
Citation: Hu, Y.; Liu, C.; Zhang, M.;

Jia, Y.; Xu, Y. A Novel Simulated

Annealing-Based Hyper-Heuristic

Algorithm for Stochastic Parallel

Disassembly Line Balancing in Smart

Remanufacturing. Sensors 2023, 23,

1652. https://doi.org/10.3390/

s23031652

Academic Editor: Heinrich Wörtche

Received: 12 January 2023

Revised: 26 January 2023

Accepted: 30 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Simulated Annealing-Based Hyper-Heuristic
Algorithm for Stochastic Parallel Disassembly Line Balancing
in Smart Remanufacturing
Youxi Hu , Chao Liu * , Ming Zhang , Yu Jia and Yuchun Xu

College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
* Correspondence: c.liu16@aston.ac.uk

Abstract: Remanufacturing prolongs the life cycle and increases the residual value of various end-
of-life (EoL) products. As an inevitable process in remanufacturing, disassembly plays an essential
role in retrieving the high-value and useable components of EoL products. To disassemble massive
quantities and multi-types of EoL products, disassembly lines are introduced to improve the cost-
effectiveness and efficiency of the disassembly processes. In this context, disassembly line balancing
problem (DLBP) becomes a critical challenge that determines the overall performance of disassembly
lines. Currently, the DLBP is mostly studied in straight disassembly lines using single-objective
optimization methods, which cannot represent the actual disassembly environment. Therefore, in
this paper, we extend the mathematical model of the basic DLBP to stochastic parallel complete
disassembly line balancing problem (DLBP-SP). A novel simulated annealing-based hyper-heuristic
algorithm (HH) is proposed for multi-objective optimization of the DLBP-SP, considering the number
of workstations, working load index, and profits. The feasibility, superiority, stability, and robustness
of the proposed HH algorithm are validated through computational experiments, including a set of
comparison experiments and a case study of gearboxes disassembly. To the best of our knowledge,
this research is the first to introduce gearboxes as a case study in DLBP which enriches the research
on disassembly of industrial equipment.

Keywords: disassembly line balancing problem; hyper-heuristic algorithm; multi-objective optimisation;
disassembly; remanufacturing

1. Introduction

Remanufacturing is the process of rebuilding the End-of-life (EoL) products to meet
the specification performance of the original manufactured products using a combination
of reused, repaired and new components [1]. Remanufacturing has been widely accepted
because of the enormous economic and environmental benefits as well as the great potential
for sustainable development. As the inevitable process in remanufacturing, disassembly
can be regarded as the reversal process of assembly, in which the EoL products are separated
and retrieved for their useable and valuable sub-assemblies or components. Disassembly
is traditionally carried out to retrieve valuable components using destructive or partial
disassembly methods. However, in remanufacturing, the components should be disassem-
bled non-destructively and completely in order to ensure that the remanufactured EoL
products will meet the original manufacturer’s specifications [2]. Therefore, disassembly in
remanufacturing requires a more precise and automated execution mode. Derivative from
assembly line, disassembly line is generated as the most suitable setting for disassembly of
EoL products that can manage the large-scale quantities and complex EoL products.The
disassembly line balancing problem (DLBP) is assigning sequential disassembly tasks to
ordered disassembly workstations to achieve better performance of some measured ob-
jectives, such as the number of stations, workload, idle time, etc. [3]. The optimisation of
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DLBP becomes one of the most important methods for improving the productivity and
efficiency of disassembly lines by increasing efficiency and reducing cost [4].

In recent years, the volume and speed of EoL products are sharply increased because
of the rapid development of technology innovation and material invention. The typical
straight and single disassembly line cannot meet the requirement for dealing with massive
quantities and various categories of EoL products. By considering different layout types,
the overall efficiency of the disassembly line can be improved through improving the
operating time of each workstation, such as two-side, U-type. The mentioned methods still
have limitations that cannot deal with the multiple EoL products disassembly. Therefore,
the multiple disassembly lines are proposed for dealing with multiple types of disassembly
of EoL products, such as parallel disassembly lines.

Currently, the research on parallel disassembly lines is still at the initial stage. In order
to improve the overall efficiency of the parallel disassembly lines, this paper has two main
contributions. Firstly, a mathematical model of stochastic parallel complete disassembly line
balancing (DLBP-SP) is proposed. In a remanufacturing context, remanufactured products
should have the same performance specifications as the original products [5]. Therefore,
the EoL products have to be completely disassembled for the subsequent remanufacturing
processes. Due to the uncertain conditions of the EoL products, the disassembly time is
described as stochastic numbers in this model. The optimisation objectives of the parallel
complete disassembly line include the number of workstations, working load index and
profits. The conflict between these optimisation objectives adds to the computational
complexity of the mathematical model. Secondly, a novel simulated annealing-based
hyper-heuristic algorithm (HH) is proposed to solve the multi-objective optimisation of the
DLBP-SP. Partially mapped crossover and single-point insertion mutation operations are
designed to satisfy precedence constraints. The search and solving space is expanded and
enhanced by applying the algorithm. The effectiveness and superiority of the algorithm
are demonstrated through comparison experiments. The comparison experiment is carried
out based on the collected open-source dataset and proposed optimisation algorithms
for validating the superiority of our proposed algorithm. In addition, the case study
is implemented as a practical application in industrial disassembly. Through the case
study, the stability and robustness of the proposed algorithm can also be verified. To our
knowledge, this research is the first attempt to introduce the gearbox as a case study
in DLBP.

The rest of this paper is organised as follows: Section 2 reviews literature from the
layout type of disassembly line, optimisation algorithms for DLBP and researched disas-
sembly products. Section 3 introduces the problem description, assumptions, notations,
and mathematical model of DLBP-SP alongside an illustrated example. Section 4 introduces
the novel simulated annealing-based hyper-heuristic algorithm, including explanations of
the framework and detailed processes. Section 5 carries out the comparison experiment and
the case study. The efficiency and performance of the proposed algorithm are analyzed and
validated through the results. Section 6 gives concluding remarks and recommendations
for future work.

2. Literature Review

The literature review covers three aspects, including layout types for disassembly
lines, optimization algorithms, and the studied disassembly products of DLBP. These three
aspects are the foundation for the research backgrounds, methods and objects of DLBP.
The research gaps and challenges of DLBP are discussed and summarized.

2.1. Layout Type of Disassembly Line

The layout type of the disassembly line is decided at the design stage for determining
the function and capability of the disassembly line, in which the number of workstations
and cycle time are two key factors that affect the overall efficiency of the disassembly
line. Workstations refer to any point on the disassembly line where operators execute
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a disassembly task on EOL products. Cycle time is the time it takes to complete each
workstation task, which includes working time and idle time. The overall efficiency of
the disassembly line can be improved by minimising the idle time of each workstation.
Different disassembly line layouts represent different implementation modalities of EoL
products disassembled by workstations. According to the literature review, there are four
main layout types of disassembly lines, including straight, U-type, two-sided, and parallel,
as shown in Figure 1.

Figure 1. Layout type of disassembly lines.

The straight type is the most commonly used layout type for disassembly lines.
The workstations are sequentially organized in a line array, as shown in Figure 1 [6].
The structure of the straight disassembly line is simple, making it easy to construct the
mathematical model for DLBP. On this basis, several studies have incorporated different
scenarios for further research, such as partial disassembly [7], and automatic robotic disas-
sembly [8]. However, the straight disassembly system has a relatively low dynamic range
and is only suitable for processing a single type of EoL product. The U-type disassembly
line was first proposed by Agrawal and Tiwari [9]. Compared to the straight type, the U-
type has the advantages of relatively high operation flexibility, high efficiency and short
setup times [10]. The two-sided disassembly line was introduced by Wang et al. [11] and
Kucukkoc [12], which is designed specifically for processing the disassembly of large-sized
equipment. Both U-type and two-sided layouts cannot be used for disassembling multi-
type EoL products [13]. Therefore, the parallel disassembly line was first proposed by
Aydemir-Karadag and Turkbey [14] for dealing with the disassembly process of multi-type
EoL products simultaneously. Wang et al. proposed the genetic simulated annealing al-
gorithms for solving parallel DLBP under uncertainty [15]. The parallel disassembly line
realizes high flexibility and can also disassemble multiple types of EoL products. With the
increasing quantity and variety of EoL products, the parallel disassembly line is more
appropriate and beneficial for practical application in real-world scenarios.

2.2. Optimization Algorithms for DLBP

The optimisation of DLBP is a typical non-deterministic polynomial (NP) complete
linear programming problem [16], which cannot determine the optimal solution. According
to the characteristics of DLBP, there are three main types of optimisation methods in DLBP:
exact methods, heuristic algorithms and meta-heuristic algorithms. At the initial stage,
the exact methods are considered and applied in DLBP. Altekin et al. [17] proposed the
linear programming methods and developed the mixed integer programming formulation
for solving the profit-oriented partial DLBP [18]. Igarashi et al. [19] proposed integer pro-
gramming to design the disassembly system and achieve the multi-objective optimisation
goals in a closed-loop supply chain. Özceylan and Paksoy [20] developed a nonlinear
programming model for assigning disassembly tasks to optimize the reverse supply chain.
With the development of global and intelligent optimisation algorithms, an increasing
number of heuristic and meta-heuristic algorithms are introduced and applied in DLBP.
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The heuristic algorithms are generated and developed by imitating natural behaviours,
including greedy algorithm, hill climbing algorithm, simulated annealing algorithm, ant
colony algorithm, etc. McGovern and Gupta developed the mixed hill-climbing [21] and
greedy algorithm [22] to generate the disassembly sequence and solve the DLBP. Kalayci
and Gupta published a series of research for solving sequence-dependent DLBP, which took
simulated annealing (SA) algorithm [23], and ant colony optimisation (ACO) algorithm [24].
All the heuristic algorithms are formulated and programmed with regulations for solving
specific optimisation problems. Nowadays, meta-heuristic algorithms are becoming the
most popular optimisation algorithm in DLBP. The meta-heuristic algorithm is derived
from the heuristic algorithm, which combines the stochastic process and the local search
algorithm. There are several heuristic algorithms that are also implemented to optimize the
DLBP, such as the hybrid genetic algorithm (GA) [25], particle swarm optimisation (PSO)
algorithm [26], artificial bee colony algorithm [27] and tabu algorithm [28] for solving the
optimisation process of DLBP. Zhang et al. [29] proposed the artificial fish swarm algo-
rithm for solving multi-objective DLBP under uncertain disassembly time. Zhu et al. [30]
constructed the firefly algorithm for solving the discrete DLBP and taking hazardous
disassembly operations into account.

In summary, the exact method may obtain the optimal solution, but it has limitations
and is not suitable for solving the large-scale and multi-objective optimisation of DLBP.
The exact method consumes high computing resources and time dealing with large-scale
optimisation of DLBP [31]. According to the characteristic of heuristic algorithms, the pro-
posed heuristic algorithms cannot obtain the optimal solution of NP problems and easily
obtain the local optimal solutions [32]. The heuristic algorithms are not suitable for solv-
ing high-complexity DLBP. Meta-heuristic algorithms are able to provide more optimal
solutions with limited resources, and they are suitable for dealing with large-scale and mul-
tidimensional optimization problems. However, the model and computational complexity
of the meta-heuristic algorithm are higher than exact methods and heuristic algorithms.

2.3. The Categories of EoL Product in DLBP

Traditionally, research on DLBP is focused on constructing a mathematical model
and proposing an optimization algorithm. Most case studies are implemented based on
benchmark test datasets without considering actual EoL products [33]. The benchmark test
datasets are commonly generated from software modelling, mainly applied for verifying
and validating the performance of the proposed algorithms.

In order to promote and enrich the application of automation disassembly in the real-
world, the disassembly of actual EoL products is gradually introduced in DLBP. The major-
ity of actual EoL products are focused on waste electric and electronic equipment (WEEE),
such as personal computers (PC) [34], mobile phones [35], laptops [36], etc. These WEEE
products are suitable for conducting experiments due to their variety and simple physical
structure. However, the resource recycling and economic benefits from the disassembly
process of electronic products are limited [37]. Industrial equipment disassembly has more
significant social benefits as a result of its large scale and high added value. However, only
a few studies consider industrial equipment as a case study, including hammer drills [38],
corn harvester cutting tables [39] and automobile engines [40].

2.4. Research Gaps and Challenges

In summary, there are three major research gaps and challenges according to the
literature review:

1. The majority of disassembly line layout types are straight with a determined envi-
ronment [41], which cannot fully model the actual disassembly scenario. Straight
disassembly lines are incapable of disassembling multi-type EoL products simultane-
ously [42]. The mathematical model of the predetermined scenario cannot reflect the
actual characteristics of both disassembly lines and EoL products.
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2. The increasing complexity of the mathematical model and the uncertain conditions of
DLBP limit the performance of existing optimisation algorithms. The single-objective
optimisation of DLBP is linear. However, the multi-objective optimisation of DLBP-SP
becomes a nonlinear and NP problem with higher computational complexity than
DLBP. With the development of artificial intelligence methods, novel optimisation al-
gorithms need to be proposed to deal with multi-objective optimization with uncertain
conditions and obtain better optimisation performance.

3. The condition of EoL products is uncertain, and the disassembly sequence is also
divergent. These uncertain characteristics of EoL products will lead to uncertain
disassembly process sequence and time of EoL products. Most EoL products in
DLBP are based on benchmark test datasets or WEEE equipment. The number of
disassembly tasks of these EoL products is relatively small. The precedence constraints
are relatively simple as well. Industrial equipment is another category that has great
potential value for remanufacturing [37].

In accordance with the three aspects listed above, this research explores a more realistic
and complex scenario of parallel assembly lines and proposes a novel optimisation model
to solve multi-objective optimisation of the DLBP-SP. Furthermore, this research also
introduces a new type of industrial equipment (gearbox) as a case study to enrich the
disassembly research of industrial equipment.

3. Stochastic Parallel Disassembly Line Balancing Problem
3.1. Problem Description

The typical layout scheme of a parallel disassembly line is shown in Figure 2. There
are two adjacent parallel distributed disassembly lines 1 and 2, which can simultaneously
disassemble EoL products A and B, respectively. Products A and B are assumed to be
layered industrial assemblies. Product A has five components and product B has six com-
ponents. The darker components have greater priority to be disassembled. Furthermore,
the disassembled components are delivered separately for the following remanufacturing
processes. The disassembly sequence is one possible and feasible successive order for carry-
ing out the disassembly tasks, which complies with the disassembly precedence constraints
because of the restriction of the physical structure of products. Complete disassembly is the
process whereby the EoL product is separated into all its components [43]. In Figure 2, both
EoL products A and B are completely disassembled through workstations on disassembly
lines 1 and 2, respectively.

Product A

Product B

Disassembly line 1

Disassembly line 2Workstation 1 Workstation 2 Workstation 3

Components 

of  Product A

Components 

of  Product B

Figure 2. Parallel disassembly line.

As for the workstations, workstations 1, 2 and 3 are sequentially allocated between
the parallel disassembly lines. All workstations should be capable of processing the
disassembly task on one or both lines. The first two disassembly tasks of product A and
the first disassembly task of product B are assigned to Workstation 1. The following three
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disassembly tasks of product A and the following two disassembly tasks of product B are
assigned to Workstation 2. Both workstations 1 and 2 are processing the disassembly tasks
on both disassembly lines. Workstation 3 is assigned the last three disassembly tasks of
product B, which only works on disassembly line 2. The disassembly tasks of different EoL
products are allocated to different workstations through the optimisation algorithm.

Multi-type products can be simultaneously disassembled on a parallel disassembly
line. Cycle times for each disassembly line can be designed differently to improve efficiency
and flexibility. Additionally, the idle time of workstations in a cycle can be reduced in order
to improve their efficiency.

3.2. Notations and Assumptions of DLBP-SP

In this paper, we focus on the optimisation of the complete disassembly process of
two different EoL products on parallel disassembly lines. In order to propose a more
practical mathematical model of DLBP-SP, several related basic notations are proposed.
The definition and description of notations are represented in Table 1.

Table 1. Definition and description of notations.

Notations Definition and Description

m Number of disassembly line, m = 1, 2
im Number of disassembly tasks on disassembly line m, i = 1, 2, . . . , I, where I is the number of

components of EoL product
K Number of workstations, k = 1, 2, . . . , K, where K is the maximum number of workstations
j The position of the disassembly process, j = 1, . . . , J, where J is the maximum number J = I.
ri Revenue from disassembly task i

Cw Fix operation cost per unit time for workstations
Cp Operating cost of workstations for parallel disassembly lines
Cc Operating cost of workstations for single disassembly line

CTm Cycle time of disassembly line m
CT Cycle time of parallel disassembly lines
Tk Operation time of workstation k
εm Coefficient value of CT and CTm
t̃′im Stochastic disassembly time of task i on disassembly line m
µim Average disassembly time of task i on disassembly line m
σ2

im Variance of task i on disassembly line m
1− α Confidence level

ϕ Standard normal distribution function
LB Theoretical minimum number of workstations
I Workload smoothness index
P Overall profit from complete disassembly process

PAND(im) The set of AND predecessors of task i on disassembly line m
POR(im) The set of OR predecessors of task i on disassembly line m

xijm =
{

=1, if task i at position j on line m
=0, otherwise

yijmk =
{

=1, if task i at position j on line m is assigned to workstation k
=0, otherwise

Sk =
{

=1, if workstation k is working on single disassembly line
=0, otherwise

Pk =
{

=1, if workstation k is working on parallel disassembly line
=0, otherwise

Zk =
{

=1, if workstation k is available
=0, otherwise

Based on the basic notations, the following assumptions are pre-defined for reasoning
the mathematical model of DLBP-SP.

1. Two disassembly lines are designed to be adjacent and parallel, and the workstations
are located sequentially between them.

2. The cycle time of each disassembly line is pre-defined and can be different.
3. Workstations are operated by skilled workers who can work on single or both parallel

disassembly lines and spend no travel time.
4. The workstations can only be allocated and process a single disassembly task at a time.
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5. The precedence constraints and mean disassembly time of each disassembly task are
known. Moreover, the precedence constraints of disassembly tasks should be satisfied
during the disassembly process.

6. The EoL products are completely disassembled into their simplest single components.
The revenue from each disassembled component is known.

7. Each disassembly task’s actual process time is stochastic, following the standard
normal distribution.

8. The sum of the actual process time of assigned disassembly tasks to a workstation
should not exceed the cycle time. If exceeded, the number of workstations should be
added for taking the remaining disassembly tasks into new cycle time.

9. Materials and instruments are sufficient and infinite.

3.3. Mathematical Model of DLBP-SP

Based on the proposed notations and assumptions, the parallel disassembly line
balancing with stochastic process time (DLBP-SP) is derived from the definition of the
common cycle time of parallel disassembly lines, the multi-optimisation goals and the
lower bound of DLBP-SP. An explanatory example is carried out to illustrate the proposed
mathematical model of DLBP-SP.

3.3.1. Cycle Time of Parallel Disassembly Lines

Cycle time is defined as the total elapsed time from the process beginning to the stop
end of a workstation, which is pre-defined on the disassembly line [44]. According to
the characteristics of parallel disassembly lines, each disassembly line (CTm) can have the
same or different cycle times. In order to manage and improve the overall performance of
parallel disassembly lines, the common cycle time (CT) is adopted. Referring to Özcan [45],
the modified least common multiple (LCM) method is applied in this paper. The steps of
LCM method for DLBP-SP are shown below:

Step 1: Determine the LCM as the common cycle time (CT) of two different disassem-
bly lines:

CT = [CT1, CT2], m = 2; (1)

Step 2: Calculate the coefficient values εm by dividing each cycle time of the disassem-
bly line (CTm) by the common cycle time (CT):

εm = CT/CTm; (2)

Step 3: Modifying the stochastic process time of each disassembly line (t̃im) into
parallel disassembly lines based on the coefficient values εm:

t̃im = N(µim, σim) (3)

t̃′im = εm · t̃im ⇒ t̃′im = N
(

εm · µim, ε2
m · σ2

im

)
⇒ t̃im = N

(
µ′im, σ2′

im

)
. (4)

The calculated common cycle time (CT) and updated stochastic process time (t̃′im) are
considered in DLBP-SP. The process will be further illustrated in explanatory example.

3.3.2. Multi-Objective Optimisation of DLBP-SP

In general, disassembly line balancing involves arranging the disassembly task se-
quence to increase overall performance. Evaluation indices can include productivity,
efficiency, profit, etc. In order to validate and evaluate the optimisation performance, there
are three optimisation objectives of DLBP-SP considered in this paper, including the number
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of workstations (K), workload smoothness index (I) and profit (P). The formulations for
representing the multi-objective optimisation of DLBP-SP are represented as follows:

f1 = min(K) =
K

∑
k=1

I
max
i=1

(
M

∑
m=1

J

∑
j=1

xijmyijmk

)
(5)

f2 = min(I) =

√√√√ K

∑
k=1

(CT − Tk)
2 (6)

f3 = max(P) =
M

∑
m=1

I

∑
i=1

rixijm − Cs

J

∑
j=1

Sk − Cp

J

∑
j=1

Pk − (CT · Cw)
K

∑
k=1

Zk (7)

F = min[ f1, f2,− f3] (8)

Equation (5) represents the minimum number of workstations. Equation (6) represents
the minimum smoothness index of workload. Equation (7) represents the maximum
profit through the complete disassembly processes of different EoL products. Equation (8)
is the multi-optimisation goal of the DLBP-SP, which achieves the minimum number
of workstations, minimum working load, and maximum profit as the optimal solution.
The optimisation process for multi-objectives may have mutual constraints and conflicts
among objectives. Improvement of one objective’s performance will always undermine
another objective’s performance. It is impossible to have an optimal solution that achieves
the best performance for all objectives. In order to evaluate the optimisation results
with a view to achieving the optimal performance of multi-objectives, a Pareto optimal
solution (also known as a non-dominated solution) is adopted [46]. The set of Pareto
optimal solutions is considered as the optimal solutions (the boundary), which none of the
objectives can be improved through reducing other objectives. The above multi-objective
optimisation equations must satisfy the constraint equations as follows:

K

∑
k=1

yijmk ≤ 1, ∀i ∈ I, j ∈ J (9)

M

∑
m=1

Im

∑
i=1

xijmyijmk ≥ 1, ∀k = 1, 2, . . . , K (10)

yijmk ≤
k

∑
o=1

yijmo, ∀i ∈ I, k ∈ K, o ∈ PAND(i) (11)

yijmk ≤
k

∑
o=1

∑
o∈OR(i)

yijmo, ∀i ∈ I, k ∈ K, o ∈ OR(i) (12)

M

∑
m=1

K

∑
k=1

I

∑
i=1

Tkxim ≤ CT, ∀i ∈ I, j ∈ J, k ∈ K (13)

xijm, yijmk, Zk ∈ {0, 1}, ∀m, i, k (14)

Equation (9) indicates that each task can be assigned to one workstation at a time.
Equation (10) shows there are no idle open workstations. Equation (11) represents the dis-
assembly task that is ready to be assigned only when all its AND relationship predecessors
have been assigned. Equation (12) represents the disassembly tasks that can be allocated
when at least one OR relationship predecessor task is allocated. Equation (13) indicates the
total uncertainty and processing time of all disassembly tasks assigned to the workstation
must be processed within the cycle time. The decision variables are all 0–1 variables in
Equation (14).
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3.3.3. The Lower Bound

The lower bound was first proposed by Gökçen et al. [47], which represents the
theoretical minimum number of stations for balancing a parallel assembly line under
certain conditions. The origin lower bound (LBo) can be calculated as follows:

LBo =

⌈
M

∑
m=1

∑Im
i=1 µim

CTm

⌉
, LBo ∈ N+ (15)

In Equation (15), µim is the deterministic factor representing the average disassembly
time. When disassembly time is considered as a stochastic factor, refer to Özcan [45], then
the lower bound (LB) for DLBP-SP is modified as Equation (16).

LB =


M

∑
m=1

∑Im
i=1 µim + ϕ−1(1− α)

√
∑Im

i=1 σ2
im

CTm

, LB ∈ N+ (16)

In this equation, the disassembly time is considered stochastic, which obeys the
standard normal distribution. In practical scenarios, the disassembly time of each task will
be added because of uncertain conditions or interrupted factors (such as tool breakdown,
components sticking, etc.). The original sum of disassembly time from the feasible assigned
set of disassembly tasks to a workstation may exceed the cycle time of the workstation.
Therefore, the confidence level (1− α) is adopted to represent the possibility of the sum
of the stochastic disassembly time of the assigned set of disassembly tasks within the
cycle time of the workstation. In this paper, consistent with Özcan [45], the confidence
level (1− α) is taken as 0.9 and 0.975, respectively. In addition, the random variances of
disassembly tasks are generated and categorized into low task variances ([0, (µim/4)2]) and
high task variances ([0, (µim/2)2]) as the initial parameter for the following comparison
experiments in Section 5.

3.4. The Explanatory Example

In this part, an explanatory example is carried out to illustrate the proposed mathe-
matical model of DLBP-SP. According to the parallel disassembly line shown in Figure 2,
the pre-defined cycle time of each disassembly line (CTm) and the information about differ-
ent EoL products are introduced in Tables 2 and 3. The random variances of disassembly
tasks are considered low task variances. Therefore, the cycle time (CT) and coefficient val-
ues (εm) can be calculated through the LCM method from Equations (1)–(4). The modified
information of products A and B on parallel disassembly lines is represented in Table 4.

Table 2. The information of product A on disassembly line 1.

Cycle Time of Disassembly Line 1 (CT1) 15

Task ID (i1) 1 2 3 4 5
Average disassembly time (µi1) 4 6 3 4 2

Variance (σ2
i1) 0.50 1.20 0.70 0.60 0.20

Precedence constraints - 1 1, 2 1, 2 1, 2

Table 3. The information of product B on disassembly line 2.

Cycle Time of Disassembly Line 2 (CT2) 20

Task ID (i2) 1 2 3 4 5 6
Average disassembly time (µi2) 3 4 2 6 7 4

Variance (σ2
i2) 0.40 0.30 0.10 1.20 1.50 0.30

Precedence constraints - 1 1, 2 1, 2, 3 1, 2 1, 2, 3, 4
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Table 4. The modified information of product A and B on parallel disassembly lines.

CT = 60
ε1 = 4, ε2 = 3

TaskID A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6
µ′i 16 24 12 16 8 9 12 6 18 21 12
σ2′

i 8.00 19.20 11.20 9.60 3.20 3.60 2.70 0.90 10.80 13.50 2.70

The lower bound of the number of workstations is calculated as three according to
Equation (15). A feasible optimal disassembly sequence, task allocation and operating rate
are represented in Table 5.

Table 5. A feasible disassembly sequence of the DLBP-SP.

Number of Workstation 1 2 3

Sequential task ID A1 B1 A2 B2 B3 A3 A4 A5 B4 B5 B6
µ 16 9 24 12 6 12 16 8 18 21 12
i 8.00 3.60 19.20 2.70 0.90 11.2 9.60 3.20 10.80 13.50 2.70

Sum of 49 54 51
Operating rate (%) 76.67 90.00 85.00

This disassembly sequence achieves the theoretical minimum number of workstations
which can be regarded as one of the optimal solutions. However, this solution is not unique.
When taking the operating rate into account as another optimisation objective, this solution
may not be one of the optimal solutions. On the contrary, if both the number of workstations
and operating rate are optimal, this solution can be regarded as one Pareto optimal solution.
The multi-objective optimisation process should be applied with optimisation algorithms.
The optimisation algorithms will be proposed in the following part.

4. The Proposed Hyper-Heuristic Algorithm for DLBP-SP

This section introduces the novel simulated annealing-based hyper-heuristic algorithm
(HH). Firstly, the precedence constraints of EoL products are represented and encoded based
on the precedence graph. Next, the operations procedure and framework of the proposed
HH are explained in detail. Finally, the decoding process is introduced to represent the
multi-objective optimisation results of HH.

4.1. Encoding Strategy

Multiple feasible disassembly sequences must satisfy the precedence constraints of
EoL products. Referring to Bentaha et al. [48], the precedence graph is used to create the
precedence matrix for meeting the requirement of precedence constraints and generating a
feasible initial solution. The precedence matrix of EoL products is set using binary variables
to represent the precedence constraints of components of EoL products. As shown in
Equation (17), the precedence matrix of EoL product on the disassembly line m is Pm:

Pm = [Pijm](Nm Nm), ∀i, j = 1, 2, . . . , Nm; m = 1, 2, . . . , M (17)

As shown in Equation (18), Pijm represents the precedence relationship between disas-
sembly task i and task j. The equation must satisfy the decision variable:

Pijm =

{
= 1, if task i immediate predecessor of task j
= 0, otherwise

(18)

Different EoL products will have different precedence constraints. In order to manage
the precedence constraints of different EoL products in DLBP-SP, the composite precedence
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matrix is constructed to represent the relationships among different EoL products, as shown
in Equation (19) [15]:

P∗ =


P1 0 0 0 0
0 . . . 0 0 0
0 0 Pm 0 0
0 0 0 . . . 0
0 0 0 0 PM

 (19)

The composite precedence matrix P∗ is a diagonal matrix. The precedence matrices
for different EoL products are assigned in a sequential manner and other elements are zero
matrices in P∗.

For example, based on the explanatory example, the precedence graph and precedence
matrix of EoL products A and B are shown in Figure 3, respectively. The constructed
composite precedence matrix P∗ is shown in Equation (20).

1 2

3

4

5

(a) Precedence graph (b) Precedence matrix

(A) The precedence graph and matrix of product A.

1

2

3

4

5

(a) Precedence graph (b) Precedence matrix

6

(B) The precedence graph and matrix of product B.

Figure 3. The precedence graph and matrix of product.

P∗ =




0 1 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 0

0



0 1 1 0 0 0
0 0 1 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0





(20)

The composite precedence matrix is the input and premise for generating the initial
solution of DLBP-SP. The process steps of determining the feasible disassembly sequence
are described according to the explanatory example as follows:

Step 1: Determine the disassembly task that has no predecessor tasks as the priority
disassembly tasks. The priority disassembly tasks should be A1 or B1.
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Step 2: After all the priority disassembly tasks have been assigned, the composite
precedence matrix should be updated. For example, before assigning task A1, the origin
P∗(A1, A2) = 1. After task A1 is assigned, the updated P∗′(A1, A2) = 0. In addition, the
upper-left outer matrix becomes zero, which can be deleted during disassembly task se-
quencing.

Step 3: The disassembly tasks that do not have AND predecessor tasks or those with
OR predecessor tasks are randomly selected as the following disassembly tasks, such as A2
or B2.

Step 4: To reach P∗ = [0], repeat step 2 and step 3. When P∗ = [0], all the disassembly
tasks in DLBP-SP have already been assigned and sequenced. In the following explanatory
example, Table 5 shows one disassembly sequence of the DLBP-SP. Constraints and compo-
nents of products A and B are simple. With the larger scale of EoL products, the sequencing
process becomes more complex.

4.2. Procedures of the Proposed Hyper-Heuristic Algorithm

Different from the general heuristic algorithm, the HH is an automated methodology
which selects or generates heuristic algorithms suitable for solving multi-objective optimi-
sation problems [49]. The typical framework of a hyper-heuristic algorithm can provide the
chosen high-level heuristic algorithm (HLH) for managing a group of low-level heuristic
algorithms (LLHs) to obtain the optimal solution [50].

4.2.1. Low-Level Heuristic Algorithms

As the fundamental component of the framework, LLHs affect HH’s overall complexity
and performance. Therefore, for designing the LLHs, the main principles of determining
the LLHs should be relatively simple and have their own advantages for ensuring the
overall performance of HH. There are three kinds of heuristic algorithms adopted as LLHs
in this paper, including non-dominated sorting genetic algorithm 2 (NSGA2), strength
Pareto evolutionary algorithm 2 (SPEA2), and multi-objective evolutionary algorithm based
on decomposition (MOEAD). These LLHs have their own advantages and disadvantages.

1. NSGA2 [51]: adopts fast sorting and elite strategy for improving the convergence
and accuracy of the algorithm and proposes the congestion degree for ensuring the
variety and distribution of solutions. NSGA2 has good convergence for solving multi-
objective optimisation problems. However, the distribution of the optimal solutions
from NSGA2 is not uniform.

2. SPEA2 [52]: adopts the fine-grained fitness assignment strategy and density infor-
mation that is suitable for solving multi-objective optimisation problems. SPEA2
has faster convergence and low computational complexity compared to the other
two algorithms.

3. MOEAD [53]: transforms the multi-objective optimisation problem into multiple sub-
scalar problems. Each sub-scalar problem is composed of the uniformly distributed
weight vector and optimises each sub-scalar problem through an aggregation function
to solve the multi-objective problems. However, the computational complexity of
MOEAD is the highest among LLHs.

These three kinds of LLHs are relatively simple and suitable for utilisation as LLHs in
HH. All the LLHs must apply the crossover and mutation processes to operate the initial
solutions and generate the set of optimal solutions. This research introduces the partially
mapped crossover and single-point insertion mutation for DLBP-SP.

4.2.2. Partially Mapped Crossover

Typically, the random crossover method is one of the easiest methods for generating
offspring solutions from optimal parent solutions. However, in DLBP-SP, the random
crossover method can generate infeasible solutions that violate the precedence constraints
and reduce the performance of the LLHs. Therefore, in this paper, the partially mapped
crossover (PMX) method is used to improve the performance of LLHs.
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Taking the explanatory example, the operation process of partially mapped crossover is
shown in Figure 4. The parents can be any two feasible solutions and the mapping section
is determined between two random crossover points. During the exchange mapping
section, the mapping list for exchanging is selected, for example, B2 ↔ B2 ↔ A3, A5 ↔ A4.
Next, conflict individuals should be updated according to the mapping list, and the rest of
the non-conflict individuals can be copied directly from their parents. Finally, offspring
solutions are generated.

A2 B2 B3 A3 A4 A5 B4 B5 B6B1A1Parent  1

A2 A3 B2 B3 A5 A4 B4 B5 B6A1B1Parent  2

A2 B2

B3 A3 A4

A5 B4 B5 B6B1A1Offspring 1

A2 A3

B2 B3 A5

A4 B4 B5 B6A1B1

Mapping

Sect ion

Offspring 2

Exchange mapping 

sect ion

Mapping 

list
B3 A3 A4

B2 B3 A5

A2 A3 A4 B4 B5 B6B1A1Offspring 1

A2 B2 A5 B4 B5 B6A1B1Offspring 2 B3 A3 A4

B2 B3 A5

Crossover result

Figure 4. Operation process of the partial mapped crossover.

4.2.3. Single-Point Insertion Mutation

Similar to the crossover operation, the typical random mutation method is also easily
generating infeasible solutions. Referring to Wang et al. [15], the single-point insertion
mutation method is used for improving the performance of LLHs.

Taking the explanatory example, the operation process of single-point insertion muta-
tion is shown in Figure 5. The mutation point is randomly selected, for example B3. Then,
the predecessor and successor tasks are determined (B2 and B6). Next, the selected point
should be allocated after B2 or before B6. In the original parent solution, B3 is immediately
after B2. Therefore, there is only one offspring solution that B3 is assigned immediately
before B6.

B6B2 B3

Mutat ion Point

Predecessor

A2 A3 A4 B4 B5 B6B1A1Parent B2 B3 A5

Mutat ion 

result

A2 A3 A4 B4 B5 B6B1A1Offspring B2 A5

Successor

B3

Figure 5. Operation process of single-point insertion mutation.

4.3. Simulated Annealing Based High-Level Heuristic Algorithm

The HLH is the dominant component that directly affects the overall performance of
HH. Selecting an appropriate high-level strategy is very important to solve optimisation
problems. Currently, the HLHs are mainly divided into four categories according to differ-
ent mechanisms, including random selection, greedy strategy, meta-heuristic algorithm
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and learning method [54]. This paper adopts the simulated annealing algorithm (SA) as
the HLH in DLBP-SP.

The SA has a great ability to solve parallel complex multi-objective optimisation prob-
lems. The computational complexity is simple and has strong robustness and universality.
However, the performance of the SA algorithm is sensitive to the initial value and pre-
defined parameters. The convergence rate of SA is also relatively slow. Therefore, choosing
SA as the HLH in HH can effectively avoid local optimal and achieve better global optimal
solutions through managing the multiple solution spaces that are generated from LLHs.
The procedure for the proposed SA-based HH is shown in Algorithm 1.

Algorithm 1 Proposed SA based HH.

Input: Objective Function, F; Crossover, pc; Mutation, pm; Initial temperature, T0; Stopping
temperature, Tf ; Cooling rate, α; Initial population, P0; Iteration time, K; Precedence
matrix, P∗; Population size, N

Output: Optimal solution set, S∗
1: t← 0
2: Random generate N individuals as the initial population
3: while t ≤ K or St 6= St−1 do
4: for i = 1 to N do
5: Generate initial solution sets S0 through mapping, crossover (pc) and mutation

(pm) based on LLHs (Hi)
6: while T0 ≥ Tf do
7: Randomly select a heuristic hi ∈ Hi, combine S0 to generate new solution

sets through neighborhood mutation Si, Calculate ∆Ek = F(S1)− F(S0)
8: if ∆Ek ≥ 0 then
9: S∗ = S1

10: else
11: generate a random number x ∼ U(0, 1)
12: if x < exp(−∆Ek/t) then
13: S∗ = S1
14: else
15: S∗ = S0
16: end if
17: end if
18: end while
19: end for
20: t = t + 1
21: end while

4.4. Decoding Process

The decoding process is allocating the optimal sequenced disassembly tasks to work-
stations while within the cycle time of DLBP-SP. According to explanatory example and
Table 5, through decoding process under certain condition, the number of workstations
is three. The sequential disassembly tasks in each workstation are: K1 = A1 → B1 → A2,
K2 = B2 → B3 → A3 → A4 → A5, K3 = B4 → B5 → B6, respectively. According to the NP
characteristic of DLBP-SP, the optimal solution is not identical.

5. Computational Experiments

This section introduces the comparison experiment and the case study. Firstly, the com-
parison experiment is carried out by comparing with existing algorithms through bench-
mark test datasets for validating the performance of the proposed HH. Then, a case study is
proposed based on two types of industrial splitter gearboxes. The results are also analyzed
and discussed in this section. The proposed HH is implemented in Python and runs on an
Intel(R) Core(TM) i7-9700K CPU 3.6 GHz computer with 32 GB of RAM.
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5.1. Comparison Experiment

The proposed HH algorithm is compared with the Özcan [45] proposed the tabu search
algorithm (TS) for dealing with the stochastic parallel assembly line balancing problem and
Wang et al. [15] proposed the genetic simulated annealing algorithm (GSA) for solving the
partially parallel stochastic DLBP.

5.1.1. Description of the Collected Dataset

The benchmark test datasets is offered from Özcan [45], which contain 16 different
named datasets (such as Jaeschke, Jackson, etc.). Each named dataset contains different
number of disassembly tasks, precedence constraints and the mean process time of each
task. In order to applied for parallel disassembly line, the problems are generated from the
datasets paired to themselves and with other datasets (such as Jaeschke-Jaeschke, Jackson-
Jaeschke, etc.). There are 31 different experimental problems considered in this research. A
total of 372 experiments are implemented with different indicators, including cycle times
(CT1, CT2), the number of tasks (N1, N2), different task variances and confidence levels
(0.9 and 0.975). The number of workstations (N) is the single optimisation goal in this
computational experiment. The results of TS and GSA are collected form references [15,45].

5.1.2. Results and Analysis

According to the proposed computational experiments, the experiment results are rep-
resented and summarised in Table 6 and Table 7, respectively. The proposed HH algorithm
achieves most identical solutions under low task variance without much promotion. The
rates of HH obtaining identical solutions under low task variance with TS and GAS are
87.10%, 84.94% and 73.12%, 80.64%, respectively. However, the proposed HH algorithm can
achieve great improvement and have better solutions under high task variance conditions.
The rates of HH obtaining better solutions under high task variance than TS and GAS are
89.24%, 97.84% and 86.02%, 97.84%, respectively. According to the results, we can indicate
that our proposed HH algorithm has a similar performance as the existing TS and GSA
algorithms under low task variance conditions. Since the variety and search space of the
mean disassembly time is relatively small under low task variance conditions, optimal
solutions can easily be obtained. The proposed HH algorithm performs better under high
task variance conditions due to a larger search space. Therefore, the superior performance
of the proposed HH algorithm can be validated through the results.

Additionally, the gap percentage (%Gap) from LB (LB = Min(K)−LB
LB ) is introduced to

evaluate the effectiveness of the proposed HH algorithm. The lower %Gap represents the
calculated outcomes closer to the theoretical lowest number of workstations, which can
also represent the performance of the optimisation algorithm. According to the results
in Table 7, the %Gap from LB for (1 − α) = 0.9 and (1 − α) = 0.975 under low task
variance are 9.37% and 14.29%. In addition, the %Gap from LB for (1− α) = 0.9 and
(1− α) = 0.975 under high task variance are 7.63% and 13.17%, respectively. Compared to
TS and GSA, the %Gap from the proposed HH algorithm under low task variance is similar
with slightly improvement. Under high task variance, the %Gap from the proposed HH
algorithm reduces 9.2% under (1− α) = 0.9 and 8.86% under (1− α) = 0.975 compared
with TS, respectively. Meanwhile, the %Gap from proposed HH algorithm reduces 10.88%
under (1− α) = 0.9 and 17.84% under (1− α) = 0.975 improvement compared with GSA,
respectively. The stability of the proposed HH can also be represented by the similar results
under different variances.

Based on the computational experiment results, we can indicate that the proposed HH
algorithm is validated and suitable for more complicated and changing situations.
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Table 6. Computational results.

Problem N1 N2 CT1 CT2

Low Task Variances High Task Variance

(1 − α) = 0.9 (1 − α) = 0.975 (1 − α) = 0.9 (1 − α) = 0.975

LB TS GSA HH LB TS GSA HH LB TS GSA HH LB TS GSA HH

Jaeschke–Jaeschke 9 9
10 14 7 8 8 8 8 10 9 9 7 11 10 8 8 13 13 10
10 10 8 10 10 10 9 12 12 12 8 14 14 10 10 15 15 12
18 10 7 7 7 7 7 8 8 8 7 9 9 8 8 11 11 9

Jackson–Jaeschke 11 9
10 14 8 9 9 9 8 11 10 10 8 11 11 10 8 13 13 11
10 10 9 12 12 12 9 14 14 14 9 14 14 12 10 15 15 14
21 18 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 6

Jackson–Jackson 11 11
10 13 9 11 11 11 9 12 12 12 9 11 11 11 9 14 13 12
14 14 8 9 9 8 8 9 9 8 8 9 9 8 8 10 10 9
21 14 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 7

Roszieg–Jackson 25 11
18 21 11 11 11 11 11 12 12 12 11 13 12 11 11 14 13 12
21 21 10 10 10 10 10 11 10 10 10 11 10 10 10 12 12 11
25 14 10 10 10 10 10 11 11 11 11 11 11 11 10 12 12 11

Roszieg–Roszieg 25 25
18 25 14 14 14 15 14 15 15 15 14 16 16 15 14 17 17 16
21 21 13 15 14 15 14 16 15 15 14 16 16 15 14 18 17 16
32 25 11 11 11 11 11 11 11 11 11 11 11 11 11 13 12 11

Sawyer–Roszieg 30 25
41 32 13 15 14 14 13 15 15 15 14 16 15 15 14 17 17 15
47 25 14 14 14 14 14 15 15 15 14 16 15 14 14 18 17 15
54 21 13 14 14 14 14 15 15 15 14 16 15 14 14 18 17 15

Sawyer–Sawyer 30 30
36 41 18 21 20 21 18 22 22 22 19 24 22 21 19 27 26 23
36 36 19 22 22 23 19 24 24 25 20 25 24 23 20 28 28 25
75 54 11 12 12 12 11 13 13 13 12 13 13 12 12 14 14 13

Gunther–Sawyer 35 30
61 75 14 15 15 15 14 16 16 16 14 17 16 15 14 19 18 16
69 54 14 16 15 16 14 17 17 17 15 18 17 16 15 20 19 17
81 36 16 19 18 19 16 20 19 20 17 21 20 19 17 24 23 20

Gunther–Gunther 35 35
61 69 17 19 19 19 17 20 20 20 17 22 21 19 17 25 24 21
69 69 16 18 17 18 16 19 19 19 16 20 20 18 16 24 22 19
81 61 15 17 17 17 16 18 18 18 16 20 19 18 16 23 22 19

Kilbridge–Gunther 45 35
79 81 14 15 15 15 15 16 16 16 15 17 17 15 15 19 19 16
69 69 17 18 18 18 17 19 19 19 17 20 19 18 17 22 22 20

184 61 12 13 13 13 12 14 14 14 13 15 15 13 13 17 16 14

Kilbridge–Kilbridge 45 45
79 184 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 12
92 92 13 14 14 14 14 15 15 15 14 15 15 14 14 16 16 15

138 110 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12 11
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Table 6. Cont.

Problem N1 N2 CT1 CT2

Low Task Variances High Task Variance

(1 − α) = 0.9 (1 − α) = 0.975 (1 − α) = 0.9 (1 − α) = 0.975

LB TS GSA HH LB TS GSA HH LB TS GSA HH LB TS GSA HH

Hahn-Kilbridge 53 45
2338 92 13 14 14 14 14 15 15 15 14 15 15 14 14 16 16 15
2004 69 16 18 18 18 17 19 19 19 17 19 19 18 17 21 21 19
2338 184 10 10 10 11 11 11 11 11 11 11 11 11 11 12 12 11

Hahn-Hahn 53 53
2004 4676 11 12 12 12 11 13 13 13 12 13 13 12 12 14 14 13
2806 2806 11 12 12 12 11 13 12 12 12 13 12 12 12 14 15 13
4676 3507 8 8 8 8 8 9 8 8 9 9 9 9 9 9 9 9

Tonge-Hahn 70 53
293 2004 20 22 22 23 16 24 24 24 21 25 25 23 21 28 27 24
410 2806 14 13 13 16 14 14 14 17 15 14 14 16 15 16 16 17
468 3507 12 13 13 13 12 14 14 14 13 14 14 13 13 16 16 14

Tonge- Tonge 70 70
364 410 19 21 21 21 19 22 22 22 19 23 23 21 19 26 26 22
468 468 16 17 17 17 16 18 18 18 16 19 19 17 16 21 21 18
527 293 19 22 22 22 19 23 23 23 20 24 24 22 20 27 27 23

Wee-Mag-Tonge 75 70
50 320 42 55 50 55 42 63 62 64 43 63 62 56 43 71 67 65
52 364 40 48 45 48 40 57 55 57 40 60 56 54 40 66 62 61
54 527 35 42 40 41 36 49 44 48 35 54 48 41 36 58 56 53

Wee-Mag-Wee-Mag 75 75
50 56 57 77 67 77 57 95 90 95 58 103 98 79 59 113 109 98
52 52 58 82 74 81 58 104 103 105 60 107 104 82 60 113 112 107
56 54 54 67 65 67 55 83 76 82 55 97 91 69 57 108 106 85

Arcus83-Wee-Mag 83 75
5048 50 45 59 54 58 46 67 63 65 47 70 63 60 47 74 72 68
5408 54 42 50 49 50 42 56 55 56 43 62 60 51 44 70 69 58
5853 56 39 47 46 47 39 51 49 51 40 58 54 48 41 66 61 51

Arcus83- Arcus83 83 83
5048 5408 29 34 34 34 29 36 35 36 31 38 37 34 31 43 42 36
6883 6883 22 25 25 25 22 26 26 26 24 28 28 25 24 31 31 27
8898 6309 20 23 23 23 20 24 24 24 22 26 26 24 22 29 29 25

Lutz3-Arcus83 89 83
110 6309 29 31 31 31 29 33 33 33 29 35 35 31 29 39 38 33
127 7571 25 27 26 27 25 28 28 28 25 29 29 27 25 32 32 28
150 8898 21 22 22 22 21 23 23 23 21 24 24 22 21 27 27 23

Lutz3-Lutz3 89 89
110 150 28 30 30 30 28 32 32 32 28 33 33 31 28 37 37 32
118 118 30 33 33 33 30 35 34 35 30 37 36 33 30 41 40 35
137 127 27 29 29 29 27 31 31 31 27 32 32 29 27 36 36 31

Mukherje-Lutz3 94 89
301 137 28 30 30 30 28 32 32 32 28 33 33 31 28 37 37 32
324 118 29 31 31 31 29 33 33 33 29 35 35 32 29 39 38 34
351 150 25 26 27 26 25 28 28 28 25 29 29 27 25 32 32 28
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Table 6. Cont.

Problem N1 N2 CT1 CT2

Low Task Variances High Task Variance

(1 − α) = 0.9 (1 − α) = 0.975 (1 − α) = 0.9 (1 − α) = 0.975

LB TS GSA HH LB TS GSA HH LB TS GSA HH LB TS GSA HH

Mukherje- Mukherje 94 94
301 301 29 33 33 33 29 35 35 35 30 36 36 33 30 40 40 35
301 351 27 30 30 30 27 32 32 32 28 33 33 30 28 37 37 32
351 324 26 29 29 29 26 31 31 31 27 32 32 29 27 36 35 31

Arcus111-Mukherje 111 94
8847 301 32 36 36 36 32 39 38 39 33 40 40 37 33 45 45 39
9400 324 30 34 34 34 30 36 36 36 31 38 37 34 31 42 42 36

10,027 351 28 31 31 31 28 33 33 33 29 35 34 32 29 39 38 33

Arcus111-Arcus111 111 111
8847 9400 34 39 39 39 34 42 41 42 35 44 43 40 35 49 48 42

11,378 11,378 28 31 31 31 28 33 32 33 28 33 33 31 28 37 37 33
17,067 10,743 23 26 26 26 23 28 28 28 24 29 29 26 24 32 32 28

Bartholdi-Arcus111 148 111
564 11,378 25 26 26 26 25 28 28 28 25 29 29 26 25 31 31 28
705 11,570 22 24 24 24 22 25 25 25 23 26 26 24 23 28 28 25
805 7571 28 31 31 31 28 33 33 33 28 35 34 31 28 37 38 33

Bartholdi- Bartholdi 148 148
513 564 22 23 24 23 22 24 25 24 23 25 25 23 23 27 28 24
626 626 19 20 20 20 19 21 21 21 20 21 22 20 20 23 23 21
805 705 16 17 17 17 16 17 17 17 17 18 18 17 17 19 19 18

Lee-Bartholdi 205 148
1510 564 26 28 29 28 26 30 30 30 27 31 31 28 27 34 34 30
2077 626 21 22 23 22 21 23 23 23 22 24 24 22 22 26 26 23
2832 705 17 18 18 18 17 19 19 19 18 19 19 18 18 20 21 19

Lee-Lee 205 205
1699 2643 23 25 25 25 23 26 26 26 23 27 27 25 23 29 29 26
2266 2266 22 23 23 23 22 23 24 24 22 24 24 23 22 26 26 24
2832 2454 19 19 20 20 19 20 20 20 19 21 21 20 19 22 22 21

Scholl-Lee 297 205
1935 2831 46 50 50 50 46 52 52 52 46 54 54 50 46 60 60 52
2247 1699 46 50 50 50 46 53 53 53 46 54 54 50 46 60 60 52
2787 1510 42 45 45 45 42 47 47 47 42 49 49 45 42 53 53 47

Scholl- Scholl 297 297
2049 2680 62 68 67 67 67 71 71 71 62 73 73 68 62 81 81 71
2111 2111 68 75 75 75 68 78 78 78 68 82 81 75 68 90 90 79
2787 2247 58 63 63 63 58 66 66 66 58 68 68 63 58 75 74 66
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Table 7. Analysis of the computational results.

Computational Results Analysis

VS TS VS GAS

Low Task Variance High Task Variance Low Task Variance High Task Variance

(1 − α) = 0.9 (1 − α) = 0.975 (1 − α) = 0.9 (1 − α) = 0.975 (1 − α) = 0.9 (1 − α) = 0.975 (1 − α) = 0.9 (1 − α) = 0.975

Number of better solutions 6 9 83 91 5 1 80 91
Number of identical solutions 81 79 9 1 68 75 12 1

Number of worse solutions 6 5 1 1 20 17 1 1
Rate of better solutions (%) 6.45% 9.68% 89.24% 97.84% 5.38% 1.08% 86.02% 97.84%

Rate of identical solutions (%) 87.10% 84.94% 9.68% 1.08% 73.12% 80.64% 12.90% 1.08%
Rate of worse solutions (%) 6.45% 5.38% 1.08% 1.08% 21.50% 18.28% 1.08% 1.08%

%Gap of TS and GAS 9.67 14.37 16.83 22.03 9.51 16.98 18.51 31.01
%Gap 9.37 14.29 7.63 13.17 -

5.2. Case Study

This subsection applies the proposed HH algorithm for multi-objective optimisation
of DLBP-SP with two similar types of gearboxes from Hansa Tmp Co., Ltd. The superior
performance of the proposed HH algorithm can be verified from the number of non-
dominated solutions compared with LLHs (NSGA2, SPEA2, and MOEAD) and a basic
simulated annealing (SA) algorithm. The superiority of the proposed HH algorithm can be
validated through the number of the non-dominated solutions. The stability and robustness
of the proposed HH algorithm can also be proved based on the hyper-volume index.

5.2.1. Descriptions of the Gearboxes

The gearbox is one of the most common and typical types of industrial equipment.
On the one hand, most failure types of splitter gearboxes are minor problems on one
component, whereas the rest of the main components function well [55]. On the other
hand, the connection mode of components in the gearbox is relatively simple, which
theoretically allows complete disassembly without any destructive processes. Therefore,
the gearboxes have great potential value through remanufacturing. There are two similar
types of gearboxes considered in this case study, including splitter gearboxes series 85000
and 90000, as shown in Appendix A.

This research only focuses on and collects information related to the disassembly pro-
cess. Therefore, detailed running parameters and data are not considered. The installation
information about the splitter gearboxes is collected, including the type and quantity of
components (representing as mean disassembly process time), operation time deviation
and revenue from each disassembled component. The detailed bill of materials of these
splitter gearboxes is shown in Appendix A.

The splitter gearbox series 85000 has 30 parts, and the splitter gearbox series 90000 has
35 parts. The explosion diagram of both splitter gearboxes is represented in Figure 6, which are
collected from open-source catalogue and presented in materials. The precedence constraints
and disassembly sequence of splitter gearboxes series 85000 and 90000 are proposed according
to the spare part list and the manufacturing process. The disassembly process can be regarded
as the reverse process of the manufacturing process. The arrow direction shows the immediate
precedence of each disassembly task. The splitter gearboxes are assumed as being able to be
completely disassembled in this research. The precedence relationships for splitter gearboxes
series 85000 and 90000 are proposed, as shown in Figure 7.

(a) Series 85000 (b) Series 90000
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Figure 6. Explosion diagram of splitter gearboxes.
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Figure 7. Precedence relationship of splitter gearboxes.

5.2.2. Experiments and Analysis

The combinations of the different cycle times of each disassembly line are constructed
in this subsection. The cycle times of each parallel disassembly line are set as
CT1 = {8, 27, 50, 60, 90} and CT2 = {10, 24, 60, 65, 108}, respectively. The combination
of different experimental parameters is shown in Table 8.

The initial population for each algorithm is set as 50, and the crossover and mutation
probability in related algorithms are set as 0.8 and 0.2, respectively. The initial temperature
is set as 200, and the cooling rate is set as 0.975. The final minimum temperature is 10.

Table 8. The combination of experiment parameters.

No. CT1 CT2 No. CT1 CT2 No. CT1 CT2 No. CT1 CT2

1 8 11 8 27 65 15 39 89 22 84 24
2 8 24 9 27 72 16 67 11 23 84 65
3 8 65 10 27 89 17 67 24 24 84 72
4 8 72 11 39 11 18 67 65 25 84 89
5 8 89 12 39 24 19 67 72
6 27 11 13 39 65 20 67 89
7 27 24 14 39 72 21 84 11

Table 9 presents three optimisation objectives and the number of non-dominated
solutions from different experiments. When the cycle time of one disassembly line is
determined, the number of workstations (K) is reduced while the cycle time of the other
disassembly line is increasing. Aside from the number of workstations, the minimum
workload smoothness index (I) and the maximum profit (P) are realised when the same
cycle time (CT1 = CT2 = 60) is achieved, which is a special scenario for parallel disas-
sembly lines. However, there is no direct connection between I and P. There are several
experiments where the results of I are similar, but the results of P are very different, such
as experiments 7 and 8, 13 and 14. There are three experiments that generate costs, which
are not suitable for taking into account. Moreover, the greater number of non-dominated
solutions represents the better performance of the optimisation algorithm. According to the
experiment results in Table 9, the proposed HH algorithm can obtain a greater number of
non-dominated solutions, which achieves 24 times the greatest number of non-dominated
solutions out of all 25 experiments.

Tables 10–12 are selected three schemes of the optimal solution based on different
combinations of cycle time for detail analysis. Table 10 shows one optimal solution based
on the CT1 = 50, CT2 = 60. Figure 8 intuitively shows the Gantt chart of the disassembly
tasks allocation. The minimum number of workstations is 11, in which workstation 6 only
works on disassembly line 1, whereas other workstations work on both disassembly lines.
The working load balancing index is 124.12, the total profit from the disassembly process is
499.8, and the utilization rates of the workstation range from 96.1% to 61.4%. The utilization
rates of the first two workstations are relatively low because there are some disassembly
tasks that are time-consuming (such as tasks B5 and A21) and hard to achieve ideal results
in a real-world application. Apart from those two workstations, the utilization rates of the
rest nine workstations are above 85%.
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Table 11 shows the one optimal solution based on the same cycle time CT1 = CT2 = 60,
which is a special situation that the cycle times of parallel disassembly lines are equal.
The minimum number of workstations is 10, the working load balancing index is 19.87, the
total profit from the disassembly process is 749.8, and the utilization rates of the workstation
are all above 85.0%. The working load balancing index is extremely low as well as achieves
the maximum revenue. This result is generated because the cycle time of each disassembly
line is identical. All workstations have the best performance without conflict on each
disassembly line under this circumstance.

Table 12 shows the one optimal solution based on the cycle times CT1 = 90, CT2 = 108,
which is the largest combination in this case study. The minimum number of workstations is
6, the working load balancing index is 115.97, the total profit from the disassembly process
is 309.8, and the utilization rate of the workstation ranges from 96.1% to 76.6%. Compared
with the CT1 = 50, CT2 = 60, the working load balance has slightly decreased, while the
overall profit has also declined. We can identify that the cycle time of each disassembly
line is not the longer, the better. The longer cycle time will lead to a longer running time
for workstations. However, the utilization rate of workstations may not increase. It is well
worth determining the cycle time of each parallel disassembly line at the initial design
stage based on the disassembly EoL products.

Table 9. Multi-objective optimisation results and the number of non-dominated solutions.

No. CT1 CT2 K I P MOEAD SPEA2 NSGAII SA HH

1 8 10 51 781.8 359.8 6 6 7 6 7
2 8 24 39 421.3 495.8 5 5 6 5 6
3 8 60 31 1866.6 479.8 6 6 7 7 7
4 8 65 31 8127.6 79.8 6 6 7 7 7
5 8 108 29 3259.8 403.8 7 7 8 7 7
6 27 10 38 3991.9 259.8 8 8 8 8 8
7 27 24 25 620.2 443.8 5 5 5 5 5
8 27 60 16 619.8 209.8 9 9 9 9 10
9 27 65 15 1767.9 −995.2 10 10 11 11 11

10 27 108 13 102.9 671.8 6 6 7 6 7
11 50 10 33 681.2 529.8 6 6 6 6 6
12 50 24 20 1505.8 109.8 5 5 5 5 5
13 50 60 11 124.1 499.8 7 7 8 7 8
14 50 65 10 127.9 159.8 6 6 8 7 8
15 50 108 8 486.8 −1870.2 9 9 10 10 10
16 60 10 32 803.4 529.8 6 6 6 6 6
17 60 24 19 290.9 599.8 3 3 3 3 3
18 60 60 10 19.9 749.8 11 10 10 11 11
19 60 65 9 142.6 39.8 6 6 7 6 7
20 60 108 7 46.6 299.8 3 3 3 3 3
21 90 10 30 1154.6 519.8 6 6 7 6 7
22 90 24 17 797.4 379.8 6 6 6 6 6
23 90 60 8 25.3 649.8 6 6 7 6 7
24 90 65 8 256.3 −340.2 6 6 7 6 7
25 90 108 6 116.0 309.8 10 10 10 10 10

Best number in 25 times 8 7 22 12 24
Rate (%) 32 28 88 48 96

Table 10. One optimal sequence of the disassembly process (CT1 = 50, CT2 = 60).

Workstation No. Working Load Balance Profit Time (%) Task Sequence on Each Workstation

1

124.12 499.8

184.2 61.4% ‘A6’→‘B5’→‘B35’→‘B2’→‘B20’
2 239.0 79.7% ‘A21’→‘B6’→‘A10’
3 287.5 95.8% ‘B18’→‘B1’→‘B3’→‘B34’→‘B19’→‘B12’→‘B4’
4 281.0 93.7% ‘A1’→‘B13’→‘A19’→‘B33’→‘A7’
5 265.5 88.5% ‘B17’→‘A20’→‘A18’→‘A17’
6 260.0 86.7% ‘B16’→‘B15’→‘B14’→‘B21’→‘B22’→‘B29’
7 288.8 96.3% ‘A2’→‘A22’→‘A23’→‘B32’→‘A3’→‘B11’→‘B28’
8 271.5 90.5% ‘A24’→‘A14’→‘A5’→‘B8’
9 279.8 93.2% ‘B25’→‘A25’→‘A16’→‘B7’→‘B23’→‘B9’

10 279.2 93.0% ‘A26’→‘A27’→‘A9’→‘B24’→‘A13’→‘B27’→‘A15’→‘B31’→‘A4’→‘B26’→‘A29’
11 289.0 96.3% ‘A30’→‘B30’→‘A28’→‘A12’→‘B10’→‘A8’→‘A11’
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Table 11. One optimal sequence of the disassembly process (CT1 = CT2 = 60).

Workstation No. Working Load Balance Profit Time (%) Task Sequence on Each Workstation

1

19.87 749.8

53.0 88.3% ‘A19’→‘B35’→‘B2’→‘A6’→‘A18’→‘B1’
2 56.6 94.3% ‘B5’→‘A21’
3 44.6 89.2% ‘A1’→‘B20’→‘A20’→‘A7’→‘A10’→‘B18’
4 57.8 96.3% ‘B17’→‘B19’→‘B16’→‘B3’→‘B6’→‘B34’
5 57.6 96.0% ‘A17’→‘A2’→‘B4’→‘B12’→‘B15’→‘A22’→‘A14’→‘B13’
6 51.0 85.0% ‘A23’→‘B3’→‘B14’→‘B21’→‘A5’→‘A24’→‘A13’→‘A3’→‘A15’
7 55.4 92.3% ‘A16’→‘A4’→‘A9’→‘A25’→‘A29’→‘A30’→‘A12’→‘A8’
8 58.4 97.3% ‘B22’→‘B11’→‘B29’→‘A26’→‘B28’→‘A27’→‘B25’
9 49.2 82.0% ‘A28’→‘B32’→‘B8’→‘B9’→‘A11’

10 53.8 89.7% ‘B7’→‘B27’→‘B31’→‘B10’→‘B23’→‘B24’→‘B26’→‘B30’

Table 12. One optimal sequence of the disassembly process (CT1 = 90, CT2 = 108).

Workstation No. Working Load Balance Profit Time (%) Task Sequence on Each Workstation

1

115.97 309.8

490.9 90.9% ‘B5’→‘A19’→‘B12’→‘B6’→‘B1’→‘A7’→‘A10’→‘B18’
2 508.1 94.1% ‘B17’→‘A21’→‘A18’→‘A1’→‘B34’→‘B20’→‘B2’→‘B13’→‘B35’
3 512.2 94.9% ‘B4’→‘B19’→‘B16’→‘B3’→‘A6’→‘A20’→‘A17’→‘B15’→‘B14’→‘B33’→‘A2’→‘B21’
4 519.1 96.1% ‘B22’→‘B29’→‘B11’→‘B28’→‘B25’→‘A22’→‘B8’→‘A14’→‘B9’→‘B32’
5 481.4 89.1% ‘A16’→‘B10’→‘A3’→‘B7’→‘B23’→‘A9’→‘B24’→‘A23’→‘B27’→‘A24’→‘A25→‘A26→‘A5’
6 413.8 76.6% ‘A12’→‘A13’→‘B31’→‘A15’→‘B26’→‘B30’→‘A30’→‘A8’→‘A11’→‘A29’→‘A27’→‘A4’→‘A28’
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Figure 8. The Gantt chart of optimal solution (CT1 = 50, CT2 = 60).

Moreover, this paper adopts the hypervolume index as an indicator for evaluating the
performance of the proposed HH algorithm. The hypervolume index represents the volume
of the hypercube enclosed by the individual points in the solution set and the reference
point in the target space [56]. This hypervolume index is suitable for evaluating the
convergence and distribution of the optimal solution set from multi-objective optimisation
algorithms. The higher mean value and lower number of outliers of the hypervolume
outcomes indicate better convergence and uniformity of the algorithm.

Based on the selected and analyzed three disassembly schemes above, three hyper-
volume index results are shown in Figure 9. According to the figures, the HH can obtain
better results without deviant points in the HH solution sets. The results of low-heuristic
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algorithms are similar, which reflects that the performance gap of each low-heuristic al-
gorithm is relatively small, and the basic SA algorithm has better performance than these
low-heuristic algorithms. Convergence and distribution can be reflected in the distribution
length of the box plot. The HH algorithm has the best performance of the convergence and
uniformity of the distribution compared to the other four basic algorithms.

Figure 9. Box plots of hypervolume.

5.2.3. Discussion

In summary, the validity and superiority of the proposed HH algorithm are verified
through comparison with the tabu search algorithm and the genetic simulated annealing
algorithm. Additionally, taking two types of splitter gearboxes as a case study, the HH
algorithm is applied for multi-objective optimization of the disassembly of industrial
equipment. The superior performance of the algorithm is verified by the number of non-
dominated solutions. Based on the hyper-volume index, the HH algorithm is also shown
to be stable and robust compared to low-level heuristic algorithms and the SA algorithm.

The main objective of this study is to improve the mathematical model and propose a
methodology to optimise the DLBP-SP, which is the premise for designing and applying par-
allel disassembly lines for real-world applications. However, a limitation of the proposed
approach is the lack of dynamic planning and real-time monitoring at this stage. Indeed,
various advanced sensing technologies emerged in recent years can be implemented in
the proposed parallel disassembly lines and integrated into our proposed approach to
further improve their intelligence and efficiency. Mobile visual sensor systems, for example,
can be integrated into parallel disassembly lines for real-time monitoring, which enables
the detection of anomalies and failures for dynamic planning and further optimisation
of the parallel disassembly lines [57]. Moreover, autonomous robotic, automated guided
vehicle (AGV), and smart sensor devices have significant potential advantages when com-
bined with parallel disassembly lines. For example, the virtual sensor network proposed
by Indri et al. [58] can be integrated into the parallel disassembly lines for robot manual
guidance and collision detection. Embedded with several types of physical sensors such as
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light beamers, vision sensors, and HD cameras, the network can provide real-time decision-
making capability for the disassembly lines to further improve the overall production
efficiency. Further investigations on the integration of various sensing technologies in the
proposed approach will be conducted in our future work.

6. Conclusions

This paper originally proposed a novel simulated annealing-based hyper-heuristic
algorithm to optimize the multi-objective stochastic parallel disassembly line balancing
problem (DLBP-SP). Firstly, the mathematical model of stochastic parallel complete dis-
assembly lines is developed for modelling the disassembly process in remanufacturing.
This mathematical model is closer to real-world disassembly situations since the uncertain
conditions of EoL products are represented by the stochastic disassembly time. Secondly,
NSGA2, SPEA2 and MOEAD are taken into account as low-level heuristic algorithms and
the simulated annealing algorithm as the high-level heuristic algorithm for combining the
advantages of those basic algorithms. In addition, partially mapped crossover and single-
point insertion mutations are used for ensuring precedence constraints and enhancing the
quality of optimal solutions. Following that, single-objective optimisation computational
experiments are used to verify the performance of the proposed HH algorithm. In the com-
parison experiment, the rates of HH obtaining identical solutions under low task variance
are 87.10%, 84.94% and 73.12%, 80.64%, the rates of HH obtaining better solutions under
high task variance are 89.24%, 97.84% and 86.02%, 97.84% compared with TS and GAS,
respectively. Therefore, validity and superiority can be proved according to the comparison
experiment results. Moreover, to our knowledge, this paper is the first to present gearboxes
as a case study in DLBP. As discussed in Section 5.2.1, gearboxes are ideal products for
complete disassembly without destructive processes. This research can be extended and
integrated to design parallel disassembly lines for massive multi-types of gearboxes in
remanufacturing systems. The multi-objective optimisation is carried out in a case study
based on two types of gearboxes. The proposed HH algorithm achieves the greatest num-
ber of non-dominated solutions compared to the other four basic algorithms. In addition,
the box plots of hypervolumn on the proposed HH algorithm realize the highest mean
number and without any noise point. Through the case study results, better stability and
convergence are demonstrated. The versatility of the proposed HH algorithm solution can
also be proved from both single and multiple optimisation problems.

In future research, the mathematical model of disassembly line could be further
improved to better model actual conditions of disassembly in remanufacturing. The col-
laborative human–robot disassembly line in a workstation will provide more alternative
choices in disassembly task allocation, which makes it a more complex scenario. More-
over, the emerging deep learning and reinforcement learning optimisation algorithms may
have more advantages for multi-objective optimisation problems. Deep learning based
algorithms have great ability on solving nonlinear fitting, while reinforcement learning
based algorithms are suitable for decision-making learning [59]. Nowadays, the deep
reinforcement learning method is generated and combined the advantages of those two
methods, which has great ability to solve more complex optimisation problems in real-
world scenarios [60]. Due to the highly versatile of the proposed HH algorithm, it is
possible to combine hyper-heuristic algorithms with those intelligence algorithms to fur-
ther enhance the performance of optimisation problems. Additionally, the optimisation
of DLBP in remanufacturing can be considered and pursued for larger-scale and more
complex actual products.
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Appendix A. Bill of Materials of Splitter Gearboxes

Table A1. Bill of materials of Splitter Gearboxes Series 85000.

No. Description (Parts) Quality (Q) Mean Process Time (t) Deviation (D) Revenue (r)

1 Housing 1 8.2 2.1 25.3
2 Cover 1 10.4 3.5 43.5
3 Bearing 6010 1 5.6 1.2 12.6
4 Pinion gear 2 3.4 1.4 6.6
5 Sealing ring 45×65×8 2 7.6 2.2 4.8
6 Oil plug 3/8′′ 2 4.8 2.0 2.2
7 Oil drain plug 3/8′′ 1 5.2 1.6 1.4
8 Key 12*25 1 2.6 0.8 0.7
9 Snap ring UNI 7435-50 2 6.4 4.2 4.7
10 Oil dipstick with vent 1 7.3 1.4 2.6
11 Male P.T.O. shaft 1′′3/8 Z6 1 8.4 3.4 23.4
12 Ring gear 1 18.7 5.2 4.3
13 Bearing 6009 4 5.4 1.3 11.2
14 Sealing ring 50*65*8 1 4.7 1.4 2.5
15 Cap DIN 470 D.38 5 10.5 4.5 1.5
16 Bearing 6210 1 10.2 3.5 15.6
17 Gasket 4 4.8 1.6 60.4
18 Washer Grower d.8 12 15.6 1.2 67.9
19 Nut M8 12 25.2 2.4 7.2
20 Peg UNI 8751 6*24 8 10.4 1.6 0.8
21 Socket cap screw M8*45 12 27.6 3.6 42.2
22 Gasket 1 8.5 1.4 14.3
23 Snap ring UNI 7435-48 1 3.4 1.2 2.3
24 Ring 1 4.7 2.1 3.7
25 Spring 1 2.6 1.4 2.3
26 Spring ring 1 8.6 2.4 4.2
27 Ball 3 4.2 0.9 12.7
28 Female P.T.O. shaft—1′′3/8′′ Z6 1 4.6 1.6 16.6
29 Female P.T.O. shaft short 1′′3/8 1 5.2 1.4 20.7
30 Female P.T.O. shaft long 1′′3/8 1 3.4 0.8 23.4

Table A2. Bill of materials of Splitter Gearboxes Series 90000.

No. Description (Parts) Quality (Q) Mean Process Time (t) Deviation (D) Revenue (r)

1 Socket cap screw
M6×20 4 9.2 1.2 14.2

2 Oil level plug 1 2.4 1.1 1.4
3 Gasket 1 1.2 0.4 0.6
4 Gasket 1 6.5 2.4 1.4
5 Socket cap screw 10 23.1 6.4 31.2
6 Peg ø 6 2 2.6 0.6 0.2
7 Snap ring ø 58 3 9.6 3.2 5.4
8 Bearing type 6010 5 28 6 63
9 Cap DIN 470 2 4.2 1.8 0.6

10 Pinion Gear 2 3.4 1.4 6.6
11 Sealing ring ø 3 11.4 2.1 7.2

https://doi.org/10.1016/j.cor.2018.05.006
https://doi.org/10.1016/j.cor.2018.05.006
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Table A2. Cont.

No. Description (Parts) Quality (Q) Mean Process Time (t) Deviation (D) Revenue (r)

12 Oil dipstick with vent 1 7.3 1.4 2.6
13 Gasket 3 3.6 1.2 45.3
14 O-Ring 2 8.2 2.2 0.6
15 Corteco Ring 2 10.4 3.8 6.4
16 Gasket 2 16.4 6.4 23.6
17 Flange SAE B 1 12.7 4.2 16.6
18 Socket cap screw 6 13.8 1.8 21.1
19 Flange SAE A 1 14.2 4.1 23.5
20 Oil drain plug 3/8′′ 1 5.2 1.6 1.4
21 Housing 1 8.4 2.2 25.4
22 Gasket 1 8.5 1.4 14.3
23 Ring gear 1 18.7 5.2 4.3
24 Male P.T.O. shaft 1′′3/8 1 4.6 1.6 16.4
25 Bearing type 6210 1 10.2 3.5 15.6
26 Ball 3 4.2 0.9 12.7
27 Spring 1 2.6 1.4 2.3

28 Female P.T.O. shaft
1′′3/8 long 1 3.4 0.8 23.4

29 Cap DIN 470 3 6.3 2.7 0.9

30 Female P.T.O. shaft
1-3/8′′ 1 7.3 2.4 18.4

31 Spring ring 1 8.6 2.4 4.1

32 Female P.T.O. shaft
1′′3/8 short 1 5.2 1.4 20.7

33 Cover 1 10.8 2.4 24.8
34 Cap 1 8.6 2.2 8.2
35 Ring 1 4.8 1.8 3.8
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