
Citation: Bold, R.; Al-Khateeb, H.;

Ersotelos, N. Reducing False

Negatives in Ransomware Detection:

A Critical Evaluation of Machine

Learning Algorithms. Appl. Sci. 2022,

12, 12941. https://doi.org/10.3390/

app122412941

Academic Editor: Giacomo Fiumara

Received: 28 October 2022

Accepted: 10 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Reducing False Negatives in Ransomware Detection: A Critical
Evaluation of Machine Learning Algorithms
Robert Bold 1, Haider Al-Khateeb 2,* and Nikolaos Ersotelos 3,*

1 School of Engineering, Computing and Mathematical Sciences, University of Wolverhampton,
Wolverhampton WV1 1LY, UK

2 Cyber Security Innovation (CSI) Research Centre, Operations & Information Management,
College of Business and Social Sciences, Aston University, Birmingham B4 7ET, UK

3 Department of Computer Science and Creative Technologies, University of the West of England,
Bristol BS16 1QY, UK

* Correspondence: h.al-khateeb@aston.ac.uk (H.A.-K.); nikolaos.ersotelos@uwe.ac.uk (N.E.)

Abstract: Technological achievement and cybercriminal methodology are two parallel growing paths;
protocols such as Tor and i2p (designed to offer confidentiality and anonymity) are being utilised
to run ransomware companies operating under a Ransomware as a Service (RaaS) model. RaaS
enables criminals with a limited technical ability to launch ransomware attacks. Several recent
high-profile cases, such as the Colonial Pipeline attack and JBS Foods, involved forcing companies to
pay enormous amounts of ransom money, indicating the difficulty for organisations of recovering
from these attacks using traditional means, such as restoring backup systems. Hence, this is the
benefit of intelligent early ransomware detection and eradication. This study offers a critical review of
the literature on how we can use state-of-the-art machine learning (ML) models to detect ransomware.
However, the results uncovered a tendency of previous works to report precision while overlooking
the importance of other values in the confusion matrices, such as false negatives. Therefore, we
also contribute a critical evaluation of ML models using a dataset of 730 malware and 735 benign
samples to evaluate their suitability to mitigate ransomware at different stages of a detection system
architecture and what that means in terms of cost. For example, the results have shown that an
Artificial Neural Network (ANN) model will be the most suitable as it achieves the highest precision
of 98.65%, a Youden’s index of 0.94, and a net benefit of 76.27%, however, the Random Forest model
(lower precision of 92.73%) offered the benefit of having the lowest false-negative rate (0.00%). The
risk of a false negative in this type of system is comparable to the unpredictable but typically large
cost of ransomware infection, in comparison with the more predictable cost of the resources needed
to filter false positives.

Keywords: artificial intelligence; incident response; cyber kill chain; destructive malware

1. Introduction

Ransomware is malicious software that prevents users from accessing their data until
a ransom payment is made, usually in Bitcoins. It broadly falls into two main categories:
locker ransomware, which prevents access to computers, and crypto-ransomware, which
encrypts user files such as databases, documents, spreadsheets, and pictures, rendering
them unusable until the ransom is paid and the decryption key is obtained [1]. Ransomware
malware is commonly distributed by links and attachments in spam and phishing emails [2].
It is not a new phenomenon. The first ransomware appeared in 1989 with the AIDS Trojan,
and the first modern type, GPCoder, was released in 2005 [3]. Early versions of that type
of threat demanded payment in the form of pre-paid bank cards or having the victim
call a premium rate phone number. The advent of crypto-currencies has made anony-
mous payment methods possible. Mimecast reported that 61% of organisations suffered a
business-disrupting ransomware attack in 2020, compared to 51% in the preceding year [4].
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From an attacker’s perspective, ransomware is attractive due to its low risk and
lucrative nature. Although Bitcoin wallet addresses are publicly available, wallets cannot
usually be traced to specific individuals or groups [5]. At the same time, it is a lucrative
crime because there has been a shift towards targeting organisations that can afford to pay,
as in the case of the Colonial Pipeline, which paid a ransom of $4.4 m [6] and the meat
supplier JBS, who paid a ransom of $11 m [7]. Organisations that are likely to pay to avoid
risk to life are also common targets, as in the case of the Hollywood Presbyterian Medical
Center [8]. Governmental and non-profit organisations are increasingly being targeted [9],
and there is evidence of increased ransomware attacks against educational institutions [10].

The lucrative nature of ransomware has led to the development of Ransomware as a
Service (RaaS) [11]. Criminal groups such as Darkside and Revil, who have the technical
ability to conduct ransomware attacks, make their services available on the darknet, taking
a percentage of the ransom as their payment. As a result, it is now possible for criminals
with limited technical ability to launch ransomware attacks [12].

In most cases, ransomware is triggered by users clicking a link in a malicious email [13].
Such emails may be common spam, or they may be more sophisticated. Phishing emails
attempt to trick the recipient into opening a malicious attachment by mimicking the appear-
ance of a legitimate email. Spear-phishing emails are targeted at a specific individual or
organisation, while Whale-phishing emails are aimed at senior employees who have greater
access to sensitive information and authority to make payments than regular employees.

Other delivery methods include exploit kits, which take advantage of unpatched
vulnerabilities in operating systems and browsers to spread malware or pivot through
the network to hide the origin of the attack [14], and malvertising—when attackers create
adverts containing malicious code, then serve from a legitimate ad network. Microsoft Of-
fice Macros—Visual Basic for Applications (VBA) is a comprehensive language containing
commands that can be used maliciously or to download and execute other malware.

Finally, there is RDP—as Microsoft’s Remote Desktop Protocol uses port 3389 by de-
fault, attackers can scan for networks in which port 3389 is open and attempt to gain access
by either brute-forcing the credentials or gaining credentials using phishing techniques.

New ransomware variants are continually emerging, and variants within the same
family often employ obfuscation to evade detection by traditional methods [15,16]. A
different approach to ransomware detection is therefore required, for example, to overcome
the limitation of signature-based detection [15].

Machine learning (ML) offers a smarter opportunity to detect ransomware based on
its behaviour, but this approach is often narrowly focused. Hence, ML models may miss
cyber threats they have not seen before. The reliability of these models is determined by
error parameters in which accurate predictions mean fewer false positives and fewer false
negatives. However, we observe a tendency of previous works to focus on accuracy and
overlook the importance of other values, such as false negatives [17]. False negatives are a
crucial error parameter yielded that could be very costly to the environment. Hence, this
study offers a comprehensive critical evaluation of ML models using several matrices to
achieve specific efficiency targets, including but not limited to the design of an ML-based
ransomware detection architecture with fewer false negatives.

This study analysed the API calls made by a range of ransomware samples and non-
malicious software (730 ransomware and 735 benign samples). This has enabled the creation
of a dataset that does not exhibit class imbalance and is used to train and evaluate a range of
machine-learning models for detecting ransomware. The machine learning models tested
are the Support Vector Machine, K-Nearest Neighbours, Logistic Regression, Decision Tree,
Random Forest, and Artificial Neural Network. In addition to the metrics commonly used
for the evaluation, the metrics proposed by Kok et al. [17]. have been calculated, and their
usefulness in comparing the models has been evaluated. Nonetheless, our methodology
demonstrates an approach to storing API call usage statistics in a relational database
management system, which allows new datasets to be rapidly and flexibly created. This
study has enabled us to address the following two key research questions: (1) which error
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parameters and evaluation matrices should be utilised by the state-of-the-art to discuss the
reliability of ML models for the detection of ransomware, and (2) which ML models offer
reliability for the detection of ransomware?

In the remaining part of this paper, we cover the background and related work in
Section 2 and a gap analysis indicating the areas that may currently be under research.
Section 3 describes the proposed architecture and emulator environment used to analyse
the ransomware and benign samples, and the dataset preparation, including a short de-
scription of the machine learning algorithms. The evaluation metrics used to examine the
performance of the ML models are discussed in Section 4, while Section 5 discusses the
main results and analysis from our experiments and Section 6 concludes our work.

2. Background

Cybercriminals can spread ransomware by exploiting the Remote Desktop Protocol
(RDP), a communications protocol that can access another computer over a network con-
nection. As a defensive method, Convolutional Neural Networks (CNN) can be used
within Intrusion Detection Systems (IDS), which monitor the network traffic and the Qual-
ity of Service or bandwidth-throttling, and can potentially identify anomalies, including
security and operational issues [18]. Some traffic can be identified from the ports used
(e.g., HTTP on port 80), some from non-standard ports, and some is generated by web
applications that operate on dynamically-selected ports above 1024. In a review of ran-
somware detection approaches, Aslan et al. [15] explain why signature-based detection
is efficient at reducing false negatives but is less effective on more complex malware that
may employ obfuscation techniques such as encryption, oligomorphic, and polymorphic
codes. Among others, this research presents a range of detection techniques, including
‘Behaviour’, ‘Heuristic’, ‘Model-checking’, and ‘Deep learning-based detection’. Moreover,
they categorised the cloud and mobile device-based detection methods differently as this
category is distinguished by the location where detection occurs rather than the method.

Moreira et al. [19] presented a behavioural feature analysis of ransomware during
the destruction phase in Windows OS. Their approach was first to categorise the APIs
based on Microsoft naming conventions (merging different API versions with similar
names), then eliminate features with low variances and investigate the attacks’ behaviour.
With the use of Naive Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR),
Random Forest (RF), Stochastic Gradient Descent (SGD), and Support Vector Machine
(SVM) classification algorithms, they identified behavioural pattern modifications between
ransomware and goodware. APIs’ most significant behavioural characteristics involve han-
dling thread/process manipulation, physical memory operations, computer identification,
and file type discovery operations. In contrast, the goodware presented virtual memory,
files, directories, and resource operations, including DLLs.

Netto et al. [20] present a method of detecting ransomware using static and dynamic
analysis. Their static analysis approach consists of two elements. The first involves the
creation of randomly named ‘honey trap’ files scattered throughout the file system. These
files have a ‘trigger’ attached which fires when the file is altered. Although the mechanism
for this trigger is not fully described, methods to provide the needed output are available
from classes such as the FileSystemWatcher class. When one of the honeypot files is
modified, ransomware is assumed responsible for the modification, alerting the user.
However, this approach has some problems. Creating the honey trap files at system start-
up can take considerable time (several hours) for a terabyte filesystem. By the time a
honey trap file is modified and the alert raised, many user files might already have been
encrypted, as the tool does not stop the ransomware from continuing to execute and only
alerts the user. Moreover, events can be missed when the buffer size is exceeded (e.g., by
the FileSystemWatcher class) or when monitoring files with long names [21]. The second
element is based on analysing the source and destination IPs and ports of packets entering
and leaving the user’s system. These packets are compared with a dataset, and if a match is
found, then the packet is dropped, and the remote IP is blacklisted. This approach is very
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similar to signature-based detection, which requires preparing and regularly updating a
signature dataset. On the other side, this technique is not generally considered appropriate
for reducing false negatives due to the frequent changes in code and behaviour exhibited
by ransomware. The second element, the dynamic approach, involves the inspection
of network packets for ‘known hexadecimal for properties’, including registry and file
operations, and comparison against a pre-existing dataset. The packet is dropped if a match
is found, and a Windows firewall rule is added to prevent further traffic to/from the related
IP. This approach also appears to be very similar to signature-based detection, with the
associated limitations.

Anand et al. [22] collected a list of 135 API calls based on a dynamic analysis by
combining static and dynamic feature sets such as AvosLocker, LockBit2.0, Babuk, Hive,
Conti, and Stop Ransomware and focusing on their behavioural patterns. The 135 API
call analysis was used to build a machine learning model to assist security experts in
detecting and blocking malicious processes at runtime. With the Adaboost Algorithm, they
could classify the unseen samples with an accuracy of 0.9769 and a specificity value of
0.9508. Based on the authors’ opinion, further investigation and tests need to be performed
concerning intermittent ransomware encryption and the rate at which the encryption
is delivered.

Kok et al. [17] describe shortcomings with the metrics commonly used to measure the
effectiveness of machine learning-based uncaught threat detection methods. Their criticism
of widely used metrics is based on the fact that, with the exception of accuracy, they do not
take into account the values of all four quadrants of the Confusion Matrix—True Positive,
False Positive, True Negative, and False Negative. Instead, new metrics (Likelihood Ratio,
Diagnostic Odds Ratio, Number Needed to Diagnose, Number Needed to Misdiagnose,
and Net Benefit) are proposed, with formulae for calculating each one of them.

Bae et al. [23] have presented a machine-learning method for detecting ransomware
by analysing Windows API calls. The file-related I/O calls made by sample executables
(300 benign, 1000 ransomware, and 900 malware) were extracted using the Intel PIN
tool [24]. Since malicious software usually uses a sequence of API calls to perform a
malicious action (rarely a single API call), n-grams of API calls were generated with n
values ranging from 1 to 4. The researchers found that n = 4 gave the best results; values of
n equal to or larger than 4 were not investigated due to the computational difficulty. The
datasets produced were used to train six algorithms—Random Forest, Logistic Regression,
Naïve Bayes, Stochastic Gradient Descent, K-Nearest Neighbours, and Support Vector
Machine. Testing results have shown high accuracy in detecting ransomware using this
method. According to [23], the presented method of extracting the API sequences using
n-gram techniques was successfully tested for detecting known and unknown ransomware,
among other malware types.

Ahmed et al. [25] assumed that the analysis of system calls is the most widely used
approach for detecting ransomware attacks and that ransomware authors often inject
irrelevant system calls to generate ‘noise’ and make the sequence of calls more challeng-
ing to analyse. They propose a filtering method based on mRmR (Maximum-Relevance
Minimum-Redundancy) known as EmRmR (Enhance Maximum-Relevance and Minimum-
Redundancy) to eliminate noise and select the most relevant features. EmRmR is less
computationally expensive than mRmR and, thus, more suitable for ransomware detection.

Sheen’s and Yadav’s [26] method of ransomware detection is based on the static analy-
sis of executables. They note that certain API calls are used more frequently in ransomware
than in non-malicious executables. The API calls made by 16,243 ransomware samples
and 3620 non-malicious executables were analysed using the Radare2 disassembler. They
describe the potential for problems introduced by ‘class imbalance’ resulting from a large
number of ransomware samples compared to benign samples and their use of the Synthetic
Minority Oversampling Technique (SMOTE) to synthesise further benign samples [27]. API
calls that occurred more frequently in ransomware than benign executables were selected,
resulting in a dataset of 160 features. These features were used to train models using a
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variety of machine-learning algorithms, which were then evaluated. The paper found that
the Random Forest algorithm produced the highest accuracy.

Vinayakumar et al. [28] compared the effectiveness of a deep-learning approach based
on a Multi-Layer Perceptron (MLP) against shallow-learning algorithms, which are more
commonly used in machine learning-based malware detection, such as Support Vector
Machine, Logistic Regression, and Naïve Bayes. The frequency of Windows API calls
was analysed using the MLP and shallow-learning algorithms. They concluded that
the effectiveness of the MLP algorithm was similar to that of SVM, that MLP is more
computationally expensive, and that their experiments were limited by the computing
resources available.

Cusack et al. [29] take advantage of Software-Defined Networking and network
switches equipped with Programmable Forwarding Engines (PFEs) to analyse traffic as
it enters the network. Such switches can analyse packets in real-time and maintain flow
records. These capabilities were used to identify traffic between ransomware running on a
target computer and its Command & Control (C2) server. Conversations were identified
by a 5-tuple consisting of protocol, source IP, destination IP, source port, and destination
port. Features such as the interval between packet arrivals, the number of packets in a flow,
and the ratio of incoming to outgoing packets were extracted and used to train a Random
Forest model. This model was then used to identify ransomware traffic, which allowed
the packets to be dropped before hitting the target computer. According [30,31], although
the detection rate of the proposed classification model was 87%, this is a promising area of
research as it does not rely on Deep Packet Inspection, only on the metadata of the traffic
flow. It can therefore be used to identify whether or not malicious traffic is encrypted.
It also allows for malicious traffic—for example, the encryption key being sent from the
C2 server to the victim machine to be dropped before it hits the target system, with the
result that, even if a system is infected with ransomware, it will not be able to begin the
encryption process.

Asmitha and Vinod [32] recognise the increasing prevalence of the Linux operating
system—on servers, the IoT, and mobile devices. Most of the literature to date addresses the
problem of malware and ransomware on Windows. They focus on the detection of malware
on Linux by the analysis of system calls. A dataset of 226 malware and 442 benign samples
was assembled, and the system calls made were captured using the Linux strace utility.
Calls were classified according to whether they occurred in both malware and benign
samples or were specific to either malware or benign samples. The number of features was
reduced by means of Class Discrimination Measure, Odds Ratio, and Evaluation of Sparse
Features, providing an optimum number of 30, selected by Odds Ratio. When used to train
a Random Forest, this achieved an accuracy of 97.3%.

Gap Analysis

The features of the papers surveyed in the Literature Review above are summarised in
Table 1. This gap analysis illustrates that supervised machine learning methods, particularly
the dynamic analysis of Windows API calls, have been a trending research theme. Linux-
targeting malware and ransomware have received little attention by comparison, with an
exemption of Asmitha and Vinod’s paper [32] focussing on Linux malware.
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Table 1. Gap analysis.
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√
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√
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Metrics
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This might be because it is more challenging to monitor system calls consistently
on Linux. Windows software typically makes API calls to functions exposed by a core
operating system library, such as Kernel32.dll, User32.dll, or GDI32.dll. Linux software,
instead, tends to make system calls which are requests to the Linux kernel to provide a
service, and Linux system calls are run in kernel rather than in user mode. While there are
mechanisms for capturing Linux system calls, including strace and auditd, it is relatively
easy for malicious software to evade these mechanisms. This may explain why there has
been little investigation into Linux malware since Asmitha and Vinod’s paper and why
their paper included a relatively small number of malicious samples (226) [32].

3. Proposed Method
3.1. Architecture and Emulator Environment

The methodology architecture is based on a ransomware detection model as illustrated
in Figure 1. It consists of two steps, starting with the processes required to train a ML
classifier and kept it up-to-date by utilizing more datasets as part of a data collection phase.
The second step focuses on detection; the classifier is used to decide whether an unknown
file is ransomware or benign. To reflect this in our experiment, we use virtual machines for
malware analysis. The machines have been configured with a VirtualBox host-only network
adapter to prevent malicious traffic from routing out of the sandbox environment. Two host
machines were used for the experiments. The first, with an Ubuntu 20.04 operating system,
was dedicated as a sandbox environment for executing malware and benign samples.

After the virtual machines were configured and the Cuckoo agent installed, snapshots
were taken to restore the machines’ original configuration after each sample was analysed.
INetSim was used to simulate the presence of internet services such as DNS and HTTP.
Therefore, any requests made by malware under analysis would receive a fake response
to DNS and HTTP requests. All DNS requests would resolve to the IP of the VirtualBox
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host-only network adapter. Other requests, such as HTTP, would receive a static file in
response. The first environment is illustrated in Figure 2.
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A second machine was solely built to train and deploy machine learning algorithms
and to minimise any risk of malware ‘escaping’ the sandbox environment. The main
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software installed included Debian 10, Python 3, Scikit-learn [34], Tensorflow, MariaDB,
and Microsoft Visual Studio Code.

3.2. Dataset Preparation

The ‘CryptoRansom’ archive [35] was the source of 38,157 samples, each named after
its MD5 hash. Overall, 730 Malware samples were submitted to Cuckoo in batches using
the web interface. To avoid class imbalance problems [26], 735 benign samples were also
submitted. Benign samples were gathered from a Windows environment in the form of
Executables and DLLs. The results from each sample were logged into a directory structure
and a MongoDB database. The JSON files produced by Cuckoo were of particular interest
due to the nature and quantity of information they contained. Each JSON file’s ‘apistats’
section had information about processes spawned by the sample, which process made API
calls, and how many times each API function was called.

A bash script was used to rename all the report.json files to <task_id>.json, and copy
them to a single directory. The files in this directory were then compiled into a compressed
archive using tar and gzip. The resulting archive file was then transferred to the computer
used for machine learning work, unzipped, and extracted.

A MariaDB database was created to contain the statistics on API call frequency. The
database schema is shown in Figure 3. This schema model shows that each sample spawned
one or more processes, and each process made multiple API calls. Using a relational
database allows the creation of different datasets using different queries. For example, it
would be possible to produce a dataset containing information only on DLL samples or
only for samples that spawn multiple processes. The database was populated from the
collected JSON log files by a python script. Once populated, the record counts for each
table were as shown in Table 2.
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Table 2. Database table record counts.

Table Record Count

Sample 1465
Process 6341

process_api_call 269,918
api_function 284

A query to aggregate the API calls made by the processes spawned by each sample
was run, and the results were output to a CSV file. A code example for the query is:

SELECT s.sample_id, s.is.malicious,
COUNT(p.process_id AS process_count, a.api_id,
SUM(a.call_count) AS call_count
FROM malware_stats.sample s
JOIN malware_stats.process p ON s.sample_id = p.sample_id
JOIN malware_stats.process_api_call a ON p.process_id = a.process_id
GROUP BY s.sample_id, s.is_malicious, a.api_id
The number of times malicious and benign samples called each API function was

more than 565,902. Malicious samples called a wider range of API functions than be-
nign samples, and overall malicious samples made more API calls than benign sam-
ples (8,607,508–929,971). The API functions most frequently called by malicious samples
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were: LdrGetProcedureAddress, ReadProcessMemory, NtClose, RegQueryValueExW, and
NtReadFile; for benign samples, they were: NtReadFile, SetFilePointer, GetSystemMetrics,
NtClose, and LdrGetProcedureAddress.

The API usage statistics were used to classify the examples as either benign or ma-
licious. This data was re-arranged into a format suitable for training machine learning
models by a script (csv_to_dataset.py) that uses pandas’ pivot table functionality. The
resulting dataset contained 1465 labelled samples with the label ‘is_malicious’.

Each sample had 284 features, and each feature was the number of times the associated
API function was called. The mentioned 284 features have integer values; therefore, no
transformation of categorical features using one-hot encoding was necessary.

3.3. ML Algorithms

Machine learning algorithms suitable for binary classification problems [36] include
Logistic Regression, Support Vector Machine, K-Nearest Neighbours, Decision Trees, Ran-
dom Forests, and Artificial Neural Networks. Although linear regression is suitable for
predicting a continuous quantitative value based on one or multiple features, it is not a
practical approach for classifying samples as either benign or malicious. Still, it can stand as
a valuable technique in understanding Logistic Regression. In contrast to linear, the logistic
regression analysis method is specifically designed to predict a binary outcome. Based
on an S-shaped curve generated by a sigmoid function (Formula (1)), a logistic regression
model can determine the probability that the outcome lies in each of the two categories.
β0 is the bias that determines where the curve crosses the y-axis: positive values move
the curve to the left, and negative values move it to the right. β1 is the weight applied to
feature x; this weight governs the rate at which p transitions from 0 to 1, with higher values
giving a steeper gradient and sharper transition.

p =
eβ0+β1x

1 + eβ0+β1x
(1)

Formula (1): sigmoid function.
By adapting the linear regression approach, the formula can be extended for multiple

features as follows (Formula (2)):

p =
eβ0+β1x+β2x2+...βnxn

1 + eβ0+β1x+β2x2+...βnxn
(2)

Formula (2): Logistic Regression sigmoid function.
Various statistical techniques can also be used to assess the goodness-of-fit of a logistic

regression model, including the Pearson Chi-Square statistic and the Hosmer-Lemeshow
test [37].

Support Vector Machines are considered particularly appropriate for datasets with a
large number of features [38]. A dataset with two features could be visualised as a 2D
graph in which the boundary is calculated to separate the two classes and maximise the
margin between them. If more than two features are present, a hyperplane is calculated,
similarly separating the two classes. Evaluation of examples against this hyperplane is
then used to determine the classification.

The K-Nearest Neighbours can plot the values of training example features and attempt
to classify new examples by determining the classification of the k-nearest examples seen
in training [39]. The distance from the test example to its nearest neighbours is usually
calculated as a Euclidean distance. If, for instance, the majority of the test example’s five
nearest neighbours are positive, the test example’s classification would also be positive.

Decision trees have long been used as a manual aid to decision-making, for instance, in
clinical diagnosis [40]. Like flowcharts, a decision tree consists mainly of decision nodes
(leaves), each with two possible outputs—malicious or not.
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While decision trees are easy to comprehend, they have some disadvantages. They can
be prone to over-fitting-reflecting the particular characteristics of training data too closely
and therefore becoming less effective for making predictions [41]. Anomalous outliers can
also unduly influence them in training data [42].

To overcome the disadvantages of Decision Trees, Breiman [43] developed Random
Forests. A Random Forest consists of a number of decision trees, each trained on either a
subset of training examples (bagging) or a subset of features. A voting mechanism is then
used to determine the final classification based on the results of multiple trees. Breiman
uses the Strong Law of Large Numbers to show that Random Forests are not susceptible to
overfitting and are not unduly influenced by outliers in the training data.

Artificial Neural Networks consist of a series of layers—an input layer, a hidden layer,
and an output layer. Each layer consists of several nodes that take a number of inputs,
perform a calculation, and produce one output. Layers are typically connected densely
such that the outputs of each node in the input layer act as inputs to nodes in the hidden
layer. Similarly, the outputs of hidden layer nodes act as input to nodes in the output layer.
Each connection between nodes in different layers is assigned a weight which is optimised
during the training process. Each node has an activation function that determines whether
the node is active or not based on its inputs. The nodes in a given layer all have the same
activation function. Common activation functions are Rectified Linear Unit (ReLU), the
sigmoid function previously described, and the hyperbolic tangent function.

The number of layers (there can be more than one hidden layer), the number of nodes
in each layer, and the activation functions used will be influenced by the problem the
network is designed to solve and the expertise of the network designer. In addition to
the parameters mentioned above (number of layers, nodes per layer, activation functions),
other hyper-parameters, such as the number of training epochs and the evaluation batch
size, must be considered. A simple neural network for binary classification is shown in
Figure 4.
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This network takes four inputs I1 to I4. The input values are weighted according to the
weights w1, w2 . . . w12 and passed to nodes in the hidden layer. Each node in the hidden
layer uses the ReLU function to determine its output. The ReLU function returns 0 if the
input is negative or returns the input value. These outputs are again weighted (w13, w14,
and w15) and passed to a single output node. The output node uses a sigmoid function to
determine whether the final classification should be 0 or 1.

The network is trained on a set of training data through multiple epochs. After each
epoch, the network’s effectiveness is evaluated using a loss function. Adjustments are made
to the weight values before the next epoch starts. Evaluation is typically not performed for
the whole training dataset; instead, a small batch of samples is used. Over multiple epochs,
the values for weights w1 to w14 are refined.

4. Evaluation
4.1. Evaluation Metrics

For all the mentioned algorithms, a binary classifier will produce a confusion ma-
trix that depicts the number of correctly and incorrectly classified positive and negative
samples—True Positives (TP), True Negatives (TN), False Positives (FP) and False Neg-
atives (FN). In this section, the metrics widely used in evaluating the performance of
machine learning models will be presented, all calculated from the four values in the
confusion matrix.

The first metric is Accuracy (A). This metric evaluated the models’ classification, as it is
the fraction of predictions that the model predicted correctly. It is calculated by dividing the
number of correct predictions by the total number of predictions, expressed as a percentage
(Equation (3a)). When considered in isolation, Accuracy can be misleading if classes are not
represented equally in the dataset, i.e., in case of a class imbalance. For a dataset containing
95% malicious samples and 5% non-malicious, a model that predicted ‘malicious’ 100% of
the time would achieve 95% accuracy.

The Precision (P) ratio quantifies the true positives in relation to the total of true
positives and false positives (Equation (3b)) and describes the proportion of correct positive
classifications. Where a class imbalance exists, the precision can be calculated for each class
to indicate whether the imbalance affects the model’s ability to classify correctly. Since a
false negative result is a misclassified positive, this metric expresses the proportion of the
examples classified as positive as a proportion of the overall number of actual positives.

The True Positive Rate (Equation (3c)) is also referred to as Recall and Sensitivity. Since
a false negative result is a misclassified positive, this metric expresses the proportion
of examples that were classified as positive as a proportion of the overall number of
actual positives.

The False Positive Rate (FPR) is the proportion of all negatives that still yield positive
test outcomes, or the misclassified negatives. The FPR is the number of false positives (i.e.,
misclassified negatives) divided by the total number of negatives (Equation (3e)). This is
the likelihood that a positive will be predicted for an actually negative example.

The True Negative Rate (TNR) is also referred to as specificity. As already noted, false
positives are misclassified negatives. The true negative rate is the number of true negatives
divided by the total number of actual negative values (Equation (3f)). It measures how
accurate the model is at making negative predictions.

The opposite of the TNR, the False Negative Rate (FNR), represents misclassified posi-
tives. It measures the number of misclassified positives as a proportion of the total number
of positives (Equation (3g)). The F1 score, a machine learning metric, was also used in the
classification process of the models by calculating the weighted average of Precision and
Recall. Recall describes the proportion of true positive predictions to actual positives, and
precision represents the proportion of true positive predictions to the total of true positives
and false positives (Equation (3d)). The F1 score combines these two values, producing a
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harmonic mean of TPR and precision. The F1 score takes a value between 0 and 1, and a
value of 1, indicating no false positives and no false negatives, is optimal.

Accuracy A =
TP + TN

TP + FP + TN + FN
(3a)

Precision P =
TP

TP + FP
(3b)

True Positive Rate P =
TP

TP + FN
(3c)

F1 Score f =
2TP

2TP + FP + FN
(3d)

False Positive Rate FPR =
FP

FP + TN
(3e)

True Negative Rate(Speci f icity) TNR =
TN

TN + FP
(3f)

False Negative Rate FNR =
FN

FN + TP
(3g)

Equations (3a–g): Evaluation Metrics, (a) Accuracy, (b) Precision, (c) True Positive
Rate, (d) F1 Score, (e) False Positive Rate, (f) True Negative Rate, (g) False Negative Rate.

4.2. Metrics

The following metrics were calculated according to the Equation set out by Kok et al. (2020).
The Likelihood Ratio (LR) was used to indicate how well the model distinguishes be-

tween benign and malicious samples. Two Equations were given for LR—Positive Likelihood
Ratio (PLR) (Equation (4a)) and Negative Likelihood Ration (NLR) (Equation (4b)). PLR indi-
cates how well the model distinguishes benign samples from malicious ones. A value of
10 or more shows that the model distinguishes well. An NLR of less than 0.1 also indicates
that the model distinguishes well between benign and malicious samples.

The Diagnostic Odds Ratio (Equation (4c)) was also used to calculate the ratio of PLR to
NLR, in which the higher values are better.

The Youden’s Index measures incorrect predictions. A model producing no False
Positives and no False Negatives would have a Youden’s index of 1 ((Equation (4d)).

According [17] the Number Needed to Diagnose (NND) (Equation (4e)) metric describes
the number of samples needed for the model to make a correct positive prediction.

The Number Needed to Misdiagnose (NNM) metric is the number of samples needed
for the model to make one incorrect prediction. In this formula, n is the total number of
samples (Equation (4f)).

The Net Benefit (NB) determines whether the predictive model has provided a cor-
rect or incorrect prediction based on a cutoff point in terms of a probability threshold (P)
(Equation (4g)). The idea is taken from the medical field [44]. NB is used to balance the
value of an investigation, such as a biopsy, against the potential for harm, such as conduct-
ing unnecessary biopsies for a given indication that a condition may exist. Unnecessary
biopsies have associated risks such as infection, patient pain, and the use of resources. NB
is used in the medical field to apply weight, which Vickers et al. refer to as an ‘exchange
rate’, to the disadvantages of investigating false positives compared to the harm of missing
a positive diagnosis. It should also be noted that in Vickers et al., N refers to the total sum
of true and false-positive results—negative results are not in scope. Vickers et al.’s original
formula was used when calculating NB.

Receiver Operator Curves (ROC) are a way of graphically depicting the effectiveness
of a binary classification model. They are frequently used to assess the diagnostic value
of clinical tests [45]. In a ROC, the True Positive Rate (sensitivity) is plotted on the y-axis
against the False Positive Rate on the x-axis. The x-axis is usually titled “1—specificity” in
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clinical contexts, where specificity is the True Negative Rate. The value of (1—specificity)
is the same as the False Positive Rate. The x-axis is usually labelled “False Positive Rate”
in machine learning contexts. An ideal classifier would have an AUC of 1, and a classifier
with no ability to discriminate would have an AUC of 0.5.

False Negative Rate FNR =
FN

FN + TP
(4a)

Negative Likelihood Ratio NLR =
TPR− 1

TNR
(4b)

Diagnostic Odds Ratio DOR =
PLR
NLR

(4c)

Youden′s index J = TPR + TNR− 1 (4d)

Number Needed to Diagnose NND =
1

[TPR− (1− TNR)] 1
J

(4e)

NM =
1[

1− (TP+TN)
n

] (4f)

Net Bene f it NB =

(
TP
n
− FP

n

)
P

1− P
(4g)

Equations (4a–g): Novel metrics, (a) Positive Likelihood Ratio, (b) Negative Likelihood
Ratio, (c) Diagnostic Odds Ratio, (d) Youden’s Index, (e) Number Needed to Diagnose, (f)
Number Needed to Misdiagnose, (g) Net Benefit.

5. Experiment Description

A logistic regression model was built in Python using Scikit-learn [34]. The dataset
file was prepared as follows. The sample_id column was removed to prevent it from
influencing the model. Malicious samples were analysed first during sample analysis,
followed by benign samples. The sample_id was taken from the Task ID generated by
the Cuckoo Sandbox software and used as the primary key in the samples database table.
Consequently, all malicious samples had a sample_id of 830 or less, and all benign samples
had a sample_id of greater than 830. The sample_id column would have undoubtedly
influenced the model, invalidating it if not removed. Labels were extracted from the
is_malicious column into a separate array and dropped from the dataset. The complete
dataset was split into training and testing sets with a ratio of 80:20, using Scikit-learn’s
train_test_split functionality. Training data features were scaled using a StandardScaler,
which centers the data around its mean and scales by its standard deviation. Each feature
value is scaled according to the formula (Formula (5)).

Z =
(x− u)

σ
(5)

Formula (5): StandardScaler formula.
Where x is the observed value of a feature, u is the mean value of the feature across

all examples, and σ is the standard deviation of the feature values. The logistic regression
model was trained on the scaled data and tested using a version of the test data that
had been scaled using the same StandardScaler instance used to mount the training data,
described in Section 3.

For Support Vector Machine the dataset was prepared and split similarly to the logistic
regression model, and a series of SVM models were built using Scikit-learn’s SVC classifier.
Four models were created using the Radial Basis Function (RBF), Linear, Polynomial, and
Sigmoid kernel functions.

After the preparation and splitting of the dataset, a K-Nearest Neighbours model was
built using Scikit-learn’s KNeighborsClassifier. The algorithm selection was left at the
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default of ‘auto’, which selects a brute-force algorithm for determining the distances
between neighbours. The k-value was set to the default value of 5.

For the Decision Tree model, similarly to the logistic regression model, the dataset was
loaded from a CSV file and prepared by removing the sample_id column, extracting labels,
and scaling features using a StandardScaler. The dataset was then split into a training set
(80%) and a testing set (20%).

The model was built using Scikit-learn’s DecisionTreeClassifier and trained using
the training data. The model’s performance was evaluated against both the training
and testing data. Suspicions of overfitting were investigated, and a revised model was
subsequently built.

The dataset was loaded and prepared similarly to the logistic regression and decision
tree models for the Random Forest model. A random forest model was built using the
Scikit-learn RandomForestClassifier, trained, and had its performance evaluated against
training and testing data.

The dataset was prepared, scaled, and split for the Artificial Neural Network model
as before. Tensorflow was used to create a neural network which could then be trained
and evaluated. The network’s configuration was as follows: input layer—284 units (to
match the number of input features); activation function—Rectified Linear Unit; hidden
layer—experiments were conducted with a hidden layer of 16 units (NN-16), 64 units
(NN-64), and 128 units (NN-128); output layer—1 unit with activation function: sigmoid.
The activation function was Rectified Linear Unit in each case.

The model was trained for 100 epochs, and metrics were calculated. Regarding the
metrics such as accuracy, precision, and the area under the ROC curve, there was little
difference between the NN-16 and NN-64 networks, and the metrics were slightly worse
for NN-128. Further developments of the neural network model continued to use 16 units
in the hidden layer.

6. Results

The metrics calculated fell into two categories: commonly used, and those proposed
by Kok et al. [17]. The metrics are described in Section 4, and their values are summarised
in Table 3.

Table 3. Comparison of metrics for different models.

Metric SVM KNN Logistic
Regression

Decision
Tree

Random
Forest

Neural Net ANN
Model (3)

True Positive 144 147 143 152 153 146

True Negative 138 133 137 134 128 138

False Positive 2 7 3 6 12 2

False Negative 9 6 10 1 0 7

Accuracy 96.25% 95.56% 95.56% 97.61% 95.90% 96.93%

True Positive Rate 94.12% 96.08% 93.46% 99.35% 100.00% 95.42%

False Positive Rate 1.43% 5.00% 2.14% 4.29% 8.57% 1.43%

True Negative Rate 98.57% 95.00% 97.86% 95.71% 91.43% 98.57%

False Negative Rate 5.88% 3.92% 6.54% 0.65% 0.00% 4.58%

Precision 98.63% 95.45% 97.95% 96.20% 92.73% 98.65%

F1-Score 96.32% 93.11% 95.65% 97.75% 96.23% 97.01%

Area under ROC curve 97.62% 98.97% 97.32% 97.70% 99.84% 97.54%

Positive Likelihood Ratio (1) 65.88 12.99 43.62 15.45 11.67 66.8

Negative Likelihood Ratio (2) −0.06 −0.08 −0.07 −0.01 0 −0.05

Diagnostic Odds Ratio (3) −1104 −167.82 −653.03 −2212.44 <div by zero> −1439.14
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Table 3. Cont.

Metric SVM KNN Logistic
Regression

Decision
Tree

Random
Forest

Neural Net ANN
Model (3)

Youden’s Index 0.93 0.86 0.91 0.93 0.91 0.94

No. Needed to Diagnose (4) 1 1 1 1 1 1

No. Needed to Misdiagnose 26.64 13.92 22.54 29.3 24.42 32.56

Net Benefit (p = 0.10) 76.25% −18.47% 64.38% 29.10% −41.48% 76.27%

The PLR values were above ten, indicating a good ability to classify benign samples
from malicious ones. Similarly, the NLR values were below 0.1, providing the same
classification levels. With regard to the DOR and according to KoK et al. [17], these values
can range from 0 to infinity, with values above 100 indicating a good predictive power of
the model. Since we have negative NLRs, these values are actually less than zero. The
NND values, as was already described in Section 4, constantly evaluate to 1. Finally, the
Net Benefit has been calculated at p = 0.10, analogous to investigating nine false positives
for every true positive detected.

The tendency of decision trees to overfit their training data, and be influenced by
anomalous training data, has previously been documented (Dietterich, 1995) [41]. The
original decision tree model exhibited overfitting. The revised decision tree model, limited
to a maximum depth of eight levels, produces fewer false positives, more true negatives,
and higher accuracy, precision, and area values under the ROC curve.

Overfitting is also a common problem with neural networks. ANN Models 1 and 2
exhibited severe overfitting. A model suffering from overfitting has been unduly influenced
by noise in the training data. It is easier to make predictions based on the training data, but
the results are increasingly poor when making predictions on unseen data (the testing data).

Overfitting was resolved in ANN Model 3 by using tanh as the activation function in
the hidden layer and adjusting the number of training epochs. 50 Epochs were found to be
optimum by repeated experimentation. The testing and training loss curves were closely
aligned, which is evidence that the model is not overfitted. Other potential strategies for
reducing overfitting include increasing the evaluation batch size and the number of hidden
layers in the network.

6.1. Importance of False Negatives

Petticrew et al. [46] describe the potential disadvantages resulting from false negatives
generated by healthcare screening programmes. False negatives can result in cases of the
disease being missed and delayed treatment. Missed cases and delayed treatment can lead
to psychological harm for the affected patients and the possibility of legal action, with its
associated financial impact on the screening organisation. In severe cases, the credibility
of a screening programme might be undermined by false negatives, leading to reduced
participation in the programme, which could drastically reduce the benefits of conducting
the screening programme in the first place.

Similarly, a false negative could be the worst prediction a ransomware detection
model could make. While this has been recognised in clinical fields as described above, the
importance of false negatives in ransomware and malware detection does not appear to
have received the same attention. Accuracy is often given undue weight when determining
the performance of models in previous papers, which, as previously stated, does not
necessarily provide an accurate picture of the model’s performance. In previous articles,
there is also less consideration of the False Negative Rate compared to the True Positive
and False Positive Rate. In a practical application, such as the classification of ransomware,
the False Negative rate should be given more consideration since the consequences of a
false negative are potentially very damaging.
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6.2. Comparison of Metrics

To facilitate comparison between the models, the metrics for each model are charted
in Figure 5, and false positive and false negative rates are charted in Figure 6.
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The KNN model does not achieve high values for accuracy, true positive rate, true
negative rate, precision, or F1 score. While the values of these metrics for the SVM model
are higher, both the SVM and KNN models have a high false-negative rate, making them
unsuitable for the classification of ransomware.
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The Logistic Regression model scores slightly lower than the SVM model for accuracy,
TPR, TNR, precision, and F1 score. However, the false-negative rate for logistic regression
is higher than that of the SVM model. Because of these factors, it is a worse classifier choice
than SVM.

The Decision Tree model achieves the highest accuracy and F1 score, with a false-
negative rate of only 0.65%. This would make it a good choice as a classifier, but the
tendency of decision trees to overfit to training data must be weighed against this.

Random Forest achieves the best true positive rate, but the values for accuracy, true
negative rate, precision, and F1 score are unexceptional. However, it should be noted that
the Random Forest model produced a false negative rate of 0.00%.

ANN Model 3 achieved good values for accuracy, true negative rate, precision, and F1
score. It is in the top two scores across most of the metrics shown in Figure 5. While this
indicates successful classification, the false-negative rate of 4.58% is a concern.

The Net Benefit for a range of probability thresholds, calculated according to Vickers
et al.’s formula [44], is plotted for each model in Figure 7. All have a positive Net Benefit
for values of p ≤ 0.07, with ANN Model 3 and the logistic regression model providing the
greatest Net Benefit.
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If the models were to be judged on accuracy alone, it would appear that the Decision
Tree and ANN Model 3 are the most capable, with accuracies of 97.61% and 96.93%,
respectively. The F1-score is a more useful metric since it is based on recall and precision
values. The F1-scores for these two models are also good, at 97.75% and 97.01%, respectively.
If Net Benefit were to be used as the sole criterion, it would appear that ANN Model 3 and
the logistic regression model would give the best classification performance. However, the
consideration of other metrics reveals more about the characteristics of each model, which
could influence their suitability for detecting ransomware.

The worst prediction a ransomware detection system could make would be a false
negative, i.e., to incorrectly classify ransomware as non-malicious. The comparatively high
false-negative rates for the logistic regression (6.54%) and the ANN Model 3 neural network
(4.58%) models suggest that these models should be used cautiously to detect ransomware
(Figure 6).
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Due to the critical nature of the task of identifying ransomware, and the negative
consequences of a false negative classification, a more ‘cautious’ model may be preferred.
While the random forest model does not have the highest accuracy or precision, the model’s
True Positive Rate of 100% and False Negative Rate of 0% suggest that its classifications
are more ‘cautious’ than classifications produced by the other models. It has a tendency to
classify benign samples as ransomware and appears unlikely to classify ransomware as
benign. For this reason, the random forest model might be considered the ‘safest’ of the
models evaluated for the task of ransomware identification.

This illustrates the risks of relying solely on metrics to judge the suitability of a model
without considering the nature of the classification problem, the risk appetite of those
interpreting the prediction, and the consequences of false negatives in particular. Although
by most metrics (accuracy, precision, F1-score, and Net Benefit), ANN Model 3 produces the
best performance, its false-negative rate of 4.58% means its predictions should be treated
with caution.

7. Discussion

Comparisons with the results of previous work are not straightforward because the
full range of metrics is often not quoted. Specifically, the raw values of True Positives, True
Negatives, False Positives, and False Negatives are often omitted. As discussed earlier,
these four values are the basis of all the other metrics discussed. The quoted results from
relevant publications are summarised in Table 4.

Table 4. Comparison with results from previous work.

Paper TPR FPR TNR FNR Accuracy Precision Recall F1 Score

(RF) 100.00% 8.57% 91.43% 0.00% 95.90% 92.73% 100.00% 96.23%
(ANN Model 3) 95.42% 1.43% 98.57% 4.58% 96.93% 98.65% 95.42% 97.01%

[25] n/a 1.60% n/a n/a n/a 98.60% 99.40% 98.60%
[32] n/a n/a n/a n/a 97.30% n/a n/a n/a
[33] n/a n/a n/a n/a 98.65% 98.25% 98.94% 98.54%
[26] 98.45% 1.50% n/a n/a n/a 98.50% 98.50% 98.50%

[28] SVM n/a n/a n/a n/a 98.80% 98.50% 100.00% 99.30%
[28] MLP n/a n/a n/a n/a 100.00% 100.00% 100.00% 100.00%

Where values were not given, the table cells have been shaded grey and labelled ‘n/a’.
The results quoted by Ahmed et al. (2020) relate to their SVM model with a feature set
size of 90 features, each feature being an n-gram of system calls with n = 3. The EmRmR
algorithm was used to remove ‘noise’ API calls from ransomware traces. The values for
Accuracy, Recall, and Precision were all good, but no figures were given for True Positive
Rate, True Negative Rate, or False Negative Rate. Emphasis was placed on the False
Positive Rate of 1.60%, which is arguably not the most important metric for a ransomware
detection system.

Asmitha et al. [32] achieved the statistics quoted above using Odds Ratio to achieve
feature reduction and a Random Forest algorithm. The effectiveness of the models tested is
assessed purely based on accuracy.

Bae et al. [33] implemented a three-way algorithm which classified samples into
Benign, Malware, and Ransomware categories. They proposed a Class Frequency—Non
Class Frequency (CF-NCF) algorithm to generate n-grams. They achieved an accuracy
of 99.05% using a random forest algorithm with n = 3 when distinguishing between
ransomware and benign samples. However, in their comparison with other classification
methods, they quote an accuracy figure of 98.65% (Table 4), which is achieved by the
random forest algorithm with 1-g. The discussion of the results is again framed in terms
of accuracy, so the tendency of their models towards false positives or false negatives is
not discussed.
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Sheen et al. [26] quote slightly different figures for TPR and Recall. These are different
names for the same metric, so the reason for this is not clear. They note that their dataset was
imbalanced between ransomware and benign classes. They describe their use of SMOTE
to address this imbalance and demonstrate improvements in the accuracy of their models
after the application of SMOTE. Again, there is an emphasis on the true positive rate and
false-positive rate, with the true and false-negative rates not discussed.

The Support Vector Machine and Multi-Layer Perceptron results from Vinayakumar
et al. [28] are very encouraging, but their detailed analysis of their performance against
different ransomware families shows that these algorithms were less capable of identifying
CryptoLocker and CryptoWall ransomware. The detailed analysis shows accuracies of
97.6% for SVM and 98.0% for MLP. This is in contrast to the headline metrics for the MLP
model, where Accuracy, Precision, Recall, and F Score all reach 100%.

8. Future Work

It would be beneficial to expand the API statistics database by analysing more ma-
licious and benign samples. A broader source of benign samples from vendors other
than Microsoft would reflect different coding styles and may increase the number of false
positives observed.

The samples analysed for this study gave rise to a dataset with 284 features. As more
samples are analysed, the number of features will likely increase, as well as the number of
examples. The time and computing power required to train models on the resulting larger,
more feature-rich datasets will also increase. The use of feature reduction and feature
engineering could be investigated to reduce the number of features and therefore reduce
the time and computing power required to train models.

The attempts to resolve the overfitting exhibited by ANN Model 1 and ANN Model 2
were successful, with the training and testing loss curves tracking closely over 50 epochs.
The performance of ANN Model 3, when judged by most metrics, was superior to that
of the other models, let down only by its false-negative rate. Further development of
ANN Model 3 could include novel means aiming to reduce its false negative rate, which
at 4.58% is still a cause for concern, without impacting its accuracy, precision, F1 score, or
Net Benefit.

In addition to the web interface, Cuckoo also provides a REST API interface. This
interface could be leveraged so that samples can be submitted remotely by a REST client.
Once the sample analysis is complete, the client would then retrieve the appropriate log file,
parse out the API usage statistics, update the database seamlessly, make a prediction using
the trained model, and report the prediction back to the user. Creating such an integrated
system would allow samples to be analysed relatively quickly by users who do not have
the technical knowledge required to run scripts, perform file transfers, execute SQL queries,
and prepare datasets. Additionally, future work could include the development and release
of a prototype open-source tool that integrates the contextual and novel evaluation metrics
to test and compare the performance of ML algorithms for ransomware detection.

9. Conclusions

This paper examined and tested the suitability of six machine-learning algorithms for
ransomware detection. The experiments performed in this study utilised Windows API call
frequency analysis as an approach for identifying ransomware efficiently. The produced
samples were balanced to avoid under-sampling/over-sampling [26]. However, it is
essential to acknowledge that the number of positive samples (malware) under contextual
circumstances could significantly vary between applications in real-world scenarios (e.g.,
would be less in normal circumstances), which poses a limitation and a challenge for this
type of research.

In response to our research questions ((1) which error parameters and evaluation
matrices should be utilised by the state-of-the-art to discuss the reliability of ML models for
the detection of ransomware, and (2) which ML models offer reliability for the detection
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of ransomware?), we have utilized and tested several metrics, such as the Positive Likeli-
hood Ratio, Negative Likelihood Ratio, and Diagnostic Odds Ratio. However, the study
emphasized the importance of false negatives in preventing a potentially large cost of a
ransomware infection.

Overall, we trained and evaluated three Artificial Neural Network (ANN) models
based on six algorithms: Support Vector Machine, K-Nearest Neighbours, Logistic Re-
gression, Decision Tree, Random Forest, and Artificial Neural Network. After the models
were trained and evaluated, metrics were calculated to allow a comparison to be made.
The ANN model 1, with a hidden layer of 16 nodes using ReLU activation function and
trained for 100 epochs, was the most time-consuming to train. The decision tree and early
iterations of the neural network models ANN Model 1 and ANN Model 2 (trained for
40 epochs) suffered from overfitting. After considerable experimentation, overfitting of the
ANN models was overcome in ANN Model 3 by using the tanh function and by adjusting
the number of epochs over which the model was trained. Although the Random Forest
algorithm did not achieve the highest accuracy and reached the lowest precision metric,
as it was more likely to classify non-malicious examples as malicious and less likely to
classify malicious examples as non-malicious, it might be considered the safest of the six
algorithms for ransomware identification. Finally, the ANN Model 3 achieved the highest
from the models’ true-negative rate and precision values. If the false-negative rate could be
reduced with further tuning and/or training on a larger dataset, ANN Model 3 would be
the optimum choice for ransomware classification. A more comprehensive source of benign
samples from vendors other than Microsoft would also reflect different coding styles and
may increase the number of false positives observed.
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