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Abstract  

Numerous different combinations of crew alternatives can be deployed within a 

labour intensive manufacturing industry. This can therefore often generate a large 

number of possible crew allocation plans. However, inappropriate selection of 

these allocation plans tends to lead to inefficient manufacturing processes and 

ultimately higher labour allocation costs. Thus, in order to reduce such costs, 

more allocation systems are required. The main aim of this study is to develop a 

Simulation-Based Multi-Layered Simulated Annealing (“S_MLSA”) system to 

solve crew allocation problems encountered in labour-intensive parallel repetitive 

manufacturing processes. The ‘Multi-Layered’ concept is introduced in response 

to the problem-solving requirements. As part of the methodology used, a process 

simulation model is developed to mimic a parallel-repetitive processes layout.  A 

Simulated Annealing module is proposed and embedded into the developed 

simulation model for a better search for solutions. Also, a Multi-Layered 

Dynamic Mutation operator is developed to add more randomness to the 

searching mechanism. A real industrial case study of a precast concrete 

manufacturing system is used to demonstrate the applicability and practicability 

of the developed system. The proposed system has the potential to produce more 

cost effective allocation plans, through reducing process waiting times as 

compared with real industrial based plans.  

Keywords: Simulated Annealing; Crew Allocation, Parallel Repetitive Processes, 

Precast concrete Industry, Manufacturing Simulation  
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Introduction  

The precast concrete products industry is labour-intensive in which different skilled 

labourers are required during the manufacturing process. In this industry, a number of 

manufacturing system layouts are designed, which involve repetitive parallel production 

processes. Crews are often required to repeat the same work in different locations of the 

production facility, moving from one location to another.   

Due to the large array of different possible crew allocations to similar parallel or linear  

repetitive activities of an offsite manufacturing system, this type of allocation is 

classified as a complex combinatorial problem (Floreza and Castro-Lacoutureb, 2014; 

Bhoyar and Parbat, 2014). However, the ‘classical problem solving’ techniques that are 

widely used in optimising traditional allocation problems cannot be used to obtain 

optimal solutions for such combinatorial problems due to the large and complex set of 

allocation alternatives (Collet and Rennard, 2007).   

Therefore, the lack of appropriate optimisation systems for crew allocations in 

the precast labour-intensive manufacturing systems suggests the need to develop 

advanced crew allocation systems. These systems will assist production planners of 

such manufacturing systems to achieve the most efficient allocation of crews and this 

will eventually contribute to much reduced labour allocation costs, reducing process-

waiting time and subsequently improving the overall productivity. 

This study presents an innovative system for crew allocation dubbed “S_MLSA” 

which is specially developed for the efficient allocation of crews of workers to parallel 

repetitive labour-driven processes with a focus in the precast concrete industry.  
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Crew Allocation Problem in the Precast Concrete Parallel Repetitive 

Processes  

A crew allocation problem appears when the formation of any crew involves shared 

labourers working on parallel or sequential similar/different processes. This type of 

labour sharing can cause high process-waiting times, low resource utilisations, a 

disturbed workflow and subsequently high allocation costs. Since a parallel or 

sequential similar/different processes structure of a manufacturing system is pre-

specified, the involvement of shared workers can be required in one or more processes. 

See Figure 1 for crew allocation in a parallel repetitive processes manufacturing layout:   

 
Figure 1. Schematic diagram for the crew allocation problem in the precast concrete 

industry (Al-Bazi et al. 2010) 
 

As presented in Figure 1, the allocation process for a particular operation starts with 

identifying the minimum requirement of different skilled labourers. A number of crew 

alternatives that can satisfy this minimum labourers requirement are available to work on a 

process. There is a minimum number of skilled workers in a crew to work at a process and 

this is given by the Health and Safety (H&S) requirements and requirements of the process. 



5 

 

However, more skilled workers can reduce process time but could deprive other parallel 

processes from the required skilled workers and hence prolong process time and possibly 

quality. Therefore optimising the allocation process is not only important but vital for the 

industry to compete against other building materials in terms of cost and delivery time. 

Previous Literature on Crew Allocations in Both Precast Concrete and 

Construction Industries  

In order to reduce waste and improve the quality of construction in a cost-effective 

manner, offsite manufacturing systems are used as construction components that can 

vary from complete structure systems to cladding and individual components (Alazzaz 

and Whyte, 2014). Production of precast components is factory based and follows a 

well-defined manufacturing processes which include intensive crew allocation 

activities.   

A number of researchers investigated the crew allocation problem in their work 

including but not limited to Biruk and Jaśkowski (2008) who used a Petri Nets-based 

approach to find the optimal project planning and allocation of individual groups of 

subcontractors to execute repetitive processes. The project duration with a set risk level 

was the only focus rather than allocation cost. El-Gafy (2006) developed an Ant Colony 

Optimisation (ACO) algorithm to perform resource allocation in a repetitive activities 

construction project. This allocation is constrained by the activity precedence, a 

resource unique skill, and multiple resource limitations. Al-Bazi and Dawood (2010) 

utilised a Process Simulation-based Genetic Algorithms approach to allocate crews of 

workers to labour-intensive repetitive processes at a precast concrete facility. The crew 

formation consisted of a number of workers each with multiple skills. Huang and Sun 

(2009) developed a Genetic Algorithm model for scheduling workgroup-

based repetitive or similar activities in a project. Bhoyar and Parbat (2014) presented a 
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new scheduling model for repetitive construction projects with multiple crews. Their 

developed model not only complies with precedence logic and resource crew 

availability, but also ensures minimum project duration and maximum crew work 

continuity. However, neither the skills of workers nor the allocation cost is considered. 

Floreza and Castro-Lacoutureb (2014) proposed a framework for a decision support 

system to assist contractors in the allocation of crews in labour dependent masonry 

projects. The activities layout within each masonry project was not of the parallel 

repetitive type. Nassar (2005) developed a Genetic Algorithm model to optimally assign 

resources to repetitive construction projects. Although different crew formation options 

are available for each project activity, only the crew formation size is considered in the 

optimisation of the overall project duration. Vaziri, Carr and Nozick (2007) developed a 

solution procedure based on combining Simulation and the Simulated Annealing 

approach for optimal assignment of resources to tasks when this affects the probability 

distribution for task duration. Challenges in single-skill labour resource management 

and scheduling over multiple concurring construction sites are addressed by Lam and 

Lu (2008).  

Although some of the previous works above have shown serious attempts in 

modelling and solving crew allocation problems in a repetitive-parallel processes 

environment, the focus of these works was only on optimising project duration, activity 

scheduling and profitability. However, this work presents a new crew allocation system 

that optimises costs of resources allocation taking into consideration different crew 

allocation constraints such as skills of workers, crew formation details and the parallel 

repetitive layout of manufacturing operations.  
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Development of the Crew Allocation System: Theoretical Concept   

The Architecture of the Crew Allocation System 

The “S_MLSA” architecture (Figure 1) comprises a central simulation model, 

which is integrated with databases, and optimisation (Simulated Annealing) modules 

such that various possible allocation plans can be generated by simulating the allocation 

process of crews to production processes (see Figure 2). 

Input Integration

Simulated 
Annealing 

(described in figure 6)

Simulation
(described in figure 5)

Idle Time for 
Processes 

ProcessInput Output

Specifications 
Quantity
Requirements 

Product

Crew Name 
Crew formation
Process time
Crew population
Worker details 
Shift pattern

Labour Allocation of Crews 

Labour Cost

User Interface 
 

Figure 2. “S_MLSA” System Architecture 

 

The inputs, processes and outputs presented in Figure 2 are introduced and 

discussed as follows: 

 Inputs  

The main inputs to the system are: orders (demand) from customers, which 

includes numbers, sizes, quantities and  specifications of precast concrete components, 

to be produced in each labour-intensive production line at each section; labour 

information which includes different combinations of crews, workers, crew processing 
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time, and other workers’ related information such as worker skill and costs. The labour 

information is stored in a relational database using the Structured Query Language 

(SQL). SQL is a standardised programming language used for managing relational 

databases. This language enables simulation to access and retrieve these inputs through 

a developed input integration component. This component is one of the main process 

components that developed to enable such input integration.  

 

 Process 

The core of this module consists of three components; the first component is the 

process simulation model which is used to mimic the parallel repetitive operations 

within the manufacturing system. The second component is the ‘Simulated Annealing’ 

model that is developed to generate feasible allocation plans, which consist of a set of 

crews to be allocated to a number of processes. The third component is the input 

integration module in which inputs defined earlier are provided to the process 

simulation model. It consists of a number of integration technologies including ActiveX 

Data Objects (ADO) and Data Access Objects (DAO) technologies.  

The process starts by generating and retrieving the formation of each crew from 

the SQL database for the simulated annealing model in order to generate feasible 

allocation plans. These plans will then be evaluated by the process simulation model for 

the purpose of identifying the optimal/ near optimal allocation plan. 

The optimisation process is an iterative procedure of progressive improvement 

in which the proposed Simulated Annealing algorithm generates a feasible allocation 

plan while the developed process simulation model evaluates the performance of the 

resultant allocation, and based, on this, the Simulated Annealing algorithm adjusts the 

decision variables (crew alternatives) and selects the most promising plan. After each 
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iteration, the result of the evaluation in terms of cost and process-waiting time are stored 

in a database for further analysis. 

 Outputs 

As shown in Figure 2, a number of key performance indicators such as labour 

allocation costs, allocation plans for crews, and process-waiting time are considered as 

outputs. Each set of outputs (possible allocation plan and other key performance 

indicators) are stored in the SQL database for further analysis. Outputs are designed to 

identify the most useful key performance indicators that fairly reflect the performance 

of the developed system. In the next section, solution set representation/ structure and 

its inputs in terms of Multi-Layered Crew’s Vector are discussed.  

Solution Set (Multi-Layered Crew’s Vector) Representation   
 

A row vector is defined as an ordered collection of n elements, which are 

called components. In the proposed simulated annealing model different types of 

decision variables are placed in a multiple rows vector called a Multi-Layered Crew’s 

Vector. The Multi-Layered Crew’s Vector has a number of elements (inputs) 

representing different possible crews of workers based on their shift patterns. A Multi-

Layered Crew’s Vector structure has been designed to suit this type of problem (Al-

Bazi, Dawood and Dean, 2010). Figure 3 shows the proposed vector for the purpose of 

crew allocation: 
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Figure 3. Multi-Layered Crew’s Vector representation for crew allocation problem 

 

In Figure 3, the integer number of each input represents the crew index number 

of the set of crew alternatives associated with that input. i.e, this number would give the 

index of a crew that would be used in the solution. Each input has different possible 

alternatives of crews to be used in the solution. A crew’s vector is encoded in a decimal 

way. The Multi-Layered Crew’s Vector length represents the maximum number of 

processes involved in any labour-driven production facility. The decision variables are 

the number of sets of crews available to be allocated to each process. To evaluate each 

crew’s vector, a single objective function has been identified and adopted, which 

minimises the multi-skilled labour allocation costs. The objective function is a 

mathematical expression that an optimisation procedure uses to select better solutions 

over poorer solutions (King and Wallace, 2012, pp.61). Many constraints can be 

determined which limit production quantities, crew alternatives, and operational hours 

(shifts).  
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Objective Function  

The objective function below is formulated to evaluate the total resource allocation cost. 

The costs of physical resources are not considered in this model. Only costs of crews of 

workers based on their backgrounds/ skills are taken into consideration. The equation 

used to calculate the objective function is:  

  



n

i

iiii RCPUIRCBRCxf
1

       (1) 

Where:  

  n is the number of labour-driven processes  

 iBRC is the Busy Resource Cost for allocation i 

iIRC  is the Idle Resource Cost for allocation i (this is equivalent to the 

         cost of process waiting time) 
 

iRCPU  is the Resource Cost Per Use for allocation i 

The objective function (1) minimises the total resource allocation cost. This cost is the 

sum of the cost incurred by utilising a resource, loss opportunity cost of not utilising a 

resource and cost per use which indicates a cost that is incurred once, regardless of the 

number of units.     

Initial Solution Generation  

As an initial solution, an individual crew’s vector is generated using a random sampling 

technique. A random sampling technique, ‘Monte Carlo’, is used to select crew 

alternatives for each input (i.e process). A random integer number is generated for each 

input to randomly select the crew alternative for each process. The range of random 

numbers for each input can be determined using the following constraint:  

sisisi MaxCARMinCA ,,,         (2)   

Where:  
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siR , represents a random integer number for each crew’s vector i on working shifts 

siMinCA ,  represents the minimum number of crew alternatives in input i on working shifts 

siMaxCA ,  represents the maximum number of crew alternatives in input i on working shifts 

 

Constraint 2 ensures that only integer numbers lying between the minimum and 

maximum number of crew alternatives are generated for the PDM strategy.  

Once the individual crew’s vector is generated, the objective function is 

evaluated by processing it into the simulation model, assigning crew numbers 

associated with this vector to the simulated processes, running the simulation model and 

obtaining the output costs of labour. The PDM strategy is developed to add the required 

randomness for the searching process and to suit the type of allocation problem, see the 

section below for the PDM strategy. 

Probabilistic Dynamic Mutation (PDM) Strategy  

A PDM strategy is developed to achieve the best random exchanging of inputs 

for the Multi-Layered Crew’s Vector. In this strategy, random variates that are 

uniformly distributed on the closed interval [0,1] are generated to be attached with each 

input of the crew’s vector. If the input is vacant for a reason then the generated random 

number will be discarded and attention moves to the next input. A vertical mutation 

takes place to swap or alternate subsequently n input(s) of the selected crews’ vector 

with its set of alternatives from the multi-layered pool of crews’ alternatives after 

satisfying the condition below: 

 If the probability of mutating an input is less than or equal to the random 

number associated with that input then mutation of that input is possible.  

The probability of mutation which is equal to the Temperature coefficient 

‘Temp_Coeff’ (explained in the below section) can decide the number of exchanged 
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inputs. Selected inputs can be mutated with their respective ‘crew alternatives pool’ 

using Monte-Carlo sampling. This type of mutation strategy can provide an equal 

chance for all inputs to be exchanged with the opposite alternative inputs. See Figure 4 

for the proposed PDM strategy.    

 

Figure 4. The Probabilistic Dynamic Mutation (PDM) strategy 

 

Research Method 

As part of the methods used in developing the proposed allocation system, both process 

simulation technology and simulated annealing approach are used to mimic and then 

optimise the allocation of crews of workers to parallel-repetitive manufacturing 

operations.   

Process Simulation Modelling: The Modified Decomposition Algorithm  

As simulation of the manufacturing system of parallel repetitive production lines is a 

complex task, therefore, the researchers suggest that dividing this system into a number 

of sub-systems would make the simulation of each-sub system easier and more 
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manageable. Hence, based on the simulation steps suggested by Banks (1999), a 

decomposition methodology is introduced to modify/ advance these steps for easier 

simulation of large-scale systems/ problems. 

In using this methodology, a problem is defined and then  decomposed into a 

number of sub-problems in order to facilitate investigation, modelling and analysis of 

each sub-problem. To produce sub-models, a simulation process of each sub-problem is 

required. Each sub-problem is then verified to check whether or not the modelling 

process logic of the sub-problem is conducted correctly. If not, then the simulation 

process is reviewed and compared with the logic of the sub-problem. After verifying 

each sub-model individually, a validation process takes place to ensure that the 

simulated sub-model accurately represents the related part of the real life problem. A 

validation process is then applied to ensure that the sub-simulation model produces 

accurate outputs. After verification and validation of each sub-model have been 

achieved, all simulated sub-problems are combined together to form the whole 

simulation model. A thorough verification and validation process is used to check 

whether or not the combined sub-models reflect the entire real world. If not, then each 

sub-model is reviewed again. Simulation experiments are designed to run by executing 

the simulation model. All outputs are analysed and interpreted before being 

documented. See Figure 5: 
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Figure 5. The proposed decomposition simulation methodology, (modified from Banks, 
1999) 

Simulated Annealing Model Development  

Avello, Baesler and Moraga (2004, pp.510) define Simulated Annealing (SA) as ‘a 

meta-heuristic technique that proves to be effective as a solution for a number of 

problems, amongst them, simulation optimisation problems’. Kirkpatrick, Gelatt and 

Vecchi (1983) propose that SA form the basis of an optimisation technique to solve 

combinatorial problems. In addition, Janiak and Lichtenstein (2011, p.23) define SA as 

‘a random-search technique which exploits an analogy between the way in which a 
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metal cools and freezes into a minimum energy crystalline structure (the annealing 

process) and the search for a minimum in a more general system”. They add that ‘it 

forms the basis of an optimisation technique for combinatorial and other problems’. 

The temperature term in the simulated annealing is used as a parameter that affects the 

probability of accepting new solutions. In addition, it controls the level of randomising 

solution set inputs, which subsequently affects the quality of the new solutions being 

generated.  

Janiak and Lichtenstein (2011, p.23) use an imaginative analogy with a bouncing ball to 

illustrate the mechanism of finding promising solutions through SA: “SA approaches 

the global maximisation problem similarly to using a bouncing ball that can bounce 

over mountains from valley to valley. It begins at a high temperature which enables the 

ball to make very high bounces and so enabling it to bounce over any mountain to 

access any valley given enough bounces. As the temperature declines the ball cannot 

bounce so high and it can also settle to become trapped in relatively small range of 

valleys”.  

In the developed model, Simulated Annealing creates a new solution by 

modifying only one solution with a local move. This modification is applied only on 

one solution set at a time to mutate its inputs for the purpose of creating new solutions. 

The optimisation loop performs a random perturbation on design variables, whose 

manipulation coefficient (probability of mutation) is defined by the system temperature 

“Temp_Coeff”. The system temperature is initially high and cools down as the process 

evolves to an optimum solution. A number of cooling strategies can be used in order to 

lower the temperature; see Nouraniy and Andresenz (1998). The next iteration starts 

with a reduction in temperature calculated by the following equation that was suggested 

by Preiss (1999):  
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    𝑇𝑘+1=𝛼𝑇𝑘             …. (3)  

      Where:  

 

𝑇𝑘+1 is the temperature at the next iteration  

0< α <1 is the temperature reduction coefficient “Temp_Coeff”  

k is an index that indicates the iteration step  

Equation 3 indicates that a reduction in the next iteration temperature is obtained by 

multiplying the current iteration temperature by the temperature reduction coefficient, α.   

All such random searching methods may only reach a local optimal solution; SA 

attempts to rectify this by accepting inferior solutions with a certain probability and thus 

allow the search to escape local optima (Ólafsson and Kim 2002). And hence, the worst 

solutions are accepted with a probability p = exp (-df/T), where df is the increase in 

objective function and 𝑇𝑘 is the system ''temperature" irrespective of the value of the 

objective function.  

 

Thus, this probability of acceptance is high at the beginning and decreases over 

the course of optimisation process. Due to the possibility that worse solutions can be 

accepted, SA's major advantage over other methods is an ability to avoid becoming 

trapped in local minima. The process finishes when the temperature reaches some 

determined value or the objective function variation does not suffer relevant changes 

with perturbations of the variables. The simulated annealing algorithm that was 

proposed by Busetti (2003) has been tailored to be able to solve the aforementioned 

crew allocation problem. See Figure 6:  
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Figure 6. The simulated annealing algorithm (modified from Busetti, 2003) 

 

As noted in Figure 6, the process starts by generating an initial inputs set (crews’ 

vector) using Monte Carlo simulation. Before running the simulation module, both 

initial values of objective function and temperature coefficient are defined. After 

running the simulation, the resultant objective function value calculated by evaluating 

inputs in the allocation plan is then compared with the initial objective value. As 

mentioned earlier, worst solutions are accepted with a probability p = exp (-df/T). If 
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these solutions are rejected then they will be replaced by more promising ones. Inputs of 

the resulting vector are then manipulated by applying the suggested Probabilistic 

Dynamic Mutation (PDM) strategy.   

As noted from the flowchart above (Figure 6), there are two major processes that 

take place in the Simulated Annealing algorithm. First, for each temperature, the 

Simulated Annealing algorithm runs through a number of cycles. The number of cycles 

is pre-determined by the programmer. As a cycle runs, the inputs are randomised. Only 

randomisations which produce a better-suited set of inputs are retained.  

Once the specified number of runs (training cycles) is reached, the temperature 

could be lowered. If the temperature is not lower than the lowest temperature allowed, 

then the temperature is lowered and another run/ cycle takes place. The randomisation 

process is customised for the crew allocation system by using the PDM strategy.  

However, if the temperature is lower than the lowest temperature allowed, the 

Simulated Annealing algorithm terminates. The core of the Simulated Annealing 

algorithm is the randomisation of the inputs. This randomisation is ultimately what 

causes Simulated Annealing to alter the input values that the algorithm is seeking to 

decrease allocation costs.  

The calibration of the temperature parameter slows the process of manipulating 

and randomising inputs, which the quality of the solution depends on. The 

randomisation process takes as inputs the previous values of the vector and the current 

temperature. These input values are then randomised according to the temperature. A 

higher temperature results in more randomisation, while a lower temperature will result 

in less randomisation.  
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Assumptions of the Simulation Model  

A number of assumptions have been set to simplify the modelling process of the precast 

concrete manufacturing system being investigated. These are:  

 High level modelling is applied to simulate the processes involved in the 

manufacturing system. In this modelling, a group of sub processes/ operations 

within each process is considered without delving into the details and 

requirements of each of these sub processes.   

 Two working shifts are considered while developing the current prototype.  

 An average process time of each crew of workers is considered as a function of 

crew efficiency.  

 A process cannot be started without availability of all crew members. 

 First-Come First-Served (FCFS) is adopted as a processing priority rule.  

 Each order is processed by the same processing machines. 

 Each crew member is intensively involved to carry out the production process. 

 Each worker within a crew of workers is responsible to complete their job. 

 Breakdowns in any of the shared resources or multi-skilled labourers are not 

considered.  

 The whole responsibility for carrying out a job within a process is handed to the 

next shift crew of workers when the remaining time of the current working shift 

is insufficient to finish a process. 

 To commence processing, all crew members should be assigned to carry out that 

process and should be released at once on completion of the process. 
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Case study 

Background  

This case study was conducted as part of the ESPCO project that had been funded for 

the UK precast industry by the British Department of Trade and Industry under 

technology their initiative program. The ESPCO project (2006-2008) aimed at 

providing a flight-simulator-like tool to precast concrete companies to help them study 

cost and schedule trade-offs and identify effects of different concrete mix designs on the 

production process. One of these precast concrete companies was selected as a platform 

to test the proposed system due to that fact that its manufacturing system had a parallel 

repetitive operations layout. This company is one of the largest manufacturers of precast 

concrete sleepers in the UK.  Sleeper components are laid transverse to the rails of train 

lines, on which the rails are supported and fixed. This is to transfer the loads from rails 

to the ballast and sub grade below, and to hold the rails to the correct gauge. 

In the sleeper manufacturing system, a wide range of different shared resources 

are utilised including workers, equipment and materials. The concrete sleeper 

manufacturing system is divided into two main production sections. Each production 

section consists of two labour-driven production lines. The shared resources are used in 

each production section. Eight production processes including the curing process are 

applied on each production line. Two working shifts were selected for analysis (day and 

night for the first production section and one shift for the second production section). In 

production section 1, eleven operators and two charge hand workers are used to carry 

out jobs during the day shift. During the night shift ten operators and two charge hand 

workers are used to carry out jobs which are left over from the day shift. In production 

section 2, thirteen operators and four charge hand workers are used in one shift.  For 
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both charge hand and operator workers, categories are identified by the production 

planner according to the accumulated experience record of a worker. 

 

In any of the production lines, a ‘reusable mould’ is the main resource. This 

consists of a gang of moulds that can be used to produce either the same or the different 

types of sleepers. The floor shop layout consists of three zones: the materials zone, the 

concrete mix zone and the production zone. In the material zone, all steel wire rolls, 

plastic spacers, pandrols, and other finishing accessories are stored close to the 

production facility, ready to be used when needed. After usage a number of mechanical 

resources are placed in this area, Figure 7 gives an animated view of the simulated shop 

floor. 

To develop the simulation model of the above processes, real industrial data 

were collected from one of the Precast concrete manufacturing companies based in the 

UK. Onsite visits, structured interviews with the production planner and a number of 

skilled workers were conducted and different processes times were measured using 

different work measurement techniques. The developed simulation model is presented 

in Figure 7.  
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Figure 3. Simulation snapshot of the parallel repetitive operations layout 

Figure 7 shows four mould beds distributed in two production sections. The 

progress of seven production processes in two shifts can be identified through process 

bar indicators designed for each mould. A collection of crews are placed in a pool ready 

to be assigned to production processes. A monitoring panel is designed to show the 

production details and the changing of concrete demand at each mould during the 

production process. A process-waiting time visual panel was developed for graphical 

display purposes. In addition, components of the total allocation cost as well as the total 

cost can be seen during the progress of the allocation process. 

Verification and Validation of the Simulation Model 

Verification of the Developed Simulation Model 

Proof Animation was used to verify the developed simulation model. It is a general-

purpose, post-processing animator designed for use with a wide variety of simulation 

tools (Henriksen, 1997). Post-processing means that it runs only after the simulation has 

terminated. Both a trace file and a layout file must exist for running an animation using 
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Proof Animation. The post-processing approach offers such advantages as the ability to 

jump the time during the animation playback, to show all or a specific portion of the 

animation, and to accelerate or decelerate the viewing speed. The proof animation in the 

form of a 3D model is shown to the production manager and other senior planners to 

determine whether the simulated model reflects reality or not.  

Validation of the Developed Simulation Model 

After running the “As-Is” scenario, it was important to determine if the simulation 

outputs were similar to the real ones. The validation procedure used here estimated the 

production time for each production line and for both production sections together and 

checked the convergence of results with the “As-Is” outputs. The inputs to the system 

were the same as the real life inputs. For example, the same allocation plan including 

crews of workers and crews’ formations was fed into the developed simulation model to 

check its accuracy. After running a simulation model on a 24 hours basis, the results are 

compared with reality as shown in Figure 8:  

 

Figure 4. Validation of the manufacturing system 
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Figure 8 shows that when section 1 was isolated and processes were conducted 

on line 1, then the simulated value was 19.2503 hours due to the approximation of the 

forklift speed, while the actual value was 19.25 hours to process the whole line. On the 

other hand, when section 1 was isolated and processes were conducted on line 2, then 

the simulated value was 20.7503 hours due to the approximation of the forklift speed, 

while the actual value was 20.75 hours to process the whole line. 

For Section 2, Line 1 was verified for one mould (production line) and the total time of 

processing a mould was equal exactly to the total hours needed to finish that mould in 

reality (24.75 hours). Line 2 was treated as an isolated unit (that is, all restrictions 

imposed by line 1 were removed and a normal operation process was conducted on that 

line to check the total processing time needed to carry on all processes on it), the total 

production time for a mould was 24.76 hours while the simulation predicted the same 

time. 

Experimentations: Results Analysis and Discussion 

The experimental design consisted of developing a number of allocation plans to be 

evaluated through simulation. The SA engine suggested a possible set of allocations of 

crews to processes, which could be considered as initial allocation plans. The best 

suggestion for allocation plans could be obtained by identifying the best parameters of 

the allocation system.  

In order to improve the searching process for promising solutions, optimisation 

parameters were set after a number of experiments, as several sets of different 

probabilities were attempted without any significant effects. The following well-tuned 

settings were used: the temperature coefficient equal to 70, a decrement of 0.01 and 20 

runs per iteration at each temperature. The stopping condition was then satisfied when 
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the lower temperature coefficient was reached. Many key performance indicators were 

designed to test the performance of the allocation system. 

In order to identify the value added by the proposed approach, it was necessary 

for the new assignment scenario to be compared with the current allocation strategy 

used in the real world. A comparative study of the collected industrial assignment from 

the precast concrete company and the optimised solution was conducted.  The 

improvement over current solutions in terms of reducing allocation cost is shown in 

Figure 9. 

 
 
 Figure 5. The average cost reduction using “S_MLSA” system 

 

Figure 9 shows that two significant cost drops took place after the 1st and 30th 

iterations. The SA dynamic probabilistic operator successfully explored more promising 

solution areas in the aforementioned iterations. After 52 iterations, allocation costs tend 

to have no improvement. The best scenario drove down the allocation cost to £49,062 

(existing cost is £51,115), achieving a return of 4.016% (about £2053 per five working 

days). Other influential factors in allocation costs such as process-waiting time need to 

be investigated. Manipulating crews by enabling workers to be heavily involved 

elsewhere according to the required skills produces less idle time for labour. On the 
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other hand, reducing clashes amongst workers is essential to ensure a better flow of 

work. As an influential factor in the cost reduction process, process-waiting time should 

be analysed and minimised for a better workflow. The reduction of process-waiting time 

plays a significant role in reducing iIRC cost and subsequently the total allocation cost. 

See Figures 10 and 11 for the process-waiting times achieved by running current and 

optimal allocation plans. 

 

Figure 6. Optimisation of process-waiting time (production line1) 

 

In Figure 10, adopting the best-case scenario shows a noticeable reduction of 

4:22 hours in the total process-waiting time (existing total process-waiting time is 14:37 

hours). In the finishing process-waiting time, 2.5 hours are saved per production cycle 

equal to a total of 5 days (45% time reduction in the finishing time is achieved). The 

waiting time yielded in the setup and saw-off processes have a slight improvement. 

These reductions in the setup and saw-off processes resulted in increasing the average 

waiting time of demould process as a response to the effect of the balancing process and 

because of the problem of sharing workers. The casting process is considered a critical 

process as it utilised full/partially shared resources with other processes; therefore, any 
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improvement would reduce their process waiting time. The second production section 

which is involved in the optimisation of process-waiting time is presented in Figure 11.  

 

Figure 7. Optimisation of process-waiting time (production line 2) 

 

 In Figure 11, a reduction of 1:53 hours in the total process-waiting time is 

achieved (existing total process-waiting time is 13:15 hours). In the sawing off 

production process, 1 hour is saved by adopting the best allocation scenario. The 

reduction resulted in increasing the average waiting time of the finishing process as a 

best solution for the workers sharing problem. A slight improvement in a number of 

processes such as setup and de-mould is achieved. The stress process required fewer 

workers, which helped in avoiding the problem of sharing workers. 

 

Comparison with the Monte Carlo Technique  

In order to evaluate and justify the performance of the proposed model in terms of 

solution quality and efficiency, a comparison with Monte Carlo sampling was 

conducted. The Monte-Carlo experiment is designed to start by generating an individual 

set of solutions solely using a Uniform random number generator. The generator 

selected a crew from each alternative pool associated with a process. After forming an 

allocation plan in which a crew of workers was proposed for each process, the 
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simulation engine evaluated the generated allocation plan, with the result being stored in 

a database. An allocation plan was generated per iteration, which was then evaluated by 

the simulation engine.  

Figure 12 shows the allocation costs yielded through iterations by using Simulated 

Annealing, and Monte-Carlo Sampling techniques.  

 

Figure 8. Cost comparison study of SA with Monte-Carlo and “As-Is” scenario 

 

In Figure 12, it is shown that the Monte-Carlo model generated random 

allocation costs with some being close to the minimum allocation cost. Monte Carlo 

results indicated a better cost reduction than the SA for nearly thirty generations. The 

best SA achieved at each iteration showed a significant and rapidly improving trend 

towards the minimum allocation cost. SA was considered to be evolving solutions 

towards identifying the best allocation plan, while the Monte-Carlo model utilised the 

‘Trial-Error’ concept to hit by chance as minimal an allocation cost as possible. This 

comparative study has shown the superiority of the proposed SA model.    
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Conclusion   

The crew allocation system presented in the paper has successfully been 

developed to optimise costs of crews allocation in the precast concrete manufacturing 

systems of parallel repetitive processes layout, taking into consideration different crew 

allocation constraints such as skills of workers, and other crew formation details that 

were not considered in the related previous literature.  

The integration of simulation with simulated annealing achieved an optimal/ 

near optimal allocation of suitable crews of workers to the right processes in parallel 

repetitive manufacturing processes in the precast concrete industry. The concept of 

using SA in solving this type of problem and the construction of an innovative crew’s 

vector to accommodate multi-attribute inputs assisted greatly in solving the 

aforementioned complex-allocation problem. The chosen operators contributed 

significantly to the search for promising solutions within a very large solution space. 

The overall structure of the proposed system and the full integration of its components 

led this system to be considered as an advanced crew allocation system that can be used 

to solve complex crew allocations in the precast concrete industry or similar type of 

industries.  

The results showed that by applying the proposed allocation system, costs could 

be saved by over 4% per production cycle (one production cycle is equal to 5 days). An 

optimal crew allocation plan reflected a minimal crew allocation cost and reduced 

process-waiting times in both production lines. 

As a further development of this research work, different levels of priority (high, 

medium, and low) can be defined for each production process and included in a crew’s 

vector layer, especially if they have a significant influence on the overall system 

performance. The prediction of workers’ absences can be considered as one of the 
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influential factors that affect the allocation process, and hence more features could be 

added to the current system to be able to handle such stochastic situations. The 

environmental impact of waste and CO2 produced by production processes can also be 

taken into consideration whilst allocating resources. 
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