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1. Introduction 

Revenue Management (RM) is a field of management that aims at maximizing the revenues of an organization by 
selling the available products to the customers at the right time and price by developing revenue-optimal strategies 
of customer and product selection (Cross 1997). Overbooking is one of the most vital revenue management practices 
that is currently used in many industries including the airline industry. It allows airlines to increase revenues and 
aircraft utilization and, also, generates economic benefits for passengers by increasing the number of available seats 
and reducing the cost of air travel (Klophaus and Pölt 2010). Research indicates that companies that exploit 
overbooking practice may increase their revenues by 2% to 5% (Wangenheim and Bayón 2007). On the other hand, 
inappropriate overbooking strategies not only cause revenue losses in the short term but also have long term 
consequences for the airline companies such as loss of reputation and customer loyalty. A good example of 
reputation loss and its negative social effect was seen on United Airlines when its flight attendant forcibly removed 
a paying customer (Ma et al. 2019).  

Given the significant volume of literature in the field of revenue management that has been produced after the 
liberalization of the airline industry in 1978, overbooking is one of the oldest strategies that were exploited even 
before this period (McGill and van Ryzin 1999). Different studies proposed various approaches for revenue 
management considering overbooking at the leg level (Sumida and Topaloglu 2019) or at the network level (Mou, 
Li, and Li 2019) or at a competitive market level (Alavi, Sy, and Ivanov 2019). The network problem is naturally 
more complex since the seat allocation in one leg affects other legs in the network but in many cases addressing the 
problem at the network level may be more profitable.  

The novelty of this paper is that it presents a mathematical optimization model, based on fuzzy demand for the 
multiple-flight network overbooking problem. The purpose is to maximize the net profit of the flight network by 
minimizing the number of empty seats and the number of denied passengers considering vague and uncertain 
demand conditions. Knowledge is elicited after running a number of numerical experiments, in which reasonable 
assumptions are set.   

The remainder of this paper is organized as follows: Section 2 reviews the related literature in airline revenue 
management. The problem of study is stated in Section 3. The fuzzy demand mathematical programming model is 
presented in Section 4. The proposed Genetic Algorithm (GA) is shown in Section 5. Experimentation with both 
small-sized and large-sized problem are shown in Section 6. Finally, conclusions are drawn in Section 7. 

2. Previous literature on multiple-leg revenue management model with overbooking  

This section provides studies that are related to multiple-leg airline revenue management overbooking problems. 
In this context, Bertsimas and Popescu (2003) investigated the network revenue management problem with certain 
equivalent control policy to overcome errors of bid-price method. However, Monte Carlo fashion was used to model 
uncertainty in demand rather than a defined stochastic function. Karaesmen and van Ryzin (2004a) investigated the 
static overbooking problem with multiple reservation and inventory classes with the possible substitution of 
different fare classes. In another study, Karaesmen and van Ryzin (2004b) developed a two-stage optimization 
model for the dynamic airline network overbooking problem where the first stage deals with overbooking, given the 
probabilistic nature of cancellations, to find the overbooking limit and, accordingly, the second stage allocates 
capacities for different inventory classes and revenues from the flight network. Although compensation paid to the 
denied passengers and the goodwill costs are considered, penalties for cancellations and no-shows are not. Bertsimas 
and de Boer (2005) aimed to find the booking limits for an airline network considering the dynamic and stochastic 
nature of the reservations and the complexity of booking control policies in a network environment by estimating 
the expected revenue of any booking limit policy. However, they considered a simplified demand model and 
cancelations were not considered. Siddappa, Rosenberger and Chen (2008) determined overbooking levels for 
different flights in an airline network with an aim of maximizing the total profit from the whole flight network. 
However, the probability of passengers showing up is assumed to be constant which makes the model rather 
unrealistic. Gosavi, Ozkaya and Kahraman (2007) addressed the inventory allocation problem of airlines for single-
leg, multi-leg or network problems considering random cancellations and overbooking. As for the demand 
modeling, these methods usually require only a „black box‟ estimate of the demand, however, it would be desirable 
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to have an insight about demand uncertainty in practice. Kunnumkal and Topaloglu (2008) captured the uncertainty 
of requests for an itinerary given their probabilistic arrivals as well as the uncertainty in no-shows in a multi-leg 
overbooking airline problem. Although requests are modeled as stochastic, the requests do not fully capture the 
uncertain behavior of the demand in which fuzzy logic can be utilized. Erdelyi and Topaloglu (2009) investigated 
the problems of capacity allocation and overbooking in airline networks. Their study offers a viable solution for the 
overbooking problem in an airline network, however, the model under study is deterministic and omits the 
probabilistic elements of the booking process.  Hjorth et al. (2018) considered the overbooking of seats problem for 
an airline network under a different fare structure called fare families, that are groups of highly similar products 
(fares), reduced from a larger fare classes problem. Demand is modeled as deterministic and dependent on the fare 
family, cancellations and overbooking. Soleymanifar (2019) investigated the problem of airline network 
overbooking by dealing with booking request decisions to maximize revenues. Request arrivals, cancellations and 
no-shows are simulated and modeled stochastically apart from the fully uncertain behavior of the demand in terms 
of its total quantity. Mou, Li and Li (2019) tackled the airline capacity allocation problem with overbooking but 
considered uncertainty in demand (in terms of distribution), show-up and cancelations as random variables where 
the latest two were based on historical data.  

However, few attempts in literature addressed the multiple-leg flight overbooking problem. Furthermore, 
researchers addressed the problem by utilizing deterministic and probabilistic model; however, the use of fuzzy 
logic theory for modeling uncertainty, such as demand, is not well investigated. 

3. Problem Statement 

With the increase in hub-and-spoke network operations in the airline industry, the network effects in airline 
revenue management have become more important. There are many studies highlighting that considering the 
overbooking problem at a network level may significantly increase the profits of the airlines (Williamson 1992, 
McGill and van Ryzin 1999, De Boer, Freling and Piersma 2002).  

In larger networks, there may be more than one hub and many spokes. Moreover, each itinerary may have many 
different fare classes. Hence hundreds of itineraries and products can be defined. In a network with N spokes, the 
number of itineraries is calculated as N (N+1). If the airline offers M classes on each flight the number of products is 
calculated as M (N) (N+1). Fig. 1 shows a larger airline network with one hub and three spokes. Therefore, there are 
12 itineraries in this network.  

 
Fig. 1. Overbooking problem for an airline network with a hub and three spokes. 

 

Assuming that the airline offers two fare classes on each flight the number of products becomes 24. The 
overbooking problem can be solved either at the leg level or the network level. At the leg level, the aim is to find the 
number of tickets to be sold for each fare class. However, at the network level, the aim is to determine the number of 
bookings requests to be accepted for any product (Gosavi, Ozkaya and Kahraman 2007). The network problem is 
naturally more complex due to the fact that seat allocation in one leg affects other legs in the network. Hence an 
airline operating flights in a network type organization should ideally address the problem at the network level. 
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4. The fuzzy-based mathematical optimization methodology  

The proposed methodology consists of a fuzzy logic technique which is used to model the fuzzy non-
deterministic features of demand on overbooking flight tickets, while the linear programming technique is used to 
imitate the overbooking problem described in section 3. A meta-heuristics approach represented by GA is also 
introduced for solving large-scale optimization problems.  

In this methodology, GA is integrated with the developed fuzzy-based mathematical model for a reasonably good 
local optimal solution of the considered large-scale multi-leg flight networks. The function of the GA optimization 
is to provide the developed fuzzy-based model with high quality inputs of feasible parameters of decision variables. 
The proposed parameters are then evaluated using the proposed fuzzy-based model. This process continues in terms 
of iterations to evaluate the suggested numbers of allocated seats and denied boarding by the developed fuzzy-based 
model, while GA evaluates the performance of the resultant allocation of these parameters, and based on this, adjust 
the parameters of the decision variables using GA operators and select the most promising ones for further 
evaluation. The results of the evaluation in terms of revenues, O/B costs and net profits are captured per iteration, 
and the evaluation process continues until optimal/ near optimal solution is obtained. 

5. The fuzzy demand overbooking mathematical programming model 

In this section, the proposed Overbooking Fuzzy Mathematical Programming model is developed as an extension 
to the model previously introduced by Bertsimas and Popescu (2003) to accommodate fuzzy non-deterministic 
demand. Unlike probabilistic functions, the membership function of a fuzzy set involves subjectivity since human 
involvement is needed to obtain the fuzzy sets. The membership function of the future demand can be estimated 
based on the experience and intuition of the decision maker by considering historical data and present demand 
(Teodorović 1998). Although there are various types of fuzzy numbers defined in the literature, triangular fuzzy 
numbers are one of the simplest and most widely used types of fuzzy numbers that may be used to define 
uncertainty, mainly for the reason that fuzzy calculations are relatively easier for the triangular type of fuzzy 
numbers, which are preferred in this study to define uncertainties in demand probabilities. 

 

The following notation is defined in the developed mathematical model: 
  : number of a leg in the network 
  : number of an itinerary in the network 
  : number of an itinerary fare-class combination 
 OD: origin and destination pair 
 ODF: origin-destination-fare class combination 
   : airfare if itinerary   
   : capacity of the leg   

   : show up rate for ODF  at the departure 
    : resource coefficient of the ODF  
   : penalty cost of denied boarding for itinerary   
   ̃: fuzzy number denoting the demand for 

itinerary   
   : number of allocated seats for itinerary   
   : number of denied boarding for itinerary   

The mathematical model „OB_FMP‟ is formulated based on the assumptions as listed below: 
 Only one airline is considered with three different fare classes 
 No refund given for cancelations and no-shows 
 Demand uncertainty is the same for all itineraries 
 Triangular membership function is used to define uncertainties in demand probabilities 
 Show-up is determined by a deterministic variable    
 Penalty cost for denied boarding is given by   = airfare + X% of the airfare, where X is either 10 or 20.  

 
The proposed fuzzy optimization formulation of the problem is shown below 

Maximize ∑     ∑    
      

  (1) 

Subject to ∑            
   

        (for l=1,….,m) (2) 
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      ̃     (for j=1,….,n) (3) 

               (for j=1,….,n) (4) 
             (for j=1,….,n) (5) 

The objective function in (1) aims at maximizing the revenues from the allocated seats of each itinerary while 
taking into consideration the penalties resulting from the denied boarding, making    and    as decision variables. 
Constraint (2) of the fuzzy model above ensures that the number of passengers allowed boarding is not greater than 
the leg capacities. Constraint (3) defines that the upper bound of the allocated seats to ODFj is equal to the fuzzy 
demand of that product so that the accepted bookings do not exceed booking requests. The fuzzy demand follows a 
triangular membership function of (   ,    ,     ). Constraint (4) ensures that the number of denied passengers does 
not exceed the number of passengers that show up at the departure time. Finally, constraints (5) are the non-
negativity constraints. 

Bellman and Zadeh (1970) introduced a method to deal with the fuzzy parameters by converting the fuzzy model 
into an equivalent crisp problem where the level of satisfaction of an objective function and a constraint can be 
defined by λ such that:  

   (  )     (6) 

    (  )     (7) 
where   (  ) and    (  ) are membership functions of the goal and the nth constraint respectively and     

 .  
 

As the demand values ranges between     and     , two crisp problems are considered where the objective 
function takes values that are between    and   . Let           ,     and          ,    , then    and    are 
equal to the lower and upper bounds of the acceptable profit, respectively. The fuzzy set of optimal values for the 
acceptable profit is defined as follows: 

        

{ 
 
  
                                                     (           )             
                

       
                                  

                                                                                            


(8) 

The fuzzy set of the nth constraint is defined as follows: 

         {
                                                                     
                                          
                                                                     


(9)    

From equation (8), the inequality from (6) and        membership function shape adapted from (Teodorović 
1998), the inequality can be transformed into:  

 ∑     ∑                
      

 (10) 

Similarly, the fuzzy demand constraint is converted into a crisp constraint using the inequality in (7), equation (9) 
as well as the adapted shape of the demand membership function (Teodorović 1998) to get: 

                       (11) 

The new objective function becomes equal to the level of satisfaction denoted by  . The objective function (1) of 
the original fuzzy problem is transformed into a constraint formulated by equation (10) while the demand constraint 
(8) is transformed into a fuzzy constraint formulated by equation (11). The resultant crisp problem can be written as 
follows: 
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Maximize    (12) 

Subject to ∑     ∑                
      

     (for j=1,….,n) (13) 

∑            
   

        (for l=1,….,m) (14) 

                          (for j=1,….,n) (15) 

              (for j=1,….,n) (16) 

            (for j=1,….,n) (17) 

The objective function         of the developed model shows the aspiration of maximizing the level of 
satisfaction. On the other hand, the objective function of the original deterministic problem is transformed into 
constraint (13) in the developed model which states that we can achieve a greater than satisfactory level of profit 
with a satisfaction level equal to λ. Constraint (14) ensures that the number of passengers allowed boarding is not 
greater than the leg capacities. Constraint (15) is the fuzzy demand constraint that defines the upper bound of the 
seat allocation of ODFj is equal to the crisp value of the fuzzy demand so that the accepted bookings do not exceed 
booking requests. Constraint (16) ensures that the number of denied passengers does not exceed the number of 
passengers that show up at the departure time. Finally, constraint (17) is the non-negativity constraints. 

6. Genetic Algorithm based metaheuristic optimization 

    The investigated overbooking multi-leg airline problem is relatively a large-scale problem and hence, solving it 
using traditional techniques requires an exponential runtime or an excessive amount of memory and hence, a meta-
heuristics optimization technique such as GA is used for a reasonably good local optimal solution of the proposed 
fuzzy model.  

In our mathematical model (12-17), the three decision variables are satisfaction level, number of assigned seats 
for ODFj and number of denied passengers for ODFj denoted by  ,    and     respectively. It should be noted that   
is a scalar variable whereas    and     are column vectors. Therefore, these variables are transformed into row 
vectors when being encoded in the chromosome string. A representation of the chromosome structure used for the 
developed mathematical model is given in Fig. 2 below.  

 

Fig. 2. Structure of the chromosome string used for the solution. 

The chromosome string mainly comprises the three decision variables of the optimization model. The first gene 
represents the satisfaction level  , which is a variable present in both the objective function and the constraints. The 
genes 2-19 are allocated to   , where each gene represents the number of assigned seats for each of the 18 different 
ODFs offered in the network. The final 18 genes in the chromosome string represent the number of denied 
passengers for each ODF denoted by    in the developed model. The Genetic Algorithm basically creates a 
randomly generated population that comprises a number of chromosomes structured in the way shown in Fig. 2 and 
enables the population to evolve so as to search and obtain the optimal solution that represents the variables of the 
optimization model. A traditional GA including generation of population, selection, crossover and mutation is then 
applied. 
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7. Numerical Examples  

In this section, small and large-sized problems are investigated. The small problem is adapted from literature and 
modified to accommodate fuzzy demand. This is used to validate the developed model including its solution 
approach-based GA. A moderately large-sized domestic flight network is then attempt and GA is applied.  

7.1. The small-sized airline network overbooking problem 

In order to validate and test the performance of the developed model, the numerical data set given by De Boer 
(1999) for a sample airline network is adopted. The demand parameters of the original problem are slightly changed 
according to our experimental analysis requirements. The lower and upper demand values that we use in our 
analyses, shown in Table 1 below, are calculated as 10% of the Expected Demand value      . 

Table 1. Upper and lower bounds of the fuzzy demand. 

# OD OD Pair Fare Class 3 Fare Class 2 Fare Class 1 

  d1j d3j d1j d3j d1j d3j 

1 AB 56 69 45 55 34 41 

2 AC 45 55 28 34 23 28 

3 AD 34 41 27 33 23 28 

4 BC 34 41 23 28 23 28 
5 BD 34 41 23 28 23 28 
6 CD 56 69 45 55 34 41 

 
In practice, there may be significant differences in demand for certain itineraries in an airline network based on 

seasonality or other external factors. However, in order to simplify the problem, it is assumed that uncertainties in 
demand are the same for all the itineraries. It should also be noted that, since a static solution approach is applied in 
the solutions, it will not be wrong to consider cancellations together with no shows. Hence, a combined show-up 
rate of qj=0.75 is assumed for the overbooking optimization models with stochastic show-up probabilities in this 
study.  

It is worth mentioning that the actual show-up rate is defined as the percentage of the demand booked that shows 
up at departure. This actual rate is obtained by the total number of passengers that show up at the time of departure 
for a given flight number divided by the total allocated seats for all the passengers. Predictions of the show-up rate 
could also be estimated using statistical distributions (Popescu et al. 2006). Actual demand data required to calculate 
this rate can be obtained from sales results accumulated in the seat reservation system of an airline, and a low-cost 
airline could be selected as the main source of such data. Future airlines seat reservations could be modelled and 
predicted using forecasting models (Varedi M. 2010).  

In order to test the behavior of the developed model, the problem settings are varied, and the behavior of the 
fuzzy mathematical model is observed. Firstly, with the aim of testing different satisfaction levels, the upper and 
lower bounds (   and   ) of the expected profit parameters of the model are varied as shown in Table 2. This is 
analogous to a revenue management analyst arbitrarily defining acceptable profit levels and calculating the 
satisfaction level and optimal booking levels (Teodorović 1998). 

Table 2. Tested values for upper and lower bounds for expected profit. 

Expected Profit 
Level EP 1 EP 2 EP 3 EP 4 EP 5 EP 6 EP 7 EP 8 EP 9 EP 10 

Pl 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 
Pu 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 

 
EP 9 is chosen because this is the case where we can observe a relatively high number of denied boarding while 

achieving a 100% satisfaction level. This allows for a better comparison between the two methods.  
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A test scenario is considered for the numerical analyses. The penalty costs for denied boarding, the airline 
refunds the initial airfare for the concerned itinerary, is considered 20% of the airfare as a compensation and 
calculated as    x 120%, where    is the fare for itinerary j. On the other hand, the demand level is increased by 20% 
for all the ODFs (d2j x 120%), where d2j is the average demand for itinerary j. The demand level is increase for the 
purpose of testing the model under increased demand conditions. 

7.1.1. GA Parameters tuning for small sized problem  
The configuration of the GA parameters mainly affects the best fitness of the objective function and how fast the 

GA converges to the optimal solution. Therefore, experiments are performed to find out the best GA configuration 
including population size, cross-over and mutation fractions. The experimental settings for the parameters are shown 
in Table 3 below. Mutation rate is experimented with both 1% and 5%. GA Creation function and Mutation function 
are set as uniform while selection function is set as stochastic uniform. 

Table 3. GA parameter settings. 

GA Settings/ Runs 1 2 3 4 5 6 7 8 9 
Population Size 10 10 10 20 20 20 40 40 40 

Crossover Fraction 
(%) 55 70 85 55 70 85 55 70 85 

 
The obtained values for the satisfaction level at the end of each GA generation under 9 different parameter 

settings are illustrated in Fig. 3 (a) below. For GA runs with smaller size populations, the best fit values for the 
satisfaction level converge to values less than one, although the trend in the generation results suggest that if the GA 
is allowed to run for more generations, they may eventually reach one. On the other hand, GA generations with 
larger populations tend to converge to the optimum value more quickly and give results closer to one. Additionally, 
it can be seen that, although they both have a population size of 40, setting 9 converges to the optimal value faster 
than setting 8 as it has a higher crossover rate. Therefore, it can be concluded that setting 9 is the best configuration 
in terms of GA performance, which is the configuration with the largest population size and highest crossover 
fraction. The obtained values for the satisfaction level at the end of each GA generation under 9 different parameter 
settings are illustrated in Fig. 3. 

 

 
 

(a) 
 

(b) 
 

(c) 

Fig. 3. (a) GA generations for each parameter settings (b) GA runs with mutation rate of 5% (c) Best GA run. 

In order to observe the effect of mutation fraction on the performance of the GA, the mutation rate is set to 5%. Fig. 
3 (b) above shows the behavior of the GA optimization for the increased mutation rate of 5%. GA settings/runs 1-9 
have exactly the same settings as Settings 1-9 outlined in Table 32 except for the increased mutation fraction. By 
comparing the results shown in Fig. 3 (a) and (b), it can be seen that the increase in the mutation rate increases the 
randomness of the GA iterations. In addition, for the low mutation rate, increasing the crossover rate improves the 
optimization performance. On the other hand, for increased mutation rate, the performance reduces as the crossover 
rate increases. Based on these runs, it shows that the mutation and crossover are inversely proportional for this 
problem. Although there are very small differences between the final values, the satisfaction level diverges from one 
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as the crossover rate increases under increased mutation conditions and hence the worst results are obtained from the 
runs with high mutation and high crossover fractions. Out of all the 18 runs so far, the best run is shown in Fig. 3 (c) 
above. All things considered, for the proposed GA based optimization method, it seems reasonable to use the GA 
setting 9 given in Table 3 with a mutation rate of 1%.  

7.1.2. Validation of the Proposed Fuzzy based GA Optimization Model  
In this section, MATHLAB is used to provide an exact solution to the fuzzy mathematical programming small-

sized problem. This solution is then compared with the one obtained by using GA to validate the developed GA 
model. The validated model can then be adopted to tackle large-sized problems as presented in the next section. 
Table 4 shows the ODF level outputs of the test scenario at EP 9 using the mathematical and the proposed GA 
model. 

Table 4. Optimization results by MP and GA. 

Test Scenario MP Optimization GA Optimization 

ODF Class Fare Penalty Demand Allowed 
Bookings 

Denied 
Boarding 

Allowed 
Bookings 

Denied 
Boarding 

AB 3 75 90 68 68 10 48 0 
AB 2 125 150 54 54 0 54 0 
AB 1 250 300 41 41 0 41 0 
AC 3 130 156 54 0 0 20 12 
AC 2 170 204 34 34 2 34 0 
AC 1 400 480 27 27 0 27 0 
AD 3 200 240 41 41 31 41 31 
AD 2 320 384 32 32 0 32 0 
AD 1 460 552 27 27 0 27 0 
BC 3 100 120 41 41 0 27 1 
BC 2 150 180 27 27 0 27 0 
BC 1 330 396 27 27 0 27 0 
BD 3 160 192 41 5 3 33 18 
BD 2 200 240 27 27 0 27 0 
BD 1 420 504 27 27 0 27 0 
CD 3 80 96 68 59 0 50 0 
CD 2 110 132 54 54 0 54 0 
CD 1 235 282 41 41 0 41 0 

 
It can be noticed that in both methods Mathematical Programming (MP) and Genetic Algorithm (GA), only 

passengers on lower fare classes are denied boarding as bumping passenger from lower fare classes leads to lower 
penalties. Also, both methods deny most bookings on longest route of AD as it comprises more flight legs than any 
other route in the network and a denied boarding on this route releases a seat on all the three flight legs in the 
network.  

The output of these two approaches are represented and compared in Table 5. GA obviously has allowed slightly 
more bookings and caused a relatively higher denied passenger boarding. GA has generated more revenues, 
resulting in more overbooking costs. The extra generated revenues and the additional costs incurred are nearly the 
same, resulting in net profit that is very close to the profit obtained by mathematical modeling. The net profit from 
both methods is slightly more than the EP level because the optimization models work with non-integer numbers to 
calculate the allocated seats for each ODF and the results are rounded later at the end. 

Table 5. Optimization KPIs for MP against Tuned GA. 

Optimization Output MP GA 
Satisfaction level 1 1 
Total Bookings 632 637 
Denied Boarding 46 62 
Revenues 124,435 127,895 
O/B Costs 9,324 12,888 
Net Profit 115,111 115,007 
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Although an explicit limit is not set on the number of denied boarding in this study, in practice, a high number of 
denied boarding may cause loss of reputation and a decrease in revenues in the long run for the airline company. GA 
shows a rational behavior in how it allocates seats for different ODFs and which reservations it decides to deny 
boarding.  

7.2. GA applied to a large-sized problem 

For the large sized airline network overbooking problem, a randomly generated network that comprises 16 nodes 
is considered. The nodes are connected by 15 flight legs that are assumed to have equal capacities of 200 seats. The 
airline company serves 120 OD pairs over the entire network and three fare classes on each flight. Hence there are 
360 different ODF combinations offered over the network. In practice, this corresponds to a moderately large-sized 
domestic flight network (Chen, Günther, and Johnson 1998). 

For the numerical analyses, the network is first modeled for a single fare class and then extended to comprise 3 
fare classes. Therefore, the first 120 ODFs in Table 6 represent the different OD pair combinations in the network 
for Fare Class 3, the next 120 ODFs represent the OD pairs for Fare Class 2 and the final 120 ODFs represent the 
OD pair combinations for Fare Class 1. 

It is assumed that there is more demand for lower fare classes than the highest fare class and the demand values 
are randomly generated by the algorithm. The penalty for denied boarding is assumed to be equal to (airfare + 10% 
of the airfare). The parameters for the fare and demand settings are shown in the 6 below. 

Table 6. Demand and fare settings for the large sized network. 

ODF 
number 

Upper and Lower 
Bounds of Demand 

Show-up 
Rate 

Fare 
Class Airfare Penalty 

Cost 

1-120 40-50 90% 3 100 110 

121-240 30-40 90% 2 200 220 

241-360 20-30 90% 1 300 330 

 
The best configuration for the GA is again chosen after experimentation with the GA parameters, in a similar way 

to that followed for the small sized network problem. Different combinations of population size, crossover fraction 
and mutation rate parameters of the GA are tested and the best configuration is concluded as shown in Table 7. The 
settings are similar to the ones used in the small sized network problem, however, this time population size is 
increased as the chromosome size has increased. 

Table 7. GA configuration for the large sized network problem. 

Parameter Population 
Size 

Crossover 
Fraction 

Creation 
Function 

Selection 
Function 

Mutation 
Function 

Mutation 
Rate 

Value/ 
Definition 300 0.80 Uniform Stochastic 

Uniform Uniform 0.01 

 
Fig. 4 represents solution results for the considered large sized network after implementing the developed fuzzy 
linear programming and GA optimization. Fig. 4. below shows the optimization results for the considered large 
sized network.  
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Fig. 4. GA optimization results for a large-sized network. 

Fig. 4. shows that as the expected profit level increases, more bookings are allowed, and more passengers are 
denied since the overbooking level increases. When the demand is increased fewer bookings are allowed because it 
is possible to fill the available seat capacities with lower overbooking levels under increased demand conditions. 
When a passenger needs to be denied boarding, it is more likely that an itinerary with a longer route is picked by the 
algorithm because this way more seats become available as longer routes comprise more flight legs. When the EP 
level is low (and when the demand is higher than the available capacity of course), the number of denied passengers 
is increased. This is because the EP can be achieved with fewer passengers on board. 

7.2.1. Experimentations 
 

Seven different scenarios are considered. In each scenario, only one or two parameters from the original scenario 
are changed and the results are compared with those of the original problem. The penalty costs for denied boarding 
are increased to 20% in scenario 1 while keeping the demand, show-up rate and the expected profit level unchanged. 
In scenario 2, show-up probability for all fare classes is reduced to 80%. Demand for all ODFs in scenario 3 are 
reduced by 10% compared to the original problem. Both of the penalty costs and the expected profit are increase in 
scenario 4 by 20% and 25%, respectively. The last three scenarios experiment with different fare pricing settings. 
Scenario 5 has an unchanged EP level compared to the original problem, whereas the EP level is increased 25% in 
scenario 6. In scenario 7, the demand and EP level are increased by 20% and 25%, respectively. The changed input 
parameters in all scenarios are summarized in Table 8.  

Table 8. Values of the parameters in test scenarios. 

Scenario Fare Settings Penalty Show-up Rate Demand EP Level 
Original Problem 1    x 110% 90% d2j 200,000 

Scenario 1 1    x 120% 90% d2j 200,000 

Scenario 2 1    x 110% 80% d2j 200,000 

Scenario 3 1    x 110% 90% d2j x 90% 200,000 

Scenario 4 1    x 120% 90% d2j 250,000 

Scenario 5 2    x 110% 90% d2j 200,000 

Scenario 6 2    x 110% 90% d2j 250,000 

Scenario 7 2    x 110% 90% d2j x 120% 250,000 
* fj=Initial airfare for itinerary j of and d2j=Initial average demand for itinerary j 

 
This kind of experimentation is similar to a revenue management analyst testing the overbooking algorithm under 

changing practical conditions due to seasonality or other reasons to find the optimal profit levels, therefore, show-up 
rates and demand are varied in order to mimic such seasonality. Penalty is increased to show the model behavior if 
the denied boarding cost has risen. The expected profit level is also increased to check the possibility of generating 
more profit while maintaining the denied boarding level. 

In order to test the behavior of the overbooking optimization model, the inputs to the problem are varied which 
are the fare classes prices, the penalty cost    as percentage of the fare   , show-up probability   , average demand 
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d2j and the expected profit level. The fare prices are varied in two settings, the first fixes the prices for each fare 
class while the other bases the price on the travelled distance of the itinerary; prices are compared in Table 9 below. 
The behavior of the fuzzy based GA optimization model is observed. 

Table 9. Fare settings for Scenarios (1-7). 

Number of Legs 
Fare Setting-1 

Original Problem & Scenarios (1-4) 
Fare Setting-2 
Scenarios (5-7) 

Fare Class 3 Fare Class 2 Fare Class 1 Fare Class 3 Fare Class 2 Fare Class 1 
1 100 200 300 60 120 180 
2 100 200 300 80 160 240 
3 100 200 300 100 200 300 
4 100 200 300 120 240 360 
5 100 200 300 140 280 420 
6 100 200 300 160 320 480 
7 100 200 300 180 360 540 
8 100 200 300 200 400 600 
9 100 200 300 220 440 660 
10 100 200 300 240 480 720 
11 100 200 300 260 520 780 
12 100 200 300 280 560 840 
13 100 200 300 300 600 900 
14 100 200 300 320 640 960 
15 100 200 300 340 680 1020 

Table 10 below compares the results of the original problem to all scenarios in terms of the KPIs. 

Table 10. Optimization results of the original problem and each scenario. 

KPIs Original 
Problem Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 

7 
Total Bookings 1,098 1,116 1,136 1,135 1,282 1,100 1,319 1,289 

Denied 
Boarding 225 221 259 251 223 288 342 331 

Revenues 255,800 259,700 263,100 261,400 308,098 333,781 393,752 388,792 

O/B Costs 53,240 56,760 61,600 59,950 57,985 132,945 143,416 138,749 

Net Profit 202,560 202,940 201,500 201,450 250,113 200,836 250,336 250,042 

 
The original problem allowed for 1,098 bookings, making 255,800 in revenues, of which 20% were denied 

boarding which resulted in total penalty costs of 53,240. The net profit would be around 202,560. As mentioned 
earlier, the net profit in all scenarios are slightly more than the EP level due to the rounding of non-integer numbers 
that calculates the seat allocation. With penalty increases as in scenario 1, the O/B costs have increased; however, 
the model allowed marginally more bookings for more revenue to maintain the same EP level. With fewer show-up 
rates as in scenario 2, the model allowed 38 more bookings, compared to the original problem; however, the 
resulting O/B costs were high enough to decrease the profit by 1,000. Highly similar outcomes to scenario 2 occur 
when the demand was decreased by 10% in scenario 3. In scenario 4, since the EP level is higher, the optimization 
algorithm allows more bookings to fill the empty seats on the empty flights and achieve the targeted profit level. As 
a result, the load factor over the network increases but the number of denied passengers does not change 
considerably.   

The Fare Setting-2 increases the average ticket price for the products offered over the network. Hence, the 
algorithm can reach the expected profit levels more easily. The optimization results show that the changed fare 
setting does not affect the number of accepted bookings significantly in scenario 5, though the GA algorithm tends 
to deny more passengers boarding the plane. This is because the airline can achieve the EP level of 200,000 by 
carrying fewer passengers. On the other hand, when the EP level is raised in scenario 6, the number of allowed 
bookings and denied passengers increase. As a result, both the overbooking costs and the total revenues generated 
over the network increase significantly. Finally, looking at the results of scenario 7, compared with the Original 
Problem, it shows that the optimization model inclines to allow fewer bookings as the demand level increases 
because the airline is more likely to fill the available seat capacities with lower overbooking levels under increased 
demand conditions. The outputs of Scenarios (5-7) show that the distance-based fare setting does not change the 
character of the optimization algorithm. However, the overbooking level is directly related to the ticket prices and 



 Ammar Al-Bazi  et al. / Transportation Research Procedia 43 (2019) 165–177 177 Ammar Al-Bazi et al. / Transportation Research Procedia 00 (2019) 000–000  13 

hence the GA decides on the number of accepted bookings and overbooked passengers to comply with the expected 
profit level. 

8. Conclusion and Future Work  

This study proposed a mathematical model for an overbooking multi-leg airline problem under fuzzy demand 
conditions and proposed a Genetic Algorithm (GA) model aiming to solve large-sized problems efficiently. The GA 
was implemented on a large-sized problem tested under different problem settings by changing fare pricing, denied 
passenger penalties, show-up rate, demand and the expected profit level. Results indicated that the GA model gives 
rational results when applied on the large sized network problem and adapts to the different problem settings. This 
paper proves that the proposed GA can be utilized for solving different sizes of the fuzzy overbooking optimization 
problems since they have shown its suitability in solving such problems efficiently. 

As for future work, the model can be extended to represent both the show-up rate and the future demand. In 
addition, a booking control policy, such as service level policy, may be included in the optimization model to 
control the number of denied passengers.  
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