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Abstract—Advanced cyber attackers often “pivot” through
several devices in such complex infrastructure to obfuscate their
footprints and overcome connectivity restrictions. However, prior
pivot attack detection strategies present concerning limitations.
This paper addresses an improvement of cyber defence with
APIVADS, a novel adaptive pivoting detection scheme based on
traffic flows to determine cyber adversaries’ presence based on
their pivoting behaviour in simple and complex interconnected
networks. Additionally, APIVADS is agnostic regarding transport
and application protocols. The scheme is optimized and tested to
cover remotely connected locations beyond a corporate campus’s
perimeters. The scheme considers a hybrid approach between de-
centralized host-based detection of pivot attacks and a centralized
approach to aggregate the results to achieve scalability. Empirical
results from our experiments show the proposed scheme is
efficient and feasible. For example, a 98.54% detection accuracy
near real-time is achievable by APIVADS differentiating ongoing
pivot attacks from regular enterprise traffic as TLS, HTTPS,
DNS and P2P over the internet.

Index Terms—APT, pivot attack, privacy-preserving, lateral
movement, network flow.

I. INTRODUCTION

IN the last decades, the number of advanced persistent
threats (APTs) groups increased over the years, develop-

ing new attack vectors as well as the complexity regarding
Techniques, Tactics and Procedures (TTP), capable of evading
detection patterns used by defence solutions [1]. APT refers
to a set of systematic continuous hacking processes targeting
an entity to recover and exfiltrate high-value information.
Experience shows that APT groups are incredibly efficient
in achieving their objectives, tending to be systematic within
offensive actions. According to recent studies, it is essential
to point out that major nation-state threat actors will continue
their efforts in the next years [1].

Identifying an attack in its initial stages, when the opponent
has not yet achieved its goals, is essential for an effective
defence strategy. To better prepare and reduce the threats
detection time, the organisations use Cyber Threat Intelligence
(CTI) to identify, understand, predict, and adapt to malicious
actors’ behaviours. A technique widely used by cyber adver-
saries to enable connectivity to the final target is known as a

pivot. This kind of attack aims to achieve connectivity from
a normally non-routable network. It expands the restricted
access of a compromised device to reach the main target using
traffic routing techniques.

When a pivot technique is used during the attack to
overcome defences or create connectivity with the target, it
generates traffic anomalies that can be identified with flow
analysis and statistical methods. In this scenario, the network
flow is a valuable data source to identify an ongoing attack and
infer indicators of attack (IoA) within assets communication
patterns. Flows contain header information about network con-
nections between two endpoint assets. A flow is an aggregation
of transmitted network packets which shares the same source
IP address, source port, destination IP address, destination port
and transport protocol within a time window [2].

APT campaigns can use several pivot attacks and lateral
movement to expand their presence and persistence within
the network for long periods before reaching their objectives.
Therefore the capability to detect this type of attack on time
is vital. Additionally, pivot attacks are widely used by APT
campaigns [3]. They provide an attractive capability to adver-
saries because the initial access typically does not correspond
to the actual target [4]. Moreover, differentiating pivot attacks
from regular traffic is a challenging research problem due to
the diversity and high volume of traffic produced by enterprise
networks.

To the best of our knowledge, APIVADS is the first pivot
detection scheme that does not have restrictions to local
networks and is agnostic regarding transport and application
protocols. Besides, it is capable of identifying pivot attacks
even if it is conducted over complex interconnected networks.
Table I present a summary of the main contributions of this
paper.

In the remaining part of this paper, background and re-
lated work are covered in Section II. The proposed pivot
attack detection scheme is then represented in Section III.
The methodology including evaluation metrics and testing
scenarios are presented in Section IV. Section V discusses the
main results and analysis from our experiments, while Section
VI concludes this study.
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TABLE I
APIVADS CONTRIBUTIONS

Contribution(s) Description

1 A novel adaptative pivot attack detection scheme
(APIVADS) based on flow analysis and statistical meth-
ods agnostic regarding transport or application layer
with no restrictions regarding complex interconnected
networks

2 An efficient data reduction strategy based on the ex-
clusion of traffic flows that are not compatible with
a pivot attack regarding APIVADS traffic forwarding
pattern recognition model

3 A parametric optimisation mechanism that can improve
the detection rates based on the traffic frequency and
volume perceived within a pivot tunnel

II. BACKGROUND AND RELATED WORK

A. APT threat models

We can find in the literature a wide variety of APT attack
models. The Cyber Kill Chain [5] developed by Lockheed
Martin, is a well-known model adopted by the National
Institute of Standards and Technology (NIST), pointed by
the industry and academia as reference. It enumerates and
describes seven steps required by adversaries to achieve their
goals. This model has been criticised in the last years due
to the traditional perimeter-focused approach and malware
dependency [6].

Another important Kill Chain model is the Mandiant Attack
Lifecycle [7]. This model presents evolutions regarding the
attacker internal network activities contemplating recursive
internal reconnaissance and lateral movement. However, it still
lends itself to interpretation within indicators attribution to
action groups, leading to inconsistent data analysis and less
efficiency regarding security personnel workflows [8].

Bryant and Saiedian [8] proposed modifications to the
conventional kill-chain models to improve data aggregation
and correlation resulting in more detailed alarms to security
analysts.

Milajerdi et al. [9] presented HOLMES, a detection system
that aims to produce a signal that indicates an APT campaign’s
malicious coordinated activities. However, due to the need to
go unnoticed in their actions, APT modus operandi changes
over time. This change in the attacker’s behaviour can divert
from the presented models, leading to a lack of awareness.

Alminshid and Omar [10] summarised several APT attack
models and proposed one that merges the typical attack stages
generally present in APT attacks.

The threat landscape evolved regarding APT modus
operandi, and the criticism is well-founded because the attacks
can emerge from internal adversaries without using a single
malware. Since the original model’s publication in 2011,
modifications have been proposed by scientific authors and
cybersecurity professionals over the years.

Some of the most successful detection approaches seek
out malicious patterns by monitoring essential environmental
changes [11] to create a specific attack condition. For instance,

a remote attacker needs to generate outbound traffic to exfil-
trate data when using the internet to support the C&C channel.

In conclusion, even with differences between models, APT
attacks share some similarities regarding TTP and attack
phases. Furthermore, the capability to identify near real-time
offensive actions and infer attack stages is essential to develop
a solid cyber awareness for enterprise networks.

B. Privacy-preserving traffic analysis approaches

Network traffic metadata has value to attackers because it
contains sensitive information. Likewise, third-party vendors
should not access unencrypted traffic due to data privacy con-
cerns including compliance with data protection laws. Packets
payload inspection can lead to privacy problems, and requires
expensive hardware for storage and processing. Furthermore,
deep packet inspection (DPI) approaches are criticized when
applied in fast enterprise networks because they cannot work
with end-to-end encryption. However, a recent arising trend
partially mitigates the cited drawbacks, addressing a privacy-
preserving DPI approach. Authors in [12], [13], [14] proposed
a cloud-based provider to support middlebox outsourcing
packet inspection while preserving the client’s confidentiality
when sharing information. To achieve a privacy-preserving
model, traffic and detection rules provided to third party
middleboxes typically are encrypted [15]. However, all the
cited privacy-preserving DPI models use the signature-based
paradigm and consequently inherits its issues and limitations,
which are well documented in the literature. A signature-based
or rule-based detection scheme tries to identify attacks by
comparing incoming events with their stored signatures [16].
A signature is a kind of description to represent a known
attack using some features. In order to comply with privacy-
preserving requirements, the detection is achieved by compar-
ing encrypted payloads with a preexisting encrypted signature.
Suppose the adversary implement the polymorphic blending
technique (PBT) to protect the traffic [17] or use actively
evolving threats techniques to morph the traffic [18]. In that
case, we face a scenario where a signature-based detection
strategy will fail to detect the malicious traffic. Authors in
[14] addressed privacy issues related to DPI techniques for
outsourced middleboxes, their proposal prevents a new ruleset
in the system to be linked to a previous inspection results. The
authors stated that the strategy slightly increased the resilience
making adaptive attacks less effective. Although, the signature-
based method is limited to a knowledge repository, which is
unsuitable for detecting unknown attacks.

Despite the significant improvement regarding detection
rates achieved by the adaptive signature-based schemes, this
type of solution still present difficulties identifying advanced
techniques as PBT [17]. The PBT uses polymorphic data
obfuscation techniques to bypass signature-based Intrusion
Detection Systems (SIDS) and blending to evade anomaly-
based Intrusion Detection System (AIDS). According to the
authors in [17], AIDS is capable to detect simple polymorphic
attacks because their byte frequency differs from the one seen
in the legitimate traffic. Therefore, PBT collects raw packets
to create a traffic profile and adjust the payload byte frequency
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to bypass the AIDS detection mechanism impersonating legit-
imate traffic with the expected byte frequency. Additionally,
PBT uses a byte substitution technique to obfuscate data,
which can be considered polymorphic because it changes on
every communication according to the traffic profile expected
by the AIDS.

There are some detection approaches used by SIDS to defeat
simple polymorphic attacks [19]. However, when polymorphic
attacks are combined with different techniques as PBT, the
chances of evasion increases because of difficulties in mod-
elling complex systems. Additionally, cyber adversaries are
evolving their techniques constantly, and already are exploiting
the knowledge of the machine learning detection algorithms
to evade defences [20]. Besides, experience shows that it is a
matter of time before attackers adapt their TTP to new defence
strategies.

According to [21], the privacy-preserving concept applies to
scenarios where third-party entities process sensitive informa-
tion. Therefore, host-based approaches are by default privacy-
preserving because they do not share sensitive information.
The flow-based analysis paradigm does not inspect packets
payload, which is good from the privacy point of view. It
does not have restrictions regarding end-to-end encryption or
proprietary malware ciphered traffic. Unlike DPI approaches,
it’s mechanism extracts packet header attributes to create
flows, which are used as input to algorithms without spending
computational efforts regarding payload inspection and storage
resources.

C. Flow-based traffic analysis

According to [22], there are two main approaches to
network monitoring: active and passive. Active techniques
inject traffic into a network to perform measurements (e.g.,
ping and traceroute). Passive strategies observe the generated
traffic in a measurement point, process it and generate alerts.
Among passive traffic analysis strategies, the most common
approaches found in the related cybersecurity literature are
flow-based and DPI approaches.

Typical flow attribute of unidirectional NetFlow data is
presented by [23]. Those attributes are extracted from the set
of packets that share the same flow. A flow is defined in [22] as
“a set of IP packets passing an observation point in the network
during a certain time interval, such that all packets belonging
to a particular flow have a set of common properties.”

A Bidirectional flow (biflow or conversation) is a flow
composed of packets sent in both directions between two
endpoints [24].

NetFlow-like analysis systems have been used for network
monitoring, planning, and billing [24]. However, flow-based
analysis attracted attention by security researchers, emerging
as a fundamental approach to be explored in the field of
cybersecurity [25], [26], [27].

D. Pivoting

To expand the control over the target network, APT typically
conducts enterprise reconnaissance and lateral movement to

identify vulnerable assets of interest, holding sensitive in-
formation. A common technique used by APT to overcome
connectivity restrictions imposed by firewalls or to access
different network segments is the Pivot attack. Apruzzese
et al. [28] described the first flow-based pivoting detection
algorithm, which uses temporal graph-analytics techniques to
detect the attacks and prioritise detection results based on a
scoring system. The same authors defined the pivot attack as
a command propagation tunnel created among three or more
internal hosts to control a specific target. According to [29],
Lateral movement-based attacks usually happen in the C&C
attack phase to gather internal system structure information,
achieve persistence and expand control over the target network.

E. Related works

There are few studies focusing on the development of
detection schemes for pivot attacks. However, it is essential
that we compare our detection scheme with prior research
effort in this area. Table II presents a comparison among the
approaches regarding detection results, capacities, and restric-
tions based on the authors’ statements. Each column represents
an algorithm feature, and when present, it is identified with a
checkmark.

TABLE II
PIVOT DETECTION APPROACHES COMPARISON
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APIVADS X X X X X X X X X
Husak et al. [30] X X X X
Bai et al. [31] X X X X
Apruzzese et al. [28] X X X

To the best of our knowledge, [28] is the first paper
that specifically addresses pivoting by introducing an attack
detection method. However, authors in [30] stated that the
approach is not feasible to detect pivot attacks in enterprise
networks when considering internal and external connections.
Another issue stated by [30] is regarding a high number of
FP when their detection strategy is applied to p2p traffic (e.g.
BitTorrent) or gaming protocols. Husak et al. [30] evolve the
first pivot detection algorithm proposed by [28]. Unlike earlier
research, their work combines human expertise with machine
learning techniques to address pivot detection when dealing
with internal and external hosts. However, results shown
99.99% of false positives when applied to a real network
environment. We understand that some assumptions in [30]
are not accurate. Firstly, the authors assume that protocols
and destination ports are the same for both pivot candidate
biflows. In reality, adversaries can bridge traffic at the transport
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layer (e.g. UDP to TCP bridge [32]) or using software at the
application layer to send commands in a specific protocol
and plan to receive the response via different service or
port. Therefore, according to our understanding, the detection
scheme should be agnostic regarding protocols and ports to
address unconventional techniques. Therefore, we understand
the approach disregards important pivot attacks scenarios.

When comparing [30] and [28] with APIVADS, the ap-
proaches present similar functionalities and detection results
in simple scenarios. However, the algorithm created by [28] is
not applicable within complex networks. This is a significant
limitation because a real-world adversary commonly uses the
internet to conduct malicious activities, and consequently, the
attacker node is located outside the enterprise network. The
centralised processing adopted by [28] affects the complexity
of the algorithm drastically. The pivot length size, which can
increase the complexity of the theoretical worst-case scenario
of [28] does not affect our approach in the same way due to the
distributed processing strategy, where each asset is responsible
for identifying and processing part of the problem, merging the
result in CTI Frameworks.

Authors in [31] propose a Machine Learning (ML) approach
to detect anomalous RDP sessions based on the extraction
of features from host event logs and system calls. Although
APIVADS and [31] use different data as input, the paper
targets lateral movement attacks that can share similar char-
acteristics with pivot attacks in several ways. For instance, an
attacker can use the internet to access a remote desktop inside
an enterprise network and use it to access other devices. In
this case, the RDP host is serving as a Pivot node. Besides
the excellent result of DA and TPR outperforming APIVADS,
the authors tolerate a higher number of FP in exchange for a
lower incidence of FN and this fall in the same problem stated
by [30] concerning [28] work already mentioned.

Finally, based on the comparisons provided, APIVADS
outperforms other detection approaches with regard to features
and capacities. To the best of our knowledge, this is the first
transport and application protocols agnostic privacy-preserving
approach, capable to detect pivot attacks with complex net-
work scenarios.

III. APIVADS: ADAPTIVE PIVOTING DETECTION SCHEME

A. Scheme’s design objectives and scope

The scheme offers a novel privacy-preserving detection
scheme to determine ongoing pivot attacks near real-time. to
addresses scalability and cybersecurity situational awareness, a
distributed agent-based approach was used to achieve detection
and a centralised strategy to aggregate the results.

APIVADS agents are restricted to the local device traffic.
This fact limits the agent perception to biflows that evolves
the local host. However, this natural limitation is desirable to
address privacy regarding sensitive data processing. Likewise,
this restriction means that a single APIVADS agent cannot
achieve an enterprise network cybersecurity awareness about
pivot attacks. However, suppose a third-party CTI Framework
aggregates the pivot attack events generated by the APIVADS
agents. In that case, it is possible to achieve scalability due to

the distributed detection and a holistic view regarding ongoing
pivot attacks within the devices monitored.

APIVADS pivot attack detection capacity is not affected
by traffic that presents encrypted header information in most
cases. An exception is made by the header attributes used
to aggregate packets and generate flows: Transport protocol,
source IP, destination IP, source port and destination port.
The main functionality of a Pivot node is to forward traffic
between two endpoints creating connectivity between the
attacker and the target. Therefore, this is not practical to create
a pivot tunnel without access to the packet headers attributes
information used by APIVADS.

APIVADS can infer pivot tunnels when dealing with anony-
mous traffic as the onion routing circuit used by TOR [33].
However, identifying the real origin of anonymous traffic is not
in the scope of this work. When processing traffic forwarded
by anonymous routing techniques, APIVADS will identify
the endpoint that is forwarding the anonymous traffic (relay
node) and supporting the pivot attack, not the original IP that
generated the traffic.

Unlike other detection algorithms such as [28], our detection
scheme is not restricted to internal network communications.
The Pivot node can be identified even if the nodes are spread
over the internet. However, it is assumed that the adversary is
not subverting the traffic perception.

Additionally, APIVADS does not require previous training
or a knowledge repository. The data used by the detection
scheme is the actual traffic perceived in the device that is
collected and processed by the APIVADS algorithms contin-
uously.

Finally, the APIVADS agent must process the pivot attack
incoming and outgoing traffic biflows to achieve detection.

B. Pivot attack

A pivot scenario is illustrated in Figure 1. The bullets repre-
sent packet flows between nodes from one to four. Generally,
the pivot technique is used when the attacker node cannot
exchange information directly with the Target node (bullets
5 and 6). To achieve connectivity with the Target node, the
attacker node needs to gain access to other network assets
(Pivot nodes), which is used to forward traffic between the
attacker node and the Target node.

LAN 2LAN 1

ATTACKER 
NODE

PIVOT 
NODE

TARGET
NODE

1

34

2

5

6

Fig. 1. Pivot attack scenario
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A pivot attack must respect a logical sequence regarding
communication flux. For instance, the flow corresponding to
bullet 2 (Pivot node outgoing traffic and Target node incoming
traffic) will only exist when flow 1 reaches the Pivot node.
Using the same reasoning, we can assume that flow 4 will
exist after flow 3 arrives at the Pivot node when the Target
node sends traffic to the attacker node. Another intrinsic pivot
characteristic observed in the communication flow is that flows
1 and 2 will always happen before 3 and 4, with a small-time
difference between them regarding packets perception by the
Pivot node.

C. Privacy-preserving characteristics and description

Privacy is crucial for the success of a defence solution.
Differently from DPI approaches, APIVADS adopt flow-
based analysis not requiring payload inspection, and conse-
quently compatible with end-to-end encryption simply disre-
gard packet payloads. It just aggregate specific packet headers
attributes to create flows. We proposed a specific flow at-
tributes structure (See Table IV), that is detailed in Section
III-H which is used as input to the detection algorithms. Our
approach does not need a knowledge repository, eliminating
the constant update dependency of signature-based strategies
and privacy concerns regarding detection rules. Cryptography
is the standard approach to preserve privacy when sharing in-
formation among different parties [34]. However, the privacy-
preserving concept just is applicable in scenarios where sensi-
tive information is shared with third-party entities. Therefore,
because APIVADS agents data processing is strictly related to
its host traffic flows attributes and no sensitive information is
shared with third parties, our detection scheme is by default
privacy-preserving and does not demand anonymization or
extra privacy requirements regarding data processing.

D. Detection scheme and flow-based pattern recognition
model

The traffic perception of APIVADS agents installed at Pivot
nodes is the basis of our detection strategy. This node is
responsible for forwarding traffic between the attacker node
and the Target node. An agent installed on the Pivot node
can perceive incoming and outgoing network traffic and can
infer biflows between itself and other endpoints. Based on
the perceived biflows attributes, our APIVADS agent performs
statistical calculations to find pivot attacks patterns between bi-
flows. Consequently, the agent installed in the Pivot node will
be capable of inferring a pivot attack scenario transforming
the perceived traffic into APIVADS flows (defined in Table
IV) and applying the detection filters described next in this
Section.

In Figure 1, we have two biflows between three hosts: The
former is represented by flows one and four (communication
between the attacker node and the Pivot node), and the latter
is identified by flows two and three (traffic between the Pivot
node and the Target node). To detect a pivot scenario using
the assumptions presented above, we need to find a correlation
between biflows. Let B be a biflow formed by a set of
incoming flows Fi, i = 1, 2, 3, . . . , n, and a set of outgoing

flows Fo, o = 1, 2, 3, . . . , n between specific endpoints. The
direction of the flow (incoming and outgoing) is characterised
by the observer (Pivot node), and a biflow can be defined in
the function of incoming and outgoing flows B(Fi, Fo). Using
Figure 1 as an example, if the Pivot node can identify simi-
larities regarding specific patterns between the conversations
B(1, 4) and B(3, 2), we can infer a pivot scenario between
the attacker node and the Target node supported by the Pivot
node.

Biflows within a pivot tunnel present similar duration time
(time difference from the first packet perceived and the last
one). The exclusion of biflow pairs that do not fit this
premise is an efficient data reduction measure because legit
biflows with similar duration time are unusual. Based on the
assumption already stated that packets within a pivot attack
occur chronologically in an interspersed way, using statistical
methods is possible to measure and compare the degree of
packets alternation regarding arrival time between biflows to
identify traffic similarities.

SCENARIO 1
PIVOT ATTACK PATTERN
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Fig. 2. Pivot and not pivot traffic patterns comparison

Figure 2 illustrates two scenarios, a pivot attack pattern and
a traffic pattern that does not correspond to a pivot attack
(respectively scenarios 1 and 2). The oriented arrows represent
packets ordered chronologically from T0 to T1 which direction
indicates origin and destination. Let T0 represent the arrival
time of the first packet and T1 the last packet perceived within
a biflow in a time window. For example, regarding scenario
1, biflow 1 is represented by arrows green and blue between
the attacker node and the Pivot node, and the first and last
packets arrival times are represented by T0 and T1 connected to
the attacker node. Additionally, Df corresponds to the biflow
duration time computed by the difference between T1 minus
T0.

Let Dt be the absolute duration time difference between two
biflows. The calculation of Dt is trivial and essential to address
similarities between biflows regarding duration time which
correspond to an IoA of a pivot attack. The lower is Dt result
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between two biflows the similar are biflows duration time.
To compute Dt between biflow 1 (B1) and biflow 2 (B2), we
calculate the absolute duration time difference between B1 and
B2. The Dt calculation can be expressed with the following
equation: Dt = |B1(T1 − T0)−B2(T1 − T0)|. The Dt result
is compared with a predefined parameter (pDt) that is the
maximum value of Dt to identify biflows with similar duration
time. If the Dt result is more significant than pDt, the evolved
biflows do not have the necessary similarity regarding duration
time. A biflow pair (BP ) is composed of two biflows Bi and
Bj that present similar duration time, compatibility regard-
ing packet alternation and plausible endpoints IP addresses
correlation to be considered part of a pivot tunnel. Section
III-I introduces the three filter description and pseudocode
algorithms responsible for reducing data, identifying biflow
pairs, and consequently detecting pivot tunnels.

Scenario 1 shows a high alternated traffic between the three
assets with similar Dt in a time window characterising a pivot
attack. However, in scenario 2, we can observe two different
concentrations of packets, the first between nodes 1 and 2 and
the latter between nodes 2 and 3, not respecting feasible pivot
traffic forward logic between nodes 1 and 3.

A BP presents a similar start time in a time window. In
scenario 2, Let Ds be the maximum start time difference
between biflow 3 (B3) and biflow 4 (B4). It can be calculated
by the absolute difference between the biflows start times
Ds = |B3(T0) − B4(T0)|. Similarly with Dt, the small is
Ds result the similar is the biflows regarding start time. For
instance, in scenario 2, the biflows start time does not share
the same time window. Consequently, they are discarded as
a candidate to be considered a BP by the Duration filter
algorithm (Algorithm 1).

Because the Pivot node just forward the traffic between
endpoints, related biflows tend to present a similar number of
total packets perceived N . Therefore, we defined the parameter
pN , which correspond to the maximum result concerning the
ratio computation between biflows N values.

Finally, the identification of a BP is a strong IoA of a
pivot attack. The following criteria are used by the APIVADS
detection scheme to infer a pivot attack: (1) The Dt result
regarding Bi and Bj must be lower than pDt. (2) Both biflows
must have Df bigger than pDf . (3) The Ds result regarding Bi

and Bj must be lower than pDs. (4) The computation of the N
ratio between two biflows must be lower than pN . (5) Packets
arrival time must have alternation between biflows. (Further
details regarding packets alternation pattern are provided in
Section III-I).

E. APIVADS data processing phases and threat model
overview

The detection strategy is composed of two distinct data
processing phases: detection and aggregation. Firstly, we use a
host-based approach to address the detection. In this phase, the
APIVADS agent collects the device perceived traffic headers,
update the set of biflows and process them using data reduction
and statistical techniques to infer a pivot attack. Additionally,
when a new packet is perceived the extracted attributes are

never stored on disk, they are automatically aggregated to the
set of biflows to save storage resources. Secondly, a distributed
approach is used to aggregate the pivot attacks detection
information. When an APIVADS agent detects a pivot attack,
it reports the event to a third-party CTI Framework, which ag-
gregates all pivot attack events to identify connections among
the messages and infer the complete pivot tunnel. Figure 3
illustrates the two detection phases that will be detailed next
in this Section.

F. APIVADS modules interaction

APIVADS uses a distributed strategy based on agents in-
stalled in network assets to identify pivots tunnels of any
length. Figure 3 illustrates the data processing steps and
interaction among the four APIVADS agent modules. The Data
collection module receives traffic information from the device
network interfaces and continuously collects packets header
attributes of interest from new traffic. The Data extraction
module aggregates the collected header attributes, updating a
set of APIVADS flows whose structure is presented in Table
IV. Therefore, APIVADS flows are clustered in biflows for-
warded to the Detection filter module responsible for reducing
data and inferring biflows pairs part of a pivot attack. Finally,
the Agent interaction module is responsible for interacting
with CTI Frameworks as a Threat Intelligence Feed (TIF) to
integrate the proposed scheme with other defence solutions
providing alert messages and actionable information [35], [36].
All modules and interactions among APIVADS entities will be
explained in detail next.

Parameters are envisioned in APIVADS to optimise our
detection scheme providing control and balance over detection
metrics. Table III presents a parameter list used in APIVADS
detection filter algorithms.

APIVADS data reduction parameters (pDt, pDf , pDs and
pN ) are used by the Detection filter module algorithms to dis-
card BP candidates based on biflows similarities and specific
characteristics. L, Tw and E are performance parameters. L
influences directly the number of packets processed by the
algorithm within a biflow. Small values of Tw can restrict the
amount of data sample while large values demand time and
processing power. Because third-party outsourcing is not in the
scope of this work, it is required that the time spent to process
data and execute the algorithms (Tp) be smaller than the
division of Tw by E to avoid data processing resource exhaus-
tion. Finally, pR influence the algorithm detection accuracy.
A restricted value of pR can increase false negative results,
while a tolerant value probably will lead to a false positive
scenario. All parameters are detailed by the the pseudocode
of the algorithm as described in Section III-I.

G. Data collection module

This module is responsible for collecting and aggregating
the perceived packets’ metadata, preserving the temporality.
Our flow-based approach uses biflows and passive network
monitoring (See Section II-C), evaluating the most recent
packets’ arrival time within biflows. The number of packets
considered in a biflow by the detection scheme is defined by
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TABLE III
DETECTION SCHEME ALGORITHMS’ PARAMETERS

Parameter Description

pDt The maximum value of Dt computation be-
tween two biflows to be considered compatible
with a BP pattern regarding absolute duration
time.

pDf The minimum biflow duration time value to be
considered by the detection scheme.

pDs The maximum value of Ds computation be-
tween two biflows to be considered compatible
with a BP pattern regarding absolute start time
difference.

pN The maximum value of N computation between
two biflows to be considered compatible with a
BP pattern regarding total bytes traffic ratio.

L The number of most recent packets to be con-
sidered within a flow.

pR The maximum value of R computation between
two biflows to be considered compatible with a
BP pattern regarding sequences of packets of
the same flow.

Tw A parameter used to limit the algorithm to
process biflows within a specific time interval
(detection time window).

Tp Correspond to the necessary time to process the
data and execute the detection algorithms.

E A parameter used to define the time interval be-
tween detection algorithms execution (detection
execution frequency).
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Fig. 3. APIVADS threat model diagram

the L parameter. This variable provides a mechanism to control
the biflow sample size.

To measure the biflow duration time we adopted the follow-
ing life span expiration rules:

1) If no packets belonging to a specific biflow is perceived
in 60 seconds (inactive timeout).

2) If the biflow duration time reaches 1 hour (active time-
out).

Additionally, the pDf parameter corresponds to the mini-

mum biflow duration time value considered by the detection
algorithm. This parameter helps improve data reduction, dis-
card irrelevant biflows due to the nature of the attack we intend
to detect.

We do not use FIN or RST flags available in TCP packets’
attributes because UDP traffic does not contemplate it and our
approach is agnostic regarding the transport layer. Besides,
the adversary can bridge data from different transport layers
protocols (e.g. TCP to UDP) to bypass defence mechanisms.

H. Data extraction module

The packets gathered in the data collection module are trans-
formed into flows that are processed to become conversations,
which are forwarded as input to the Detection filter module.

Some common flow attributes are discarded in this module
to avoid unnecessary processing, reduce storage requirements,
and achieve a lightweight detection scheme. Besides, some
protocol-specific attributes are not used by our detection
scheme since we address an agnostic approach regarding the
transport and application layers. The selected flow feature
attributes and data structure are shown in Table IV.

TABLE IV
APIVADS FLOW ATTRIBUTES STRUCTURE

Attribute Type Example

Flow identification hash 0xBABF4E7C
Date-time reference timestamp

array
[2018-03-13 12:22:10.353,
2018-03-13 12:22:11.642,
· · ·
2018-03-13 12:22:20.134]

Transport protocol categorical TCP
Source IP address categorical 192.168.0.5
Source port categorical 52128
Destination IP address categorical 192.168.0.7
Destination port categorical 8080
Total bytes numeric 120

In our detection scheme, a flow can be represented by
the following 8-tuple: F = {I, T, Tr, S, Sp, D,Dp, N}. Let
I be the Flow identification, T an array of packets arrival
timestamps T = {t1, t2, t3 . . . tn}, Tr is the transport protocol,
S is the source IP address, Sp is the source port, D corresponds
to the destination IP address, Dp is the destination port, and
N is the total number of bytes within the flow.

Then we create biflows based on flows that present packets
sent in both directions and shared the same endpoints. Finally,
we infer new attributes to the biflows based on the merged
flows (total number of bytes, relative start, and duration).

I. Detection filter module

This module performs data reduction and statistical pattern
recognition using three filter algorithms. Each filter receives
input as a set of biflows. The first filter is the Duration filter
algorithm (Algorithm 1). It is responsible for reducing the set
of biflows output from the Data extraction module, which does
not fit in a pivot attack pattern. Initially, biflows with a duration
time bigger than the predefined parameter pDf are discarded
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to avoid ephemeral connections. This module verifies the
degree of similarity between two biflows regarding the data
reduction parameters. For example, If the resultant Dt is lower
or equal to pDt, it means that the biflows present a degree of
similarity compatible with a pivot attack regarding duration
time, and the evolved biflows (B1 and B2) are selected as
candidates to become a new biflow pair BP (B1, B2).

ALGORITHM 1: Duration filter algorithm
Input : A set of biflows B ={B1, B2, B3, · · · , Bn},

where each element is composed of flows that
shares the same source IP, Destination IP, source
port, and destination port within a time window.

Parameter: pDt is a predefined parameter that is compared
with the result of Dt. It corresponds to the
maximum limit of Dt computation between
biflows to create a BP regarding duration time.

Parameter: pDf is a predefined parameter that is compared
with every biflow Df value. If Df is lower than
PDf the biflow is discarded.

Parameter: pDs is a predefined parameter that is compared
with the result of Ds. It corresponds to the
maximum limit of Ds computation between
biflows to create a BP regarding absolute start
time difference.

Parameter: pN is a predefined parameter that is compared
with the computation of the total bytes traffic
ratio between two biflows.

Output : An array of biflow pairs BP

1 Compare each biflow Df value with pDf . If Df is lower
than pDf the biflow is discarded.

2 The remaining biflows in B are compared to each other. For
the sake of simplicity, let name the biflows to be compared
as Bi and Bj .

3 if the Dt result of Bi and Bj computation is lower than pDt

4 and Ds result of Bi and Bj computation is lower than pDs

5 and pN is bigger than the ratio of Bi and Bj regarding N
then

6 Append the biflow pair to the result array BP (Bi, Bj)
7 else
8 Select the next biflow candidates until all the remaining

eligible biflows are tested on each other.
9 end

10 return BP

The biflow pairs created in the Duration filter are submitted
as input to the Alternation filter algorithm (Algorithm 2).
This algorithm is responsible for checking if the biflows that
compose a BP present alternation regarding packets arrival
time in the Pivot node. The date-time reference attribute array
of the flows that compose a BP are merged chronologically
and ordered, preserving the flow identification. Next, the array
is processed by the algorithm to compute the R value, which
is the maximum packet’s sequence of the same flow in the
merged array. The achieved value of R is compared to a
predefined parameter pR, that corresponds to the maximum
sequence of packet in the same flow. Therefore, an R value
bigger than pR are discarded from the set of BP received
from the previous filter.

The last filter is the Asset coherence filter algorithm (Al-
gorithm 3). It receives the remaining BP that meets the
previous filter’s requirements: biflows pairs with duration time

ALGORITHM 2: Alternation filter algorithm
Input : A set of biflows pairs

BP ={BP1, BP2, BP3, · · · , BPn}
Parameter: L corresponds to the number of most recent

packets to be considered within a flow.
Parameter: pR is a predefined parameter compared with the

result of R computation. If R is bigger than
pR, the biflow is discarded.

Output : An array of biflow pairs BP

1 Merge the two biflows that compose a BP in a temporary
array preserving the flow identification and the packet
arrival time chronology.

2 The temporary array size is limited by the the L value and is
filled with the most recent packets arrival time reference
attribute.

3 The algorithm searches the temporary array for the biggest
sequence of packets within the same biflow R.

4 if R result is bigger than pR then
5 Exclude the biflow pair from the BP array
6 else
7 Process the next BP element until the last entry
8 end
9 return BP

bigger than pDf , a similar Dt, Ds less than pDs, N ratio
computation less than pN and present alternation between
packets regarding different flows. This module checks for
a plausible correlation of the BP set of IPs H with the
endpoints, discarding inconsistent pairs (e.g. biflows with the
same source and destination IP and ports). Additionally, the
merged array of chronologically ordered packet timestamps
are split into quarters. Each quartier must contain all possible
flows within the biflows that compose a BP validating the
alternation between flows over the traffic sample. For example,
a BP formed by the biflows validating the alternation between
flows over the traffic sample. For example, a BP composed
by the biflows B1 and B2 have four flows B1(Fi), B1(Fo),
B2(Fi) and B2(Fo), that must be present in all quarters.

J. Agent interaction module

This module is responsible for interacting with CTI Frame-
works. When the detection filter module identifies a pivot
attack, an alert message is generated and forwarded to the
CTI Framework, which has a holistic view regarding all alert
messages received from APIVADS agents.

Our detection scheme does not need external information to
identify an asset serving as a Pivot node providing connectivity
between two other assets. However, it is not able to perceive
the complete length of the pivot tunnel. To mitigate this limita-
tion, all alert messages must be merged by the CTI Framework
to identify connections between Pivot nodes and determine the
complete pivot tunnel. Due to the distributed pivot detection
strategy, our detection scheme achieves scalability and the
possibility to be used in complex networks.

Every alert message worst-case scenario identifies a Pivot
node and two more assets involved in the attack. Table V
presents two alert messages samples received by the CTI
framework from Pivot nodes.
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ALGORITHM 3: Asset coherence filter algorithm
Input : A set of biflows pairs

BP ={BP1, BP2, BP3, · · · , BPn}
Input : A set of IPs H ={IP1, IP2, IP3, · · · , BPn},

where each element corresponds to a local asset
IP address.

Parameter: L is a predefined parameter corresponding to
the number of most recent BP packets
considered by the algorithm.

Output : An array of biflow pairs BP

1 Compare the source and destination IP attributes of the
biflows that compose BP (Bi and Bj biflows) with the
device set of IP addresses H

2 Check if Bi and Bj source or destination IP attributes
contains one IP present in the H array

3 Merge the two biflows that compose a BP entry in a
temporary array preserving the flow identification and the
packet arrival time chronology.

4 Split the temporary array data into quarters: Q1, Q2, Q3 and
Q4.

5 if All flows that compose the biflows Bi and Bj of BP (See
Section III-D) are not present in all quarters (Q1, Q2, Q3

and Q4) then
6 Exclude the biflow pair entry from BP
7 else
8 Process the next BP element until the last entry
9 end

10 return BP

TABLE V
ALERT MESSAGES SAMPLE

ID Date-time Transp SrcIP SPort DstIP DPort

#1 2021/02/25
11:13:41

TCP 192.168.6.135 49768 192.168.6.134 22

#1 2021/02/25
11:13:41

TCP 192.168.6.134 43316 192.168.6.132 1979

#2 2021/02/25
11:13:42

TCP 192.168.6.134 43316 192.168.6.132 1979

#2 2021/02/25
11:13:42

UDP 192.168.6.132 37564 192.168.6.131 22

Analysing Table V information based on an acceptable time
difference and the same endpoints attributes shared between
alert messages is trivial to infer connection among Pivot nodes.
For instance, lines 2 and 3 share the same attributes with a
reasonable temporal difference, implying a pivot tunnel length
of two. The reasoning between alert messages in Table V can
be interpreted as a pivot tunnel diagram (see Figure 4).

PIVOT NODE 2
192.168.6.132

1979

1979 37564

37564

TARGET NODE
192.168.6.131

22

22

PIVOT NODE 1
192.168.6.134

22

22 43316

43316

ATTACKER NODE
192.168.6.135

49768

49768

Fig. 4. Pivot tunnel representation of Table V alert messages sample

Some advanced pivot attack tools are capable of bridging

traffic between transport layer protocols. Our detection scheme
can infer a pivot attack even if the opponent uses such
techniques as indicated by the second alert message, where
the Pivot node 2 receives TCP and forward UDP traffic.

Our approach does not depend on CTI frameworks to detect
pivot attacks or to define the pivot length. The connection
between messages is trivial, and could be done in several
ways, not requiring significant computational effort. However,
the distributed pivot results must be merged somehow. We
choose to send alert messages to CTI frameworks based on
the understanding that this kind of threat information is vital
to proactively identify APT actors.

IV. METHODOLOGY

Experiments are paramount to evaluate the efficiency and
accuracy of the APIVADS scheme. This includes optimisation
tests to improve parameters and achieve better detection rates.
Initially, a virtual network scenario was used to conduct
APIVADS validation experiments, which have been comple-
mented with real networks scenarios to evaluate it against real-
world connectivity challenges such as intentional propagation
delays imposed by attackers, latency and packet loss.

APIVADS agents collect packets and aggregate in biflows
near real-time. During the experiments, regular and malicious
traffic is generated to simulate a typical workstation of an
enterprise network. APIVADS agents were exposed to various
scenarios with different protocols and services presented next
in this section.

A. Evaluation metrics

In theory, a perfect classifier must not generate False
positive (FP) or False negative (FN) errors. To evaluate our
scheme’s feasibility and effectiveness, we reference the eval-
uation metrics presented in Table VI to measure and compare
results.

TABLE VI
EVALUATION METRICS

Metric Description

True Positive (TP) The number of conversation pairs correctly iden-
tified as pivot tunnel.

True Negative (TN) The number of conversation pairs correctly iden-
tified as not pivot tunnel.

False Positive (FP) The number of conversation pairs wrongly iden-
tified as pivot tunnel.

False Negative (FN) The number of conversation pairs wrongly iden-
tified as not pivot tunnel.

Detection Accuracy
(DA)

Percentage of correctly identified conversation
pairs (TP+TN) / (TP+TN+FP+FN).

True Negative Rate
(TNR)

Percentage of correctly identified conversation
pairs as not pivot, TNR = TN / (TN + FP).

True Positive Rate
(TPR)

Percentage of correctly identified conversation
pairs as pivot, TPR = TP / (TP + FN).

B. Parameter optimisation tests

Pursuing the objective to achieve the best detection rates in
our experiments, we performed several tests to identify the best
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parameters combination regarding detection. The tests were
conducted initially in a virtual network environment and later
in complex network scenarios with real-world traffic prop-
agation problems like latency and packet loss. Experiments
have been performed to identify the maximum, minimum, and
average values observed within common enterprise network
traffic and pivot attacks.

C. Virtual network experiments scenario

A virtual network environment infrastructure was built to
carry out initial experimentation. It consists of five Linux
virtual machines (Ubuntu 19.10 64 bits with 2GB RAM)
that impersonate a real environment generating different types
of standard enterprise traffic. Figure 5 presents the virtual
network experiment diagram. Boxes represent the network
hosts that are differentiated by colours and letters. Information
regarding IP addresses and network interface is next to every
host with the correspondent colour code. Every numbered red
arrow represents a BP .

Regarding the pivot attack identified by bullets 1 and 2,
Host A is the attacker node, C is the Target node, and B is the
Pivot node. B provides the traffic forward between the network
interfaces eth0 (LAN 1) and eth1 (LAN 2), supporting com-
munication between A and C located in different networks.
We used SSH connections to create the pivot attack scenario.
It corresponds to the propagation of Linux terminal commands
between A and B, typically used by attackers (ex: “netstat”,
“ifconfig”, “whois”, “whoami” and “ps aux”). Additionally,
hosts D and E are not involved with pivot attacks, being used
in the experiment to generate regular enterprise network traffic
and validate APIVADS regarding false positive results.

Pivot tunnel traffic

LAN 1 (192.168.1.0/24) LAN 2 (192.168.6.0/24)

A B

192.168.1.207 (eth0)

192.168.1.214 (eth0)
192.168.6.139 (eth1)

192.168.6.134 (eth0)

1 C2

D E

192.168.1.208 (eth0) 192.168.6.136 (eth0)

Fig. 5. Virtual network experiment diagram

We seek to validate our implementation during the vir-
tual network experiments and identify the influence of the
parameters described in Table III in the detection scheme.
To determine the ideal parameters combination regarding
the pivot tunnel traffic volume and frequency, we used the
evaluation metrics presented in table VI.

D. Real network experiments scenario

The main objective of the experiment conducted in the real
environment was to check APIVADS behaviour when exposed

to common connectivity challenges such as latency and packet
loss. Additionally, this scenario is useful to identify the impact
of the cited connectivity drawbacks regarding pivot attacks de-
tection. An update regarding parameter analysis optimisation is
conducted in this round of experiments to improve APIVADS
detection results when dealing with complex scenarios in
real environments. As performed in the virtual experiments
scenario, we used the evaluation metrics presented in table VI
to evaluate the parameter combination results regarding the
ongoing pivot tunnel traffic volume and frequency.

Attacker 
node

Pivot 
node 1

Target 
node

Pivot 
node 2

Fig. 6. Pivot attack experiment conducted over the internet

The pivot attack scenario illustrated by Figure 6 is created
using the protocol SSH to support a two jump pivot tunnel
over the internet (Pivot nodes 1 and 2). The pivot propagates
malicious commands between the attacker and the Target
nodes. The assets used in the experiment are owned and
remotely controlled by the authors and are located in different
countries, WAN and IP ranges: attacker node is in the United
Kingdom, Pivot node 1 in the United States, Pivot node 2 in
Brazil and Target node in the Netherlands.

The type of traffic present in experiments is similar to
standard protocols used by enterprise networks (SMTP, IMAP,
HTTP, HTTPS, and DNS). Differently from the virtual net-
work experiments scenario which is less complex and ad-
dresses different validations, the malicious traffic sent through-
out the SSH pivot tunnel in the real network scenario will sim-
ulate different attacks, and consequently can change volume,
frequency and payload according to the experiment objective.

E. Evasive pivot techniques detection
Skilled adversaries can utilize techniques to manipulate the

pivot tunnel traffic to evade detection. A known technique to
avoid the correct classification from detection algorithms is to
apply intentional propagation delay to the pivot traffic [28].
To determine if our pivot detection scheme can detect evasive
pivot attacks, an experiment using the same scenario described
in Section IV-D regarding regular traffic and pivot tunnel
was envisioned. We applied intentional propagation delays to
simulate a pivot attack conducted by an advanced opponent.
This experiment aims to observe if our detection scheme is
resilient to intentional propagation delays and observe if a
parameter change is necessary to achieve detection. The delays
were applied to the incoming and outgoing malicious traffic
at Pivot node 1 and 2 hosts.
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V. RESULTS AND DISCUSSION

A. Virtual network experiment results

During this set of experiments described in Section IV-C,
our initial objective was to find an adequate parameter combi-
nation regarding detection metrics to spend less computational
resources as possible. However, It is necessary to find equi-
librium among parameters to ensure the proper functioning of
the algorithms. For example, a small value of Tw imposes
a temporal limit to collect traffic. And if we combine it
with a considerable L value greater than the number of
packets perceived within the biflow, the detection will not
happen due to the lack of packet samples. Our approach to
determining the best parameters combination was based on
the amount of PPS (Packets per second) of the pivot tunnel.
Let Ptot be the total traffic imposed to the host, which affects
the time to process the algorithm (Tp) and can cause the
malfunction. And Ppiv the traffic within the pivot tunnel,
which is used as traffic pattern reference in the experiments
to identify ideal parameters to detect the pivot attack. During
the initial experiments, we imposed a 10 PPS to Ppiv because
it corresponds to a typical Command and Control stage, when
the attacker send and receive terminal commands to the target.

The Tw and L parameters strongly correlate with Ptot

because the unbalance between the former variables can im-
pose restrictions to E based on the required time to execute
APIVADS algorithms. We assume that the minimum value
of Ppiv to collect an adequate number of packets must be
greater or equal to the result of the division of L by Tw. To
increase our chances of achieving detection in the first third
of the time window, we defined that the ideal value of Ppiv

can be calculated by the division of L by Tw and multiplied
by 3 (Condition 1). Therefore, Tp must be small than the
computation of Tw divided by E to achieve near real-time
detection in every execution (Condition 2). Finally, E must be
bigger than Tp and smaller than Tw. This is necessary because
the algorithms must process data before the subsequent exe-
cution to avoid malfunctions generated by processing power
exhaustion (Condition 3). Those assumptions and conditions
resulted in Equation 1, which were coined as Pivot Balance
Equation (PBE).


(1) 3×

(
L

Tw

)
≤ Ppiv

(2)
Tw

E
> Tp

(3) Tw > E > Tp

(1)

Data reduction parameters were defined to discard biflows
that are not compatible with the pivot attack traffic pattern.
Therefore, we defined pDf as 4 seconds to discard ephemeral
biflows, pDt as 0.01 seconds due to the virtual environment
free from intrinsic network delays, pDs was defined as 1
second because some terminal commands can demand time
to generate output, and a pR of 5 sequential packets observed
within the same flow. We defined a fixed value of E as 5
seconds, L equal to 200 packets and an average of 10 PPS of
pivot traffic for this set of experiments.

With the initial parameters defined, we conduct an exper-
iment to observe the impact of detection metrics with Tw

variations. Additionally, this experiment was used to verify
the possibility to address near real-time detection. Figure 7
presents the experiment results graphically. The y-axis indi-
cates the achieved detection metric rate values, and the x-axis
corresponds to the values of the Tw parameter used in the
experiment. Detailed values of the experiments are presented
in Table VII.
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Fig. 7. Experiments result in the function of Tw

TABLE VII
DETAILED EXPERIMENTS RESULT IN FUNCTION OF Tw

Time window TPR FPR DA

10 seconds 17.92% 0.14% 58.89%
30 seconds 90.00% 0.00% 95.00%
1 minute 100.00% 0.00% 100.00%
5 minutes 100.00% 0.00% 100.00%
10 minutes 100.00% 0.00% 100.00%

According to PBE computation, a fair value of Tw must
be bigger or equal to 1 minute to increase the chances of
detection. Therefore, we expected degradation of TPR and DA
with values below 1 minute, and our experiments confirmed it.
It becomes clear that the L parameter must be compatible with
the number of packets collected in a time window. Otherwise,
the detection algorithms will disregard the biflow until the
number of perceived packets is bigger or equal to L. The lack
of packets sample will be reflected in all detection metrics,
especially regarding FN. A more accurate result is expected
as more significant the number of packets perceived within a
biflow while respecting the Equation 1 conditions.

Because hosts used in this experiment have sufficient re-
sources to process the amount of traffic collected between
executions, APIVADS agents successfully detected all pivot
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attacks when Tw was defined with values superior to 1 minute.
This fact indicates that PBE is an adequate reference to define
APIVADS parameters in function of the Ppiv we intent to
detect. Additionally, even in experiments with restricted Tw

values, the FPR results were almost insignificant. This occurs
because the duration filter algorithm only selects biflows with
similar duration time, which is uncommon between unrelated
traffic.

To compare results from our APIVADS testbed with other
approaches, we have created Table XI. It can be noted that
Apruzzese et al. [28] has stated some results when using Tw

defined as 60 minutes without intentional propagation delays,
which can be compared with our experiment. However, the
authors in [28] reported an Accuracy of 100% with the cited
parameters, without providing any other metric for comparison
purposes. With APIVADS, we have achieved the same result
with Tw great or equal to 60 seconds as shown in Figure 7.
Note that unlike APIVADS host-based approach, the detection
strategy proposed by [28] uses a network-based approach
which does not address the performance challenges imposed
by the near real-time detection. Additionally, [28] work is
limited to internal network pivot attacks, underperforming the
detection performance and capabilities of APIVADS since
most real-life pivot attacks originate from the internet.

Husak et al. [30] can address external network pivot attacks,
which would provide a good source of comparison with
APIVADS results. However, the authors stated a high false
positives value of 99.99% because the detection algorithm
could not differentiate between common protocol traffic pat-
terns and pivot attacks. Therefore, the authors applied the Prin-
cipal Component Analysis (PCA) machine-learning algorithm
to automatically infer the true pivoting features providing
relationships among groups of attributes. However, the authors
do not present results that can be directly compared with our
approach. Regarding PCA, [30] was limited to SSH traffic
and the study did not provide details about the implementation
making it challenging to compare the algorithms’ performance
accurately. Further details concerning [30] results will be
provided in Section V-B.

In the next set of experiments, we gradually increased the
Ppiv PPS to stress APIVADS data processing and verify the
impact of detection metric rates. We defined L as 200 packets,
a fixed Tw value of 15 seconds and E equal to 5 seconds.
According to PBE, this parameter combination requires a
minimum Ppiv of 40 PPS to achieve high detection rates.

Figure 8 shows that the detection rates improve as Ppiv PPS
increases. However, while the PBE conditions were respected,
we observed excellent detection metric results. Although, with
the gradual increase of traffic, the APIVADS agent could not
execute the algorithms before a new detection routine starts
when dealing with more than 1000 PPS. This behaviour was
expected because eventually, the host will not have resources
available to execute the APIVADS algorithms every 5 seconds
as defined by E. To avoid this scenario, we must set E with a
value bigger than Tp and less than Tw. Table VIII provide the
detailed results represented in Figure 8. The resiliency of the
algorithms regarding FPR was confirmed when respecting the
PBE conditions. It achieved the worst-case scenario of 1.25%
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Fig. 8. Ppiv influence in detection results

of FPR with 1000 PPS. During the experiment with Ppiv

values of 10 and 25, the amount of traffic was not sufficient
to feed the algorithm in the defined time window, resulting
in insufficient data sample error, confirming the adequacy of
PBE again. Finally, as big is the PPS within Ppiv as fast the
detection will occur while respecting the PBE.

TABLE VIII
DETAILED EXPERIMENTS RESULT IN THE FUNCTION OF PPS

Ppiv TPR FPR DA

10 PPS 19.16% 2.50% 58.33%
25 PPS 80.83% 0.83% 90.00%
40 PPS 99.16% 0.41% 99.37%
250 PPS 98.75% 0.41% 98.75%
1000 PPS 97.50% 1.25% 99.16%
2000 PPS 39.58% 17.50% 61.04%

Figure 9 represents Ppiv traffic in the function of time.
Ambar bars over the x-axis illustrates when detection occurs
within the time window, while the red bars indicate a new
time window (Tw1, Tw2 . . .Twn). The blue line corresponds
to the Ppiv perceived within the pivot tunnel.

Our APIVADS implementation updates and creates new
biflows as it perceives new packets in a time window interval.
When a new time window begins, the collected data is
discarded. Moreover, we reduce the necessary computational
power to execute the detection algorithms focusing on the
recent data. The parameters used in the set of experiments
illustrated by Figure 9 are the same as the previous, except for
Tw, which was set as 30 seconds, L equal to 150 packets, E
as 5 seconds, and an average Ppiv of 10 PPS. Additionally, the
Tp value was not bigger than E and consequently not affecting
the APIVADS data processing performance. In the second
time window (Tw2), we can observe that APIVADS could
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not identify the ongoing pivot attack because the minimum
requirement of 150 packet samples imposed by L was not
reached in the time window. In this experiment, we intention-
ally disrespect PBE first condition with which demand a Ppiv

of 15 PPS. Therefore, to reduce FN incidence due to lack
of packet samples is necessary to increase Tw or decrease
L observing PBE conditions. This flexibility is interesting to
address different types of pivot attacks in the pivot traffic
volume and frequency function.
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Fig. 9. Detection of pivot attacks with Tw equal to 30 seconds

New execution of the same experiment using the same
traffic was conducted to compare results with the previous
experiment. However, this time we respected the PBE to
increase APIVADS detection chances. We set Tw as 60
seconds and decreased L to 100 packets. According to PBE
computation, this combination of parameters requires a Ppiv

of 5 PPS. Figure 10 presents an entirely different detection
result achieved when respecting PBE. It indicates that the
combination of balanced parameters can be helpful to adapt
the detection mechanism regarding Ppiv PPS of interest,
improving the detection results. Additionally, the capability to
sense specific variations regarding Ppiv can be used to infer
APT attack stages, which will be discussed in detail in real
networks experiments.

B. Real network experiment results

Moving towards real networks experiments described in
Section IV-D, we aimed to validate if our implementation
can identify pivot attacks over the internet. We installed an
APIVADS agent in four hosts located in different countries
to conduct the experiments. Initially, APIVADS was not de-
tecting the pivot attack with the same parameters used in
the virtual environment experiments. As expected, we had
to adjust APIVADS data reduction parameters to the new
environment in a real network with typical connectivity issues.
Our approach to discover the parameters that must be changed
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Fig. 10. Detection of pivot attacks over the internet with Tw equal to 60
seconds

was to observe the pivot tunnel biflows characteristics. We
recognised that we could not achieve detection due to the
restricted value of 0.01 pDt (see Table III) used in the virtual
experiments. When dealing with real network scenarios, the
computation of Dt between biflows part of a pivot tunnel
presented an average of 0.08 seconds. This difference of Dt

values observed from virtual to real networks was caused
by latency. Therefore, increasing pDt to 0.1 seconds was
sufficient to do not discard biflows which are part of the pivot
attack over the internet.

Besides details already described in Section IV-D, we de-
fined Tw as 60 seconds, L equal to 50 packets, and a Ppiv

of 2.5 PPS. With APIVADS parameters adjusted to the real
environment, we created a pivot tunnel with two jumps. It
was observed that APIVADS was able to identify the ongoing
pivot attack with excellent detection metrics rates in both
Pivot nodes, which is comparable to the results conducted in
the virtual environment when respecting PBE. The detailed
detection metrics achieved with this experiment is presented
in Table IX. The detection metrics high rates achieved with
this experiment validates APIVADS regarding detecting pivot
attacks without restrictions to the local network only.

TABLE IX
REAL NETWORKS EXPERIMENTS DETAILED RESULTS

Host TPR FPR DA

Pivot node 1 98.33% 0.83% 98.75%
Pivot node 2 99.16% 0.41% 99.37%

Next, motivated by the unacceptable rate of FP stated by
[30] when dealing with BitTorrent and other p2p protocols,
it was included in the regular Pivot nodes traffic already pre-
sented in Section IV-D during the next experiments. Authors
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in [30] observed a high rate of FP caused by the BitTorrent
protocol behaviour regarding frequent connections initiation
and reception with a small time difference.

To address this detection issue, we included in the
APIVADS flow attributes structure the number of total bytes
observed within a biflow. Our strategy to differentiate biflows
related to BitTorrent traffic from biflows part of a pivot attack
is based on the computation of the total bytes ratio between
them. We observed that besides the other data reduction
criteria, biflows part of the same pivot tunnel tends to have
a similar number of total bytes transferred between endpoints.
Therefore, we created the pN parameter to define an ac-
ceptable ratio limit. Including this condition at the Duration
filter algorithm proved efficient to discard BitTorrent biflows
unrelated to pivot attacks.

We set Tw as 60 seconds, L to 100 packets and E as 5
seconds. The average Tp observed was near 0.5 seconds to
process approximately 200 biflows, complying with PBE. We
used the SSH protocol to create a pivot tunnel with a Ppiv of
5 PPS. Detection metric results are presented in Table X.

TABLE X
BITTORRENT PROTOCOL EXPERIMENT DETECTION METRIC RATES

Host TPR FPR DA

Pivot node 1 99.58% 2.08% 98.75%
Pivot node 2 98.75% 1.66% 98.54%

According to the detection rates achieved in previous work,
Table XI helps to verify that our scheme has either outper-
formed the overall results reported by studies such as [30]
in a real network environment or in the case of [28] was
comparable while our study offers host-based detection along
side other features as discussed earlier.

TABLE XI
COMPARISON WITH OTHER DETECTION ALGORITHMS

Detection approach TPR FPR DA

APIVADS 99.17% 1.87% 98.65%
Husak et al. [30] 53.84% 4.51% 91.78%
Bai et al. [31] - - 99.98%
Apruzzese et al. [28] 100% 0.00% 100%

APIVADS results presented in Table XI are composed
of Pivot node 1 and 2 detection metrics average when the
BitTorrent traffic was included in the real network experiment.
Regarding [31], the best results among different classifiers
have been achieved with the stand-alone LogitBoost classifier
(LB). With regards to the missing values in Table XI, the au-
thors in [31] stated the following detection metrics: Precision
(99.87%), Recall (99.47%) and F1 (0.992). Therefore, we can
estimate slightly better results than our approach based on the
provided metrics despite not having the exact metric values to
calculate FPR and TPR values.

As already stated, authors in [30] couldn’t provide an
efficient detection algorithm when exposed to protocols that

present similar patterns to pivoting, hence achieving an FPR of
99.99%. However, for the sake of completeness, we included
in Table XI the PCA experiment metrics results that disregard
other protocols different from SSH.

Unlike other approaches, APIVADS consider near real-time
detection. Additionally, it does not present protocol restrictions
such as [30], or limited to specific operating system events
such as [31]. It is also not limited to private networks when
compared to [28] as explained by its authors in [30]. Overall,
our approach presents high accurate pivot attack detection rates
in complex interconnected networks (the internet) and over-
comes the previously cited approaches regarding limitations
and functionalities.

Next, we address the possibility of identifying different
APT attack stages based on Ppiv traffic frequency and volume
changes. This information is useful to predict the actual
adversary objectives and possible next steps. Therefore, Table
XII shows 3 parameter templates optimized to detect pivot
tunnels supporting different APT attack stages. Our primary
purpose in this set of experiments is to verify if APIVADS
can identify attack stages changes based on specific patterns
of Ppiv . We used the same set of parameters of the previous
experiment just changing the specific parameters of each setup
presented in Table XII.

TABLE XII
ATTACK STAGE INFERENCE PARAMETERS IN FUNCTION OF Ppiv

Setup Tw L E Ppiv

Initial Exploitation 30s 80 packets 10s 5 PPS
Command & Control 1h 25 packets 60s 0.02 PPS
Data Exfiltration 10s 1000 packets 5s 1000 PPS

To validate the parameter setups provided by Table XII, we
created a pivot attack with the correspondent Ppiv for each
setup using the same scenario described in Section IV-D.

Regarding Command & Control attack stage detection,
we initially had the hypothesis that APIVADS could not be
practical to address near real-time detection depending on
the necessary processing power and storage resources when
dealing with big values of Tw. Because APIVADS does not
require any other information than a set of biflows to execute
the detection algorithms, once the packets are perceived and
aggregated they can be discarded. We verify a considerable
difference of proportion between the perceived packets number
and the aggregated version of APIVADS biflows. For example,
in this experiment, we collected approximately an average of
212.000 packets from Pivot node 1 and 205.000 from Pivot
node 2 in one hour. Due to the constant and effective data
reduction strategy adopted by APIVADS, while the experiment
is executed, the traffic was gradually transformed into 310
biflows for the Pivot node 1 and 260 for the Pivot node 2.
Therefore, storage and processing power exhaustion tend to be
feasible with most scenarios demanding an acceptable amount
of resources. Additionally, if we aim to identify a specific
pattern of Ppiv and provide to APIVADS a restricted set of
parameters, even respecting PBE we can have an unacceptable
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value of FN. For instance, based on Table XII setups, suppose
we define the Command & Control set of parameters to detect
Data Exfiltration activities supported by a pivot tunnel. If
the attacker does not exceed 1000 packets in 5 seconds, the
detection will fail.

To mitigate this drawback, we address the premises defined
by Equation 1, conditions 2 and 3. The usage of large Tw

values with a reduced E value will result in a fast detection
while PBE is respected. The selection of Tw and E can be
made dynamically based on the computation of Tp. We plan
for future work an automatic selection of predefined parame-
ters based on BP total packets number. This mechanism will
provide APIVADS with the capacity to adapt the detection
parameters based on the observed Ppiv of the candidate BP .

Based on the presented results, we demonstrate that our
detection scheme can enable consistent classification of pivot
attacks cyber threat events that feed into Cyber Threat Intel-
ligence (CTI) frameworks with relevant information.

C. Evasive pivot techniques experiments results
According to the experiment described in Section IV-E,

it was observed that the Tw, L and Dt parameters have
a direct influence on the results and must be adjusted to
classify evasive pivot attacks weaponized with intentional
propagation delays. We observed that the cited parameters
must be balanced with the delay size applied by the opponent
and the amount of Ppiv PPS perceived.

As already stated, the number of packets within a pivot
tunnel observed in a time window must be bigger than L to
achieve detection. Therefore, setting a small Tw value with a
low Ppiv PPS can lead to FN results, and this fact is aggravated
when facing pivots scenarios that apply intentional delays.

Intentional delays Z could affect the detection mechanism
if the minimum number of packets is not perceived in a time
window. To minimise the packet delay effects regarding the
Duration filter algorithm, we set pDt and pDs parameters
equal or bigger than the applied delay to achieve compatibility
with the worst-case scenario and avoid false negative results.
Since Z impacts all BP four flows, Tw and L must be
compensated. We adapted PBE (See Section IV-B) to increase
the proportion of Tw in the function of Z, resulting in the
following variation of Equation 1 to address intentional delay
techniques:

(1) 3×
(
L+ (L× 0.1× Z)

Tw − (4× Z)

)
≤ Ppiv

(2)
Tw

E
> Tp

(3) Tw > E > Tp

(4) Z < Tw + Tp

(2)

A fourth condition was included to address intentional
delays. The imposed delay to Ppiv can not be bigger than
the sum of Tw and Tp. Otherwise, the number of FN will
increase while the algorithm detection routine is executed.

Equation 2 was used as a reference in the evasion exper-
iments to improve detection rates and overcome additional
classification challenges imposed by intentional delays.

We identified that bigger Tw and L values are more ef-
fective to detect pivot attacks with intentional delays during
the preliminary experiments. To conduct the evasive pivot
attack detection experiments, we define the following set of
APIVADS parameters: L was set as 400 packets, Tw as 10
minutes, E and Z defined with 10 seconds. To create the pivot
tunnel we used the SSH protocol and imposed a Ppiv of 5 PPS.
Detection results are presented in Table XIII.

TABLE XIII
INTENTIONAL PROPAGATION DELAYS EXPERIMENT RESULTS

Host TPR FPR DA

Pivot node 1 94.58% 2.50% 96.04%
Pivot node 2 98.75% 1.66% 98.54%

According to the results achieved, we could verify that
APIVADS can identify delay-based evasion techniques. How-
ever, the detection rates slightly decreased when compared
with the prior tested pivot attacks. Intentional delays impose a
bigger Tw due to the necessity of more samples that naturally
take more time to arrive at the Pivot node.

APIVADS and the algorithm proposed by Apruzzese et
al. [28] are the only pivot attack detection approaches that
address intentional propagation delays to the best of our
knowledge. Apruzzese et al. stated optimum detection metrics,
achieving 100% of recall and precision without mentioning
any performance decrease, differently from APIVADS, which
presents a slight decrease in performance regarding detection
metrics. However, as already stated, the detection strategy
proposed by the authors in [28] cannot address pivot attacks
with origin at the internet and is restricted regarding specific
protocols.

D. Algorithm complexity

The detection algorithm’s complexity must be compatible
with the input data length and available computational process-
ing power to be practical in real scenarios. According to the
presented algorithms in Section III-I, our algorithm’s complex-
ity is exponential O(n2). This fact could lead to inconvenient
large processing time imposing restrictions regarding expen-
sive computational demands. However, due to the efficient data
reduction already stated in Section V achieved by the filters
and the algorithm parameters, the complexity is not a problem
when facing real scenarios.

VI. CONCLUSION

This paper proposed a new scheme to identify traffic pat-
terns related to the pivot attack. Our classification scheme ad-
dresses the problem with a flow-based approach and statistical
techniques using just the information extracted from the packet
headers collected in the asset to perform the detection. This
way, each device can monitor its traffic and identify patterns
that indicate a pivot attack without the requirement of extra
information, which is interesting in terms of scalability. Addi-
tionally, the detection scheme can define specific parameters
to sense specific pivot traffic changes, which is helpful to
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infer APT change of attack stage. It is also important to note
that the approach is useful to contribute to the cybersecurity
situational awareness of a computer network, identifying the
nodes involved in a pivot attack while it is happening, even
if the attack is conducted over the internet. We achieved
high detection metric rates during the experiments where our
implementation was exposed even facing p2p protocols like
BitTorrent that present a similar behaviour to a pivot attack.
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