therefore allowed us to examine the relative involvement
f these seven CFNs, and dynamism among them, during interactive be-
aviour. 

.7. Dynamic functional connectivity 

State-based analyses of dynamic functional connectivity are
rounded in the general framework of probabilistic generative models.
elonging to the class of matrix factorisation models, they assume that
he observed data extracted from regions of interest at any one time-
oint are generated from latent source factors (states) with lower di-
ensionality in a latent subspace, together with measurement noise.

dentification of these latent factors is achieved with vector autoregres-
ive and factor analysis models. The optimal number of latent states is
etermined from the data using Bayesian model selection, which pe-
alises excessively complex models. The observed brain data at each
ime point are then generated as the summation of activity of several
atent states. 

To identify latent states and estimate their temporal evolution during
nteractive behaviour on the iPG, we applied Bayesian Mixture of Factor
nalysers (BMFA; Ghahramani and Beai 2000 ) to the entire time-series

all 600 volumes) extracted from each of the 400 regions of interest
cross all 30 participants. This analytical technique models the observed
ata at a given time-point as a weighted average of factor analyser den-
ities. A recent extension to BMFA applies hidden Markov models to
nfer the structure of the latent subspace ( Taghia et al., 2017 , 2018 );
idden latent states are linked together through a first-order Markov
hain, with an implicit assumption that the stochastic rule of state tran-
itions depends only on the last state. This temporal assumption has
et to be confirmed with lower frequency fMRI data acquisition, how-
ver, and any deviation from this assumed Markovian temporal struc-
ure might be detrimental to such modelling. Since BMFA does not as-
4 
ume any temporal dependencies among states, is it influenced less by
ampling frequency. Indeed, it has been shown that the accuracy of es-
imation achieved by mixture models is comparable to, and sometimes
etter than, hidden Markov models applied to data acquired with lower
ampling frequencies such as that used in the present study, particularly
ith small sample sizes ( Ezaki et al., 2021 ). 

In BMFA, the number of states to be extracted must be set a priori .
e determined the optimal model structure (number of states) using

 general criterion: BMFA was computed with variational Bayesian ap-
roximation for 2 to 30 states, each number of states estimated 10 times
ith random initialisations and estimation convergence controlled by
ree Energy and parameter change. The optimal number was then de-
ermined by identifying the point at which the change in Free Energy
improvement in model fit) was too small to justify higher model com-
lexity (an increase in the number of states). As a verification of this
pproach, we also computed several metrics employed commonly to
valuate the optimal solution of cluster analyses: silhouette and point-
iserial correlation coefficients, and Davies-Bouldin, Calinski-Harabasz
nd Dunn indices. 

For each of the optimal set of states, BMFA estimated its group-level
attern of covariance among the 400 regions of interest and its posterior
robability at each time point. We then segmented its time-course of oc-
urrence probability into the three types of iPG rounds (COOP, COMP
nd CTRL) before concatenating these segments into player- (Builder
nd Other) and condition-specific time-series. Rounds in which Others
ailed to communicate if they were cooperating or competing (Unde-
ned) were omitted from this process and all subsequent analyses. From
hese concatenated time-courses, we calculated the average evolution
f a given state together with its occupancy, lifetime, and transition
robability (see Supplementary Fig. S1). For each volume of the con-
atenated time-courses, the dominant state was determined as the one
ith the highest probability of occurrence (winner-takes-all approach).
he concatenated time-series were then divided into epochs in which a
ominant state was sustained, from which the three temporal character-
stics were computed. Occupancy during each condition was calculated
s the proportion of epochs in a concatenated time-series expressing a
iven state to the number of all epochs, and lifetime was calculated as
he mean duration of epochs expressing that state. The transition proba-
ility among states was calculated across the entire concatenated time-
eries, on a volume-by-volume rather than epoch basis. Importantly, the
etween-state transitions were computed only from scans acquired con-
ecutively under the same condition - not across concatenated scans. 

.8. Partial least-squares 

Next, we assessed whether the three temporal characteristics for
ach state differed systematically between player roles and/or round
ypes. For each of the 30 participants, we computed role- and condition-
pecific S -dimensional vectors for occupancy and lifetime, where S is
he optimal number of states, and S x S matrices of state transition prob-
bilities. To identify differences or commonalities in the expression of
tates during each type of player role and round type, we subjected these
hree sets of vectors and matrices to Partial Least-Squares (PLS) analysis
e.g., McIntosh et al. 1996 , McIntosh and Lobaugh 2004 ). For each of
he three temporal characteristics, six condition- and role-specific ma-
rices were created comprising 30 (participant) rows and columns con-
aining vectorised occurrence probabilities or lifetimes for each state,
r between-state transition probabilities. These six matrices were then
tacked together to form a single data matrix, which was adjusted to
emove subject-specific effects; specifically, the mean across all six ma-
rices belonging to a particular subject were subtracted from each con-
tituent matrix. The PLS analysis computed a new cross-block matrix, M,
hat defined the covariance among the six condition- and role-specific
atrices for each metric. Through singular value decomposition of M,
 set of latent variables (LV) emerged that each identified a partic-
lar pattern of covariance among the input matrices: one element of



D.J. Shaw, K. Czekóová, R. Mare ček et al. NeuroImage 269 (2023) 119933 

e  

c  

m  

m  

d  

a  

t  

t
r

 

t  

p  

t  

u  

s  

L  

s  

w  

s  

t  

p
p

2

 

s  

i  

d  

b  

p  

d  

v  

t  

v  

t  

f  

c  

d  

i  

i
 

e  

3  

i  

a  

o  

r  

i  

e  

p  

c  

(  

t  

p
 

A  

c  

s  

B  

f  

s  

f  

t  

t  

d

Table 1 
Average frequency and durations of interaction types. 

COOP COMP CTRL 

Frequency 17.7 ( ± 1.6) 13.5 ( ± 1.7) 16.0 ( ± 0.0) 
Round Duration (sec) 19.6 ( ± 2.0) 21.3 ( ± 1.1) 10.0 ( ± 1.8) 
Total Duration (sec) 347 ( ± 37) 286 ( ± 37) 160 ( ± 13) 
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ach LV contains numerical weights (saliences) for each input matrix,
reating a profile that represents the pattern of covariance (i.e. com-
onalities or differences) across conditions and roles. The other ele-
ent of the LV — the ‘singular image’ — identifies the cells of M (i.e.
ata values) that together covary across the conditions in a pattern
ligned with the saliences. In other words, for each temporal charac-
eristic, each LV identifies a pattern of covariance among the states
hat changes in a coordinated fashion across conditions and player 
oles. 

To assess the statistical significance of the emerging LVs, permuta-
ions were used to rearrange the input matrices; specifically, 10,000
ermutations reorganised the participant rows while holding constant
he data columns. This results in a distribution of new singular val-
es, which are used as a null hypothesis against which the original
ingular values are compared ( Krishnan et al., 2011 ; McIntosh and
obaugh, 2004 ). To test the reliability of the data elements, boot-
trapping was used to create entirely new sets of data by sampling
ith replacement. By dividing the mean of the distribution by its

tandard error, bootstrap ratios were derived; the larger the ratio,
he more stable the data value. Bootstrap ratios can then be ex-
ressed as z-scores, and considered significant at z > 1.96 (equivalent to 
 < .05). 

.9. Cross-validation 

We evaluated the robustness of LVs emerging from the PLS analy-
es by performing a cross-validation on an independent dataset. Specif-
cally, we assessed whether the temporal characteristics of states that
ifferentiated reliably between rounds types in the present study could
e used as a training dataset to classify the type of interaction taking
lace in a test dataset acquired from an independent sample. The test
ataset is described fully in Š piláková et al. (2020) . In brief, 38 indi-
iduals (22 males; mean age = 22.44 [SD = 1.90] years) underwent
wo runs of fMRI whilst they interacted in pairs on a slightly different
ersion of the iPG. One of these runs was used as the test dataset for
his cross-validation - the run in which pairs interacted in a turn-based
ashion on a version of the iPG that was identical in every way to the
urrent adaptation except that Others were instructed to help or hin-
er on each round rather than choosing themselves. Functional brain
mages were acquired with the same 3T Siemens Prisma scanners using
dentical image acquisition parameters. 

We created the test dataset in same way as the training dataset: for
ach of the optimal set of states emerging from the BMFA analysis of the
0 functional brain images acquired in the present study, we estimated
ts posterior probability at each time point of the 38 functional brain im-
ges acquired in the previous study. As before, we then segmented each
f the resulting 38 probability time-courses into the three types of iPG
ounds (COOP, COMP and CTRL) before concatenating these segments
nto role- (Builder and Other) and condition-specific time-courses. For
ach of the 38 subjects and both player roles, we then averaged the
robability time-course for each state across all rounds of a particular
ondition. The test dataset then comprised 228 samples for each state
19 pairs x 2 players x 2 roles x 3 conditions). In the exact same manner,
he training dataset comprised 180 samples for each state (15 pairs x 2
layers x 2 roles x 3 conditions). 

The training procedure was performed in the Classification Learner
pplication of MATLAB, using a 5-fold validation scheme and all the
onstituent classification models: decision trees, discriminant analysis,
upport vector machines, logistic regression, nearest neighbours, naive
ayes, kernel approximation, ensembles, and neural networks. Features
or training the classification models were selected from elements of
ingular images associated with each of the three PLS analyses that dif-
erentiated maximally among COOP, COMP and CTRL rounds in the
raining dataset. The classificator with the highest estimated classifica-
ion accuracy was used to predict the type of round from which the test
ataset had been acquired. 
5 
. Results 

Across all 30 participants, the mean ( ± standard deviation) fre-
uency with which each type of interaction was encountered and the
mount of time spent within them is provided in Table 1 . To assess
he distribution of Others’ choices throughout the course of the iPG,
e computed the one-lag correlation of binarised event sequences from

ach pair (1 = COOP, 0 = COMP; CTRL rounds were pseudo-randomly in-
erspersed throughout the event sequence). The median autocorrelation
as 0.13, and the highest (worst case) was 0.37. This demonstrates that
thers’ choices to cooperate or compete were distributed evenly across

he scanning procedure, even in the worst case (see Fig. 1 ). 

.1. Latent states of dynamic functional connectivity 

Inspection of the relative change in Free Energy with increasing
odel complexity indicated that six latent states were optimal. This con-

erged with the first peaks of the silhouette and point-biseral correla-
ion coefficients, and the Calinski-Harabasz index (see Supplementary
ig. S2). The matrices of Fig. 2 A present distinct patterns of covariance
mong all 400 ROIs captured by each of these six states. Fig. 2 B illus-
rates the mean (and standard deviation) temporal evolution of each
tates’ probability of occurrence over the course of each interaction type
or each player role, across all participants. Since all rounds had vari-
ble durations determined by players’ performance, we resampled the
pochs to a common time interval from 0 to 1 (beginning and end of the
ound) before averaging. To assess the impact of hemodynamic delay on
he calculation of states’ temporal characteristics and any subsequent
nalyses, we performed a direct comparison of occupancy, lifetime and
ransition probability across participants when computed from concate-
ated condition- and player-specific time-series with and without the
nclusion of the first two volumes (4 secs post onset). All characteristics
ere highly similar when calculated from either dataset (see Supple-
entary Fig. F3), indicating that any hemodynamic delay had little to
o influence. Fig. 3 presents the results of PLS analyses applied to the
atrices for each temporal characteristic, from which emerged two sig-
ificant LVs for occupancy (LV1 Occ , p < .001; LV2 Occ , p < .001), two for
ifetime (LV1 Life , p < .001; LV2 Life , p = .020), and two for between-state
ransitions (LV1 Trans , p < .001; LV2 Trans , p = .001). Below we describe the
esults for each state separately. 

State 1 is characterized primarily by positive covariance among bilat-
ral DMN and Vis network, but also the left FP network. LV1 Occ reveals
hat this state occurs with much higher probability in Builders relative
o Others during CTRL rounds, and marginally so in COMP rounds, but
he reverse is true during COOP rounds. A similar pattern is revealed
y LV1 Trans ; all transitions from and to State 1 occur with much higher
robability in Builders relative to Others during CTRL rounds and, to a
esser extent, COMP rounds. A different pattern is revealed by LV2 Trans ,
owever; in both player roles, transitions to State 1 from State 4 are
ore probable during CTRL rounds relative to COOP and COMP rounds.
his aligns with the shortest stability (lifetime) of State 4 during CTRL
ounds (see below). The PLS analysis indicated that the lifetime charac-
eristic of State 1 does not differentiate reliably between player roles or
ound types. 

State 2 captures a pattern of positive covariance among bilateral
AN, DAN, left FP network and, to lesser extent, right FP network and

eft DMN. The occupancy and between-state transitions involving this
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Fig. 2. States emerging from BMFA. A : Covariances among all 400 ROIs captured by each of the six states, organised by the canonical functional brain network to 
which they belong in each hemisphere. B : Each states’ mean ( ± SD) posterior probability across the whole sample ( N = 30), plotted across a standardised round of 
each condition type and separately for each player role. 

s  

S  

w  

r  

l  

t  

2  

e  

2  

r  

f  

a  

S
 

D  

v  

T  

m  

i  

S  

v  

r  

m  

w
 

D  

t  

n  

t  

a  

C  

i  

t  

S  

t  

2  

p  

S  

p  

g  

l
 

l  

o  

t
r  

t  

S  

d  

c
 

b  

F  

r  

c  

r  

6  

t  
tate show a directly opposing pattern to State 1: LV1 Occ reveals that
tate 2 has a far greater probability of occurrence in Others compared
ith Builders during CTRL rounds, and a marginally so during COMP

ounds, but the reverse is true in COOP rounds. LV1 Trans shows a simi-
ar pattern of differentiation between player roles in all but one of the
ransitions from and to State 2, the exception being those between State
 and 3 that happen with higher probability in Builders relative to Oth-
rs during CTRL and COMP rounds. Interestingly, the lifetime of State
 and some of its between-state transitions also differentiate between
ound types: LV1 Life shows that this state occurs with greater stability
or both player roles during COMP rounds compared with both COOP
nd CTRL rounds, and LV2 Trans shows that transitions to State 2 from
tate 6 are least probable during COMP rounds. 

State 3 identifies a pattern of positive covariance among bilateral
MN and Vis networks, similar to State 1, but also their negative co-
ariance with the DAN and (to a lesser extent) the left SM network.
he occupancy of this state differentiates between player roles in a way
irroring that of State 1, and LV2 Life reveals that its lifetime is shortest

n Others during CTRL rounds. LV1 Trans reveals transitions from and to
tate 3 that also differentiate player roles in a way that mirrors those in-
olving State 1, but LV2 Trans shows a pattern of differentiations among
ound types; for both players, transitions from State 3 to State 5 are
ore probable during COMP and COOP (interactive) rounds compared
ith CTRL rounds, while those to State 6 show the reverse pattern. 

State 4 captures a pattern of positive covariance among the bilateral
MN, DAN, Vis and FP networks, and their negative covariance with

he right (but not left) SM network. The occupancy of this state does
ot differentiate reliably between player roles or round types. However,
he lifetime of State 4 differentiates among round types in the same way
6 
s State 2 - it occurs with greater stability for both player roles during
OMP rounds compared with both COOP and CTRL rounds. Transitions

nvolving State 4 reveal a similar pattern of differentiation among round
ypes, but also between player roles: LV1 Trans shows that transitions from
tate 4 to State 1 differentiate between player roles in a fashion similar
o the occupancy characteristic of State 1, while its transitions to State
 and 5 differentiate between player roles in a similar way as the occu-
ancy of those states (see below). LV2 Trans shows that transitions from
tate 4 to State 1 also differentiate between round types, but in an op-
osite way to the lifetime characteristic of State 4. In other words, the
reater stability of State 4 during COMP rounds means that it transitions
ess with other states during these interactions. 

State 5 is represented by a pattern of positive covariance among bi-
ateral VAN, SM and Vis networks. In a pattern that mirrors State 2, the
ccupancy of State 5 differentiates between player roles while its life-
ime characteristic differentiates among round types. Similarly, LV1 Trans 

eveals that all transitions to and from State 5 show a pattern of differen-
iation among player roles that mirrors those involving State 2. Unlike
tate 2, however, LV2 Trans reveals that transitions to State 5 from State 3
ifferentiate among round types - they are more probable during COMP
ompared with COOP and CTRL rounds. 

Finally, State 6 captures a pattern of positive covariance among the
ilateral DAN, SM and Vis networks, and, to a lesser extent, the VAN and
P network. State 6 shows a unique pattern of differentiation among
ound types - for both players, it has the highest probability of oc-
urrence during CTRL rounds, but the highest stability during COMP
ounds. As mentioned above, LV1 Trans captures transitions among State
 and State 1 that differentiate between player roles in manner consis-
ent with the latter’s occupancy profile. The same is true for transitions
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Fig. 3. Systematic patterns of dynamic functional connectivity. This image illustrates results from the separate partial least-squares analyses applied to the occupancy 
( A ), lifetime ( B ) and between-state transition probability matrices ( C ). Two significant latent variables (LVs; p -values < 0.02) emerged from each analysis. For each LV, 
the bar graph plots saliences across the three conditions (COOP, COMP and CTRL) for each player (Builder and Other), expressed as a deviation from the overall mean; 
the adjacent vector presents bootstrapped singular values that identify states expressing this pattern significantly (z > 1.96, p < 0.05). States with positive bootstrap 
values are correlated positively with the profile of saliences, and those with negative values are correlated negatively with that profile. Together, these pairs of plots 
illustrates the six states’ occupancy, lifetime or between-state transition probability across conditions for each player role. 

Table 2 
Performance of the support vector machine classification. 

Predicted 

COOP COMP CTRL 
True COOP 44 22 10 

COMP 32 39 5 
CTRL 10 9 57 
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rom State 6 to State 2. However, LV2 Trans reveals transitions involving
tate 6 that differentiate among round types; those from State 3 and
o State 2 are most probable during CTRL relative to COMP and COOP
ounds, possibly reflecting the longer lifetimes of these states during
nteractive rounds. 

In summary, all states expressed one or more temporal properties
hat differed systematically among types of round: the occupancy of
tate 6 (LV2 Occ ), the lifetime of State 2, 4, 5 and 6 (LV2 Occ ), and certain
etween-state transitions among State 3, 4, 5 and 6. 

.2. Cross-validation 

To validate the results of the BMFA and PLS analyses, the ten sig-
ificant cells from the singular images of the aforementioned LVs were
elected as features for training classification models (see Supplemen-
ary Fig. S4). The Support Vector Machine (Medium Gaussian) achieved
he highest estimation accuracy during the training process (60.6%),
nd when applied subsequently to the test dataset it correctly clas-
ified 61.4% of rounds as COOP, COMP or CTRL (specificity = 0.80,
ensitivity = 0.61; see Table 2 ). This classification accuracy was signifi-
antly higher than chance (No Information Rate = 33.3%; p < .001; exact
inomial test). 
7 
. Discussion 

The present study investigated the nature of dynamic functional
rain connectivity during distinct types of interactive behaviour. Specif-
cally, we examined if and how systematic patterns of dynamism among
even well-established canonical functional brain networks (CFNs) are
licited during cooperative and competitive interactions. To do so, we
pplied state-based analyses of functional connectivity to brain imag-
ng data acquired from individuals engaged in an interactive task that
aptures many of the defining properties of naturalistic social interac-
ion. This revealed two primary findings that together reveal properties
f brain chronnectomics during real-world social interaction: First, we
dentify six latent states of functional connectivity that each capture
iscrete patterns of integration and segregation among specific CFNs
uring interactive behaviour. Second, we reveal how the brain switches
ynamically among these states in a systematic fashion that dissociates
ooperative from competitive interactions. With these temporal char-
cteristics, we predicted with above-chance accuracy the type of inter-
ction taking place between pairs of individuals from an independent
ataset. These findings support the emerging view that interactive be-
aviour is supported by domain-general rather than uniquely social cog-
itive systems ( Binney and Ramsey, 2020b ; Ramsey and Ward, 2020 ),
nd the static brain networks associated frequently with social cognitive
rocesses represent superordinate approximations of dynamic connec-
ivity among CFNs ( Alcalá-López et al., 2018 ; Barrett and Satpute, 2013 ;
iric et al., 2017 ) 

It has long been known that complex cognition involves mul-
iple interacting brain networks (e.g., Bressler and Menon 2010 ,
esulam 1990 ), and so it is unsurprising that this is true for

he multitude of high-level cognitive processes supporting interper-
onal behaviour ( Molapour et al., 2021 ). Indeed, earlier investi-
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ations have shown that the functional brain networks supporting
ental state inferences and the processing of others’ actions co-

ctivate during social interaction, likely reflecting their mutual de-
endency (e.g., Ciaramidaro et al. 2014 , Redcay and Schilbach 2019 ,
perduti et al. 2014 ). It is also well established that intrinsically con-
ected functional brain networks provide a backbone that constrains
he flow of information throughout the brain during cognitive processes
e.g., Cole et al. 2014 , 2016 ). As such, it is also unsurprising to see the
nvolvement of multiple CFNs during social interaction. As reviewed
arlier, recent meta-analytic data suggests that cognitive processes de-
loyed during social interaction are supported by distinct patterns of
onnectivity among the visual (Vis), somatomotor (SM), ventral (VAN)
nd dorsal attention (DAN), limbic (Lim), fronto-parietal (FP) and de-
ault mode (DMN) networks ( Feng et al., 2021 ; Schurz et al., 2020 ).
owever, the present study provides the first demonstration of func-

ional connectivity among specific CFNs during social interactions, go-
ng beyond the snapshots revealed by meta-analytic data. Moreover,
he accuracy with which we predicted the type of interactions taking
lace in an independent dataset using only the temporal characteristics
f dynamism among these discrete networks provides strong evidence
or their systematic involvement during interpersonal behavior. 

The systematic patterns of involvement and transitions among CFNs
hat we have observed during interpersonal exchanges extend previ-
us findings of their functional connectivity during discrete, general-
urpose cognitive processes (for a review, see Gonzalez-Castillo and
andettini 2018 ). Three of the states emerging from our analyses cap-
ure patterns of functional connectivity that involve the DMN: both State
 and 3 are characterized primarily by its positive covariance with the
is network, and the latter also captures its negative covariance with the
AN and left SM network. These two states occur and transition among
ne another with greatest probability in Builders during control rounds,
hile they are acting independently. Given the apparent role of dynamic

unctional connectivity among these networks during sustained atten-
ion ( Cai et al., 2021 ; Lee et al., 2022 ), we interpret these patterns of
ositive covariance to reflect externally directed attention uninterrupted
y the actions of a fellow interactant. The negative covariance ( “anti-
orrelation ”) among the DAN and the DMN captured by State 3, which
as expressed with greatest stability and transitioned to State 1 more

requently in Others while they passively observed the actions of the
uilder, has been observed in tasks that require individuals to infer the
ental (i.e. belief) states of another agent (e.g., Schuwerk et al. 2014 ).
his pattern of covariance, might therefore reflect shifts from passive
bservation to active inferences about a player’s motivations and inten-
ions to understand and predict their actions. 

In contrast, State 4 captured positive covariance among bilateral
MN, DAN, Vis and FP networks, and is expressed with greatest sta-
ility during competitive interactions in both players. Functional con-
ectivity between the DMN, DAN and Vis network has been shown to in-
rease during tasks requiring visual attention ( Spadone et al., 2015 ), and
ighter integration between the DAN, Vis and FP networks is reported
uring working memory processes ( Kwon et al., 2017 ). The DAN is also
ightly interconnected with the FP network (e.g., Spreng et al. 2010 ),
nd positive covariance between these two networks comprise State 2,
 and 6 - states expressed with greater stability during competitive com-
ared with cooperative interactions. The FP network is also referred to
s the “central executive network ” ( Seeley et al., 2007 ) given its broad
ole in executive functions (e.g., working memory, response inhibition,
ask switching), and is believed to coordinate goal-directed information
ow throughout the brain ( Uddin et al., 2019 ). Sitting interposed be-
ween the DMN and DAN, and exhibiting fractionation into two subsys-
ems coupled differentially to these adjacent networks, it is suggested
hat the FP couples flexibly with the DMN or DAN to support rapid task-
ependent adjustments in introspective and externally focused visuospa-
ial processes ( Dixon et al., 2018 ). We interpret the greater stability of
hese states during competitive compared with cooperative exchanges
o reflect the greater need for flexible cognition and adaptive behaviour
8 
n the former type of interaction, during which both players must react
o their co-player’s moves. 

It is noteworthy that State 2 and 6 involve both the DAN and VAN,
ith contributions from the DMN and FP network - both are expressed
ith greatest stability during cooperative rounds. Despite their special-

sation for distinct attentional subprocesses, with the DAN performing
op-down controlled attentional selection and the VAN involved in the
etection of unexpected but behaviorally relevant stimuli, the flexible
ontrol of attention required during interpersonal exchanges will pre-
umably necessitate both systems to operate in concert with one another
ynamically. Indeed, these systems are observed to be both correlated or
nticorrelated depending on task demands ( Vossel et al., 2014 ). It is pos-
ible, then, that excitatory projections from the DMN to both the DAN
nd VAN ( Zhou et al., 2018 ) serve to mediate the recruitment of these
wo attentional systems to enable adaptive and reciprocal behaviour
uring interactive exchanges, coordinated by the FP ‘control’ network
o align with task demands. 

The involvement of the DMN in four of the six states emerging from
ur interactive task is perhaps to be expected given its purported role
n mediating information transmission between other intrinsic networks
nd meta-analytic evidence of its involvement during social reasoning
see Schilbach et al. 2008 ). Core nodes of this network, particularly
he temporoparietal junction, precuneus and dorso-medial PFC, are en-
aged consistently during tasks that require us to represent others’ men-
al states (e.g., their goals and intentions; ( Arioli et al., 2021 ; Li et al.,
014 ; Van Overwalle, 2009 ). This is proposed to reflect the role of the
MN in self-projection; by integrating incoming extrinsic inputs with
rior intrinsic information through episodic and autobiographical mem-
ry retrieval, this network is believed to form context-dependent models
f dynamic social situations between the self and others ( Yeshurun et al.,
021 ). 

Altered connectivity within the DMN, and its connectivity with other
ntrinsic networks, might therefore present a biomarker for the dis-
uptions to social cognition and interpersonal dysfunction that char-
cterises many neurological and most - if not all - psychiatric disor-
ers ( Cotter et al., 2018 ; Kennedy and Adolphs, 2012 ; Schilbach, 2016 ).
educed modulation of the DMN and functional connectivity among

ts hub nodes during social information processing has been reported
n schizophrenia and autism spectrum disorder ( Du et al., 2016 ;
yatt et al., 2020 ). Further, a meta-analysis of psychiatric disorders
y Sha et al. (2019) revealed hypo-connectivity between the DMN and
AN, and between the VAN and FP network, but hyper-connectivity be-

ween the DMN and FP and between the DMN and DAN. In this light, the
attern of interconnections we have demonstrated between intrinsically
onnected canonical brain networks, which differentiate between co-
perative and competitive interpersonal behaviours, may go some way
owards the definition of a pathoconnectome underpinning the social
mpairments exhibited by various psychopathologies. 

To investigate the involvement of CFNs during interactive behaviour,
e employed one of the multi-resolution parcellations provided by
 Schaefer et al., 2018 ) - one generated from (and cross-validated on)
he resting-state fMRI data of nearly 1500 brains, and resulting in net-
orks comprising non-overlapping nodes with high functional homo-
eneity and harmonized to the network structure of ( Yeo et al., 2011 ).
his is not the only option available for this purpose, however; flexible
arcellations exist that adapt group-level parcels to individual brains
e.g., Mejia et al. 2020 ), and leverage faster acquisition techniques
hat improve the reliability of individual-specific parcellations (e.g.,
ynch et al. 2020 ; for reviews see Arslan et al. 2018 , Krendl and Betzel
022 , Uddin et al. 2019 ). Moreover, the 400-node parcellation that we
sed in the present study might not achieve the same level of functional
omogeneity as one of the finer parcellations, and the 7-network topol-
gy we selected can be fractionated further into finer sub-systems that
xpress similar levels of stability ( Yeo et al., 2011 ; Urchs et al., 2019 ).
s such, future studies should assess how the findings of the present
tudy compare to those that employ alternative parcellations and fine
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etwork structures. Further research is also needed to determine the
irected influence that CFNs exert on one another during social interac-
ions. Only then can we begin to understand their specific contributions
o social cognitive processes ( Schurz et al., 2020 ; Zhou et al., 2018 ). Fi-
ally, future studies should build on our increasing understanding of hub
odes in the brain ( Menon and D’Esposito, 2022 ; Molnar-szakacs and
ddin, 2022 ) to identify those through which CFNs communicate dur-

ng social interaction. 
An important limitation of our study, and one that should be ad-

ressed in future research to build upon and extend our findings, is the
ack of consideration for behaviours on our interactive task that might
e driven by, or give rise to, the dynamic connectivity we have observed
mong CFNs. In our study, we measured only the number of successful
oken placements made by each player and the total number of success-
ul recreations of target patterns. Given the relatively low numbers of
ach metric, we consider them too crude to evaluate against the rich in-
ormation provided by state-based analyses of dynamic functional con-
ectivity. Future studies should attempt to capture and model the con-
inuous temporal dynamics of players’ behaviour on interactive tasks
uch as the one we have employed. For example, by utilising the ver-
ion of our interactive task in which players move concurrently rather
han in a turn-based manner ( Š piláková et al. 2019 , 2020 ), the inter-
ependency of players’ moves could be quantified - that is, the degree
o which each action is a reaction (consequence) or antecedent to a
o-player’s behaviour, and how these dependencies might change as
eader-follower dynamics emerge. Cross-recurrence quantification anal-
sis (e.g., Wallot and Leonardi 2018 ) might offer new insights in this re-
ard, making it possible to identify repeating expressions of interactive
ehaviour during each exchange. Only with richer metrics of interactive
ehaviour such as these can we begin to understand how inter-network
ynamics contribute to interpersonal behaviours. 

. Conclusions 

This study has revealed latent states of dynamic functional connec-
ivity comprising patterns of integration and segregation among distinct
anonical functional brain networks, the systematic expression and tran-
itions among which distinguished between cooperative and compet-
tive social interactions in two independent datasets. Since these func-
ional brain networks are believed to subserve domain-general cognitive
rocesses, we interpret these findings as evidence that social cognitive
rocesses reflect instantiations of these general-purposes processes, and
he static brain networks associated frequently with social cognitive pro-
esses represent superordinate approximations of underlying dynamic
tates. Our findings should direct future research into the pathoconnec-
ome; we have demonstrated the utility of our interactive paradigm and
ombination of analytical techniques for elucidating biomarkers (i.e.
isrupted dynamic functional brain connectivity) of the interpersonal
ysfunction characterising many neurological and psychiatric disorders.
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