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A B S T R A C T   

Standard single mode optical fibers (SMFs) have been widely employed to generate and measure ultrasonic 
signals in remarkable applications. In particular, optoacoustic fiber sensors provide unique features for micro-
scale high resolution ultrasound imaging in biomedicine. However, at specific resonance frequencies, SMFs work 
as acoustic filters inducing relevant geometrical attenuation bands higher than 10 dB, which limit the sensors’ 
sensitivity and frequency operation, causing image distortions and artifacts. We have numerically demonstrated 
high frequency axially symmetric ultrasonic resonances inside an optical fiber for the first time. The propagation 
of resonant axially symmetric acoustic modes along 1 cm fiber is investigated by means of 2D and 3D finite 
element techniques up to 80 MHz. The dispersion of the modes and induced beatlengths are characterized from 
the complex multimode interference with the 2D Fourier transform. The simulated spectra are validated with the 
renowned Pochhammer-Chree analytical equations. The frequency response of the acoustically induced strains in 
the fiber core is evaluated, and important acoustic parameters relevant for the modulation of phase, wavelength 
and power in optical fibers and diffractive gratings are derived and discussed. The results show that these res-
onances are strongly dependent on the modal beatlengths. Solutions to improve the operation of fiber-based 
devices are proposed, pointing out new alternatives to advance broadband optoacoustic sensors and mono-
lithic acousto-optic modulators.   

1. Introduction 

Acoustic waves have been successfully employed to modulate the 
phase, wavelength, and power in optical fibers, which is attractive for 
the development of all-fiber acousto-optic modulators and fiber-optic 
acoustic sensors. For optical modulation, a piezoelectric driver usually 
generates the acoustic waves that are amplified by an acoustic horn to 
propagate along a fiber segment. The acousto-optic interaction enables 
electrically-tunable notch filters, frequency shifters, couplers, mode- 
locked and Q-switched pulsed fiber lasers [1–8]. Similarly, the acous-
tic signals from a variety of ultrasonic sources, such as, partial dis-
charges in high-voltage electric machines, aircrafts, rail trains, 
mechanical engines, civil infrastructure, and even vital human organs 
and tissues, are efficiently characterized employing fiber sensors [9–18]. 
However, distortion and resonance of acoustic signals in the fibers with 
increasing frequency have limited the advance of current fiber-based 
devices, demanding increasing computer-based techniques to evaluate 
complex acoustic fields and modulated optical properties. 

Fiber acoustic resonances have been widely investigated at 

frequencies from kilohertz [19] up to hundreds of megahertz, such as, 
resonances generated by optically induced non-linear effects [20,21]. In 
general, these resonances originate from distinct physical mechanisms 
and acoustic modes and have usually a narrow bandwidth. In contrast, 
the interference of axially symmetric modes induces wide spectral bands 
from 10 MHz. Such resonances and frequency range have been partially 
analytically and experimentally investigated, but not numerically 
[15–18]. These previous studies do not model or evaluate the acoustic 
modes, their interaction and contribution to form the resonant bands. 
Although axially symmetric modes have been individually evaluated in 
a multimode fiber, that study does not consider modal interference and 
beatlengths and, consequently, the resonances cannot be determined 
[22]. The propagation of acoustic modes in optical fibers has been 
analytically evaluated to facilitate the development of acousto-optic 
modulators, and in the low dispersive frequency range up to 10 MHz, 
the fundamental acoustic mode, which induces constant sinusoidal 
waveforms, has been fully characterized [22]. The advance of fiber-optic 
technology and development of micro-components have contributed to 
the fabrication of modulators operating at frequencies up to 10.9 MHz 
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[23]. The interaction of axially symmetric acoustic modes and fiber 
Bragg gratings (FBGs) allows the dynamic modulation of the grating 
reflection properties, mode-locking the output power of pulsed fiber 
lasers [6,7]. The laser repetition rate is electrically tunable at twice the 
acoustic frequency. Nevertheless, the current acousto-optic devices are 
essentially limited by decreasing concentration of acoustic energy in the 
fiber core with increasing frequency beyond 10 MHz. 

The high sensitivity of FBGs to strain and temperature has also 
expanded the development of passive fiber-optic devices, such as opto-
acoustic sensors for biomedical applications, where ultrasonic waves are 
generated by thermoelastic expansion of biological tissues [15–18]. The 
acoustically induced strains change the refractive index in the fiber core 
inducing phase-shifts in the guided light. High resolution optoacoustic 
sensors based on π-phase-shifted Bragg gratings (π-FBGs) have been 
reported, offering acoustic sensitivities up to 18 times higher compared 
to the traditional piezoelectric devices. The π-phase-shifted optical 
cavities ranging from 270 to 350 μm in length significantly reduce the 
grating’s effective sensing areas, increasing the sensor’s spatial resolu-
tion [17,18]. However, the sensor’s response is dominated by radial and 
circumferential resonances inducing sensitivity peaks around 20 - 25 
MHz, followed by the high attenuation range of 40 - 60 MHz [15,17,24]. 
This attenuation band and other emergent resonant peaks around 30 and 
70 MHz observed in the practical devices are not fully explained and 
characterized. 

Analytical and semi-analytical methods based on the scattering of 
elastic waves have been employed to simulate the frequency response of 
optoacoustic devices. The methods however consider only the integra-
tion of the acoustic fields in the fiber core center [15,17]. In general, 
modeling of acoustic wave propagation in optical fibers is highly elab-
orate and strictly developed for ideal, homogeneous, and solid cylinders 
[25,26]. The methods cannot usually be applied to evaluate 2D or 3D 
ultrasonic fields inside the fiber cross section, especially with the un-
usual geometries of specialty fibers [27]. Recent studies employing the 
finite element method (FEM) reveal that the ultrasonic fields are 
composed of multiple modes overlapping along the fiber [1]. The FEM is 
effective to model and simulate acoustic and optical components, 
allowing the study of entire acousto-optic devices [11,19,27–33]. The 
simulated acoustically induced strains in the fiber core are used in 
combination with the transfer matrix method to model the spectral 
response of devices employing FBGs [19,31]. In addition, fiber sensing 
substances surrounding the fiber are directly modelled by adding the 
component geometries, materials and physical domains [4,19,34]. 

In this paper, we have investigated the acoustic resonances caused by 
the interaction of acoustic modes propagating in an optical fiber up to 
80 MHz. A novel numerical study is developed to evaluate complex ul-
trasonic fields in optical fibers employing the finite element method. The 
study is demonstrated by means of a numerical experiment and vali-
dated with the Pochhammer-Chree analytical solutions briefly presented 
in Section 2. A guideline for the design, modeling, and computing of 2D 
and 3D fiber geometries is described in Section 3. The vibration patterns 
of the acoustic modes are evaluated by the 2D modal analysis of the fiber 
cross section in Section 4. A 2D reduced-domain method is also 
demonstrated. The modal acoustic parameters are derived from the 
simulations, providing the dispersion curves for the considered fre-
quency range. The multimode interference is evaluated from the fre-
quency response of the 3D simulated ultrasonic fields with the 2D fast 
Fourier transform (FFT) in Section 5. The dispersion of the acoustic 
modes and induced beatlengths are evaluated in the FFT spectrum. The 
derived acoustic parameters are used to characterize the modal distri-
bution and resonances inside the fiber in Section 6. The main results are 
discussed in Section 7, pointing to new possibilities to advance the 
design and fabrication of high-frequency fiber-optic ultrasonic devices. 

2. Analytical modeling 

2.1. Propagation and interaction of acoustic modes in standard optical 
fibers 

The propagation of acoustic modes in solid, isotropic, homogeneous, 
and linearly elastic cylinders is governed by the Pochhammer-Chree 
theory, defining the modal dispersion by changes of the mode’s wave-
number, wavelength, phase or group velocity, with the waveguide ma-
terial, geometry and frequency [35,36]. The studies show that 
dispersion causes distortion of acoustic waves with wavelengths com-
parable or shorter than the cylinder diameter [37,38]. The interaction of 
modes propagating with different velocities along a dispersive medium 
attenuates and broadens the shape of acoustic signals [25,39,40]. 

Fig. 1(a)-(c) illustrate the vectorial composition of axially symmetric 
acoustic waves propagating in a standard single mode optical fiber 
(SMF) at frequencies of f = 10 MHz, f = 30 MHz, and f = 50 MHz. The 
acoustically induced displacement vector u is decomposed into radial v 
and axial w components. The displacements change with the SMF radial 
distance r from the fiber core center (r = 0) to the fiber surface (corre-
sponding to the fiber radius of r = 62.5 µm), as illustrated in Fig. 1(d). 
The vector u is described by the equation of motion as [41], 

μ∇2u + (γ + μ)∇∇⋅u = ρü, (1)  

where, γ and μ, are the Lame elastic constants and ρ is the mass density. u 
is decomposed into the scalar φ and vector ψ potentials as, 

u = ∇φ +∇∧ψ, (2)  

where,∇2φ = φ̈c− 2
D , and ∇2ψ = ψ̈c− 2

T , are respectively functions of the 
dilatational cD and transversal cT acoustic velocities, written as [42], 

c2
D =

γ + 2μ
ρ , (3)  

c2
T =

μ
ρ. (4) 

The displacements u, v and w are combined with the scalar potential 
φ and the three components of the vector potential ψ in Eq. (2). The 
radial and axial components are derived from φ and ψ, as, [41], 

v = { − pAJ1(pr) − ikCJ1(qr)}exp[i(kz − ωt) ], (5)  

w = {ikAJ0(pr) + qCJ0(qr)}exp[i(kz − ωt) ] , (6)  

in which,p2 = ω2c− 2
D − k2, q2 = ω2c− 2

T − k2, ω = 2πf = kcP is the angular 
frequency, cP is the phase velocity, k = 2πλa

-1 is the wavenumber, λa, is 
the wavelength and, A and C are arbitrary constants. J0 and J1 are the 
zero and first order Bessel functions of the first kind. Achenbach, 
Zemanek and Redwood [38,41,43] show that replacing Eqs. (5) and (6) 
in stress equations, and application of traction-free boundary conditions 
at the guide surface, results in the Pochhammer-Chree frequency 
equation [41], 

2p
a
(
q2 + k2)J1(pa)J1(qa) −

(
q2 − k2)2J0(pa)J1(qa) − 4k2pqJ1(pa)J0(qa)

= 0,
(7)  

also written in function of the fiber radius a and angular frequency ω =
2πf as [39,43,44], 

k2qJ0(qa)
J1(qa)

−
1
2a

(
ω
cT

)2

+

[
1
2

(
ω
cT

)2

− k2

]2
J0(pa)
pJ1(pa)

= 0, (8) 

The dispersion of the acoustic modes propagating in a SMF is given 
by the variation of the wavenumber k with the frequency f, computed for 
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each acoustic mode by solving the roots of Eq. (8) (k is a real number for 
the propagating modes). The dispersion is also assessed considering the 
dimensionless wavenumber ka [41]. The phase velocity cP of a mode 
approaches the material extensional velocity cE as ka tends to zero, 
written as [42], 

c2
E =

Y
ρ, (9)  

where, ρ is the material density and Y is the Young’s modulus. As ka 
tends to infinity, the modal phase velocity cP approaches the Rayleigh 
surface velocity cR, as [42], 

cR ∼

(
0.87 + 1.12υ

1 + υ

)

cT , (10)  

where, υ is the Poisson’s ratio. The acoustic energy propagates along the 
fiber with the group velocity as, 

cg =
cP

1 − (ω/cP)(∂cP/∂ω)
. (11) 

The fundamental acoustic mode propagates with approximately 
constant phase and group velocities approaching cE at frequencies up to 
f = 10 MHz. Consequently, the displacements are mostly axially 
distributed over the fiber cross section (Fig. 1(a)). In contrast, modes 
propagating with low group velocities are mostly radially polarized in 
the fiber around f = 30 MHz (Fig. 1(b)). At f = 50 MHz, a higher order 
mode approaches cE, increasing again the axial displacement distribu-
tion along the fiber. The beatlength or beat wavelength in which two 
modes, ki and ki+1, interfere along the fiber is expressed in terms of the 
modal wavenumber k as [45–47], 

Ba =
2π

ki − ki+1
, (12)  

in which, i is the mode index. 
For small wavelengths compared to the guide diameter, the two 

modes converge to the wavenumber of a Rayleigh wave kR, with period 
given as, 

BR =
2π
kR
, (13)  

in which the averaged wavenumber of the modes approaches the Ray-
leigh wavenumber as [46,47], 

kR =
ki + ki+1

2
. (14) 

Fig. 1(e) illustrates an acoustic signal induced by the beatlength of 
two arbitrary acoustic modes B(1–2) with periods λ1 and λ2 evaluated at 
the SMF surface in Fig. 1(b) (green dashed line). The modal overlap 

modulates the wave amplitude distorting the signal waveform. The 
properties of the unrecognized mode 2 are determined by the proper 
characterization of λ1 and B(1–2) at the considered frequency. 

The complex multimode interference in the SMF is evaluated up to f 
= 80 MHz. The wavenumbers k are computed from the roots of the 
Pochhammer-Chree frequency equation in Eq. (8), employing the 
methods and algorithms developed in Refs. [25,26,39,40]. The wave-
length λa, phase and group velocities cP and cg are further derived from k. 
The beatlengths Ba are calculated with Eqs. (12)-(14). These parameters 
are named in the next sections as “Theory” and compared to the FEM 
simulations. 

2.2. Significant acoustic parameters for modulation of optical fibers and 
diffractive gratings 

Ultrasonic fiber sensors, such as, optoacoustic devices, are based on 
the phase modulation of propagating optical modes. The acoustically 
induced strains modulate the refractive index n and fiber length l, 
inducing an optical phase-shift as [17,48], 

Δβ = K0nΔl +
∫ l/2

− l/2
K0Δndz, (15)  

in which, K0 is the free-space wavenumber of the optical mode, Δl is the 
fiber length variation, and Δn is the change of the refractive index in the 
fiber core. The fiber length changes proportionally to the axially induced 
strain εz as, 

Δl =
∫ l/2

− l/2
εzdz. (16) 

The sensor response is governed by the orthogonal phase-shift 
derived from Eq. (15) as [15,17], 

Δβx = 2K0n
∫ l/2

− l/2

[

εz −
n2

2
(
p11εx + p12

(
εy + εz

) )
]

dz, (17)  

Δβy = 2K0n
∫ l/2

− l/2

[

εz −
n2

2
(
p11εy + p12(εx + εz)

)
]

dz, (18)  

where, εx and εy, are the transversal strains in the x and y axes over the 
fiber cross section. The coefficients of the material’s strain-optic tensor 
are p11 and p12. Note that the phase-shifts in Eqs. (17) and (18) are 
determined by the amplitude of the acoustic signal inducing the strains, 
as well as the fiber’s material and design and the acousto-optic inter-
action length l. 

For acousto-optic devices employing FBGs, an optical mode propa-
gating in an unmodulated grating is reflected at the Bragg wavelength 
λB. The axially induced strain εz periodically modulates the mode’s 

Fig. 1. Illustration of the acoustically induced 
displacement vector u decomposed into axial w and 
radial components, v and u, in a standard single 
mode optical fiber (SMF): (a) most of the displace-
ments are axially polarized along the fiber length at f 
= 10 MHz. (b) Increased polarization of radial dis-
placements for acoustic modes propagating with low 
acoustic velocities at f = 30 MHz. (c) Increasing axial 
components in the fiber for modes approaching the 
extensional material velocity at f = 50 MHz. (d) 
Symmetric distribution of radial components over 
the fiber cross section. (e) Illustration of a distorted 
acoustic signal evaluated at the fiber surface indi-
cating the beatlength between two arbitrary modes 
along the dashed green line in Fig. 1(b). (For inter-
pretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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effective index neff and the grating period Λ, inducing reflection bands 
beside the Bragg resonance λB = 2neffΛ. The normalized modulated 
reflectivity is written as [49], 

η = tanh2
[

πΔnacΓ
λB

lgJm

(
λa

Λ
εz

)]

, (19)  

where, Δnac and lg are respectively the grating’s index modulation 
amplitude and length, Γ is the optical confinement factor, and λa is the 
acoustic wavelength. Jm is the Bessel function of the first kind and order 
m. The separation between the modulated bands is tuned by the acoustic 
frequency f or period λa as [49], 

Δλ =
λ2

B

2neff λa
. (20) 

Axially symmetric acoustic modes have the potential to modulate 
standard optical fibers at frequencies higher than 10 MHz by inducing 
long period gratings (LPGs) [23]. Efficient coupling between the 
fundamental and the first higher order optical modes LP01 and LP11 at 
the resonant optical wavelength λo, occurs for the optical beatlength 
matching with the acoustic wavelength as, 

λa = LB =
λo

n01 − n11
, (21)  

where, n01 and n11 are respectively the effective refractive indices of the 
modes LP01 and LP11. The acousto-optic resonant conditions are 
conveniently expressed in terms of the modal beatlengths by replacing 
λa = Ba (or BR) in Eqs. (19)-(21). Change of the input acoustic parameters 
is therefore useful to tune the properties of the propagating optical 
modes in the fiber. 

3. 2D-3D numerical experiment 

3.1. Modeling the optical fiber with the finite element method (FEM) 

A standard single mode optical fiber (SMF-28) is modelled by means 
of the Structural Mechanics Module included in the package COMSOL 
Multiphysics 5.4, based on the finite element method (FEM) [50]. The 
SMF cross section is designed as a 2D component, as illustrated in Fig. 2 
(a). The fiber core and cladding diameters are respectively 8.2 µm and 
125 µm. The fiber’s material is defined by the silica density ρ = 2200 kg/ 
m3, Young’s modulus Y = 72.5 GPa and Poisson’s ratio υ = 0.17 
[22,27,31]. These material parameters are considered for a fiber at room 
temperature. Minor changes in the Poisson’s ratio caused by distinct 
manufactures’ fabrication processes or temperature fluctuations can be 
experimentally characterized employing the method described in 
Ref. [20]. The fiber cross section is meshed with triangular elements 

Fig. 2. Multidimensional numerical methodology to evaluate ultrasonic fields inside a standard single mode optical fiber (SMF) with the finite element method 
(FEM): (a) 2D SMF cross section is reduced to (b) a quarter of its size resulting in a (c) 90◦ symmetric geometry in relation to the x and y axes. (d) 3D solid cylinder 
generated from the 2D geometry. (e) Definition of the silica properties (Young’s modulus Y, Poisson ratio υ and density ρ), excitation force Fac and a perfectly 
matched layer (PML). The SMF frequency response is computed for each frequency f and the acoustically induced axial w and radial v displacements are evaluated 
over the (f) xy and yz fiber cross section planes. (g) The acoustic wavelengths λa and beatlengths Ba are characterized at the fiber surface, cladding, and core (dashed 
green line) and in the (h) spatial frequency spectrum by means of the fast Fourier transform (FFT). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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with a maximum element size of 0.15 µm in the fiber core and 10 µm in 
the cladding. The elements grow symmetrically from the fiber core to 
the surface with increasing rate of 1.2. The fiber boundaries are defined 
as a free-tension constraint. The Mode Analysis study is used to calculate 
the wavenumbers k and the displacement patterns of each propagating 
axially symmetric mode at a given frequency f, considering numerically 
a fiber of infinite length. The modal parameters are computed for the 
frequency range of f = 1 - 80 MHz (5 MHz steps), employing a desktop 
computer equipped with a 3.2 GHz Intel i7 processor (6 cores) and 
memory of 64 GB. The dispersion curves are further calculated in terms 
of k. The averaged time to compute each frequency step f is 8 s. 

We have applied a modeling technique usually employed to simulate 
photonic devices to evaluate the acoustic modes in the SMF with a 
reduced computational domain [51]. The fiber cross section is split into 
four 90◦ symmetric quadrants as seen in Fig. 2(b). Fig. 2(c) shows the 
quadrant used to compute the modal parameters (the other quadrants 
are disabled). The orthogonal edges or boundaries S1 and S2 are defined 
as Symmetry Plane nodes, indicating a symmetric geometry to both 
orthogonal x and y fiber axes (red dashed lines in Fig. 2(b)). The 
constraint, u . n = 0, indicates that displacements normal to the 
boundaries S1 and S2 are null (u is a radial vector parallel to the axes x 
and y, and n is the unit vector perpendicular to u). S3 is set as a free- 
tension constraint. Consequently, only axially symmetric modes 
composed of radial and axial vector components are computed. This 
approach benefits the use of the same fiber design, material and mesh 
employed in Fig. 2(a), reducing the model’s size, computing re-
quirements and solution time. The wavenumbers k are computed with a 
high frequency resolution of 20 kHz from f = 20 kHz to 80 MHz, 
employing the same desktop computer. The averaged time to compute 
each frequency step f is 3 s. 

The 2D fiber geometry in Fig. 2(a) is extruded along 1 cm to generate 
a 3D solid cylinder (Fig. 2(d)). A sinusoidal force with constant ampli-
tude of Fac = 3 × 10-3 N is axially applied at the fiber end from f = 10 to 
80 MHz (1 MHz step), as illustrated in Fig. 2(e). A perfectly matched 
layer (PML) of 100 µm in thickness is set at the other fiber end as an 
absorbing boundary condition [50]. The PML prevents the reflection of 
the propagating modes in the fiber by strongly absorbing the waves at 
the ending interface. The remaining fiber surfaces are set as a free- 
tension constraint. The SMF cross section is meshed at the 2D xy plane 
(z = 0) with triangular elements with a maximum element size of 6 µm. 
The elements increase symmetrically from the fiber core to the surface 
with the rate of 1.2. The 2D mesh is extruded along the fiber in steps of 5 
µm in thickness, resulting in 2000 layers in the fiber length and 20 layers 
in the PML. The maximum averaged element size is about 8 times 
smaller than the shortest acoustic wavelength of λR = 43 µm, calculated 
with Eq. (10) at 80 MHz. It provides high spatial resolution to evaluate 
the wavelengths and beatlengths in the considered frequency range, 
satisfying the element size requirements for accurate FEM computation 
[50]. The fiber’s frequency response is computed for each frequency step 
f. The Cluster Sweep function is employed to configure each step f as a 
“job”, which is computed by 14 cluster nodes (each one equipped with 
28 processor-cores and 128 GB memory). The considered frequency 
range is distributed and solved in parallel by means of 2000 processor- 
cores and 9 TB of memory, provided by the high-performance computer 
center HPC Midlands Plus. The averaged time to compute each fre-
quency step f is 7 min. 

The acoustically induced displacements are decomposed into axial w 
and radial v components evaluated at the fiber surface (r = 62.5 µm) and 
cladding mid radius (r = 31.25 µm), as indicated by the green dashed 
lines in Fig. 2(f). Only the axial components are evaluated at the fiber 
core center (r = 0) because the resulting vector of symmetric radial 
components is ideally null at this position [22]. It allows the charac-
terization of the 3D complex waveforms caused by the modal interfer-
ence employing a 1D wave sample of the symmetric displacement 
distribution over the xy geometry. A wavelength λa or beatlength Ba in 
the fiber core is illustrated in Fig. 2(g). The dispersion spectrum of the n 

modes supported by the SMF (Fig. 2(h)) is computed at the considered 
radial positions by means of the peak-to-peak method and the fast 
Fourier transform (FFT). The FFT spectrum is fitted with a cubic spline 
interpolation function (CSF) as described in the next section. 

3.2. Modal decomposition and spectral evaluation of complex ultrasonic 
fields in the optical fiber 

The mode’s wavelengths λa and beatlengths Ba are simultaneously 
computed by means of the fast Fourier transform (FFT) [45,46]. The FFT 
converts the acoustic signal in the spatial domain to the frequency 
domain (fz = z-1) [46]. The simulated radial and axial displacement 
modulus |v| and |w| are sampled along the z-axis with a spatial resolu-
tion of Δz (µm), totaling N samples along the fiber length. The sampling 
frequency is calculated as, Fs = Δz -1 (µm− 1), resulting in the resolution 
of Δfz = FsN− 1 (µm− 1), which is expressed in terms of Δz as [52,53], 

Δfz =
1

NΔz
. (22) 

The samples in the FFT spectrum are 0.5N. The acoustic period λa(z) 
is calculated from the inverse values of the spatial frequency fz as, 

λa(j) = 2
∑j=

N
2+1

j=1

1
fz(j)

, (23)  

where, j is the frequency component index. Fig. 2(h) illustrates the FFT 
modulus of axial displacements (blue solid circles). The wavelengths λa 
and beatlengths Ba are measured at the peak’s position in the spectrum. 
The distance between consecutive spectral λa points is given as, 

Δλa(j) = λa(j)
1
j
, (24)  

for j = 1 to 0.5N + 1. Consequently, increasing the number of samples N 
can improve both spatial frequency Δfz and wavelength Δλa resolution. 
Δλa is significantly improved by fitting the FFT spectrum with a cubic 
spline interpolation function (CSF) (solid curve in Fig. 2(h)) [53]. It 
provides a constant resolution of Δλa = 0.1 µm for the whole FFT 
spectrum, increasing the accuracy to measure the peak’s location. The 
dispersion curves are evaluated from the FFT spectra for the frequency 
range of f = 10 – 80 MHz. 

The modal dispersion is also computed with the averaged peak-to- 
peak method (APP) [38]. The wavelength λa is calculated by 
measuring the distance between the nodes and peaks of the standing 
acoustic wave and averaging a sequence of 1/4λa wavelengths. The APP 
method is accurate to measure waves with low amplitude discrepancies 
between consecutive peaks, since large amplitude modulation might 
affect the peak’s location. The method is robust for period variations 
along the fiber length, which are compensated by the averaging process. 
Overall, APP’s accuracy increases for waves approaching constant 
period and amplitude. 

4. 2D vibration patterns and dispersion of the acoustic modes in 
the SMF 

The frequency-dependent variation of the modal wavenumber k, 
wavelength λa, phase cP or group cg velocities is useful to study the po-
larization and distribution of the acoustic modes over the fiber cross 
section. The acoustic parameters provide information about the nature 
of the beatlengths and resonances, which are essential to predict the 
modulated optical properties, as discussed in Section 2.2. In this section, 
we show the vibration patterns and dispersion curves of the acoustic 
modes supported by the SMF computed with the 2D geometries 
modelled in Section 3.1. 

Fig. 3(a) shows the variation of the wavenumbers k of the funda-
mental acoustic mode L(0,1), second and third higher order modes L 
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(0,2) and L(0,3) up to f = 80 MHz. The FEM simulated dispersion curves 
(dashed lines) are compared to the values calculated with the 
Pochhammer-Chree frequency equation in Eq. (8) (solid curves). The 
overall averaged agreement between the curves is 99.9 %. Fig. 3(b) 
shows respectively the simulated displacement distribution of L(0,1), L 
(0,2) and L(0,3) over the SMF cross section at f = 50 MHz. The color of | 
u| is normalized to the maximum (red color). The displacements are 
decomposed into the radial components v and u (respectively polarized 
in the y and x axes) and the axial component w, normalized to the 
maximum negative (dark blue color) and positive (dark red color). The 
black arrows indicate the distribution of the radial components for each 
polarization. 

The SMF cross section is overlapped with the 90◦ reduced-domain 
symmetric geometry for comparison. The |u| distribution of L(0,1) and L 
(0,3) contains wave nodes over the fiber cross section. The absence of nulls 
over the axial distribution of L(0,2) shows that the second higher order 
mode propagates predominantly as a longitudinal acoustic wave at the 
considered frequency. Meanwhile, high |u| concentration of L(0,1) over 
the fiber surface indicates its tendency to propagate as Rayleigh waves with 
increasing frequency. In contrast, high axial distribution of L(0,3) is noted 
over the fiber core. The similar pattern of the displacement fields |u| and w 
indicates that the axial displacements are dominant over the fiber cross 
section. 

Fig. 4(a)-(c) show respectively the FEM simulated displacement dis-
tribution of the acoustic modes L(0,1), L(0,2), and L(0,3) over the SMF 
cross section up to f = 80 MHz (5 MHz steps). The displacement modulus 
colors are normalized to the maximum of the first sample at f = 1 MHz 
(dark red color). The simulated dispersion curves are computed with the 
2D 90◦ reduced-domain symmetric geometry and compared to the 
Pochhammer-Chree reference curves in Fig. 4(d). The phase and group 
velocities are derived from k with cP = 2πfk-1 and cg = ∂k/∂ω. The dilata-
tional cD, transversal cT and Rayleigh cR velocities (dotted black lines) are 
respectively calculated with Eqs. (3), (4) and (10) and included as refer-
ences in Fig. 4(d). The velocities are normalized to the extensional material 
velocity cE in Eq. (9), as indicated with crel. The averaged agreement be-
tween the simulated and analytical curves is 99.9 %. 

Note in Fig. 4(d) that the phase and group velocities of the fundamental 
acoustic mode L(0,1) are nearly constant for the low dispersive range up to 
f = 10 MHz, approaching the extensional velocity as, cg ~ cP ~ cE = f λa. The 
acoustic period λa is easily determined in this range at any given frequency 
f. Nevertheless, increasing frequency induces a non-linear velocity response 
and high radial polarization of L(0,1) and L(0,2) in Fig. 4(a) and 4(b). High 

confinement of these modes overlapping with close group velocities over 
the fiber cross section induces a strong radial resonance at this frequency. 
Similarly, a second resonance induced by the interference of L(0,2) and 
L(0,3) propagating with similar group velocities is noted at f = 68 MHz. 
The vibration patterns of these modes at close resonant frequencies indi-
cate increased concentration of axial displacements in the fiber core, where 
L(0,3) is mostly distributed. 

The fundamental mode becomes increasingly concentrated over the 
fiber surface from f = 50 MHz, approaching the velocity of dispersionless 
Rayleigh waves cR with increasing frequency. The velocity of L(0,2) 
approaching cE denotes the formation of longitudinal plane waves along 
the fiber. It is also expected for L(0,3) at frequencies higher than f = 80 
MHz, repeating the dominance cycle with the emergence of other higher 
order modes. In general, the modal properties considerably change in a 
non-linear response with frequency. Accordingly, the vibration patterns 
of the modes change from radial to axial displacement distribution and 
polarization over the fiber cross section. The dispersion curves are useful 
to study the independent propagation of axially symmetric modes in 
optical fibers, regardless of the fiber length or acoustic power applied at 
the fiber end. The discrete number of supported modes and their spatial 
distribution depend only on the fiber geometry, material, and excitation 
frequency. For practical purposes, the dispersion curves are equally 
important to calculate the waveguide impedances required to match 
acoustic transmitters, receivers or layers attached on the fiber surface 
[41]. The full characterization of the modal interference and resonances 
requires the simultaneous excitation of the modes to interact along the 
fiber. This is achieved by carrying out a frequency response of the 3D 
FEM simulations of the SMF discussed in the next section. 

5. 3D spatial-spectral evaluation of the propagating acoustic 
modes and beatlengths in the SMF 

The FEM simulated multimode interference, beatlengths and reso-
nances are characterized along the optical fiber with the FFT and APP 
methods described in Section 3.2. The modal dispersion curves are 
provided simultaneously in the 2D FFT spectrum in Fig. 5 in terms of the 
acoustic period for the frequency range from f = 10 to 80 MHz. The FFT 
spectra are normalized to the maximum displacement modulus (yellow 
color) and compared to the APP method (black line). The simulated 
variation of the modes’ wavelengths λa and beatlengths Ba is compared 
to the values calculated with the Pochhammer-Chree frequency equa-
tion (Eq. (8)) with an overall averaged accuracy of 99.9 %. The 

Fig. 3. (a) Dispersion of the wavenumbers k of the fundamental mode L(0,1) and higher order acoustic modes L(0,2) and L(0,3) in the SMF up to f = 80 MHz. The FEM 
simulated curves (dashed lines) are compared to the theoretical reference values (solid lines). (b) 2D FEM simulated displacement distribution |u| of L(0,1), L(0,2) and L(0,3) 
over the SMF cross section at f = 50 MHz. The displacements are decomposed into the radial components v and u (polarized respectively in the y and x axes) and the axial 
component w. The SMF cross section is compared to the 2D 90◦ reduced-domain symmetric geometry. The black arrows indicate the distribution of the radial components 
for each polarization. 

R.E. da Silva and D.J. Webb                                                                                                                                                                                                                 



Optical Fiber Technology 75 (2023) 103192

7

beatlengths of the modes, L(0,1) - L(0,2), and, L(0,2) - L(0,3), over-
lapping as Rayleigh waves are indicated respectively as, BR(1–2) and 
BR(2–3). Second order harmonics are indicated as, B2(1–2) and B2(2–3). 

Fig. 5(a) shows the spectrum of the axial displacements at the fiber 
surface. L(0,1) superimposes with the emergent second order mode 
L(0,2) inducing a strong resonance in the SMF around f = 29 MHz. It is 
followed by the rising beat B2(1–2). At higher frequencies, increasing 

dominance of L(0,2) contributes to the generation of longitudinal plane 
waves along the fiber up to f = 65 MHz (note that the APP curves overlap 
with the period of L(0,2)). The dominant mode propagates with veloc-
ities significantly higher compared to the other modes, approaching 
the extensional material velocity cE (Fig. 4(d)). Consequently, the 
beatlengths are reduced in the range of high modal dominance around 
f = 40 – 60 MHz. Afterwards, L(0,2) propagates with decaying velocities 

Fig. 4. 2D FEM simulation of the vibration patterns of the (a) fundamental acoustic mode L(0,1), (b) second higher order mode L(0,2), and (c) third higher order 
mode L(0,3) in the SMF. The displacements are decomposed into radial (v and u) and axial (w) components. (d) Dispersion curves of the phase and group velocities cP 
and cg of the modes for frequencies up to f = 80 MHz. The simulated curves are compared to the theoretical reference values. 
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toward Rayleigh waves with increasing frequency. Converging veloc-
ities of L(0,2) and L(0,3) reinforce the beats BR(2–3) and B2(2–3), 
achieving maximum interference at the resonance of f = 68 MHz. 

The beatlengths are emphasized in the spectrum of the axial compo-
nents in the fiber cladding (r = 31.25 µm) in Fig. 5(b). The beats BR(1–2) 
and B2(1–2) are strengthened near the first resonant band, indicating a 
transition range exchanging the periods of L(0,1) and L(0,2). From f = 37 
MHz, L(0,2) expands the axial field over the fiber cladding and surface, 
polarizing along the fiber length (note the similar period responses of 
L(0,2) in Fig. 5(a) and 5(b)). Nevertheless, it is not observed in the spec-
trum of the axial displacements at the fiber core (r = 0) in Fig. 5(c). 
Stronger interaction of L(0,2) and L(0,3) strengthens the beats BR(2–3) and 
B2(2–3). BR(2–3) contributes to increase the period of the propagating 
acoustic waves up to f = 50 MHz, further reducing it around the second 
resonant peak (the APP curve approaches BR(2–3) in the transition range 
between periods of L(0,1) and L(0,3)). At the remaining frequencies, the 
overlapped FFT-APP curves indicate high concentration of L(0,3) in the 
fiber core. The second resonant band is governed by the beats BR(2–3) and 
B2(2–3) around f = 68 MHz. 

The dispersion of the radial components at fiber surface is shown in 
Fig. 5(d). Note that the beatlengths are significantly reinforced in the 
resonant bands, mainly B2(1–2) and B2(2–3) compared to the spectra of 
the axial components in the fiber. Fig. 5(e) shows details of the disper-
sion curves in the range of f = 30 – 50 MHz. The APP curve indicates 

increased concentration of the fundamental mode at the fiber surface 
interacting with the higher order modes by means of BR(1–2), B2(1–2) 
and B2(1–3). Similarly, overlapped radial components of the higher 
order modes significantly strengthen BR(2–3) and B2(2–3). The intense 
modal interaction at the fiber surface also contributes to enhance new 
harmonics in the spectrum, such as, B2(1–3) and B1(2–3). It is because 
the high radial polarization of the modes at the resonances. In addition, 
the guide surface is a common reflection interface for all the propagating 
modes. The multimode interference reciprocally transfers energy be-
tween the fiber surface and core center according to the beatlengths, 
achieving maximum confinement in the fiber core at the resonances. The 
modal interaction is reduced at the cladding mid radius in Fig. 5(f) 
because the concentration of the dominant mode L(0,2). 

In summary, the fundamental mode L(0,1) is dominant and highly 
distributed over the fiber cross section up to about f = 28 MHz. The 
resonant bands with peaks at f = 29 MHz and f = 68 MHz are empha-
sized in all spectra in Fig. 5, showing that the resonances are composed 
of both radial and axial components highly confined over the fiber cross 
section. Radial or transversal polarization is predominant at the first 
resonant peak, considering high overlapping of the modes approaching 
the transversal and Rayleigh velocities, cT and cR. The FEM simulated 
dispersion curves provide a graphical and intuitive tool to investigate 
the modal interference and resulting beatlengths, changing considerably 
the displacement distribution over the SMF cross section with increasing 

Fig. 5. 2D FFT spectra of the FEM simulated axial displacements |w| at the SMF (a) surface, (b) cladding and (c) core for the frequency range of f = 10 - 80 MHz. 
Spectra of the radial displacements |v| at the (d) fiber surface and (f) cladding. (e) Detail of the beatlengths at the fiber surface in the range of f = 30 – 50 MHz. The 
dispersion curves show the variation of the wavelengths λa of each acoustic mode (solid lines) and induced beatlengths Ba (dotted lines) calculated with the 
Pochhammer-Chree frequency equation. The FFT spectra are compared to the APP method (black line). 
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frequency. The acoustic period λa is directly estimated at any specific 
region in the fiber and given frequency f in the spectrum, which is useful 
to evaluate the modulation of FBGs and LPGs discussed in Section 2.2. 
Furthermore, other acoustic parameters, such as, wavenumber k, phase 
and group velocities, cP and cg, can be directly derived from the FFT 
spectra. The frequency-tunable redistribution of the modes has potential 
to spatially switch the acoustic energy between the fiber surface, clad-
ding, and core, offering promising possibilities to convert and filter the 
acoustic modes as discussed in Section 7. 

6. Analysis of the acoustic resonances, modal dominance, and 
induced strains inside the optical fiber 

6.1. Modal dominance and displacement distribution in the SMF 

The dominance of the acoustic modes in the SMF is investigated 
employing the information derived from the FFT spectra in Section 5. 
Fig. 6(a) shows the ratio between the axial displacements w and the 
overall displacements integrated over the SMF cross section along the 
fiber length (black curve). The highest magnitude levels around f = 10 
MHz, f = 50 MHz and f = 80 MHz indicate respectively the ranges of 
dominance of the fundamental L(0,1) and higher order modes L(0,2) and 
L(0,3). The modes propagate with group velocities approaching the 
extensional material velocity cE at these frequencies. Consequently, the 
axial displacements of a dominant mode are mostly in phase over the 
fiber cross section. The notches in the displacement response therefore 
correspond to the highest concentration of radial components in the 
fiber. 

The fraction of the axial components in the fiber core (red curve) is 
compared to the frequency range of the beatlengths B2(1–2) and 
B2(2–3). Note that the displacement peaks have high correlation with 
the beats and resonances previously shown in the FFT spectra. The 

resonant bands correspond to the transition ranges of modal dominance. 
The bandwidth and slope of the resonances highly agree with the range 
and slope of the considered beats. The first resonant band coincides with 
the frequencies in which the fundamental mode achieves the lowest 
group velocities. Consequently, increased distribution of radial compo-
nents over the fiber cladding and surface induces axial components in 
the fiber core. The interaction of L(0,2) with L(0,3) gradually enhances 
the axial distribution in the fiber core, reaching a maximum with 
decreasing group velocity of L(0,2) at f = 68 MHz. 

Fig. 6(b)(f)(j) show the 3D FEM simulation of the SMF exemplifying 
the dominance of the acoustic modes L(0,1), L(0,2) and L(0,3) respec-
tively at f = 10, 50 and 80 MHz. Details of the acoustic waves propa-
gating inside the fiber are shown in the 2D cross section planes. Fig. 6(c) 
(g)(l) show the ultrasonic fields over the yz fiber cross section along 1 
mm. The displacement modulus |u| is decomposed into the radial v and 
axial w components (normalized to the maximum positive (dark red 
color) and negative (dark blue color)). The agreement between the vi-
bration patterns of |u| and w confirms qualitatively the highest con-
centration of axial components inside the fiber, as seen in Fig. 6(a). The 
vibration pattern of each mode is identified from the displacements over 
the xy cross section. Fig. 6(d)(h)(m) show the 2D modal patterns 
extracted from the 3D simulation (dashed black lines in the yz cross 
sections) compared to those obtained from the 2D modal analysis in 
Fig. 6(e)(i)(n) (Section 4). The comparison of the two independent 3D 
and 2D techniques indicates good qualitative agreement of the modal 
distribution in the SMF. 

At f = 10 MHz, the single-mode acoustic propagation in a low 
dispersive range induces well defined longitudinal acoustic waves uni-
formly distributed along the fiber. The sinusoidal periodic waveforms of 
both axial and radial components of the fundamental mode L(0,1) are 
90◦ out-of-phase along the fiber in Fig. 6(c). Distortion of the waveform 
is however evident at f = 50 MHz in Fig. 6(g). The characterization of the 

Fig. 6. (a) Normalized axial displacements integrated over the SMF cross section (black curve) and fiber core (red curve). The peaks indicate resonant concentration 
in the fiber core caused by the beatlengths B2(1–2) and B2(2–3). The dominance of the acoustic modes inside the SMF is exemplified by the 3D/2D FEM simulations at 
the frequencies of (b)-(e) f = 10 MHz, (f)-(i) f = 50 MHz, and (j)-(n) f = 80 MHz, in which the axial displacements are mostly distributed over the fiber cross section. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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superposed modal fields is performed by evaluating the displacement 
components. L(0,2) is identified by inducing longitudinal planes along 
the fiber. Coupling of L(0,1) and L(0,3) cause high distortion of the 
acoustic fields in the fiber surface and core. At f = 80 MHz, the modes 
overlap with close wavelengths, contributing to create again plane 
waves along the fiber, as shown by the axial components w in Fig. 6(l). L 
(0,3) is predominant in the fiber cross section, as seen in Fig. 6(m) and 6 
(n). A periodic modulation of the radial fields v by the beatlengths is 
noted in Fig. 6(l). The modal superposition reinforces the displacements 
of the dominant mode L(0,3) in the fiber core. The modes’ period at the 
fiber surface, cladding and core are determined in the FFT spectra at the 
considered frequencies, providing a complete set of information to 
quantify the acoustic fields inside the fiber. 

6.2. Beatlength-induced resonances and strains in the SMF core 

Attenuation and distortion of acoustic signals at high frequencies 
restrict the pulse repetition rate of acoustically modulated fiber lasers 
mode-locked at twice the acoustic frequency. Similarly, optoacoustic 
sensors operating with signals as broad as 80 MHz exhibit significantly 
reduced sensitivity and image distortions caused by resonances around 
22 - 30 MHz and 70 - 80 MHz, separated by a high attenuation range 
from 40 to 60 MHz [15]. In addition, coupling of acoustic waves with 
relevant distinct velocities in the fiber induces image artifacts. Evalua-
tion of these resonant bands in a wide frequency range may be useful to 
enhance the sensitivity and spatial resolution required to reconstruct 
reliable images. 

In this section, we show that the resonances investigated in current 
fiber-optic sensors are partially caused by the interference of propa-
gating axially symmetric acoustic modes inducing beatlengths. As pre-
viously discussed in Section 6.1, the frequency response of the acoustic 
waves in the fiber core is significantly different from the response of the 
overall fiber cross section. In the FEM simulations, the ultrasonic fields 
are ideally composed of equivalent orthogonal strain components εx and 
εy over the SMF cross section. These strains and the axial strain εz are 
integrated along the fiber core for the range of f = 10 - 80 MHz. Fig. 7 
shows the frequency response of the strains in the fiber core, indicating 
the resonances and beatlengths induced by the multimode interaction. 
As observed in experimental devices, the first resonant band has a peak 
at f = 29 MHz [16]. Note that the radial components abruptly increase 
towards the peak. The resonant coupling of L(0,1) and L(0,2) is gradu-
ally reduced with increasing axial polarization of L(0,2), weakening the 
beat B2(1–2). It is followed by stronger interaction of the higher order 
modes from f = 37 MHz. The strain components further increase ac-
cording to B2(2–3), achieving a maximum at the second resonance peak 

of f = 68 MHz. The frequency range of high strain attenuation between 
the resonances coincides with the dominance band of L(0,2), reducing 
the beats and induced strains. The simulated resonance peaks agree with 
experimental measurements reported in Refs. [15,16,18] (even smaller 
peaks on the left side of the first peak are perceived). Although bire-
fringence and additional excitation of torsional or circumferential 
modes can induce other peaks at frequencies around f = 20 MHz, the 
second peak is predominant over f = 70 MHz [15,18]. It indicates that 
axially symmetric multimode interference has a significant contribution 
in the response of the reported optoacoustic devices. 

Fig. 8(a) shows the 3D FEM simulation of the acoustically induced 
strains inside the SMF at the resonance peak of f = 29 MHz, with a detail 
of the yz fiber cross section along 2 mm in Fig. 8(b). The volumetric 
strain εV is decomposed into radial and axial components in Fig. 8(c) and 
8(d). The modes L(0,1) and L(0,2) overlap radially polarized over the 
fiber cross section at the resonance. This modal interaction weakens 
with increasing difference of the modes’ group velocities and emergence 
of L(0,3). The 3D/2D strain distributions induced at the second reso-
nance are shown respectively in Fig. 8(e) and 8(f). The superposition of 
the higher order modes by means of BR(2–3) and B2(2–3) contributes to 
exchange of acoustic energy from the fiber surface to the core. This 
energy redistribution in the SMF is analogous to the beatlength reso-
nances investigated in ultrasonic plates, reflecting periodically energy 
between the opposite sides of the plates [45–47]. The fundamental and 
second higher order modes tend to concentrate as Rayleigh waves on the 
fiber surface for frequencies higher than 80 MHz. Meanwhile, L(0,3) 
axially polarizes in the fiber, attenuating again the strain distribution in 
the fiber core with increasing frequency. The emergence of new higher 
order modes is also expected. Overall, the results show that the natural 
acoustic resonances in the optical fiber are strongly dependent on the 
guide material and geometry. Changes in the cross-section design, 
diameter and composition may possibly be used to adjust the modal 
beatlengths, enabling possibilities to improve the sensor’s sensitivity 
towards a flat response over a broadband frequency range, as discussed 
in the next section. 

Previous analytical studies show that a solid silica fiber can support 
axially symmetric (longitudinal) and non-symmetric (flexural and 
torsional) acoustic modes [22]. Flexural modes become highly weak or 
even inexistent with increasing frequency from 10 MHz, since the 
decreasing acoustic wavelength approaching the fiber diameter is un-
able to produce relevant curvatures in the fiber. In contrast, torsional or 
circumferential modes can be excited along a SMF by applying a local-
ized force laterally distributed over the fiber surface. It is achieved by 
exposing the fiber surface to spherical acoustic waves [15,17]. The 
obliquely incident waves produce both transverse and axial strains in the 
fiber, inducing simultaneously longitudinal and torsional modes which 
do not fully interfere over the fiber cross section [48]. Therefore, co- 
propagating torsional modes would induce additional peaks around 
20, 40 and 80 MHz in the spectrum of Fig. 7 [15,17]. The agreement 
between the simulated resonances around 29 and 68 MHz in Fig. 7 with 
previous experiments shows that the axially symmetric modes are pre-
dominant in comparison to the torsional modes even considering a 
lateral excitation [15,16]. The axial excitation employed in our study 
shows a promising alternative to emphasize only the propagation of 
symmetric modes inducing higher axial strains in the fiber core. It effi-
ciently modulates the optical phase and grating properties as discussed 
in Section 2. Alternative setups producing similar results would consider 
the symmetric radial excitation of the fiber as demonstrated in Ref. [16]. 

7. Results discussion and outlook for the development of fiber- 
optic ultrasonic devices 

This section discusses the main contributions provided by this nu-
merical study, indicating how the findings, methods and simulations can 
further be applied and advanced to improve current fiber-based devices. 
A route for the development of new all-fiber acousto-optic modulators 

Fig. 7. FEM simulated frequency response of the acoustically induced radial εx, 
εy and axial εz strains in the SMF core for the frequency range of f = 10 – 80 
MHz. The resonant bands are mostly defined by the beatlengths between the 
fundamental and higher order modes B2(1–2) and B2(2–3). 
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and fiber sensors is described. 
1) Modal decomposition from complex ultrasonic fields inside 

the optical fibers: The demonstrated 3D and 2D FEM-based methods 
provide an efficient tool to investigate distorted ultrasonic fields over 
the fiber cross section by means of a modal interference method. 2D 90◦

reduced-domain modal analysis reduces about 63 % the computing time 
to calculate the modes’ vibration patterns and parameters compared to 
the entire 2D fiber geometry. The 3D simulated frequency response 
shows details of the induced displacements and strains inside the fiber, 
which are useful to evaluate the acousto-optic interaction in the fiber 
core. Modeling of angle-dependent acoustic sources employed in opto-
acoustic devices may be implemented by changing the boundary con-
ditions in Section 3.1. Thus, fiber coatings and sensing substances 
surrounding the fiber might be integrated by adding the component 
geometries, materials and physical domains [4,19,34]. Variations in the 
resonances caused by defects in the fiber geometry or use of different 
materials can be predicted and directly evaluated in the FFT spectra. 
FEM can be efficiently employed to simulate complex multiphysics in-
teractions, e.g., between acoustic and optical properties in the fiber core 
[4,19]. Photonic crystal fibers and microstructured optical fibers with 
complex geometries can also be modelled employing the proposed 
methodology [1]. 

2) Numerical investigation of axially symmetric resonances in 
fiber-optic ultrasonic devices: the nature of broadband ultrasonic 

resonances in optical fibers is investigated here with the finite element 
method for the first time. The resonant bands currently define the fre-
quency ranges of high sensitivity and attenuation of practical devices, 
causing image distortions in optoacoustic sensors. This numerical study 
provides the following findings and conclusions about the resonances: 

(a) Modes: the fiber supports a discrete number of modes changing 
with frequency. Each mode has a unique wavenumber k and displace-
ment pattern (2D modeling in Fig. 3). The modes constitute the funda-
mental mechanism in the resonances’ generation. The polarization of 
the acoustic modes is associated with the orientation and distribution of 
their vector components over the waveguide cross section. All the 
investigated axially symmetric acoustic modes have only radial and 
axial vector components [35,36]. Consequently, these modes have the 
same vectors’ orientation and polarization. Interference between these 
modes can be considered as a constructive and destructive sum of the 
modes’ vector components over the cross section and along the fiber. 
Although these modes can assume distinct velocities and vector mag-
nitudes tending to a mostly radial or axial polarization at certain fre-
quencies, the polarizations of these acoustic modes are not orthogonal. 
Wavenumbers k of two acoustic modes propagating in the fiber converge 
to close values at the resonances of f = 29 and 68 MHz (Fig. 3(a)); 

(b) The modal displacement fields are resonant and strongly radially 
polarized within the fiber cross section (Fig. 4(a)-4(c)); 

(c) Modes propagating with similar group velocities approaching the 

Fig. 8. 3D FEM simulation of the axially symmetric acoustic resonances at (a) f = 29 MHz and (e) f = 68 MHz. The strain distribution on the (b)(f) SMF yz cross 
section is decomposed into (c)(g) radial and (d)(h) axial components. 
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transversal and Rayleigh velocities, cT and cR, interfere in phase at the 
resonances (Fig. 4(d)); 

(d) Beatlengths: constructive and destructive interference is caused 
by the phase velocity difference between the different modes inducing 
beating effects [54]. The beatlength is the spatial measure or period 
between two maxima or minima of the modal interference. It might be 
experimentally characterized by measuring the distance between two 
consecutive displacement peaks on the fiber surface [45–47]. The FFTs 
in Fig. 5 measure theses peaks numerically in both radial and axial 
displacements along the fiber. The agreement between the analytical 
and simulated shows the high accuracy of the results. The terms “ex-
change” and “transfer” are usually employed to express the redistribu-
tion of the overlapped displacements (or energy) in a waveguide cross 
section caused by modal interference [43–45]. Consequently, the 
displacement or strain redistribution is also periodic along the SMF with 
the beatlengths, which are evaluated from both radial and axial dis-
placements in Fig. 5. The FFT spectra of the ultrasonic fields reveal that 
the resonances are caused by beatlengths induced by the modal inter-
ference, exchanging periodically acoustic energy between the fiber 
surface, cladding, and core (Fig. 5). The first resonance emerges from the 
interaction of the fundamental and second order mode by means of 
BR(1–2) and B2(1–2). The second resonance is induced by the beats of 
the higher order modes BR(2–3) and B2(2–3); 

(e) The resonant frequency bands correspond to the transition ranges 
between the dominance bands of the modes. In the dominance fre-
quencies, modal interaction in the fiber core is significantly reduced, 
causing attenuation bands in the strain spectrum, such as, from 40 to 60 
MHz (Fig. 7). The dominant modes form longitudinal acoustic waves 
along the fiber, approaching the extensional material velocity cE (Fig. 6). 
This attenuation is usually called geometrical attenuation [41] because 
the strains in the SMF change with the fiber radius, achieving reduced 
amplitude in the fiber core. Note in Fig. 7 that both radial and axial 
strains are considerably reduced in this band. Losses caused by elastic 
friction, hysteresis and scattering due to the materials’ grain size are 
negligible in the simulations for the considered frequency range and 
fiber length [17,55]. Nevertheless, these losses might become relevant 
for other kind of fibers with low silica purity or frequencies in which the 
material’s grain size is equal to one third of an acoustic wavelength [55]. 
The predominant geometrical attenuation bands are therefore the main 
cause of the reduced optical phase, power, or sensitivity of fiber sensors, 
which depend on the acoustically induced strains in the fiber core 
[15,17]; 

(f) Resonances: in summary, all the propagating modes interact in-
side the fiber inducing a large strain field at the resonance frequencies. 
Closer modal wavenumbers increase the beat amplitude and period as 
resonance is approached [54]. The largest beatlength values are 
graphically observed as peaks in the FFT spectra in Fig. 5. These peaks 
are caused by close values of the modes’ wavenumbers in Fig. 3, 
inducing the resonance peaks around 29 MHz and 68 MHz in Fig. 7 (the 
beatlengths indicate the modal interactions contributing to the genera-
tion of each resonance). The attenuation band is the transition range 
between the two resonances. In other words, resonances correspond to 
the frequencies in which the acoustic modes achieve a maximum 
constructive interference (peaks) and destructive interference (notches) 
in the fiber’s cross section. The induced strains in the fiber core indicate 
that the optical phase-shift response of current optoacoustic sensors is 
mainly determined by beatlengths of axially symmetric modes (Fig. 7). 
Variations at the resonance peaks and bandwidths are caused by distinct 
boundary conditions, such as, asymmetric excitation and use of different 
interaction lengths, which might induce birefringence and excitation of 
co-propagating torsional modes. Overall, high agreement of the 
demonstrated FEM simulations with previous experimental devices 
shows that the asymmetric excitation has minimal influence to change 
the resonances and attenuation bands. This is because the resonances 
strongly depend on the fiber geometry and material, requiring structural 
waveguide modification to produce significant changes in the frequency 

response. 
(g) Transverse acoustic resonances caused by optically induced non- 

linear effects, such as, Brillouin scattering, are generated by a 
completely different mechanism compared to the resonances in our 
study. Several narrow resonance lines are observed from the light 
scattering on the excited guided acoustic modes. The acoustic waves are 
usually generated in the core employing high optical powers and long 
fiber lengths. The resulting radial modes or mixed torsional-radial 
modes do not fully interfere inducing distinct narrowband resonant 
shapes in the spectrum [20,21]. The thermally excited modes do not 
contain axial components differing from the modes investigated in our 
study, which induce broadband resonances. We consider a short fiber 
length (1 cm) operating in a low optical power linear regime, in which 
the acoustic source is coupled on the fiber surface. These features are 
based on most of the acousto-optic and optoacoustic devices described in 
the Introduction. Overall, useful details about the characterization of 
resonances caused by optically induced non-linear effects are found in 
the Refs. [20,21]. 

3) Calculation of acoustic parameters required to modulate high 
frequency acousto-optic modulators and fiber sensors: this study 
provides the acoustic parameters for a wide range of fiber-based appli-
cations employing ultrasound up to 80 MHz, such as those presented in 
the Introduction and discussed in Section 2.2. The modal wavenumbers 
k, phase and group velocities, cP and cg are directly provided in Fig. 3(a) 
and 4(d). The modes’ wavelengths λa and beatlengths Ba are given in the 
FFT spectra in Fig. 5 (these parameters can be graphically estimated 
from the pictures at any given frequency f). The spectral information is 
independent of the fiber length and excitation magnitude applied to the 
SMF, being useful to estimate the wavenumbers k and velocities cP and cg 
from an application-oriented frequency response. Acoustic impedances 
can be derived from the velocities as Zm = ρcg, to predict transmission or 
reflection at layers surrounding the fiber surface [15,41]. The modu-
lated reflectivity and wavelength of Bragg gratings are estimated with 
the acoustic period λa or beat Ba employing Eqs. (19)-(21). The optical 
phase-shift response is evaluated with Eqs. (17) and (18) employing the 
simulated radial and axial strains in the fiber core (Fig. 7). Overall, the 
acoustic parameters can be used in combination with other numerical 
methods, e.g., the transfer matrix method, to simulate the modulated 
reflection spectrum of FBGs [43,44]. 

4) Minimizing acoustic dispersion and resonances by changing 
the fiber geometry and material: broadband optoacoustic sensors 
demand constant or flat sensitivity response over a wide frequency 
range. It is achieved by changes in the SMF geometry and material. The 
use of fiber diameters smaller than the acoustic wavelength reduces the 
modes’ number, preventing beatlengths and resonances. The SMF cross 
section is reduced by employing traditional cladding etching and fiber 
tapering techniques [8,49]. Alternatives include the use of polymer 
optical fibers [15] and microstructured optical fibers [1,2,27]. Recent 
studies show that suspended core fibers (SCFs) composed of a tiny core 
surrounded by large air holes are promising to reduce multimode 
propagation in the fiber core, increasing acousto-optic interaction at 
frequencies higher than 50 MHz. The geometry of SCFs can be adjusted 
to confine simultaneously acoustic and optical powers inside the fiber. 
The numerical methodology discussed in this study can be applied to 
evaluate SCFs and other fibers with complex geometries, in which the 
current analytical or semi-analytical methods developed to model solid 
cylinders are not possible. 

5) Beatlength-induced acoustic gratings in optical fibers: long 
period gratings (LPGs) are characterized by a periodic modulation of the 
refractive index along the fiber, with periods usually in the range of 400 
– 500 µm [51]. Two propagating optical modes interacting with the 
grating efficiently couple energy if their beatlength matches in phase 
with the period of the periodic modulation (Eq. (21)). Changes in the 
resonant condition is used to monitor applied deformation or tempera-
ture. Like the optical LPGs, the resonant notches around the resonances 
of 29 and 68 MHz in Fig. 6(a) are analogous to dynamically induced 
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acoustic LPGs along the fiber, with periods defined by the beatlengths. 
Changes in the resonances caused by external measurands are also ex-
pected. The acoustic LPG conversely transfers energy from the fiber 
cladding to the core. Previous studies show that even the dispersion of 
the fundamental acoustic mode at 10.9 MHz is efficient to produce 
relevant coupling and modulation of optical modes [23]. Improved 
acoustic filtering and flat spectral equalization of current fiber-based 
devices are achieved by the inscription of permanent LPGs. The modu-
lation of the SMF refractive index is adjustable with high spatial reso-
lution by employing CO2, femtosecond lasers or electrical discharge 
techniques [52,56,57]. Modal coupling can therefore be tuned by the 
LPG to improve the sensor’s sensitivity mainly in the high attenuation 
range from 40 to 60 MHz. 

8. Conclusion 

We have numerically characterized the resonances induced by the 
interference of high frequency axially symmetric acoustic modes inside 
an optical fiber for the first time. The multimode propagation is evalu-
ated along 1 cm standard fiber employing the finite element method. 2D 
and 3D modeling techniques to evaluate complex ultrasonic fields up to 
80 MHz are demonstrated. The simulated dispersion curves are vali-
dated with accuracies higher than 99.9 % compared to the 
Pochhammer-Chree analytical values. 

Vibration patterns and dispersion parameters of three acoustic 
modes are independently computed employing the 2D modal analysis 
study and the 90◦ reduced-domain symmetric geometry. The modes are 
further excited along the 3D fiber device and the overlapped waveforms 
are assessed at the fiber surface, cladding, and core. Modal dispersion 
and induced beatlengths are simultaneously evaluated with the peak-to- 
peak method (APP) and the 2D fast Fourier transform (FFT). The 
acoustically induced displacements and strains are spatially character-
ized inside the fiber. The results reveal resonances caused by the modes 
interfering at specific beatlengths, indicating that axially symmetric 
waves have a strong influence in the operation of current optoacoustic 
sensors. Modes with similar group velocities transfer energy between the 
fiber surface and core, particularly in the regions of 29 and 68 MHz. In 
the high attenuation range of 40 – 60 MHz, the modes weakly interact in 
the fiber core. The frequency-tunable modal redistribution in the fiber is 
promising for spatial division multiplexers and couplers. The suitable 
equalization of the sensor’s sensitivity over a broadband frequency 
range might be achieved by the inscription of permanent LPGs in the 
SMF, coupling energy to the fiber core over the attenuation bands. 
Alternatively, fibers with different materials and geometries are prom-
ising to improve the acousto-optic interaction and the noise-limited 
pressure resolution. 

In summary, FEM and FFT methods provide a practical and intuitive 
tool to characterize the changing complex ultrasonic wave patterns in 
optical fibers with increasing frequency, allowing the spatial and spec-
tral characterization of multimode interference along the fiber. Signifi-
cant acoustic parameters required for a wide range of applications 
employing standard fibers may be obtained. The numerical methods can 
be applied to evaluate fibers with complex geometries, in which the 
analytical and semi-analytical approaches based on ideal solid cylinders 
are not possible. 
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