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Ageing research focuses on identifying lifespan modifiers and
understanding and appropriately interpreting their effects. One
of the most relevant quantities being studied is the shape of the
survival curve that can reveal crucial information on the
mechanism of action. Here, we introduce a bilogistic model
to describe the shape of the lifespan curves of Caenorhabditis
elegans populations. Using the corrected Akaike information
criterion and the RMSE as goodness-of-fit tests, we show that
the bilogistic model provides a better fit to the experimental
data from nematode worms than other mathematical models
and can identify and confirm biphasic lifespan data. Our
parametric model offers a method to interpret replicate
experiments data in terms of the shape parameters of the
lifespan curve and enables robust statistical analysis of intra-
and inter-group variance. We apply the model to novel
lifespan data from C. elegans and Drosophila melanogaster and
provide a rational statistical analysis of lifespan modifiers
such as temperature and daf-16/FOXO mutation.
1. Introduction
Today, many societies face the challenge of a rapidly ageing
population with associated health problems and increase in
healthcare expenses. A crucial step towards our understanding of
ageing is the identification and characterization of lifespan modifiers
such as temperature [1], diet [2], pharmacological interventions [3]
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andgenetic pathways [4]. Themost commonapproach for testing apotential lifespanmodifier is touse thenon-

parametric Kaplan–Meier estimator [5] followed by a log-rank test, which tests the null hypothesis that there is
no statistically significant difference between the control and test groups [5]. This allows a qualitative
comparison between a control and a test group, but not between replicates. Crucially, as it is only a
significance test comparing two curves, it is unable to identify where differences occur or to provide an
interpretation of them. One alternative is to perform parametric modelling of the data by fitting a
mathematical function to the survival curve. Common distributions for lifespan data comprise simple
exponential and sigmoidal distributions [6]. Two-parameter sigmoidal functions such as the Logistic [7],
Weibull [8] or Gompertz [9] models use a death rate and a temporal quantification (e.g. median time lag,
age-dependent mortality) as parameters to account for the shape and scale of the lifespan curve. Sigmoidal
functions fit data points to a typical curve shape with a shoulder, a rapid decrease and a tail [6,10]. However,
these models do not always adequately fit experimental data, leading to over-smoothing of the curves and
unintentional discarding of features of the lifespan curve. For example, it has recently been shown for
Caenorhabditis elegans that there are short-lived and long-lived worms resulting in survival curves which are
different from a standard, monophasic decrease and that can be described as biphasic [11,12].

Here, we introduce a novel bilogistic model that describes and distinguishes two phases within the
survival curve of a population, each with its own median survival. We apply this model to new
experimental lifespan data for C. elegans obtained for different temperatures (worm lifespan depends on
temperature [1,13]. The bilogistic model has four parameters, two median time constants, one death rate
and the fraction of the population following either phase dynamics. We show that the bilogistic model
allows for a clear identification of biphasic lifespan data for which it provides a significantly better fit of
experimental data compared to several other models. This is demonstrated by the corrected Akaike
information criterion (AICc) [14,15] that considers the different number of parameters of models, but we
also apply other goodness-of-fit tests. We discuss a five-parameter extension (two different death rates),
and a four-parameter variant (two different death rates but equal proportion between the
subpopulations) of the model that can be appropriate to model specific experimental conditions.
2. Material and methods
2.1. Caenorhabditis elegans lifespan assay
The C. elegans strains N2 (wild-type) and daf-16 (mu86) were acquired from the Caenorhabditis Genetics
Center (CGC), University of Minnesota. All strains were maintained on solid nematode growth media
(NGM) plates supplemented with nystatin (10 µg ml−1; Sigma) and seeded with Escherichia coli OP50
strain (CGC) at 20°C unless stated otherwise.

NGM plates used for lifespan assays were supplemented with 5-fluoro-20-deoxyuridine (FUDR)
(50 µM; Melford, UK) to prevent growth of unwanted offspring. Lifespan assays were conducted on a
population of worms synchronized by alkaline hypochlorite treatment. Once synchronized, 50 (unless
stated otherwise) L4 stage worms were transferred onto fresh NGM FUDR plates for the start of the
experiment. Worms were transferred onto fresh plates weekly, but more frequently if the seeded OP50
was depleted or if in case of unwanted bacterial or fungal contamination. Day 0 is considered as the
first day of adulthood and time points for events (death or censorship) were marked almost daily.
Worms were classified into three categories at each time point: alive, dead or censored.

2.2. Drosophila lifespan assay
Control wDah was derived by backcrossing w1118 into the outbred wild-type Dahomey background. The dfoxoΔ
flies were previously described [16]. Flies were raised and maintained on standard sugar/yeast medium [17].
Lifespan experiments were conducted at 25°C on a 12 : 12 h light/dark cycle at constant humidity. Flies were
reared at standard density, allowed to mate for 24 h, sorted by sex and then transferred to experimental vials
at a density of ten flies per vial. Approximately 100 flies were used per experimental replicate. Flies were
transferred to fresh vials three times a week, and deaths were scored during transferral.

2.3. Survival curve plots
Kaplan–Meier survival curves were constructed by inputting events occurring at given time points into
GraphPad Prism 9. Survival proportions at each time point were calculated and a log-rank (Mantel–Cox)
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test was conducted to statistically compare differences between two curves. p-values less than 0.05 were
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2.4. Lifespan models
In this study, we constructed a novel bilogistic model for fitting biphasic data, called Bilogistic 1kf (equation
(2.1)). The f parameter splits the curve into two phases giving a weighting to each phase. There is a single
death rate k and two time parameters t1 and t2, representing the median survival for each phase. We also
constructed two variants of this model: Bilogistic 2kf with two different death rates instead of one (k1 and
k2; equation (2.2)) and Bilogistic 2k, with two different death rates k1 and k2 but equal weighting of the two
phases (setting f = 0.5; equation (2.3)). For each of the three models, the terms in the numerator ensure that
at t = 0, the number of living animals at the start of the experiment is equal to N0, the known starting
number, rescaled in each experiment to be 100%. The Bilogistic 2kf model with five parameters contains
the other models (Bilogistic 1kf and Bilogistic 2k) as limit cases (k1 = k2 and f = 0.5, respectively) and can
itself be interpreted as a generalization of the Whiting–Buchanan model with four parameters [18],
where two different time constants are applied instead of one.

Bilogistic 1kf model:

N(t) ¼ N0 f
1þ e�kt1

1þ ek(t�t1)
þ (1� f)

1þ e�kt2

1þ ek(t�t2)

� �
: ð2:1Þ

Bilogistic 2kf model:

N(t) ¼ N0 f
1þ e�k1t1

1þ ek1(t�t1)
þ (1� f)

1þ e�k2t2

1þ ek2(t�t2)

� �
: ð2:2Þ

Bilogistic 2k model:

N(t) ¼ 0:5 N0
1þ e�k1t1

1þ ek1(t�t1)
þ 1þ e�k2t2

1þ ek2(t�t2)

� �
: ð2:3Þ

The bilogistic models were compared against six models: the Whiting–Buchanan model with four
parameters (equation (2.4) [18]), the Gompertz–Makeham model with three parameters (equation (2.5)
[19]), the Logistic model with two parameters (equation (2.6) [7]), the Wilson model with two
parameters (equation (2.7) [20]), the Weibull model with two parameters (equation (2.8) [8]) and the
Gompertz model with two parameters (equation (2.9) [9]).

Whiting–Buchanan model:

N(t) ¼ N0 f
1þ e�k1tlag

1þ ek1(t�tlag)
þ (1� f)

1þ e�k2tlag

1þ ek2(t�tlag)

� �
: ð2:4Þ

Gompertz–Makeham model:

N(t) ¼ N0ðe�ct�ðða=bÞðeðbtÞ�1ÞÞÞ: ð2:5Þ

Logistic model:

N(t) ¼ N0

1þ eðt�tlagÞ=k : ð2:6Þ

Wilson model:

N(t) ¼ N0

1þ ðt=tlagÞk
: ð2:7Þ

Weibull model:

N(t) ¼ N0(e�(at)b ): ð2:8Þ

Gompertz model:

N(t) ¼ N0(e�ða=bÞðeðbtÞ�1Þ): ð2:9Þ
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2.5. Statistical analysis

The experimental data have been analysed using various common statistical analysis packages that allow
for minimum least-squares analysis, maximum-likelihood analysis, goodness-of-fit tests (including
residual analysis/RMSE and AIC/AICc) and ANOVA tests.

The MATLAB (R2016a, v.9.0.0.370719, MathWorks) curve fitting toolbox was used to fit data using a
nonlinear least-squares method (Trust-Region algorithm) to estimate parameters. The root mean square
error (RMSE) was used for the goodness-of-fit statistical analysis of the different models using MATLAB.
It represents the model performance and lower values of RMSE indicate smaller differences between
actual data and fitted curve, and hence a better fit. To account for different numbers of parameters,
the adjusted (or unbiased) RMSE is used:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 (yi � ŷi)
2

m� k
,

s

where m is the number of data points per experiment (replicate) of a lifespan curve, ŷi is the predicted value
at each data point and k is the number of parameters of the model. For a number n of replicates, the mean
value and standard error of the mean (s.e.m.) were used. A customized residual analysis has also been used
where several data points were binned (see Results). The statistical significance between two groups was
examined using two-way analysis of variance (ANOVA) followed by Tukey multiple comparison tests
using GraphPad Prism 9 (www.graphpad.com). Statistical significance at p < 0.05, p < 0.01, p < 0.001 and
p < 0.0001 is indicated in the figures where appropriate.

The maximum-likelihood analysis to identify the optimal fit for each experiment was performed
using the statistical programming language R (https://cran.r-project.org/index.html; v.3.5.1).
Specifically, the R function mle2() was used, which relies on the optimization function optim() that by
default uses a Nelder and Mead algorithm (https://www.rdocumentation.org/packages/bbmle/
versions/1.0.20/topics/mle2). For Gompertz and Gompertz–Makeham models, we used a limited-
memory modification of the BFGS quasi-Newton method. To account for different numbers of data
points in each experiment and different numbers of parameters for each parametric model, the AICc
was used to compare models. It is given by the equation

AICc ¼ AICþ 2k2 þ 2k
m� k � 1

,

where m denotes the number of data points per experiment (replicate) and k denotes the number of
parameters in the model and AIC = 2k− 2ln(L) denotes the value obtained from the maximum-
likelihood analysis, where L is the likelihood of a model with a certain set of parameters [14,15].
Lower values of AICc indicate a more reliable prediction.

Both methods, minimum least-squares and maximum likelihood, predict the parameter values for
the model equations and allow us to fit a curve to the data. We specify the curve fitting method used in
each figure.

3. Results
3.1. Variability in lifespan curves in Caenorhabditis elegans
The nematode worm C. elegans is a commonly used organism for studying lifespan. As previously described,
lower temperatures generally result in longer lifespan in the worm [1]. Here, we use three experimental
replicates to illustrate the variability in the lifespan curves for the same temperature, and the variability
between three temperatures (15°C, 20°C and 25°C; figure 1a–c). Any single lifespan curve for 15°C, 20°C
and 25°C is significantly different from any other lifespan curve at a different temperature when tested
with the non-parametric Kaplan–Meier estimator followed by a log-rank test. For N2 worms, we have n=
20 replicates for 15°C, n= 15 replicates for 20°C and n= 14 replicates for 25°C. Therefore, the question
arises of how to analyse quantitatively a set of replicates for identical experimental conditions and
between different experimental conditions. For this, we use a parametric modelling approach.

3.2. Biphasic lifespan curves in Caenorhabditis elegans
To address the questions raised above and using the observation that C. elegans populations can show a
biphasic lifespan behaviour [11,12], we propose a bilogistic model (see Methods, equation (2.1)), named

http://www.graphpad.com
https://cran.r-project.org/index.html
https://www.rdocumentation.org/packages/bbmle/versions/1.0.20/topics/mle2
https://www.rdocumentation.org/packages/bbmle/versions/1.0.20/topics/mle2


100

80

60

pe
r 

ce
nt

 s
ur

vi
va

l

40

20
0

100 20

N2 worms at 15°C N2 worms at 20°C N2 worms at 25°C

time (days)

30

1
2
3

1
2
3

1
2
3

(a) (b)

100

80

60

40

20
0

100 20

time (days)

30

(c)

100

80

60

40

20
0

100 20

time (days)

Figure 1. Experimental replicates of C. elegans lifespan. Representative experimental triplicate (coloured segments) of lifespan curves
of N2 worms maintained at different temperatures ((a) 15°C, (b) 20°C, (c) 25°C) illustrates intra-group variability. Each experiment
contained 100 worms.
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Figure 2. Curve fitting and parameter estimation of C. elegans lifespan. The Bilogistic 1kf model (a) and variants (b,c), together with
common lifespan models (Whiting–Buchanan (d ), Gompertz–Makeham (e), Logistic ( f ), Wilson (g), Weibull (h) and Gompertz (i))
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circles and model fits (minimum least squares) by black curves. The parameters for each model are also given. An illustration of the
meaning of the parameters is given for the Bilogistic models.
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Bilogistic 1kf, for fitting the experimental data (least-squares fit or maximum likelihood, see Methods)
and comparison against other models. In figure 2, we show the procedure for a single experiment (for
100 N2 worms at 20°C), where we performed a least-squares fit against Bilogistic 1kf and the other
parametric models. The parameters of Bilogistic 1kf are as follows: the f value (which denotes the
weighting or proportion of the two phases), the median survival times t1 and t2 and the death rate k
for both phases (figure 2a). The phases represent a short-lived (1st phase) and a long-lived
subpopulation (2nd phase). The Bilogistic 1kf model uses the same k value for both phases although
we have also tested variants with two different k values (Bilogistic 2kf, equation (2.2); figure 2b) or
with two different k values but equal phase distribution (Bilogistic 2k, equation (2.3); figure 2c). The
Bilogistic 1kf model and its variants were used to fit the lifespan data points (figure 2a–c) and show a
good visual agreement between data and curves. We fit the same data against a range of common
lifespan models (see Methods, equations (2.4)–(2.9); figure 2d–i) and observe a systematic deviation for
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intermediate time moments (roughly, between Days 14 and 20) for all six models, and additionally for
Days 3 and 7 for the Gompertz, Gompertz–Makeham and Logistic models. We quantify the goodness
of fit systematically below, but already observe that the bilogistic models can fit the data well, clearly
suggesting the existence of two phases, while there are systematic deviations for the other models
which do not capture the biphasic nature of the survival curve.

3.3. Comparison of lifespan models using AICc and RMSE
To confirm or reject this observation and to compare the goodness of fit of the parametric models, we
considered two independent measures to test for model selection: the AICc for the maximum-likelihood
analysis and the RMSE for the minimum least-squares analysis.

Since we are comparing models with different numbers of parameters, the AICc was used to account
for the number of parameters in the model. A lower AICc score indicates best fit. From a set of
experimental replicates of C. elegans maintained at 15°C (n = 20; figure 3a,d ), 20°C (n = 15; figure 3b,e)
and 25°C (n = 14; figure 3c,f ), the Bilogistic 1kf model consistently scored a lower AICc than other
models for all three temperatures. Only the Weibull model with two parameters was as good as our
model for the 20°C dataset (figure 3e).

The adjusted RMSE is a measure of the residual differences between actual experimental lifespan data
points and fitted model curve if models have a different number of parameters (see Methods). The
residual differences are first calculated for each replicate of each dataset before undergoing a data
binning procedure along the temporal axis to smooth the data. Residuals were grouped into bins of 2,
3 or 4 days and plotted (electronic supplementary material, figure S1). Plots which show the smallest
residual error without systematic deviations throughout the lifespan indicate the best fit. The Bilogistic
1kf model shows the smallest residual error in all bins with a minimum of systematic deviations
when compared to the other models (electronic supplementary material, figure S1), indicating that it
is the most appropriate model for the data (we will comment on the use of the Bilogistic 2kf and
Bilogistic 1k models in the Discussion). The results are relatively independent of the bin size, although
bin size 2 performs slightly worse for the Bilogistic models. Following on, the adjusted RMSE was
calculated for each curve. This type of analysis considers the varying number of parameters present in
each model by giving a penalty for a model with more parameters. Using the data of the lifespan of
C. elegans maintained at 20°C, we observed consistently smaller residuals using the Bilogistic 1kf
model compared to other models (figure 4a–h). Consequently, we found significantly lower RMSE
values for the Bilogistic 1kf when averaged over all replicates (figure 4i). We find similar results for
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worms maintained at 15°C and 25°C (electronic supplementary material, figures S2 and S3). Thus, the
unbiased RMSE shows that the Bilogistic 1kf model is significantly better at fitting lifespan curves of
C. elegans across different temperatures.

3.4. Analysis of the effect of temperature on nematode lifespan using the Bilogistic 1kf model
The lifespan curves for worms maintained at 15°C (n = 20 replicates), 20°C (n = 15 replicates) and 25°C
(n = 14 replicates) were fitted against the Bilogistic 1kf model using the maximum-likelihood method
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(representative data in figure 5a,b) and the model parameters for each temperature condition were
analysed. While at 25°C the f parameter is lower in many replicates compared to the parameters at
15°C and 20°C, this turned out not to be statistically significant since the overall spread is large
(figure 5c). However, the death rate k is significantly increased as the temperature is increased from
15°C to 25°C or from 20°C to 25°C (figure 5d ). The time parameters t1 and t2 were significantly
different from each other, indicating the presence of two phases, although the difference becomes
smaller and less significant for 25°C. Furthermore, both t1 and t2 were significantly decreasing as the
temperature was increasing (figure 5e). Thus, the temperature has significant effects not only on the
timing of the two phases, but also on the death rate.

3.5. Conserved effects of daf-16/FOXO deletion on lifespan
We then asked whether the model could be applied to measure the effects of genetic manipulations on
lifespan. We considered the Forkhead Box O (FOXO) nematode orthologue daf-16, known to play a
critical role in regulating lifespan [4]. daf-16 (mu86) worms lack daf-16, resulting in a significantly
shorter lifespan (figure 6a), which could be fitted with our model (figure 6b). The loss of daf-16 did
not affect the presence of the two phases and significantly increased the death rate k (figure 6d ), with
no effects on the other parameters.

We hypothesized that these effects of FOXO loss-of-function on lifespan are conserved in other
organisms. To test this, we analysed the lifespans of Drosophila melanogaster lacking FOXO (dfoxoΔ),
which also have a shorter lifespan than their control [16] (figure 6f ) and which again could be better
described by our model (figure 6g–j ). The Drosophila lifespan curve has two phases as demonstrated
by the two significantly different time parameters t1 and t2. However, the effects of dfoxo deletion in
Drosophila did not exactly mirror our findings from the daf-16(mu86) worms. Thus, we observed a
higher death rate in the mutant dfoxoΔ fly ( p = 0.058) and statistically significantly decreased time
parameters t1 and t2.
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4. Discussion

Lifespan and survival are the results of a wide range of complex interactions within and among
individual organisms and discerning the effects of lifespan modifiers is a challenging task. The log-
rank test from the Kaplan–Meier estimator works as a basic statistical test [21], comparing two curves
and assigning whether they are statistically significantly different. However, it does not provide any
insights into the mechanisms of action of the lifespan modifier and, crucially, it cannot be used to test
experimental replicates. Since the variability of lifespan experiments is high even for control groups,
the problem lies in how to obtain a representative lifespan curve from multiple replicates.

Parametric analysis using e.g. Gompertz and Weibull models can address such questions [6]. By
using only two parameters, these models propose that lifespan modifiers simply affect the
monophasic gradient [22] or shift the lifespan curves along the time axis [23]. However, this assumes
a monophasic lifespan with a uniform parametric distribution, which is not the case in many
instances, and biphasic dynamics can be more pronounced depending on experimental conditions or
animal strains [11,24]. Note that the asymmetric shape of the Gompertz and Gompertz–Makeham
curves can be referred to as biphasic, but this does not capture the dynamics described here as we do
not have an explicit exponential age-dependent component.

Biphasicness is a subtle effect and sometimes genetic, environmental or experimental parameters can
mask or amplify it (e.g. see [25,26]). Our experimental data clearly displays more pronounced biphasic
dynamics in certain conditions (e.g. C. elegans wild-type (N2 strain) at 20°C, daf-16 (mu86)). When
Vaupel [27] reviewed the different rates of mortality during the lifespans of insects and worms, a two-
stage Gompertz model was normally found to be better at fitting the data. The question remains
about what these two phases mean biologically. Vaupel [27] mused on the heterogeneity of the
population where, although the individuals are genetically identical, they would differ from each
other in terms of size, weight, robustness and frailty. More recently, analysis of the pharynx of C.
elegans corpses revealed two distinct death types which could be separated as occurring at an early
and late phase [12]. Similarly, use of the Smurf Assay, where gut permeability is assessed by a blue
phenotype, in Drosophila flies, nematode worms and zebrafish also showed two phases of lifespan
[28]. One recent paper uses the term ‘bimodal survival’ to describe the short-lived and long-lived
cohorts of worm which could be adopting alternative physiological states due to unknown
mechanisms [29].

Thus, the proposed bilogistic model attempts to capture the two phases, accounting for a proportion
of the individuals dying earlier and the remainder dying significantly later as two distinct groups. The
model can be interpreted as either an extension of a simple Logistic model (similar to the bilogistic model
discussed by Meyer in a different context [30]) or as an extension of the Whiting–Buchanan model [18]
with two lag phases instead of one.

Analysis of two goodness-of-fit tests, AICc for a maximum-likelihood model and adjusted RMSE for
a least-squares model (for a recent discussion on these measures, see [31]), shows that the model
Bilogistic 1kf fits the lifespan data on average better than other lifespan models (figures 3 and 4). Due
to the high variability between replicates, the Bilogistic 1kf model is not always the most likely model,
but it performs better than all other models tested. We emphasize that this conclusion does not
depend on whether we use the AICc for a maximum-likelihood model or an adjusted RMSE for a
least-squares model.

Adding an additional parameter such as a second death rate k2 or fixing the phase proportion f to 0.5
(while having two death rates k1 and k2) to modify the Bilogistic model to variants Bilogistic 2kf or
Bilogistic 2k can significantly improve the fit or the advantage against other models, as shown in
electronic supplementary material, figure S4. While we have used the Bilogistic 1kf model throughout
this study, we observe that the Bilogistic 2kf model is more general and has a potentially wider
applicability. It has five parameters, but simplifications can be applied in a straightforward way to
obtain models with four parameters (Bilogistic 1kf, Bilogistic 2k) or three parameters (Bilogistic 1k)
which may be appropriate for certain animal models or experimental conditions. We have, therefore,
introduced a family of bilogistic models.

As is typical for survival models using logistic functions, the bilogistic models used here have not been
derived from first principles but are justified a posteriori due to their predictive capacity. Our results agree
with previous findings that logistic fittings provide better results than Gompertz–Makeham or Weibull
fittings [32,33]. While a model with four or even five parameters has a higher risk of overfitting
compared to a model with two or three parameters as for Weibull, Gompertz or Gompertz–Makeham,
we emphasize that both goodness-of-fit tests have accounted for the numbers of parameters.
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Comparing the parameters of the control curves to those for the test curves can reveal important clues

to the action of the lifespan modifiers. In the case of high temperature, the death rate k increased while the
phases shortened (t1 and t2). For the daf-16 mutation, we only observed a statistically significant increase in
the rate k but no differences in the other parameters. Interestingly, the equivalent mutation in Drosophila
flies (dFOXO) instead showed a statistically insignificant increase in the rate k (p = 0.058) while both
time parameters t1 and t2 were significantly reduced. These observations warrant further experimental
investigations in mechanistic explanations and the effects of the DAF-16/FOXO mutations would
suggest different mechanisms for the DAF-16/dFOXO mutations in both animals.

Although our experimental organisms are genetically homogeneous, lifespan analysis shows that
subpopulations of short- and long-lived individuals exist. The present analysis does not reveal the
mechanisms behind the observed biphasic dynamics which is beyond the scope of this article.

In conclusion, our study proposes a new parametric model for analysing lifespan assays. We show it
is able to fit experimental data from the worms and flies, both of which exhibit biphasic dynamics. We
have carefully considered the danger of overfitting our data and our residual difference analysis (valid
for comparing models with the same number of parameters) and AICc and adjusted RMSE analysis
(valid even for comparing models with different number of parameters, and therefore penalizing
models with more parameters) show that the Bilogistic 1kf model offers a better fit than existing
models. It can be easily inserted in commonly used statistical analysis programmes, and we hope that
this paper encourages fellow scientists to apply parametric modelling to their lifespan data. Finally,
analysis of the parameters from curve fitting enables comparison of lifespan assays both within
similar groups and among different experimental conditions. Our model is, therefore, expected to
facilitate the rational analysis of lifespan modifiers, e.g. through genetic analysis of long- versus
short-lived subpopulations [12,34], and improve our understanding of their mechanisms of action.

Summarizing, the bilogistic model and its variants are variable enough to identify clearly biphasic
survival data if present and to model the biphasic features of lifespan curves observed in response to
environmental, genetic or other, such as pharmacological interventions.
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