
Establishing Mechanisms for
Self-Adaptation in Genetic

Programming

Thomas D. Griffiths
Doctor of Philosophy

Aston University
June 2019

c© Thomas D. Griffiths, 2019

Thomas D. Griffiths asserts his moral right to
be identified as the author of this thesis.

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no

information derived from it may be published without
appropriate permission or acknowledgement.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 i

Aston University
Establishing Mechanisms for Self-Adaptation in Genetic Programming

Doctor of Philosophy Thomas David Griffiths 2019

Thesis Abstract

It has long been a desire of computer scientists to develop a computer system
that is able to learn and improve without being explicitly programmed to do so.
The idea of software that is able to analyse, update and alter itself has been
discussed.

The thesis is structured as follows: Firstly, we refine and improve the Tartarus
problem, proposing it as a benchmark problem for use in GP. Secondly, we estab-
lish a mechanism for incorporating self-adaptation into a GP system in order to
increase the performance of candidate solutions. Finally, we explore the impact
of a fitness bias, inspired by the Dunning-Kruger effect, on the robustness of a
GP system.

The on-the-fly adaptation of parameter values at runtime can lead to improve-
ments in performance. Self-adaptation aims at biasing the distribution of individ-
uals in a population towards more appropriate and effective areas of the search
space.
Therefore, we propose, outline and evaluate a novel self-adaptive mechanism
favouring a continuous opportunity for modifications to be made during an ex-
ecution, as-and-when they are deemed to be appropriate. This creates a more
flexible parameter modification approach, leading to an increase in solution per-
formance: leading to an approximate 15% and a 10% increase for the Tartarus
and Santa-Fe problems respectively.

Robustness is often referred to as a characteristic of a candidate solution whose
performance is not diminished despite perturbations in environmental parameters
or constraints. A solution that does not lose utility or performance quality under
these changes is said to be robust.
The Dunning-Kruger Effect (DK) is a form of cognitive bias observed in popula-
tions, first described by psychologists Dunning and Kruger in 1999: individuals
with a low level of ability mistakenly over-estimate their performance and con-
versely, individuals with a high level of ability will often under-estimate their
performance.
We propose that that the introduction of a DK style bias into the fitness dis-
tribution of the population will enable a system to maintain a higher level of
population diversity over time.

Key words: Self-Adaptation - Dunning-Kruger - GP - Robustness - Diversity

T.D. Griffiths, Ph.D Thesis, Aston University 2019 ii

Acknowledgements

Acknowledgements

I would like to express my gratitude to my

supervisor Anikó Ekárt for her continued

encouragement, contribution and mentorship;

without which, this thesis would likely never

have been finished.

My thanks go out to my friends and colleagues

in the ALICE research lab and wider Computer

Science department for their guidance.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 iii

Acknowledgements

I would like to extend my love and appreciation

for my partner Ciara, and my dearest family

Charlotte, David, Helene, Ian and Pippa.

Finally, I would like to thank my grandparents,

Ruth & Bryan, for everything they have done

for me throughout my life, supporting me when

I truly needed it the most.

Thank-you.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 iv

Contents

Contents
Publications Arising from this Thesis . i

List of Tables . ii

List of Figures . iii

List of Abbreviations . iv

1 Introduction and Motivation .

1.1 Scenario .3

1.2 Overarching Research Questions . 5

1.3 Thesis Contributions . 6

1.4 Thesis Overview . 6

2 Genetic Programming: Introduction .

2.1 Genetic Programming .10

2.1.1 Fitness Evaluation . 11

2.1.2 Genetic Programming Representations .11

2.1.2.1 Tree-Based GP .12

2.1.2.2 Linear GP .13

2.1.2.3 Cartesian GP . 14

2.1.2.4 Grammar-Based GP . 14

2.1.3 Selection .14

2.1.3.5 Selection Pressure .15

2.1.3.6 Tournament Selection .16

2.1.3.7 Roulette Wheel Selection .17

2.1.3.8 Truncation Selection .20

2.1.4 Recombination . 21

2.1.4.9 Respectful Recombination .22

2.1.4.10 Assorted Recombination .22

2.1.4.11 Transmitting Recombination .23

2.1.5 Mutation . 23

2.1.5.12 Checked Mutation . 24

T.D. Griffiths, Ph.D Thesis, Aston University 2019 v

Contents

3 Benchmark Problems in Genetic Programming .

3.1 Benchmark Problems . 27

3.1.1 Symbolic Regression . 28

3.1.2 Route Finding .29

3.1.2.1 Lawnmower Problem . 29

3.1.2.2 Santa-Fe Train Problem . 30

3.1.3 Measuring the ‘Best‘ Performance .30

3.2 The Singular Benchmark Approach . 31

3.2.1 Benchmarks as a Proof-of-Concept .31

3.3 The Benchmark Suite Approach .32

3.4 Importance of Benchmarks . 33

3.5 Desirable Benchmark Characteristics .34

4 The Tartarus Problem as a Benchmark .

4.1 Introduction to the Tartarus Problem .38

4.1.1 The Canonical Tartarus Instance .39

4.1.2 Generating Tartarus Instances .40

4.1.2.1 Baseline Instance Values .41

4.1.3 Measuring Instance Difficulty .44

4.1.3.2 Tuning Difficulty .45

4.1.4 State Evaluation . 46

4.1.4.3 Canonical State Evaluation .47

4.1.4.4 Improved State Evaluation . 48

4.2 Satisfying the Desirable Benchmark Characteristics . 50

4.3 Conclusion .52

5 Self-Adaptation in Genetic Programming .

5.1 Self-Adaptation .56

5.1.1 When to modify .57

5.1.2 How to modify . 58

5.1.3 Parameter Modification Approaches . 58

T.D. Griffiths, Ph.D Thesis, Aston University 2019 vi

Contents

5.1.3.1 Deterministic Parameter Modification . 58

5.1.3.2 Adaptive Parameter Modification . 59

5.1.3.3 Self-Adaptive Parameter Modification . 59

5.1.4 Taxonomy of Approaches . 60

5.2 Self-Adaptive Crossover Operator . 61

5.2.1 Crossover Bias Implementation .62

5.2.1.4 Updating Crossover Bias . 63

5.2.2 Tartarus Problem Case Study . 65

5.2.3 Sante-Fe Problem Case Study . 71

5.2.4 Results . 73

5.3 Conclusion .74

6 Aspects of Robustness in Genetic Programming .

6.1 Introduction .77

6.2 Modern Synthesis . 77

6.2.1 Genotype – Phenotype Map .78

6.3 Robustness . 79

6.3.1 Phenotypic Robustness . 81

6.3.2 Genotypic Robustness . 82

6.3.3 Transformational Diagrams .83

6.4 Simulated Dunning–Kruger Effect .84

6.5 Diversity .86

6.5.1 Phenotypic Diversity .87

6.5.2 Genotypic Diversity .88

6.5.3 Implementing Simulated Dunning–Kruger Bias .89

6.5.4 Results . 91

6.6 Conclusion .95

7 Conclusion .

7.1 Conclusion .99

7.2 Thesis Contributions .99

7.3 Future Directions . 103

T.D. Griffiths, Ph.D Thesis, Aston University 2019 vii

Contents

Bibliography .107

T.D. Griffiths, Ph.D Thesis, Aston University 2019 viii

Publications arising from this Thesis

Publications arising from this thesis

Conference Proceedings

[1] Short Paper – T.D. Griffiths.
"Increasing Genetic Programming Robustness using Simulated Dunning-Kruger Effect"
In. Genetic and Evolutionary Computation Conference GECCO 2019
GECCO 2019 Companion Proceedings.
pp. 340–341, ACM 2019.

[2] Full Paper – T.D. Griffiths, and A. Ekárt.
"Self-Adaptive Crossover in Genetic Programming: The Case of the Tartarus Problem"
In. 15th International Conference on Parallel Problem Solving from Nature PPSN 2018
Proceedings Part I | vol. 11101 — Lecture Notes in Computer Science
pp. 236–246, Springer 2018.

[3] Full Paper – T.D. Griffiths, and A. Ekárt.
"Improving the Tartarus Problem as a Benchmark in Genetic Programming"
In. 20th European Conference on Genetic Programming EuroGP 2017
Proceedings | vol. 10196 — Lecture Notes in Computer Science
pp. 278–293, Springer 2017.

[4] Short Paper – T.D. Griffiths, and A. Ekárt.
"Improving the Effectiveness of Genetic Programming using Continuous Self-Adaptation"
In. 2nd International Symposium on Artificial Life and Intelligent Agents ALIA 2016
Post Proceedings | vol. 732 — Communications in Computer and Information Science
pp. 97–102, Springer 2016.

Workshop Contributions

[1] T.D. Griffiths, and C.M. Barnes.
"Self-Adaptive Task Separation in the Tartarus Problem"
At. 3rd Workshop on Self-Awareness in Cyber-Physical Systems – SelPhyS
Workshop Presentation. 2018. – url http://thomas-david.uk/docs/w2a

[2] C.M. Barnes, T.D. Griffiths, A. Ekart and P. Lewis
"A Family of Environments for Exploring Social Self-Awareness"
At. 3rd Workshop on Self-Awareness in Cyber-Physical Systems – SelPhyS
Workshop Presentation. 2018. – url http://thomas-david.uk/docs/w2b

[3] T.D. Griffiths.
"Self-Adaptive Crossover in Genetic Programming"
At. 1st Funcollective on Evolution and Learning in Socio-Technical Systems
Workshop Presentation. 2018. – url http://thomas-david.uk/docs/w3

T.D. Griffiths, Ph.D Thesis, Aston University 2019 ix

List of Abbreviations

List of Abbreviations
APM - Adaptive Parameter Modification
CGP - Cartesian Genetic Programming
DK - Dunning–Kruger (effect)
EC - Evolutionary Computing
GA - Genetic Algorithm
GGP - Grammar-Based Genetic Programming
GP - Genetic Programming
LGP - Linear Genetic Programming
SAGP - Self-Adaptive Genetic Programming
SAPM - Self-Adaptive Parameter Modification
SMCGP - Self-Modifying Cartesian Genetic Programming
TGP - Tree-Based Genetic Programming
TP - Tartarus Problem

T.D. Griffiths, Ph.D Thesis, Aston University 2019 x

List of Figures

List of Figures

Figure 2.1 - An Example GP System

Figure 2.2 - Tree-Based GP Representation

Figure 2.3 - Linear GP Representation

Figure 2.4 - Tournament Selection

Figure 2.5 - Fitness Proportionate Selection - Linear Example

Figure 2.6 - Fitness Proportionate Selection - Roulette Wheel Example

Figure 3.1 - Route Finding Benchmark - Lawnmower

Figure 3.2 - Route Finding Benchmark - SantaFe Trail

Figure 4.1 - Example Initial and Final Tartarus Instances

Figure 4.2 - Example Clustered and Dispersed Tartarus Instances

Figure 4.3 - Partially Solvable Tartarus Instances

Figure 4.4 - Current Evaluation Distribution

Figure 4.5 - Proposed Evaluation Distribution

Figure 5.1 - Central 80% of Compositions

Figure 5.2 - Top and Bottom 10% of Compositions

Figure 5.3 - Convergence of Target AF Value

Figure 5.4 - Comparison between Self-Adaptive Bias and Traditional Crossover

Figure 5.5 - Occurrences of Self-Adaptation and the Maximum Fitness Score

Figure 5.6 - Ternary plot of Santa-Fe Trail Execution

Figure 5.7 - Occurrences of Self-Adaptation and the Maximum Fitness Score

Figure 5.8 - Relationship Between Changes in Self-Adaptation and Solution Performance

Figure 6.1 - Example (G → P) Map

Figure 6.2 - Example Two-Dimensional Geno-Pheno Space for X1 and X2.

Figure 6.3 - Transformational Diagram for the Phenotypes in a Parameter Space

Figure 6.4 - Transformational Diagram for a Specific Phenotype

Figure 6.5 - The Dunning–Kruger Effect

Figure 6.6 - The Dunning–Kruger Effect Comparison

T.D. Griffiths, Ph.D Thesis, Aston University 2019 xi

List of Figures

Figure 6.7 - Comparison of the Original and DK Fitness Distributions

Figure 6.8 - A Typical DK Run, C=10

Figure 6.9 - A Typical DK Run, C=15

Figure 6.10 - A Typical DK Run, C=20

Figure 6.11 - Valid and Invalid Neighbourhood Positions

T.D. Griffiths, Ph.D Thesis, Aston University 2019 xii

List of Tables

List of Tables

Table 4.1 - Reference Guide for Generating Tartarus Instances

Table 4.2 - Example Instances and their Difficulty

Table 4.3 - Fitness Data Comparing Evaluation Methods

Table 7.1 - Taxonomy of Parameter Modification Approaches

Table 6.1 - Comparison of Canonical and DK Bias GP Systems

Table 6.2 - Comparison of DK Bias and Fitness Sharing (k =1) GP Systems

Table 6.3 - Comparison of DK Bias and Fitness Sharing (k =2) GP Systems

T.D. Griffiths, Ph.D Thesis, Aston University 2019 xiii

Chapter 1

Chapter 1

Introduction and Motivation

‘ Certain books seem to have been written. not in order to afford
us any instruction, but merely for the purpose of letting

us know that their authors know something. ’

Johanne Wolfgang von Goethe

T.D. Griffiths, Ph.D Thesis, Aston University 2019 1

Introduction and Motivation

Chapter Contents

Scenario . 3

Overarching Research Questions . 5

Thesis Contributions .6

Thesis Overview . 6

T.D. Griffiths, Ph.D Thesis, Aston University 2019 2

Introduction and Motivation

1.1 Scenario

It has long been a desire of computer scientists to develop a computer system that

is able to learn and improve without being explicitly programmed to do so. The

idea of software that is able to analyse, update and alter itself has been discussed.

The computational research field of Genetic Programming (GP) emerged three

decades ago, as a method towards achieving automatic programming [1, 2, 3].

In GP, an initial population of candidate solutions, members of the set of possible

solutions, is created and iteratively updated. The ‘fitness’ – success at solving

the desired task, of each candidate solution is evaluated, and a new population

of candidate solutions is subsequently stochastically generated.

This is done by removing the less successful solutions and generating new solu-

tions from the more successful solutions remaining in the population. In biological

terms, the population of candidate solutions is subjected to both random muta-

tion and the pressures of natural selection [4]; often referred to as the survival of

the fittest.

In order to assess the performance of chosen approaches, a range of standardised

test problems are often used. These problems, referred to as benchmarks, are

utilised in order to illuminate features of an algorithm and evaluate performance.

In this thesis we propose a range of improvements [5] to the Tartarus Problem

(TP) [6], updating the state evaluation mechanism and providing guidance on

tuning the difficulty of instances. Moreover, we outline the characteristics of the

Tartarus problem, suggesting its use as a suitable benchmark problem [7].

T.D. Griffiths, Ph.D Thesis, Aston University 2019 3

Introduction and Motivation

In GP, the on-the-fly adaptation of parameter values at runtime can lead to im-

provements in performance. This self-adaptation of parameter values aims at

biasing the distribution of individuals in a population towards more appropriate

and effective areas of the search space. This is generally achieved by means of

setting and adjusting control parameters [8], expressed as population size, recom-

bination probability or mutation rate, to name a few.

The process of optimising the self-adaptive bias is itself a dynamic problem, as

a set of control parameters deemed optimal at the start, or during an execution,

may be unsuitable at a later stage. One approach to triggering these modifica-

tions is to utilise a fixed, pre-determined set of rules or time interval. However,

over time, this can lead to an increase in ineffectual adaptations.

In this thesis we propose and outline a novel self-adaptive mechanism: favouring

a continuous opportunity for modification during execution, as-and-when they

are deemed appropriate. Creating this more flexible parameter modification ap-

proach leads to an increase in solution performance of approximately 15% and

10% for the Tartarus and Santa-Fe problems, respectively.

Robustness is often referred to as a characteristic of a candidate solution whose

performance is not diminished despite perturbations in environmental parame-

ters or constraints. A solution that does not lose utility or performance quality

under these changes is said to be robust. The Dunning-Kruger Effect (DK) is a

form of cognitive bias observed in populations, first described by psychologists

Dunning and Kruger in 1999: individuals with a low level of ability mistakenly

T.D. Griffiths, Ph.D Thesis, Aston University 2019 4

Introduction and Motivation

over-estimate their performance and conversely, individuals with a high level of

ability will often under-estimate their performance.

In this thesis we propose that the introduction of a DK style bias into the fitness

evaluation of the population will enable a GP system to maintain a higher level

of population diversity over time: increasing the robustness of the population

to changes in Tartarus problem instances. This is achieved by means of modi-

fying the fitness scores of individuals based on their relative performance, in a

manner similar to DK. The individuals will have their actual true fitness score

modified, returning their new reported fitness score, leading to an approximate

10% increase in the diversity present in the GP population.

1.2 Overarching Research Questions

This thesis is concerned with the following overarching research questions:

RQ1 Can the Tartarus problem be modified and improved, in order to satisfy

the desirable benchmark characteristics, outlined by White et al. [7]?

RQ2 Is it possible to parameterise a genetic programming system by incorpo-

rating self-adaption into the evolutionary processes, and does allowing the

system to trigger parameter modifications as-and-when they are required

provide a greater benefit than the canonical method of triggering at dis-

crete intervals?

RQ3 Will the introduction of a simulated Dunning–Kruger effect lead to an

increase in the robustness of a genetic programming system?

T.D. Griffiths, Ph.D Thesis, Aston University 2019 5

Introduction and Motivation

1.3 Thesis Contributions

The main contributions realised by this thesis are as follows:

• The Tartarus Problem is presented as a benchmark problem, presenting an

improved evaluation mechanism with a finer level of granularity. Guidance

is provided for tuning the difficulty of generated Tartarus instances.

• A novel self-adaptive crossover operator is presented for use in a GP system.

Providing a continuous opportunity for parameter modifications to be made

at runtime, leading to an increase in solution performance.

• A novel fitness bias, inspired by the cognitive bias observed in the Dunning–

Kruger effect is implemented in a GP system. As a result, an increase in

the level of population diversity and solution robustness was observed.

1.4 Thesis Overview

The remainder of the thesis is structured as follows:

Chapter 2 provides a broad introduction to Genetic Programming, introducing

the processes of Selection, Recombination and Mutation, present in a canonical

GP system. A selection of different GP representations are presented, with the

structural characteristics of each contrasted and compared.

Chapter 3 introduces the assumption that many of the benchmark problems

that are currently utilised in GP literature are no longer fit for purpose. A set

of desirable characteristics for benchmark problems is introduced, alongside an

analysis of the suitability of benchmark problems.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 6

Chapter 1

Chapter 4 addresses RQ1, proposing an updated version of the Tartarus Prob-

lem (TP) as a benchmark problem for use in GP. Several facets of the problem

have been modified and updated, including the extended parameterisation of in-

stance generation, coupled with guidance on tuning the difficulty of generated

instances. An improved, more granular method of conducting Tartarus state

evaluations is also presented. The suitability of the updated problem is assessed

and evaluated against the desirable benchmark characteristics.

Chapter 5 focuses on RQ2, introducing parameter modification approaches,

providing a comparative taxonomy for deterministic, adaptive and self-adaptive

techniques. A novel self-adaptive crossover operator for use in GP is presented,

providing a continuous opportunity for parameter modifications at runtime. The

self-adaptive crossover operator is assessed across two case-studies: firstly, the

Tartarus problem and secondly, the Santa-Fe problem, with an approximate in-

crease in solution performance of 15% and 10%, respectively.

Chapter 6 is concerned with RQ3, exploring the links between diversity and ro-

bustness in a GP population. A novel method for increasing the diversity of a GP

population inspired by the Dunning-Kruger effect is introduced. The impact on

the diversity and robustness of the GP population is tested on Tartarus problem

instances. The analysis shown that it is possible to increase the level of diversity

in a population by approximately 10%, leading to an increase in robustness.

Chapter 7 presents the conclusions, summarising the results of the contributions

obtained throughout the thesis, followed by the future direction of the research.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 7

Chapter 2

Chapter 2

Genetic Programming:

Introduction

‘ You know we are on the wrong track altogether. . .

We must not think of the things
we could do with,

but only the things
we cannot do without. ’

George a character in Three Men in a Boat

Jerome K. Jerome

T.D. Griffiths, Ph.D Thesis, Aston University 2019 8

Genetic Programming: Introduction

Chapter Contents

Genetic Programming .10

Fitness Evaluation .11

Genetic Programming Representations . 11

Tree-Based GP . 12

Linear GP .13

Cartesian GP . 14

Grammar-Based GP .14

Selection .14

Selection Pressure . 15

Tournament Selection . 16

Highlights of Tournament Selection . 16

Roulette Wheel Selection .17

Highlights of Roulette Wheel Selection .19

Truncation Selection .20

Recombination . 21

Respectful Recombination .22

Assorted Recombination .22

Transmitting Recombination .23

Mutation . 23

Checked Mutation . 24

T.D. Griffiths, Ph.D Thesis, Aston University 2019 9

Genetic Programming: Introduction

2.1 Genetic Programming

Genetic Programming is an evolutionary computing (EC) technique [9], a form

of nature inspired computing [10, 11], championed by Koza [12, 13]. As with

other EC methods, in a GP system an initial population of candidate solutions

is stochastically generated and the performance of each solution is evaluated by

use of a ‘fitness function’ [14]. At each generation, the GP system executes three

distinct steps, as shown in Figure 2.1:

Selection, the least successful individuals are removed from the population and

the ‘parents’ of the new population are chosen.

Recombination, the chosen ‘parents’ are combined to create a new population

of candidate solutions, also known as crossover.

Mutation, small changes are stochastically applied to individuals within the

population.

Source: Griffiths, T.D., and Ekárt, A. [15]

Start

Create and Evaluate
Initial Population Selection

Stop
Recombination Mutation

Fitness Evaluation
no

yes

Termination
Criteria Met?

Figure 2.1: An Example GP System
Outlining the relationship between the three distinct steps of a GP system,

selection, recombination, mutation and the fitness evaluation.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 10

Genetic Programming: Introduction

2.1.1 Fitness Evaluation

At the end of every generation, each candidate solution in the population is as-

sessed and their performance evaluated by the fitness function [16]. The fitness

function is responsible for measuring the progress of each candidate solution in

respect to solving the problem task.

Many fitness functions are based on a simple distance metric between the desired

outcome and the outcome of the candidate solution, often conceptualised as the

error of a solution [17]. However depending on the problem, more complex fitness

measures can be used [18, 14].

It is possible to combine several measures in order alter the level of evolutionary

pressure on a population. One common approach is to combine the error of a

candidate solution and the size of the candidate solution. This can lead to a fitness

function which rewards solutions which are not just successful but also small in

size. This can be a useful tool when used in conjunction with other approaches

in an attempt to reduce the rate of growth in the size of GP candidate solutions,

known as bloat [12, 19, 20].

2.1.2 Genetic Programming Representations

There are many ways in which GP solutions can be structured and represented,

with varying levels of constraints and complexity present in each representation.

The canonical and most widely used GP representation, is tree-based GP [12],

where the candidate solution is represented by a tree-like data structure, along-

T.D. Griffiths, Ph.D Thesis, Aston University 2019 11

Genetic Programming: Introduction

side the widely used linear GP [21], where the solution is represented as a linear

string of instructions [12]. More recent GP representations include Cartesian

GP [22], where the solution is represented as interconnected graph. Addition-

ally, representations exist that utilise grammars [23], widely grouped together as

grammatical GP [24].

Historically, many GP systems were represented using tree-based or linear GP,

however cartesian GP and more complex representations that allow for self-

modification and adaptation are now widely used [25].

2.1.2.1 Tree-Based GP

The earliest and most widely used GP representation is tree-based GP (TGP) [12].

In TGP the solutions are encoded as a tree-like data structure, an example of

which is shown in Figure 2.2. The solutions can be modified by altering the

structure and layout of the tree, by swapping, adding or pruning sub-trees, or by

altering the values of the nodes within the tree.

+

+ −

* * 7*

x x 17 x x y

Functional Node

Leaf Node

Figure 2.2: The equation x2 + 17x+ xy − 7 illustrated
in the style of the Tree-based GP Representation

T.D. Griffiths, Ph.D Thesis, Aston University 2019 12

Genetic Programming: Introduction

The inner nodes of the tree structure contain functional instructions, while the

outer leaf nodes contain input variables or constant values.

Due to the hierarchical nature of the tree-like structure utilised in TGP, any

change in node values or placement has the potential to radically change the

execution order of the tree [26]. The closer a node is to the root of the tree, the

more radical the potential impact from modification, either by recombination or

mutation. It can be expected that in a tree-based structure that nodes towards

the bottom of the tree, on the lower levels, are modified more frequently.1

2.1.2.2 Linear GP

Another commonly used GP representation is known as linear GP (LGP) [27]. In

LGP the solution is encoded as a linear structure, often referred to as a genome,

containing a number of functional instructions, input values and constants, re-

ferred to individually as chromosomes. An example LGP solution is shown in

Figure 2.3. The solutions can be modified by altering the structural order of the

chromosomes, adding and removing chromosomes2 or altering the values of the

chromosomes.

x * x + 17 * x + x * y − 7

Figure 2.3: The equation x2 + 17x+ xy − 7 Illustrated
in the style of the Linear GP Representation

1It is possible to take precautions in tree-based GP systems in order to manipulate the rate
of such modifications through biasing of the operator hit rate.

2It is common in GP systems utilising a linear representation for the maximal length of
the solution to be fixed, referred to as fixed-length LGP. In these cases the addition of new
instructions would not be permitted once the maximum length is reached.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 13

Genetic Programming: Introduction

The influence of any change in a linear structure, such as those utilised by LGP,

can be expected to follow the linear order in which the instructions are executed.

A modification made towards the end of the structure will create less of an impact

than a change at the start of the structure [21]. However, unlike tree-based

structures, in linear GP it can be expected that changes of all sizes occur equally

frequently.

2.1.2.3 Cartesian GP

A more recent GP representation is cartesian GP (CGP) [22, 28]. In CGP the so-

lutions are encoded into a graph-like structure, often conceptualised as a genome

similarly to LGP. However, unlike LGP the chromosomes in a CGP genome are

not necessarily executed in a linear sequential fashion, as they are encoded as an

interconnected graph, many chromosomes are semantically linked to, and poten-

tially have an impact on, other chromosomes elsewhere in the genome [29].

2.1.2.4 Grammar-Based GP

Grammar-based GP (GGP) [24, 23], or Grammatical Evolution (GE), as it is

widely referred, is used to describe a number of approaches whereby the solutions

generally are encoded in a linear structure in a similar manner to LGP, they are

then translated into an executable program by use of a grammar [30].

2.1.3 Selection

The selection operator is responsible for selecting individuals which are to be used

as parents for the next generation. It is important that the mechanism by which

the selection is made is able to effectively differentiate between individuals that

T.D. Griffiths, Ph.D Thesis, Aston University 2019 14

Genetic Programming: Introduction

possess beneficial characteristics leading to an increase in solution performance,

and those that do not.

As with many Evolutionary Computation approaches, The selection operator

utilised in a GP system, probabilistically selects individuals based on their fit-

ness score. That is to say that, individuals with greater fitness scores are more

likely to be chosen, compared to individuals with lesser fitness scores.

One widely-used operator is known as Tournament Selection (Section 2.1.3.2.),

alongside Roulette Wheel Selection (Section 2.1.3.3.) and other approaches

such as Truncation Selection (Section 2.1.3.4.) [27].

In practice however, any selection operator, mechanism or approach that can

effectively select individuals from the population that contain the desired char-

acteristics, can be used in a GP system.

2.1.3.1 Selection Pressure

Selection pressure is a term used to describe the property of a mechanism in terms

of how strongly it differentiates between good and bad individuals [31].

A mechanism which has a high selection pressure would strongly favour individu-

als with a higher fitness score. Approaches which favour individuals based solely

on their raw performance, at the expense of other metrics and measurements are

said to be greedy operators.

However, a mechanism which has a lower selection pressure, would place less

preference on individuals with a higher fitness score, and in comparison is likely

to select a wider and more diverse range of individuals from the population.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 15

Genetic Programming: Introduction

2.1.3.2 Tournament Selection

Tournament Selection is a style of selection operator used in GP [32, 33]. In

tournament selection a subset of individuals of size k is randomly chosen from

population P . The individuals within this subset, the tournament, are compared

against each other, with the best individual being chosen as a parent. An example

of which is shown in Figure 2.4

Population
Individual Fitness Score

A 3.24

B 1.15

C 3.26

D 1.57

E 0.87

F 4.67

G 2.18

Tournament 1

size k=3

E 0.87

A 3.24

C 3.26

Tournament 2

size k=3

B 1.15

G 2.18

F 4.67

F 4.67 C 3.26

Parent 2Parent 1

Figure 2.4: Tournament Selection: Showing the selection of parents
from the population using two random tournaments of size k=3

In canonical tree-based GP two parents are required, therefore two
separate tournaments will take place to select the parents.

Highlights of Tournament Selection

The tournament selection operator is concerned with selecting the best individual

from each tournament, it is not concerned with or influenced by the magnitude

of the difference.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 16

Genetic Programming: Introduction

For example, in Figure 2.4 – Tournament 1, the difference between the individu-

als marked F and G is large, at 2.49. However, in Tournament 2 the difference

between the individuals marked C and A is of a much smaller magnitude, at just

0.02. Thus demonstrating the ability of the tournament selection mechanism to

select the individual with the highest fitness score from the tournament, regard-

less of the magnitude of difference between the individuals.

It is possible to influence the selection pressure placed on the tournament selec-

tion operator by altering the tournament size k. For example, a tournament of

size k = 1 is equivalent to randomly selecting an individual from the population,

effectively removing the selection pressure entirely. As the size of k increases,

the number of individuals from the population included in each tournament as

a proportion of the entire population becomes greater, increasing the selection

pressure.

At the point k = P , the selection pressure is considered to be at its maximum

value – all individuals present in the population P is included in the tournament,

with the highest fitness individual is guaranteed to be selected every time.

The act of changing the value of k, in the range 1− P , directly and measurably

impacts the selection pressure the tournament selection operator exerts on the

population.

2.1.3.3 Roulette Wheel Selection

Fitness Proportionate Selection, more commonly referred to as Roulette Wheel

Selection, is a style of selection operator used in GP. In fitness proportionate

T.D. Griffiths, Ph.D Thesis, Aston University 2019 17

Genetic Programming: Introduction

selection the probability of an individual being selected is directly proportional

to the fitness score of the individual [34].

As shown in Figure 2.5, the individuals with a higher fitness score, A and C

have a higher probability of being selected, compared to individuals with a lower

fitness score, B and D.

DA B C

Total Fitness = F0 F

Selected Individual

Figure 2.5: Traditional Linear Fitness Proportionate Selection
The likelihood of an individual x being selected is

directly proportional to its fitness score.

As the fitness score of an individual increases the probability of it being selected

increases proportionally, relative to the other individuals in the population, as

shown in Equation (2.1).

px = fx∑n
i=1 fi

, (2.1)

where px is the probability of individual x being chosen, fx is the fitness score of

individual x and n is the number of individuals present in the population.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 18

Genetic Programming: Introduction

D

A

B

C Selected
Individual

0

F

Total Fitness = F

Figure 2.6: Roulette–Wheel Fitness Proportionate Selection
The likelihood of an individual x being selected is

directly proportional to its fitness score.

Fitness proportionate selection is commonly referred to as roulette wheel selec-

tion, alluding to the often used metaphor of a casino roulette wheel, where the

bins on the roulette wheel are sized according to the fitness score of an individual,

as shown in Figure 2.6.

Highlights of Roulette Wheel Selection

The fitness proportionate operator is designed to probabilistically select individu-

als based on their fitness scores, with individuals with a higher fitness score being

more likely to be selected.

However, in contrast to tournament selection, the magnitude of the difference

between individuals has a large impact on the outcome of fitness proportionate

selection.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 19

Genetic Programming: Introduction

For example in Figure 2.5, the individual marked A with the highest fitness score,

is much more likely to be chosen in comparison to the individual marked D with

the lowest fitness score. However it should be noted that again, in contrast to

tournament selection, in fitness proportionate selection the sum of all probabili-

ties for each individual being selected is equal to 1.

Therefore, due to the fixed stochastic nature of fitness proportionate selection,

although unlikely an occurrence, there is a possibility that the individual marked

D with the lowest fitness score in the population, may still be chosen as a parent.

This highlights the fact that in fitness proportionate selection, even individuals

with low fitness scores may, on occasion, be chosen as parents and contribute to

future generations, thus potentially having an impact on the future diversity of

individuals within the population3.

It is for this reason that it is not possible to directly alter the selection pressure

the fitness proportionate selection operator exerts on the population.

2.1.3.4 Truncation Selection

Truncation selection is a simple selection operator used in GP. In truncation se-

lection the individuals within a population are ordered according to their fitness

score and a proportion p of the fittest individuals are selected.

It is possible to directly alter the selection pressure of truncation selection by

changing the size of the proportion value p.

As the individuals in the population are sorted according to their fitness scores,

3The link between GP selection operators and the overall diversity of a population is dis-
cussed in greater detail in Chapter 6.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 20

Genetic Programming: Introduction

reducing p would lead to an increase in selection pressure and a fitter and less

diverse range of individuals would be selected.

Alternatively, increasing p would lead to a decrease in selection pressure, leading

to a more diverse range of individuals being selected from the population. Trun-

cation selection was explored and analysed in detail by the distributed breeder

genetic algorithm (DBGA) [35].

2.1.4 Recombination

The recombination operator, often referred to as crossover, is responsible for cre-

ating new individuals using the individuals chosen previously by the selection

operator. We shall refer to the individuals chosen by the selection operator as

the parents and the newly generated individuals as the offspring.

As with the selection operator there are several different established approaches

to recombination in GP. The goal of any recombination operator is to take infor-

mation from the two parent individuals Pi1 and Pi2 and combine it together in

some manner to create a set of new offspring individuals Oi1...Oin.

Many recombination operators create either 1 or 2 children, however in practice

it is possible to create any number of children as long as the desired overall pop-

ulation size is maintained [12].

In canonical recombination operators, a crossover point is chosen, and the two

parent individuals Pi1 and Pi2 are divided at the selected point. The resultant

pieces are then recombined together to generate offspring which contain some

information from Pi1 and some information from Pi2.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 21

Genetic Programming: Introduction

For example in tree-based GP, a chosen crossover point, a node, would be chosen

for both Pi1 and Pi2. The nodes beneath the chosen crossover points, the sub-

trees would be transferred between the parents, with the sub-tree from Pi1 being

interchanged for the sub-tree from Pi2 and vice versa, creating new offspring in-

dividuals with a combination of nodes from the both parents.

It is possible to classify recombination operators by considering certain proper-

ties of interest which are present in the operators, these properties are respect,

assortment and transmission.

2.1.4.1 Respectful Recombination

A recombination operator is considered to be respectful if and only if, it generates

children which contain all of the features that are common across both parents.

Therefore, it can be postulated that if the parents are identical to each other, the

children generated will be identical to the parents also, this property is referred

to as purity.

Although it is possible for an operator which is not generally considered respectful

to create children which exhibit purity, all respectful operators are implictly pure

in nature.

2.1.4.2 Assorted Recombination

While the property of respect represents the exploitative side of the recombination

process, the property of assortment represents the exploratory side. An operator

is said to be properly assorting if it is able to produce any combination of features

taken from both parents.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 22

Genetic Programming: Introduction

Some operators may take several generations or several runs of the recombination

operator to create a combination which covers all features of both parents, these

are known as weakly assorted operators.

On the other hand, operators that are able to combine any features of both

parents in one single execution are referred to as strongly assorted operators.

2.1.4.3 Transmitting Recombination

The final property of interest in recombination operators is the property of trans-

mission [27]. Transmission is possibly the most important property of operators,

an operator is said to be transmitting if every feature in the child can be found

in the parents. That is to say that nothing new has been added to the child, it is

a combination of features that were present in the parents.

It is possible however to have operators that introduce new features to chil-

dren which were not present in the parents. These operators, known as non-

transmitting operators, are often referred to as being responsible for the intro-

duction of implicit mutation in the recombination process. This is due to the fact

that it is possible for them to introduce features into the new population that are

not present in the current population.

2.1.5 Mutation

The final step in the GP system is mutation [36]. Unlike the implicit mutation

which is present in some recombination operators, most notably transmission

operators, the mutation being carried out in this step is explicit mutation. That

T.D. Griffiths, Ph.D Thesis, Aston University 2019 23

Chapter 2

it to say that it is done with the express purpose of causing realisable change in

the population of individuals.

2.1.5.1 Checked Mutation

Mutation can be divided into two main categories, safe and unsafe mutation.

Safe mutation is where the mutation being carried out is checked, ensuring that

the resultant individual is still valid.

Unsafe mutation on the other hand does not perform and checks when the mu-

tation is applied. The act of checking for validity is computationally expensive

to perform and should be taken into consideration when choosing a mutation

operator.

Depending on the GP representation that has been chosen, different types of mu-

tation operators can be used. Some representations are implicitly valid in nature,

and there is no need to use a safe mutation operator, as this would be a waste of

computational effort.

For example, canonical tree-based GP is always valid due to the ways in which

the trees are constructed, and subsequently mutated. Linear GP however does

not share this characteristic, and using an unsafe mutation operator on these

individuals has the potential to create invalid outcomes, so it is necessary to use

a safe operator.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 24

Chapter 3

Chapter 3

Benchmark Problems in

Genetic Programming

‘ Never ignore, refuse to see, what may be thought
against your thought. ’

Friedrich Nietzche

T.D. Griffiths, Ph.D Thesis, Aston University 2019 25

Benchmark Problems in Genetic Programming

Chapter Contents

Benchmark Problems .27

Symbolic Regression . 28

Route-Finding .29

Lawnmower Problem . 29

Santa-Fe Trail Problem .30

Measuring the ‘Best’ Performance . 30

The Singular Benchmark Approach .31

Benchmarks as a Proof-of-Concept . 31

The Simplicity Paradox . 32

The Benchmark Suite Approach .32

Importance of Benchmarks .33

Desirable Benchmark Characteristics . 34

T.D. Griffiths, Ph.D Thesis, Aston University 2019 26

Benchmark Problems in Genetic Programming

3.1 Benchmark Problems

A benchmark problem is a standardised problem, primarily used for evaluating

the performance of a solution. Solutions from different algorithmic methodologies

and approaches can be assessed, with the resultant performance comparable [37].

Some benchmarks are utilised in order to illuminate and highlight features of

an algorithm. Real-world benchmarks are created in order to reflect real-world

problems - allowing for a simplified problem to created, abstracting away some

of the complexity whilst still providing valuable insight.

Benchmark problems for automatic programming have been generally classified

by McDermott et al, into the following groups [38]:

Symbolic Regression, Classification, Predictive Modelling and finally,

Route-Finding, upon which we will primarily concentrate

Traditionally, benchmark problems have been utilised, in an attempt to answer

two primary questions [39]:

•Which algorithmic approach results in the best performance on a given task?

• Which algorithmic approach should be used for a given real-world problem?

In order to understand the first question, one must first consider what it means to

be the ‘best’ in the context of performance benchmarking, and begin to enquire

as to whether this has any bearing on approaching the second question – the

solving of real-world problems.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 27

Benchmark Problems in Genetic Programming

Empirical studies have attempted to show the effectiveness of many algorithmic

approaches. However, these experimental methods of comparison on a given

benchmark problem have several drawbacks [40]. One flaw with the traditional

empirical evaluation of algorithmic performance is that the resultant conclusions

rely just as heavily on the problem being utilised as they do on the algorithmic

approach being tested. This often leads to the situation where a tailor made

solution performs excellently on one particular benchmark, but the performance

does not generalise or transfer well to other similar benchmark problems, known

as over-fitting [41].

3.1.1 Symbolic Regression

Symbolic regression problems utilise a form of regression analysis, used to search

the mathematical expression space in an effort to create a model that accurately

fits to a given dataset. In symbolic regression combinations of mathematical

building blocks are combined, including expressions, operators, and constants to

form a model. These models, and the combinations of mathematical building

blocks they are composed of, are modified by the GP system in order to find a

solution.

Symbolic regression problems are the most commonly used benchmark problem

used in Genetic Programming [38]. However, due to a proliferation of differ-

ent problems an effective comparison of different approaches is often difficult to

achieve.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 28

Benchmark Problems in Genetic Programming

3.1.2 Route-Finding

Route-finding, or path-finding problems, are a type of problem where a route

must be found through a simulated environment, usually involving some form of

obstacles, such as a maze [5].

Canonical route-finding problems used in GP include: Traversal problems such

as the lawnmower problem [12], Artificial Ant problems such as the Santa-Fe

trail [12].

3.1.2.1 Lawnmower Problem

The lawnmower problem, introduced by Koza [12], is a simple problem consisting

of an n ×m toroidal grid representing a lawn of grass and a controllable agent

representing a lawnmower. The essence of the problem is to create a solution

which is able to traverse the entire lawn. The solution is comprised of a set of

movement instructions, corresponding to the route taken.

The lawnmower state consists of its current location in the grid and orientation

(N, E, S or W). Two example instances of size 10× 10 are shown in Figure 3.1

Adapted from: Griffiths, T.D., and Ekárt, A. [5]

Figure 3.1: Example Instances of the Lawnmower Problem

T.D. Griffiths, Ph.D Thesis, Aston University 2019 29

Benchmark Problems in Genetic Programming

Figure 3.2: The Santa-Fe Trail Problem Instance

The shaded area shows the traversed lawn, while the line within indicates the

actual trajectory taken.

3.1.2.2 Santa-Fe Trail Problem

The santa-fe problem, known also as the artificial ant problem [12] is a problem

where an agent searches for food pellets, along a pre-determined route in a sim-

ulated environment. The agent has a finite amount of energy which is consumed

as they move around the environment. Similarly to the Lawnmower problem,

the solutions generated in the santa-fe trail are comprised of a set of movement

instructions, corresponding to the route taken. The goal of the agent is to tra-

verse the environment and collect the food pellets in the most efficient manner,

utilising as little energy as possible.

3.1.3 Measuring the ‘Best’ Performance

The purpose of any benchmark problem is to provide a standardised test by which

the performance of different approaches can be assessed and compared. This com-

parison is done in order to discern which approach is the ‘best’. The notion of

T.D. Griffiths, Ph.D Thesis, Aston University 2019 30

Benchmark Problems in Genetic Programming

which approach is considered the best is one which is complex and often, at least

partly, decided from a subjective point of view.

For many canonical benchmark problems, the means by which the best algorith-

mic approach is decided is done using the raw benchmark performance.

For example in symbolic regression problems, the algorithmic approach which

produces the solution with the lowest error is typically considered the best.

3.2 The singular benchmark approach

Traditionally it was common for algorithmic approaches to be designed and tai-

lored towards solving a specific problem, or specific set of pre-defined instances

of a problem. This singular benchmark approach is effective during initial ex-

perimentation into the applicability and usability of an approach. It allows for

benchmarks to be used to illustrate the performance and specific capabilities of

a chosen approach.

3.2.1 Benchmarks as a Proof of Concept

When the field of Evolutionary Computation was in its infancy it was common

for researchers and authors to use create their own problems in order to test

their work, these were generally purposed as proof of concept problems [12]. As

the field of research progressed and expanded, the de-facto benchmark problems

continued to be used to test the relative performance of algorithmic approaches.

The main drawback to using these problems is the fact that, in the majority of

cases, the problems are trivially easy to solve. It is clear that using problems

T.D. Griffiths, Ph.D Thesis, Aston University 2019 31

Benchmark Problems in Genetic Programming

that are trivially easy, does little to forward or improve the field of research [7].

Problems - especially ones that are used as benchmarks, should reflect real-world

problems,be able to highlight features of an algorithm or provide domain insight,

and be of a non-trivial difficulty [5].

3.2.1.1 The Simplicity Paradox

There are two primary reasons as for why many of the proof of concept problems

are of trivial difficultly. Firstly, one approach to developing test problems was to

take a problem from a real-world domain that the author was familiar with, and

create a simplified representation of that problem in the digital domain.

It could be argued that for ease of construction and utilisation, these problems

were often over-simplified and did not accurately represent the difficulty of the

original problem.

Secondly, one must consider the reasoning behind the inception of the problems.

There is little motivation to create a complex and difficult problem if it will only

be used in order to prove the viability of an approach. To this end it may seem

attractive to purposefully create a problem which is of trivial difficulty, in an

attempt to further demonstrate a chosen approach.

3.3 The Benchmark Suite Approach

In order to combat the potential for over-fitting caused by singular benchmark

analysis, modern benchmarking analysis approaches utilise a purpose made suite

T.D. Griffiths, Ph.D Thesis, Aston University 2019 32

Benchmark Problems in Genetic Programming

of benchmark problems [7]. These suites contain several problems, usually with

varying degrees of difficulty and dimensionality, allowing for a more complex

analysis of multiple algorithm characteristics across a range of instances to be

effectively carried out [38].

The push towards benchmark suites, and solutions whose performance is able to

generalise across problems, was done in order to better emulate the real world. It

is important under these circumstances that solutions and algorithm architectures

are able to generalise and transfer performance in uncertain environments and

ideally across several different but related problems domains.

3.3.1 Importance of Benchmarks

In order for a problem to be considered an effective benchmark candidate it must

satisfy the majority of the aforementioned characteristics [38], combining them

together to make an effective benchmark. However, many of the problems cur-

rently being used as de-facto benchmarks in GP only satisfy a small number of

these characteristics [5, 7].

It is important to define a suite of benchmark problems, which collectively satisfy

the entire range of desirable characteristics. The main benefit of having a suite

of benchmark problems instead of using just a single problem is that it allows for

different types of problems from various areas to be tested and the approaches

compared. The range of problem domains also allows for the portability and

scalability of a solution approach to be tested across the field of research.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 33

Benchmark Problems in Genetic Programming

3.3.2 Desirable Benchmark Characteristics

For many years there has been little agreement on what makes an effective bench-

mark in GP. More recently, following on from discussions at GECCO 2012 [38], a

survey of the GP community by White et al. [7] outlined some of the important

characteristics to be present across a suite of benchmark problems:

Tunable Difficulty One of the most important characteristics of an effective

benchmark problem is tunable difficulty. A problem is said to be tunably dif-

ficult if there are methods by which the difficulty of instances can be changed

and altered relative to each other. This provides scope for the benchmark to be

used across a wide range of GP methods, while maintaining comparability be-

tween the results. The creation of instances of increasing difficulty is essential in

order to push the boundaries of current research [38].

Precisely Defined A benchmark should be well-defined and documented, outlin-

ing the problem constraints and boundaries. It is common for a benchmark to

be accompanied by a set of recommended resource constraints, such as an upper

limit on the number of available evaluations or placing a time limitation on the

program execution.

Accommodating to Implementors In order for a benchmark problem to be ac-

cepted by the research community, it must be accommodating to the practitioners

who implement it, and straight forward to use. The benchmark problem must be

self-contained and all its elements must be open-source and accessible, to ensure

T.D. Griffiths, Ph.D Thesis, Aston University 2019 34

Chapter 3

universal access without the need for specific domain knowledge.

Representation Independent An effective benchmark should attempt, as far as

it is reasonably practical, to be representation independent in terms of the pro-

gramming language used and the programming style. As the field of GP expands

and matures, we expect that the number of programming languages and repre-

sentations being used will increase. Benchmarks should be flexible enough to

allow adaptation between various languages and representations, while still being

effective. Attempts should be made to ensure that the benchmark does not rely

on any specific attributes from a language.

Easy to Interpret and Compare It is also important that the results generated

by the benchmark are easy to interpret and can be compared without ambiguity.

This clarity in understanding the results is vital, it allows for trends and relation-

ships to be established between different sets of results, and reliable conclusions

to be drawn on the data.

The intention was not to create an exhaustive list of every desirable feature of

any benchmark suite, but a list of the key features that must be present in order

for the set of benchmark problems to be utilised in an effective manner.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 35

Chapter 4

Chapter 4

The Tartarus Problem

as a Benchmark

‘ ’

T.D. Griffiths, Ph.D Thesis, Aston University 2019 36

The Tartarus Problem as a Benchmark

Chapter Contents

Introduction to the Tartarus Problem .38

The Canonical Tartarus Problem . 39

Generating Tartarus Instances .40

Baseline Instance Values . 41

Measuring Instance Difficulty .44

Tuning Difficulty . 45

State Evaluation .46

Canonical State Evaluation . 47

Improved State Evaluation .48

Satisfying the Desirable Benchmark Characteristics50

Conclusion .52

T.D. Griffiths, Ph.D Thesis, Aston University 2019 37

The Tartarus Problem as a Benchmark

4.1 Introduction to the Tartarus Problem

The Tartarus problem (TP) is a grid-based optimisation problem defined by

Teller [6] and introduced as a benchmark problem by Griffiths and Ekárt [5].

A TP instance comprises of an enclosed, non-toroidal grid environment of size

n × n, containing a predefined number of movable blocks B and a controllable

agent A.

When a TP instance is initialised, the blocks and the agent are randomly placed

within the central n-2 × n-2 grid squares. Therefore, given a canonical TP

instance of size n = 6, the blocks and the agent would be placed within the

central 4 × 4 grid squares. An example initial state of size n = 6 with B = 6

blocks is shown in Figure 4.1(a).

Source: Griffiths, T.D., and Ekárt, A. [5]

(a) Example Initial State (b) Example Final State

Figure 4.1: Example Initial and Final Tartarus Instances.

Unlike other grid-based problems, such as the Lawnmower problem [12], the agent

is initially unaware of its location and orientation within the environment. The

agent receives input from eight sensors, allowing it to detect both blocks and the

environment boundary in the surrounding eight grid-squares.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 38

The Tartarus Problem as a Benchmark

The agent is able to change its state by executing actions, chosen from the fol-

lowing three actions:

(1) turn left, (2) turn right, (3) move forwards one square.

The goal is to evolve a controller, allowing for the agent to locate the blocks and

move the them to the edges of the environment within a set number of allowed

actions m, an example goal state is shown in Figure 4.1(b).

At the end of a run, the environment is analysed and the agent is awarded a

score, the fitness score, based on its progress toward achieving the goal.

4.1.1 The Canonical Tartarus Instance

The canonical Tartarus instance consists of a grid of size n = 6, containing B = 6

blocks and one agent, example initial states are outlined in Figure 4.2.

As each tartarus instance is randomly generated, the placement of the blocks and

agent can vary greatly between instances. In Figure 4.2(a) the blocks are placed

in a clustered manner, with all of the blocks concentrated into one small area of

the environment.

Conversely, in Figure 4.2(b) the blocks are placed in a more dispersed manner

spread out throughout the grid. The placement of the blocks has an impact on

the minimum number of moves required to complete the instance, for example

the agent would require 32 moves to solve the clustered instance in Figure 4.2(a)

and an agent would require only 27 moves to solve the dispersed instance in Fig-

ure 4.2(b), a reduction of more than 15%.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 39

The Tartarus Problem as a Benchmark

Source: Griffiths, T.D., and Ekárt, A. [5]

(a) Clustered Initial State (b) Dispersed Initial State

Figure 4.2: Example Clustered and Dispersed Tartarus Instances.

4.1.2 Generating Tartarus Instances

When generating Tartarus instances it is important to note that not all instances

can be solved perfectly. It is likely that some instances will contain arrangements

of blocks, which are impossible to move, making the instance partly or completely

impossible to solve.

(a) Wilson Configuration (b) 4-Block Cluster

Figure 4.3: Partially Solvable Tartarus Instances

The two most common of these configurations are shown in Figure 4.3. The

Wilson configuration shown in Figure 4.3(a), although it is possible to move

some of the blocks, doing so is likely to create a cluster of four blocks, which

cannot be moved. Similarly, Figure 4.3(b) shows an instance with an existing

four block cluster which cannot be moved. Although the four block cluster is the

T.D. Griffiths, Ph.D Thesis, Aston University 2019 40

The Tartarus Problem as a Benchmark

most frequent configuration preventing completion in the canonical 6×6 instance,

it is also possible for all 6 blocks to be placed together in an immovable cluster.

4.1.2.1 Baseline Instance Values

In order to establish baseline values for use in the Tartarus problem, a set of

Tartarus instances were created, with 1000 for each of the four chosen sizes,

n =
{
6, 7, 8, 16

}
.

The number of instances generated and used for the experimentation was decided

using the following equation [42]:

x ≥ 1
− ln (1− ε)

(
ln (|H|) + ln

(
1
δ

))
, (4.1)

given a function f in a space of functions H, that x training examples suffice to

ensure, with probability 1 − δ that any hypothesis consistent with the data will

not produce an error larger than ε.

Therefore, given a Tartarus function in a space of functions equal to 380, 1000

instance training examples would suffice to ensure that the data will, with a

probability of 0.95, produce an error smaller than 0.1 .

Through experimentation on the generated Tartarus instances, a set of baseline

instance values were established. A successful Tartarus solution must involve

both finding the blocks in the environment and pushing the blocks to an edge,

taking into account obstacles such as immovable block clusters.

Let us consider the step of pushing a block to an edge. The expected distance of

T.D. Griffiths, Ph.D Thesis, Aston University 2019 41

The Tartarus Problem as a Benchmark

a block randomly initialised in a 6× 6 grid to an edge is:

Dist = 1
(n− 2)2

n−2
2∑

i=1
4(n− 1− 2i)i = n(n− 1)

6(n− 2) , (4.2)

where 4(n− 1− 2i) is the number of positions on the inner grid of size n− 2 that

are at distance i from an edge of the grid of size n.

Therefore, if the agent encounters a block and does not know the direction in

which to move to get to the closest edge, the expected distance to have to push

a block at location (x, y) to any edge becomes:

Dist = x+ (n− 1− x) + y + (n− 1− y)
4 = n− 1

2 . (4.3)

For a grid of size n = 6, the expected number of grid squares an agent must travel

is 2.5, increasing to 3.5 for a grid of size n = 8, and 7.5 for a grid of size n = 16.

The fraction of the grid that the agent can be expected to travel to reach any

edge will be:

Dist
n

= n− 1
2n . (4.4)

For a grid of size n = 6 the agent without global vision can expect to have to

travel a proportion of 0.416 of n in order to move one block to the edge (not

accounting for obstacles and travelling from the edge after successful move of one

block to the next block). As n increases, this proportion approaches 0.5.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 42

The Tartarus Problem as a Benchmark

For a an instance of n = 6 it is easier to move a block than for an instance of size

n = 7 (0.429) and substantially easier than an instance of size n = 25 (0.48). This

does not account for the occurrence of impossible to move blocks in an instance.

Based on Equation 4.4, we can conclude that the effort expected to move one

block to the edge increases as the size of the grid n increases.

The number of blocks in the environment which must be moved, B, contributes

to the overall difficulty of the problem instance, as more or fewer blocks must be

moved within the finite number of allowed moves.

Baselines were determined through regression, following generation and evalua-

tion of a set of 1000 instances, with a fixed number of moves for each of the four

sizes, m =
{
80, 109, 142, 569

}
respectively, and a varying number of blocks B.

The determined baseline for establishing the number of blocks is as follows:

Bbaseline =

(
n− 1

)2
·

1
3 −

n− 1
9n

 . (4.5)

The number of allowed moves m can be used to tune the difficulty of the Tartarus

problem. It makes sense to link this resource limitation to the grid size, as the

number of steps required for simply traversing the grid, or moving one block to

an edge, depends on the grid size.

In order to establish the relationships between the problem parameters and pro-

T.D. Griffiths, Ph.D Thesis, Aston University 2019 43

The Tartarus Problem as a Benchmark

duce reliable results, we determined that the following quadratic function would

be suitable:

mbaseline =

20n2

9

 . (4.6)

It is recommended that the values calculated using the recommended baselines in

Equation 4.5 and 4.6 be utilised as a reference when creating Tartarus instances.

It is recommended that instances are created using a working range of ±25%

from the baseline values, as outlined in Table 4.1. Values outside of this working

range are likely to produce instances which are either trivially easy or potentially

impossible to solve.

Table 4.1: Reference guide for generating Tartarus instances

n
Moves Blocks

−25% mbaseline +25% −25% Bbaseline +25%

6 60 80 100 4 6 8

7 82 109 136 7 9 11

8 107 142 177 9 12 15

16 427 569 711 39 52 65

32 1707 2276 2845 163 217 271

4.1.3 Measuring Instance Difficulty

In order to compare agent performance across multiple different instances, a

method of estimating the difficulty of instances is necessary. We proposed a

generic method for estimating the relative difficulty based on the characteristics

T.D. Griffiths, Ph.D Thesis, Aston University 2019 44

The Tartarus Problem as a Benchmark

of the instance, outlined in Equation 4.7.

D =


mbaseline

2m +
Bbaseline

2B +
BI

B
if BI < B

impossible if BI = B

(4.7)

where mbaseline is the baseline number of moves defined in Equation 4.6, m is

the user set number of allowed moves, Bbaseline is the baseline number of blocks

defined in Equation 4.5, B is the user set number of blocks, BI is the number of

impossible-to-move blocks.

Equation 4.7 allows for comparison of the relative difficulty between generated

Tartarus instances. The difficulty is estimated using the differences between the

suggested baseline values for the number of moves and blocks and the number

chosen for the instance generation and the number of impossible-to-move blocks

present in the instance.

4.1.3.1 Tuning Difficulty

The formula for estimating the difficulty of an instance, outlined in Equation 4.7,

ensures a clear separation between instances that only contain impossible-to-move

blocks and instances that have some movable blocks. In the case where there are

movable blocks present in an instance, it accounts equally for the relative changes

in the number of moves and number of blocks away from the suggested baseline

values. Therefore, the added difficulty of having a number of blocks in an instance

which are immovable is factored into the difficulty calculation.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 45

The Tartarus Problem as a Benchmark

The difficulty estimation has been designed to return an approximate value of

1 for instance using the suggested baseline values, although the inclusion of im-

movable blocks may vary this slightly, a value greater than 1 for more difficult

instances and a value less than 1 for instances which are easier to solve.

Table 4.2 provides a range of estimated difficulty levels and the corresponding

parameter values, from very easy to very hard for instances of size n = {6, 8, 16}.

These examples reflect how reducing the number of allowed moves increases the

difficulty of an instance in addition to reducing the number of blocks which would

make an instance even more difficult, due to the fact that intuitively it takes longer

to locate blocks which are spaced further apart.

Table 4.2: Example instances and their difficulty

Very Easy Easy Baseline Hard Very Hard

6× 6
m 96 88 80 66 55

B 7 7 6 6 6

D 0.85 0.88 1 1.11 1.23

8× 8
m 170 156 142 116 104

B 14 13 12 11 11

D 0.85 0.92 1 1.11 1.22

16× 16
m 704 662 569 486 422

B 58 55 52 50 47

D 0.85 0.90 1 1.11 1.23

4.1.4 State Evaluation

For the Tartarus problem a solution consists of a controller, which controls the

actions of the agent in the environment. In order to test the efficacy of a solution,

there needs to be a way to measure its outcome on an instance environment.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 46

The Tartarus Problem as a Benchmark

This is usually done by evaluating the end position (state) after executing the

complete series of instructions. In fact, the same evaluation method can be used

to evaluate any state, for different purposes:

• evaluate the initial state, in order to evaluate the problem instance

• evaluate an intermediate state, after a set period of time or number of moves,

in order to measure progress

• evaluate the end state in order to evaluate solution quality.

4.1.4.1 Canonical State Evaluation

The originally established method of state evaluation only rewards the number of

blocks, which have been completely moved to the edges of the environment. This

binary success or fail approach works well for many benchmark problems where

the absolute score achieved by a candidate solution is the only desired success

measure.

However, for GP, rewarding part-way solutions is essential during evolution, so

that better solutions can evolve. For example, the cluster of blocks in Fig-

ure 4.2(a) is very different from the dispersed blocks of Figure 4.2(b). Both

these states would have the same evaluation score of zero.

As mentioned in Section 4.1.1, the dispersed blocks example in Figure 4.2(b) is

visibly closer to an optimal end state, requiring only 27 to complete, compared

to the cluster example in Figure 4.2(a), requiring 32 moves to complete.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 47

The Tartarus Problem as a Benchmark

The binary assignment of success or fail is too coarse to be practically useful. It

misses important differences in performance between candidate solutions in the

population. Solutions that move no blocks at all would be evaluated the same as

solutions that make some progress, but fall short of actually moving a block to

the edge of the grid (see Figure 5(b)). Solutions that have not actually moved

blocks to the edges of the grid could still have made some progress by moving

blocks closer to the edges and this should be recognised and rewarded in some

manner.

According to the same rationale, initial states with the same number of blocks

are not equivalent, as some require less moves than others to solve. Therefore the

difficulty of the problem instance is not only dependent on the grid size, number

of blocks and allowed number of moves, but also the initial distribution of blocks

on the grid.

4.1.4.2 Improved State Evaluation

We propose a new evaluation method that rewards states according to how close

they are to the desired final states, by including how close to the edge each block

in the given state is:

State_value = C1 ·

B − 2
n

B∑
i=1

di −C2

 (4.8)

where B is the total number of blocks, n is the size of the grid and di is the

distance of block i from an edge in the given problem instance. C1 and C2 are

T.D. Griffiths, Ph.D Thesis, Aston University 2019 48

The Tartarus Problem as a Benchmark

scaling and translation constants based on B and n in order to make the value

range consistent with the current evaluation method. This allows for the direct

comparison of results from instances of any size with the canonical instance of

size n=6. For an instance of size n=6, with B=6 blocks C1 =1.8 and C2 = 8
3 .

1000 random tartarus instances of size n = 6 were generated containing 6 blocks

and evaluated using both the canonical evaluation and our proposed evaluation

methods.

In Table 4.3 we present 30 randomly selected examples of this state evaluation

comparison. As shown, the new method of state evaluation allows for a more

fine-grained and accurate evaluation.

Table 4.3: Fitness data comparing evaluation methods

Individual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Old Value 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

New Value 1.2 1.2 1.8 0.6 1.8 1.8 1.8 1.8 2.4 2.4 2.4 2.4 2.4 3.0 3.0

Individual 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Old Value 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0

New Value 3.0 3.0 3.0 3.6 3.6 3.6 3.0 3.6 3.6 4.2 4.2 4.2 3.6 4.2 4.8

The distributions of the results for the canonical and proposed evaluation ap-

proaches are shown in Figures 4.4 and 4.5 respectively.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 49

The Tartarus Problem as a Benchmark

Figure 4.4: Current Evaluation Distribution

Figure 4.5: Proposed Evaluation Distribution

The current evaluation method rates all states with no blocks at the edges as

equally poor, when in reality some can lead to end states that are just a few

moves away from optimal end states. The proposed evaluation method rewards

these. The distribution in Figure 4.5 better reflects the actual performance, at a

much more fine grained level.

4.2 Satisfying the Desirable Benchmark Characteristics

The Proposed changes made to the Tartarus problem, outlined in Section 4.1.4.2,

rewarding states according to how close they are to an optimal solution, lead to

an increase in the granularity of the performance assessment culminating in the

ability to tune the difficulty of a Tartarus instance.

The improved Tartarus problem satisfies the characteristics previously outlined

in Section 3.3.2:

T.D. Griffiths, Ph.D Thesis, Aston University 2019 50

The Tartarus Problem as a Benchmark

Tunable Difficulty The difficulty of the Tartarus problem can be altered by

changing the parameters of the problem (grid size, number of blocks) and the

restrictions placed upon the agent (number of allowed moves). This leads to a

predictable shift in the complexity and difficulty of the generated instance.

Precisely Defined The Tartarus problem is a constrained problem with well de-

fined boundaries for both the problem instance and the agent. The original

problem definition outlined a maximum number of allowed moves, in this paper

we suggest minimum and maximum constraints for allowed number of moves,

number of blocks and the size of the instance, providing a comprehensive list of

the operating constraints for the Tartarus problem.

Accommodating to Implementors Due to the fact that the Tartarus problem is

a grid based problem it is simple to implement and use. There are no specialist

skills or software tools that are required to create and use an implementation of

the Tartarus problem.

Representation Independent As the implentation of the Tartarus problem is sim-

ple, it does not require any specific languages or software tools. The problem is

representation independent and it should be possible to implement in any modern

programming language and paradigm.

Easy to Interpret and Compare The improved method of state evaluation in-

creases the ease with which Tartarus problem instances and solutions could be in-

terpreted and compared, allowing for a more fine-grained evaluation of instances,

T.D. Griffiths, Ph.D Thesis, Aston University 2019 51

The Tartarus Problem as a Benchmark

allowing for a more accurate comparison to be made.

Relevant There exists parallels that can be drawn between the Tartarus prob-

lem and real-world problems. For example, the recently announced Emergency

Robots competition1 (building upon the success of EuRathlon2), inspired by the

2011 Fukushima accident focuses on realistic emergency response scenarios. In

these scenarios missing workers have to be found and critical hazards have to be

identified in limited time.

Fast Given the improved method of state evaluation for the Tartarus problem

outlined in the thesis, together with the simple nature of the implementation,

tests can be carried out and meaningful comparisons can be made in a reasonable

time frame. The fitness evaluation is fast, allowing for multiple executions per

individual to be carried out.

4.3 Conclusion

The proposed changes made to the Tartarus problem, rewarding states according

to how close they are to an optimal solution, lead to an increase in the granularity

of the performance assessment and associated fitness reward. This allowed for

a greater degree of analysis to be carried on Tartarus instances, leading to the

establishment of a set of Tartarus baseline parameter values.

This analysis culminated in the creation of a reference guide for creating Tartarus

1http://eu-robotics.net/robotics_league
2http://www.eurathlon.eu An outdoor robotics challenge for land, sea and air

T.D. Griffiths, Ph.D Thesis, Aston University 2019 52

Chapter 4

instances of sizes up to n=32. A range of parameter values and their associated

difficulty level estimated were provided, from this it is possible to predict the

relative difficulty of a given instance, with more difficult instances being harder

to solve - either through a change in the number of allowed actions or the number

of blocks present in an instance.

With regards to RQ1, the proposed modifications made to the Tartarus problem

have identified it as a suitable benchmark problem, satisfying several of the de-

sirable benchmark characteristics - specifically, the ability to tune the difficulty

of Tartarus problem instances.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 53

Chapter 5

Chapter 5

Self-Adaptation in Genetic

Programming

‘ ’

T.D. Griffiths, Ph.D Thesis, Aston University 2019 54

Self Adaptation

Chapter Contents

Self-Adaptation .56

When to modify . 57

How to modify . 58

Parameter Modification Approaches .58

Deterministic Parameter Modification . 58

Adaptive Parameter Modification .59

Self-Adaptive Parameter Modification . 59

Taxonomy of Approaches . 60

Self-Adaptive Crossover Operator . 61

Crossover Bias Implementation .62

Updating Crossover Bias . 63

Tartarus Problem Case Study . 65

Sante-Fe Problem Case Study . 71

Results .73

Conclusion .74

T.D. Griffiths, Ph.D Thesis, Aston University 2019 55

Self Adaptation

5.1 Self-Adaptation

In the field of evolutionary computation and specifically genetic programming, it

is widely accepted that the on-the-fly modification [43] and adaptation of param-

eter values at runtime can lead to improvements in performance [44].

Self-adaption aims at biasing the distribution of individuals in the population

towards more appropriate and effective areas of the search space at runtime [45].

This is achieved by means of setting and adjusting control parameters [8] - these

can be expressed in terms of population size, recombination probability, mutation

rate or the internal mechanisms of genetic operators, to name a few.

Rosenberg proposed [46] the adaptation of crossover probabilities, with Bagley [47]

introducing the concept of incorporating the control parameters into the struc-

tural representation of the individual and Bäck proposing [48] the self-adaptation

of mutation rates. This work was followed by Shaffer and Morishima in their work

on self-adaptive punctuated crossover [49], concerning the adaptation of both the

number and location of crossover points.

The desired outcome of self-adaptation is not only to find ways in which to

improve the performance but to also to do it efficiently. It should be noted

that this is further complicated due to the fact that the process of optimising the

self-adaptation bias is itself a dynamic problem, since a set of control parameters

which was deemed optimal at the start or during the run, may end up being

unsuitable at a later stage in the evolutionary process.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 56

Self Adaptation

It is for this reason that there is a need for a mechanism which favours a constant

and continuous opportunity for modification during runtime [50].

We propose to conceptualise the modification of parameter values as two distinct

processes, the first: ‘when’ to modify and the second: ‘how’ to modify.

5.1.1 When to modify

A common approach for deciding when to trigger the parameter modifications,

whether they be deterministic [51] or probabilistic [52] in nature, is by use of a

pre-determined schedule or fixed time interval; we refer to the parameter value

modifications triggered by these methods as episodic modifications. The primary

benefit of episodic methods is that they allow for a regular and predictable se-

quence of parameter modifications to be performed over time without the need

for any further interaction.

However, the rigid nature of this approach presents drawbacks when utilised on

dynamic multi-dimensional optimisation problems, such as the Tartarus Problem.

During the execution of a run, it is likely that the environment of the problem

may change, and the chosen time interval, which was deemed appropriate at the

start of the run, may no longer be optimal and may need to be changed.

An alternative to episodic modification is to create a mechanism which provides

a continual opportunity to modify parameter values at any time; we refer to this

as continuous modification.

We propose the establishment and introduction of a self-adaptive crossover bias

T.D. Griffiths, Ph.D Thesis, Aston University 2019 57

Self Adaptation

method, as outlined in Section 5.2, allowing for the continual modification of

individual crossover parameters at runtime.

5.1.2 How to modify

The process of deciding ‘how’ a parameter value is to be modified is often more

complex, this can be divided into two smaller, sequential sub-tasks:

• Deciding the mechanism by which the parameter values are modified,

• Calculating the magnitude of the parameter value modifications.

This division between the mechanism and the magnitude allows for the modifica-

tions and the impact of the modifications to be tuned and controlled separately at

runtime. There exist several different approaches to deciding ‘how’ the parameter

values should be modified that are utilised in genetic programming, these can be

classified as deterministic, adaptive or self-adaptive.

5.1.3 Parameter Modification Approaches

Here the three categories of parameter modification approaches utilised in genetic

programming, deterministic, adaptive or self-adaptive are described.1

Deterministic Parameter Modification

The parameter value is modified on a global level according to a fixed, pre-

determined rule. The mechanism receives no feedback from, and is not influenced

by, the current status of the search [53, 54].

1The descriptive terms ‘Adaptive’ and ‘Self-Adaptive’ are used in the broad general context
of Evolutionary Computation. These terms have distinct meanings in fields such as Artifical
Life; based on strict Ecological and Psychological definitions.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 58

Self Adaptation

Adaptive Parameter Modification

The parameter value is modified on a global level according to a mechanism

which receives input from, and is at least partly influenced by, the status of the

search [55].

Self-Adaptive Parameter Modification

The parameter value is modified on an individual level, where the parameters are

encoded into the genome of an individual in some form. The parameters undergo

the same processes of mutation and recombination as the individuals. The mod-

ification of these parameter values is coupled with the status of the search [56].

In adaptive parameter modification (APM) the mechanism by which the param-

eter values are modified is defined in advance, leading to an explicit exogenous

parameter modification. The performance of APM is only as good as the infor-

mation that it receives from the environment, therefore care must be taken to

ensure that the information received is applicable to the selected parameters.

Finally, in self-adaptive parameter management (SAPM) the way in which the

parameter values are modified is entirely implicit. In this approach the muta-

tion and recombination processes of the evolutionary cycle itself are used and

exploited. The parameter values are embedded in the representation [57] leading

to an implicit endogenous parameter modification. The performance of SAPM is

closely linked to the choice of evolutionary operators, therefore effective operator

choice is essential.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 59

Self Adaptation

5.1.4 Taxonomy of Approaches

In order to classify and compare the different parameter modification approaches,

taxonomies and classification schemes have been presented, with Angeline [58]

considering the different types of adaptation to be divided between absolute and

empirical update rules.

Absolute updates involve the sampling of an individual over several generations

or sampling the population as a whole, using the outcome of which to make a

decision based on a deterministic or fixed rule approach. By contrast, empirical

updates control the value of the parameter values, often incorporated as part

of the individuals structural representation and subject to the impact of genetic

operators.

The classification proposed by Eiben et al. [44], builds upon and extends the

concepts introduced by Angeline, dividing the approaches into three categories,

deterministic, adaptive and self-adaptive, based on the level or scope of the adap-

tation, i.e. where the changes occur, either at individual or population level.

We propose an improved taxonomy, broadening the classification of Eiben et

al. [44], allowing for comparison between the different parameter modification

approaches to be made. Each approach is affected by a set of factors, both internal

and external, which influence the overall effectiveness and performance. The self-

adaptive approach leads to modifications to be made at the individual level, in

contrast the adaptive and deterministic approaches both lead to modifications to

be made at a global level.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 60

Self Adaptation

Table 5.1: Taxonomy of Parameter Modification approaches. (× indicates a relationship.)

Deterministic APM SAPM

A
ffe

ct
ed

B
y

Explicitly-Defined
Mechanisms

× ×
State of the
Search

× ×
Operator
Selection

×

M
od

ifi
es

Population Level
Parameters

× ×
Individual Level
Parameters

×

absolute empirical

The deterministic parameter modification approach can be seen as analogous to

the absolute updates rules proposed by Angeline [58], with APM and SAPM

both being considered as forms of empirical updates rules, of varying degrees of

complexity.

5.2 Self-Adaptive Crossover Operator

We postulate that allowing the GP system to trigger parameter modifications ‘as

and when they are required’ would reduce the number of ineffective adaptations

being executed, increasing efficiency and allowing for convergence to an optimal

solution.

We propose the implementation and introduction of a self-adaptive crossover

operator, which is expected to create a more continuous parameter value modifi-

cation process. The improved process would be more flexible, in comparison with

the rigid, traditional episodic approaches outlined in subsection 5.1.1, leading to

an increase in generated solution performance.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 61

Self Adaptation

In order to test the efficacy of the proposed self-adaptive crossover operator,

experiments were conducted using instances from both the Tartarus Problem

(detailed in subsection 5.2.2) and the Santa-Fe Trail Problem (detailed in subsec-

tion 5.2.3). These problems were chosen due to the fact they share a number of

similarities in terms of their structure: agent composure is similar with the agents

in both problems are able to chose a finite number of movement operations from

a set of three separate actions, in order to traverse the environment.

During the execution of a run, for each agent controller, the aggregate number of

each of the three possible actions: move forwards one square (AF), turn left (AL)

and turn right (AR) alleles are counted. We refer to this underlying structure

of the controller - akin to the genome, as the composition. It is important to

note that this composition of the genome does not take into consideration the

sequential order of the alleles, but only the aggregate number of each type of

allele present.

We hypothesised that for both the Tartarus Problem and the Santa-Fe Trail

Problem that there exist optimal compositions of agent actions, which, when used

to seed future individuals, will likely lead to an increase in solution performance.

5.2.1 Crossover Bias Implementation

It was postulated that it would be possible to design a self-adaptive crossover op-

erator bias, in an attempt to exploit the changes in expected fitness for different

compositions of agent actions, residing in different areas of the composition space.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 62

Self Adaptation

This allows for the introduction of bias in the generation of new individuals by

favouring offspring with certain compositions. As it is the output of the chosen

crossover operator that is affected, the process of generating new individuals, the

proposed self-adaptations can be incorporated and utilised alongside any tradi-

tional crossover approach.

In order to implement the bias, the crossover operator was parameterised at

the individual level. During initialisation each individual was assigned a random

target AF value T ′g, in the chosen range AF =
[

0.2m , 0.8m
]
allowing a wide spread

of initial values excluding the excessively high and low values, from where the bias

can adapt during evolution.

5.2.1.1 Updating Crossover Bias

The process of adapting the target value is divided into two stages. In the first

stage, the ‘how’ stage, the target value T ′g is updated at the end of generation

g during the evaluation step, according to the performance of the individual in

comparison to previous evaluations:

T ′g =


Tg if Fg > Fg-1

Tg + R g if Fg ≤ Fg-1 ,

(5.1)

where Tg is the current target value, Fg and Fg-1 are the current and previous

fitness scores of the individual and R g is a uniformly distributed random value

T.D. Griffiths, Ph.D Thesis, Aston University 2019 63

Self Adaptation

in the interval: [
− AF g

Tg
,
AF g

Tg

]
,

where AF g is the current AF value for the individual in generation g.

In the second stage, the ‘when’ stage, the probability of triggering the self-

adaptation and implementing the new target value T ′g into the crossover pa-

rameters of the individual is calculated:

P (T ′g) = Tg

G · B · T ′g
, (5.2)

where G is the number of generations since the last improvement in the fitness

score of the individual, inclusive of the current generation, and B is the number

of blocks present in the instance.

The probability P (T ′g) is influenced by both the number of generations G since

the actions of the individual led to an improvement in fitness score and the change

between the target values Tg and T ′g.

As G increases or the difference between Tg and T ′g increases, the chance that

the self-adaptation will be triggered becomes greater. If the self-adaptation is

triggered, at the start of the next generation, Tg+1 will be initialised with the

current value T ′g.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 64

Self Adaptation

5.2.2 Self-Adaptive Crossover: Tartarus Case Study

As the candidate solutions present in the Tartarus Problem are comprised of three

primary components, their compositions can be illustrated more clearly using a

ternary plot, in order to visualise the magnitude of the components present in the

composition. A population of 1000 individuals were generated. These individuals

corresponded to 697 unique genome compositions.

Figure 5.1: Central 80% of Compositions

Utilising Equation 4.1 presented in Section 4.1.2.1, the population of generated

individuals was executed across 1000 different Tartarus Problem instances of size

n = 6, in order to get an indication of their performance. The resultant fitness

scores averaged for each composition, as shown in Figure 5.1.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 65

Self Adaptation

The placement of each individual datapoint in the ternary plot illustrates the

magnitude of each of the three components present. Individuals with a higher

level of AF alleles, relative to the other alleles, will appear closer to the top point

of the ternary diagram. Alternatively, individuals with a higher level of AR and

AL alleles, relative to the other alleles, will appear closer to the leftmost and

rightmost points of the ternary diagram respectively.

Upon inspection of the ternary plot in Figure 5.1, there is a clear divide in the

average fitness between individuals who have an approximately equal composi-

tion, located in the central region of the ternary plot, and those individuals with

an uneven composition, who lie on the periphery. 80% of the compositions fall

within the central region; here the variation in average fitness score is low, with

values in the range
[
3.3 , 3.75

]
.

However, for individuals who have uneven compositions, and fall outside of this

central region; the variation in average fitness scores is high with values in the

range
[
2.6 , 4.6

]
.

This is highlighted most clearly in Figure 5.2, showing the bottom 10% and top

10% of individual compositions in terms of their averaged fitness score. It can

be seen that the top 10% and bottom 10% of compositions exist in two defined

bands surrounding the central region, showing that moving forwards is necessary,

but not sufficient on its own.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 66

Self Adaptation

(a) Bottom 10% of Compositions (b) Top 10% of Compositions

Figure 5.2: Top and Bottom 10% of Compositions

It was hypothesised that increasing the number of move forward instructions in

the genome, relative to the number of turn left and turn right instructions, would

lead to an increase in fitness score.

This can be seen most notably in Figure 5.1; there is a defined change in fitness

scores between the compositions in the upper section of the plot, with a higher

proportion of AF, and the compositions in the lower section of the plot, with

lower proportion of AF relative to the other alleles present in the composition.

This is expected behaviour: it is intuitive that compositions containing a high

proportion of turn left and turn right instructions would simply spin around and

not move very far from the initial grid location, therefore having a lower score.

In a similar manner, compositions containing a lower, but approximately equal,

number of turn left and turn right instructions, the impact of which would effec-

tively be cancelled out, result in a lower score.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 67

Self Adaptation

In order to test whether the self-adaptive crossover operator was effective at

proving the hypothesis, a second population of 1000 individuals were generated.

However, in contrast to previous experiments, the instances used were of size

n = 8, a more complex and harder problem than the canonical Tartarus instance

of size n = 6. Therefore each individual had a genome containing a random

mixture of m = 142 alleles, longer than the canonical m = 80 alleles.

These individuals were tested on 100 different instances of size n = 8. The target

AF values T chosen by the individual at each generation g were averaged, as

shown in Figure 5.3.

Figure 5.3: Convergence of Target AF Value T within the Population

Over time, the target values chosen by the individuals within the population

stabilise and converge to a small range of values. Figure 5.3 also shows the

maximum and minimum T values within the population, over generations, until

they converge.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 68

Self Adaptation

It can be seen that by generation 18 the target values of all the individuals within

the population have converged to approximately AF = 95, for an instance of size

n = 8. This indicates that allowing for the self-adaptation of the target value T

leads to the creation of a crossover operator favouring individuals with composi-

tions with close to optimal AF values.

Comparing the results to previous experiments we can conclude that an AF value

close to the optimal value has been found in Figure 5.3.

Figure 5.4: Comparison between Self-Adaptive Bias and Traditional Crossover

In Figure 5.4 the performance of the self-adaptive crossover bias, averaged over

20 different Tartarus instances of size n = 8 with b = 12 blocks, is plotted against

the performance using standard canonical crossover. The range in fitness values

present in the population at each generation is shown by the shaded areas, with

the average score shown as a solid line.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 69

Self Adaptation

The occurrences of self-adaptations being triggered within a population plotted

against the changes in maximum fitness score, on a generation by generation basis

is shown in Figure 5.5.

The plot shows that there is a strong correlation between the occurrence of self-

adaptations within the population and an increase in the maximum fitness score

achieved.

Figure 5.5: Occurrences of Self-Adaptation and the Maximum Fitness Score.

Between generation 11 and generation 12, 32% of the individuals in the population

triggered self-adaptations of their target AF value Tn. This coincided with an

increase of 0.5 in the maximum fitness score present in the population, bringing

it from 4.5 to 5.0. This is a substantial increase in the maximum fitness score

of the population, a likely consequence of the self-adaptations carried out by the

individuals.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 70

Self Adaptation

5.2.3 Self-Adaptive Crossover: Santa-Fe Case Study

Similarly to the the candidate solutions in the Tartarus Problem in Section 5.2.2,

the candidate solutions present in the Santa-Fe Trail Problem are comprised of

three primary components, and their compositions will be illustrated using a

ternary plot. A population of 1000 individuals were generated.

Figure 5.6: Ternary plot of Santa-Fe Trail Execution

The generated individuals were executed on Santa-Fe Trail Problem instances,

in order to get an indication of their performance. The resultant fitness scores

averaged for each composition as shown below in Figure 5.6. It is clear from

the plot that two main clusters of compositions emerged. Following on from the

T.D. Griffiths, Ph.D Thesis, Aston University 2019 71

Self Adaptation

conclusions of the Tartarus Problem experiments in Section 5.2.2 the individuals

in the Santa-Fe Trail Problem appear to exhibit an increase in performance as

the number of AF alleles are increased relative to the other alleles in their com-

positions.

However, unlike in the Tartarus Problem results where a single cluster of in-

dividuals was present, in the Santa-Fe Trail Problem the change in expected

performance appears to be amplified and two clusters of individuals have formed.

This has made the performance differences between the two groups of individ-

uals clear to see, the individuals who have increased proportion of AF alleles,

in the topmost cluster, have a higher level of performance in comparison to the

individuals with a lower relative proportion of AF alleles, in the central cluster.

Figure 5.7: Occurrences of Self-Adaptation and the Maximum Fitness Score.

The individuals in the Santa-Fe Trail population are exposed to the same self-

adaptive crossover operator as the individuals in the Tartarus Problem popu-

lation. The occurrences of self-adaptations are triggered within the population

T.D. Griffiths, Ph.D Thesis, Aston University 2019 72

Self Adaptation

plotted against the changes in maximum fitness score, on a generation by gen-

eration basis is shown in Figure 5.7. The plot shows a correlation between the

occurrence of self-adaptations within the population and an increase in the max-

imum fitness score achieved.

5.2.4 Results

The relationship between the proportion of individuals in a GP population un-

dergoing self-adaptation and the subsequent increase in performance, averaged

across both the Tartarus and Santa-Fe Trail problems, is shown in Figure 5.8.

The increase in solution performance is averaged across a 3-generation window

from the measured change in individuals undergoing self-adaptation, allowing for

the on-going impact of the self-adaptation to assessed.

0 2 4 6 8 10 12 140

2

4

6

8

10

12

14

16

% Individuals in Population undergoing Self-Adaptation

%
Av

er
ag
e
O
bs
er
ve
d
In
cr
ea
se

in
Pe

rf
or
m
an

ce

Figure 5.8: Relationship Between Changes in Self-Adaptation and Solution Performance

There exists a positive correlation in Figure 5.8, between the change in the number

of individuals undergoing self-adaptation and the change in observed solution

T.D. Griffiths, Ph.D Thesis, Aston University 2019 73

Self Adaptation

performance over the 3-generation window. This supports the supposition that

the introduction of the self-adaptive crossover operator in a GP system, leads to

a measurable increase in solution performance throughout a run.

5.3 Conclusion

The proposed self-adaptive crossover operator provides a continuous opportunity

for modifications to be made at runtime, rather than sticking to the more rigid,

deterministic schedule. This increase in flexibility lead to an increase in effective

modifications being made. The proposed operator was able to satisfy the desired

outcome of self-adaptive systems outlined in Section 5.1, finding a way to improve

performance whilst maintaining the overall efficiency of a system.

In relation to RQ2, the introduction of the proposed self-adaptive crossover op-

erator into the GP system lead to an approximate overall average increase of 15%

for the Tartarus problem, and 10% for the Santa-Fe Trail problem.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 74

Chapter 6

Chapter 6

Aspects of Robustness in

Genetic Programming

‘ In the field of observation, fortune favours only the
prepared mind. ’

Louis Pasteur

T.D. Griffiths, Ph.D Thesis, Aston University 2019 75

Aspects of Robustness in Genetic Programming

Chapter Contents

Introduction .77

Modern Synthesis . 77

Genotype – Phenotype Map . 78

Robustness . 79

Phenotypic Robustness .81

Genotypic Robustness . 82

Transformational Diagrams . 83

Simulated Dunning–Kruger Effect .84

Diversity . 86

Phenotypic Diversity .87

Genotypic Diversity .88

Implementing Simulated Dunning–Kruger Bias .89

Results .91

Conclusion .95

T.D. Griffiths, Ph.D Thesis, Aston University 2019 76

Aspects of Robustness in Genetic Programming

6.1 Introduction

Is it possible to define a relationship between the genotype, the structure of an

individual, and the phenotype, the behaviour of an individual?

This question has dogged the progression of evolutionary theory since the early

twentieth century [59]. Similar postulations continue to be relevant in evolution-

ary computation and genetic programming.

Much of the features and population characteristics present in the natural world

can be replicated and observed in artificial populations in the digital domain.

Specifically, the concepts of robustness [60, 61] and diversity [1] have been ex-

plored and analysed in artificial populations [62].

In this chapter we introduce and implement a fitness bias, based on the cognitive

impact [63] of the Dunning–Kruger effect [64, 65], exploring the resultant impact

on the level of population diversity and robustness in a GP system.

6.2 Modern Synthesis

The answer proposed by the architects of Modern Synthesis [66], the generally

accepted biological model of evolution,1 is that the genotypic make-up of individ-

uals determines the resultant phenotypic actions; a common metaphor of which

is the oft-cited ‘genetic blueprint’.

1Modern Synthesis is a mathematical framework proposed by Julian Huxley, combining
and reconciling Charles Darwin’s theory of evolution and Gregor Mendel’s work on hered-
ity. This combination of Population Genetics and Mendelian Genetics addressed the relation-
ships between the broad-scale Macroevolution shown in the fossil record and the small-scale
Microevolution of populations, exhibited by living organisms.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 77

Aspects of Robustness in Genetic Programming

Since the discovery of genes as the sole units of heredity, there has been a logical

push to view the genotype of an individual as the determinant of form. This

is supporting the view that the genotype ultimately controls the developmental

processes, which in turn, generate the form, predicating the actions of the indi-

vidual. However, this depiction of the genotype and the development processes

as stages of a hierarchical model is incorrect [67]. The genotype does not specify

itself the developmental processes, nor the form of an individual; the genotype

should be viewed as one of several causal factors that are jointly determinant of

the phenotype of an individual [68].

Alberch introduced a new conceptual genotype–phenotype relationship, differing

from the previous ‘genetic blueprint’ model [68]. He suggested that the relation-

ship between the genotype and phenotype of an individual could be represented

as a mapping function f(G→P), defined by a given parameter space.

6.2.1 Genotype – Phenotype Map

The proposed mapping between the genotype and phenotype is not a simple

one-to-one relationship. In the natural world the links between genotypes and

phenotypes are complex and non-linear, the same phenotype can be expressed

from several different and distinct genotypes.

The same relationship between phenotypes and genotypes is present in genetic

programming in the digital domain. An example of this is symbolic regression

where large solutions and smaller, simplified solutions can share the same pheno-

T.D. Griffiths, Ph.D Thesis, Aston University 2019 78

Aspects of Robustness in Genetic Programming

type despite having different, albeit equivalent, genotypes [69]. The many-to-one

relationship indicates that the genotype space G is larger and more numerous

than the phenotype space P, as illustrated in Figure 6.1.

Genotype Space G Phenotype Space P Resultant Fitness F
min

max

Figure 6.1: Example (G→ P) Map:
Showing the relationship between a given set of genotypes G ′, the associated

set of phenotypes P ′ and the resultant fitness evaluation F.

According to Pigliucci [69], the genotype should be treated as one of several causal

factors that are jointly determinant of the phenotype of an individual. This is

due to the fact that developmental events are both affected by, and also have an

affect on, genetic expression. Therefore the parameters of the mapping function

f(G→ P) are developmental in nature, with their values being determined by

both environmental factors and genotypic expression.

6.3 Robustness

Robustness is referred to as a characteristic of a candidate solution whose per-

formance is not diminished despite perturbations in environmental parameters or

constraints [70]. A solution that does not lose its utility or performance qual-

ity under these changes is said to be robust [71]. Robustness can generally be

classified into two groups:

T.D. Griffiths, Ph.D Thesis, Aston University 2019 79

Aspects of Robustness in Genetic Programming

Phenotypic Robustness – the number of unique genotypes that map to a given

phenotype, and,

Genotypic Robustness – the ability of a genotype to produce the same phe-

notype under single-point mutation.

There exists a trade-off between the quality and the robustness of a generated

solution. As a consequence, optimally performing solutions often have a sub-

optimal level of robustness, such solutions are likely not to be resilient to small

environmental or parameter perturbations [72].

Robustness is considered to be a positive characteristic of evolutionary computa-

tion solutions [73], due to the fact they are often able to maintain a satisfactory

level of performance under dynamic and uncertain circumstances. It is possible

to illustrate the relationship between genotypes and phenotypes.

Pe Pf

Pc

Pd

Pa Pb

X1

X2
G1

G2

Figure 6.2: Example Two-Dimensional Geno-Pheno Space for X1 and X2.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 80

Aspects of Robustness in Genetic Programming

Figure 6.2 shows a hypothetical geno-pheno space,2 illustrating as examples, six

phenotypes Pa−f and two genotypes G1−2, as determined by the developmental

interactions of the two parameters X1 and X2.

The figure supports the assertion that many different combinations of parameter

values and different individual genotypic configurations can lead to the same

resultant phenotypic outcome. Each phenotype occupies a separate area of the

parameter space and these areas are separated by transformational boundaries,

also known as bifurcation boundaries3 [74]. Figure 6.2 can be used to illustrate

the characteristics of phenotypic and genotypic robustness [67], as detailed.

6.3.1 Phenotypic Robustness

The robustness of a phenotype is defined relative to the size of its genotype net-

work, as the number of unique genotypes present in the population that map to

the given phenotype [75]. Intuitively, a phenotype which has a large genotype

network is considered to be more robust than a phenotype with a smaller geno-

type network.

The size of the genotype network can be conceptualised as analogous to the

size of the area of the geno-pheno space2 occupied by the individual phenotype,

indicating that a larger range of parameter values could be used to achieve the

same phenotype.

2Although the parameter space shown in Figure 6.2 is 2-dimensional, the concept can be
utilised in n dimensional space, outlining the interactions between n parameter values.

3In the context of Dynamical System Theory, transformational boundaries are often referred
to as bifurcation boundaries, with the terms being used interchangeably.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 81

Aspects of Robustness in Genetic Programming

The larger this area, the larger the number of unique genotypes that map to the

phenotype, making the phenotype more robust and resilient to perturbations in

parameter values. In Figure 6.2 the phenotypes Pc and Pd occupy a much larger

area of the geno-pheno space than the phenotypes Pa and Pe, and would therefore

be considered to be more robust.

6.3.2 Genotypic Robustness

Canonical GP genotypes have been compared to each other in terms of their

n-neighbour relationships; genotypes which have one chromosomal difference are

said to have a 1-neighbour relationship, genotypes with two chromosonal dif-

ferences are said to be have a 2-neighbour relationship, and so forth [76, 69].

Genotypes with a 1-neighbour relationship can be conceptualised as as being ad-

jacent to each other in the wider geno-pheno space.

A genotype is considered robust if it is able to map to the same phenotype un-

der the effects of single-point mutation [75], which can be viewed in terms of its

1-neighbour relationships. It is considered more likely that for genotype G1 in

Figure 6.2, the genotypes with a 1-neighbour or 2-neighbour relationships still

map to the same phenotype, Pd, these are known as neutral neighbours [76].

However, for the genotype G2 in Figure 6.2, which lies closer to the transforma-

tional boundaries between the phenotypes, Pe, Pd and Pf , it is more likely that

the genotypes with a 1-neighbour or 2-neighbour relationship may map to an

entirely different phenotype, these are known as non-neutral neighbours.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 82

Aspects of Robustness in Genetic Programming

The robustness of a genotype can be measured by comparing the number of neu-

tral neighbours in relation to the number of non-neutral neighbours [75]. This can

be conceptualised as being analogous to the distance between the genotype and

the transformational boundaries present in the geno-pheno space in Figure 6.2.

The larger the distance between the individual genotype and the transformational

boundaries, the more robust the genotype is considered to be.

6.3.3 Transformational Diagrams

In order to simplify the relationships between phenotypes, we can derive the pos-

sible pathways of transformation from a specific parameter space. From these

pathways we can construct a transformational diagram, where the nodes repre-

sent the phenotypes and the links between them correspond to neighbour rela-

tionships, as shown in Figure 6.3.

The arrows between the phenotypes in Figure 6.3 represent a shared transitional

boundary, indicating that an individual with a genotype which lies near the

boundary could potentially transition between the two given phenotypes.

Pa

Pe

Pd

Pf

Pb

Pc

Figure 6.3: Transformational Diagram corresponding to the
‘Geno-Pheno Space’ shown in Figure 6.2.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 83

Aspects of Robustness in Genetic Programming

In order to further enhance the transformational diagram, we are able to con-

struct specific transformational diagrams for individual phenotypes, allowing us

to differentiate between probable and improbable transitions, the transitions for

phenotype Pf are shown in Figure 6.4.

’

Pe

Pd

Pf

Pc

Figure 6.4: Transformational Diagram for the Pb Pheontype
shown in the ‘Geno-Pheno Space’ in Figure 6.2.

This analysis does not take into account the relative viability of the adaptations.

The probability of a particular transformation is defined to be proportional to

the length of the boundary between the phenotypic domains shown in Figure 6.2.

More probable transformations are shown as thicker lines and less probable trans-

formation are shown as thinner lines.

6.4 Simulated Dunning-Kruger Effect

The Dunning-Kruger effect (DK) is a form of cognitive bias observed in popula-

tions, first described by psychologists Dunning and Kruger in 1999 [64]. Dunning

and Kruger describe how individuals with a low level of ability mistakenly over-

estimate their performance and conversely, individuals with a high level of ability

will often mistakenly under-estimate their performance. An example of this cog-

nitive bias is shown in Figure 6.5.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 84

Aspects of Robustness in Genetic Programming

None Expert

Lo
w

H
ig
h

Actual Knowledge

Pe
rc
ei
ve
d
Pe

rf
or
m
an

ce

Figure 6.5: Illustration of the Dunning-Kruger Effect: Showing the relationship between the
Actual Knowledge of an individual and their Perceived Performance.

The cognitive bias present in the Dunning-Kruger effect is clearly illustrated in

Figure 6.6, highlighting the difference between the actual and perceived test scores

for an experiment measuring humour recognition [64]. The area shaded in blue

with vertical lines is the area where the perceived score exceeded the actual score,

the area shaded red with dots is where the the perceived score is less than the

actual score achieved by the individual.

Adapted from Figure 1. J. Kruger and D. Dunning [64]

Bottom
Quartile

2nd
Quartile

3rd
Quartile

Top
Quartile

0

20

40

60

80

100

Actual Score

Pe
rc
ei
ve
d
Sc

or
e

Pe
rc
en
til
e

Perceived Score
Actual Test Score

Figure 6.6: Comparison Between Actual and Perceived Test Scores

T.D. Griffiths, Ph.D Thesis, Aston University 2019 85

Aspects of Robustness in Genetic Programming

Although the reasoning behind the cognitive bias is complex, it is postulated that

the main influencing factor is the fact that individuals with a low level of ability

do not posses the fundamental knowledge or experience required in order to ac-

curately and objectively assess their level of performance on a given task. These

individuals are unable to assess the competence of others, and more specifically,

their own level of competence.

Similarly, individuals who posses a high level of ability are likely to have the

fundamental knowledge and experience required to be able to recognise the true

scale and complexities of a given task. This often leads to the individuals in-

accurately underestimating their performance, illustrated by a variation of the

Socratic paradox, ’I know enough about x to know that I know nothing.’

6.5 Diversity

In genetic programming, the term population diversity is used to describe the

level of similarity between individuals in a population. This can be measured by

a variety of methods, which similarly to the robustness measures in Section 6.3,

can be broadly classified into two groups:

Phenotypic Diversity – diversity in the effects as a result of the execution of

individuals, and,

Genotypic Diversity – diversity in the structure of individuals.

Any measure of diversity used on a collection of objects must be able to reflect

and quantify how similar, or dissimilar, the objects are in relation to each other.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 86

Aspects of Robustness in Genetic Programming

Counting the number of unique individuals present in a population - known as

the variety of a population [1], is a trivial task.

However, quantifying exactly how different the individuals in a population are -

the diversity of a population, is a more complex task [77]. It should be noted

however, if the variety of a given population is low then the diversity measure is

likely to also be low [78].

6.5.1 Phenotypic Diversity

Phenotypic diversity methods measure and compare the functional differences be-

tween individuals, concentrating on the observed behaviours of individuals during

execution [79]. One common approach for estimating the phenotypic diversity of

a population is to calculate the fitness spread [80]: that is, the range of fitness

values obtained upon evaluating the individuals within the population, during a

given generation.

Many commonly used phenotypic diversity measures, such as the fitness spread

approach, use the fitness evaluation values of individuals as an approximation of

individual behaviours. However, for many problems, including those that have a

discrete set of possible fitness values, there may be several substantially different

individuals that have the same, or similar fitness value. These individuals can

have a wide range of differing behavioural attributes but the same fitness value,

leading to a lower, and seemingly inaccurate, measurement of the phenotypic

diversity [81].

T.D. Griffiths, Ph.D Thesis, Aston University 2019 87

Aspects of Robustness in Genetic Programming

6.5.2 Genotypic Diversity

Genotypic diversity methods often utilise some form of distance measurement [82]

or other quantitative measures [1], to compare the differences between individuals

in the population. These methods are concerned with comparing the structural

elements of individuals: that is, their shape, their depth, their overall size and

the functional operations and terminal values used at each node.

Traditionally, one common approach to measuring the genotypic diversity of a

population is to calculate the edit distance - the shortest sequence of editing op-

erations required to transform between two individuals [83, 84], for all individuals

in the population.

As outlined in Section 6.2.1, it is possible to have several different genotypes

that produce the same phenotype, this many-to-one relationship between several

genotypes and a single phenotype allows a population to have a substantial level

of genotypic diversity but express a negligible amount of phenotypic diversity.

Therefore, making efforts to maintain a higher level of genotypic diversity, such

as niching [85], are not guaranteed to translate to higher level of phenotypic di-

versity.

It is expected that there is a time delay between a change in genotypic diversity

and any resultant change in the level of phenotypic diversity present, reinforcing

the need for mechanisms to operate on a continuous basis, such as described by

the proposed self-adaptive crossover operator in Section 5.2.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 88

Aspects of Robustness in Genetic Programming

We propose that the introduction of the simulated Dunning-Kruger bias into the

fitness distribution of a population will enable the GP system to maintain a higher

level of population diversity over time, leading to an increase in the robustness

of the GP system.

6.5.3 Implementing Simulated Dunning-Kruger Bias

The DK bias will be achieved by means of modifying the fitness scores of indi-

viduals based on their performance relative to the rest of the population. The

individuals will have their actual true fitness scores modified, returning their re-

ported fitness score.

The lower performing individuals will have their reported fitness scores artificially

increased and the higher performing individuals will have their reported fitness

scores artificially reduced.

The reported fitness score of each individual i is calculated at the end of the

generation, prior to the execution of the selection and recombination operators,

using the following function:

DKi = Fi × 50 − 0.75p × Fmax − Fmin

2 ,

where DKi is the biased, reported fitness score and Fi is the actual fitness score

of individual i. The constants are a linear approximation, corresponding to the

perceived test score in Figure 6.6, p is the percentile actual fitness rank of the

individual, Fmin and Fmax are the min and max fitness scores found in the actual

fitness distribution of the population.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 89

Aspects of Robustness in Genetic Programming

The proposed approach of modifying and biasing the fitness distribution is similar

to that of fitness sharing [86]. However, in contrast to fitness sharing, where the

fitness of individuals is modified in relation to a distance metric or neighbourhood-

based measurement - the fitness value of each individual in DK is modified purely

in relation to their performance in comparison with the overall performance of

the population.

Fmin Fmax

Fitness Score

Original Distribution
DK Distribution

Figure 6.7: Comparison of the Original and DK Fitness Distributions

In Figure 6.7 the actual fitness and the reported DK fitness bias distributions,

averaged across 100 tartarus instances of size n=8 are shown. It can be seen that

the actual fitness distribution is skewed, with a significant minority of individu-

als whose performance lies around the median value, but who are unlikely to be

selected for recombination; contributing, in part, to the long-term loss of overall

population diversity. At the same time, the reported fitness distribution is closer

to a more symmetrical distribution.

We hypothesise that the introduction of the DK bias into the fitness distribution

will lead to a reduction in the evolutionary pressure present in the population

T.D. Griffiths, Ph.D Thesis, Aston University 2019 90

Aspects of Robustness in Genetic Programming

in a controllable and predictable manner, leading to a higher long-term level of

diversity.

6.5.4 Results

In order to assess the efficacy of the DK bias at increasing the robustness of can-

didate solutions in a GP population, a selection of 100 tartarus instances of size

n = 8 were generated.

Experiments were conducted where the instance was updated during execution

at regular time intervals C ={10, 15, 20, 50}. This change in environment and

instance setup was used to assess the robustness of the candidate solutions to

changes, both small and large, during execution.

1 2 3 4 5 6 7 8 9 100

10

20

30

40

Instance Change

D
iv
er
sit

y
%

Original Diversity
DK Diversity

Figure 6.8: Average Level of Phenotypic Diversity Throughout Execution for a
typical run of tartarus instance of size n=8, C=10 over 100 generations.

Figure 6.8 shows the average level of phenotypic diversity present in the popula-

tion for both the DK and canonical GP systems during a typical run. This was

calculated using a variation of the fitness spread technique [80]; the percentage

of individuals with a unique fitness score. This measure utilises the actual fitness

values present in the population, opposed to the reported fitness values modified

T.D. Griffiths, Ph.D Thesis, Aston University 2019 91

Aspects of Robustness in Genetic Programming

by the DK bias. The results indicate that the use of the reported fitness values

leads to an increase in the overall level of diversity present in the GP population.

1 2 3 4 5 6 70

10

20

30

40

Instance Change

D
iv
er
sit

y
%

Original Diversity
DK Diversity

Figure 6.9: Average Level of Phenotypic Diversity Throughout Execution for a
typical run of tartarus instance of size n=8, C=15 over 105 generations.

1 2 3 4 50

10

20

30

40

Instance Change

D
iv
er
sit

y
%

Original Diversity
DK Diversity

Figure 6.10: Average Level of Phenotypic Diversity Throughout Execution for a
typical run of tartarus instance of size n=8, C=20 over 100 generations.

Figures 6.9 and 6.10 show the average level of phenotypic diversity for the time

intervals C=15 and C=20 respectively. These results indicate that the impact of

the reported fitness modification on the level of diversity present in the popula-

tion is still present at larger time intervals.

Table 6.1 shows the average results from these experiments for both GP systems

utilising DK fitness bias and canonical GP systems. The observed delta upon

T.D. Griffiths, Ph.D Thesis, Aston University 2019 92

Aspects of Robustness in Genetic Programming

instance change in the average population fitness, for one generation: +1, and

five generations: +5 after the change, is shown - illustrating the impact of the

instance change on the average population fitness.

Table 6.1: Observed Average Population Fitness Delta for Canonical and DK Bias Systems.

Canonical 95%CI± DK Bias 95%CI±

C = 10 +1 0.9589 0.00145 0.7644 0.00134

+5 0.7400 0.00145 0.5722 0.00134

C = 15 +1 1.1322 0.00106 1.1956 0.00116

+5 0.9856 0.00106 0.9500 0.00116

C = 20 +1 1.2644 0.00170 1.2578 0.00154

+5 1.0867 0.00170 0.9440 0.00154

C = 50 +1 1.3656 0.00074 1.2722 0.00091

+5 1.4122 0.00074 1.1733 0.00091

The GP system utilising DK fitness bias is able to recover fitness performance

faster than the canonical GP system, under change, with an average difference of

6.18% for +1 and 12.36% for +5, across the 4 time intervals, C. Supporting the

supposition that DK fitness bias increases the robustness of a GP system.

Additionally, Table 6.2 and Table 6.3 shows the delta in average population fit-

ness for GP systems under instance change; utilising both DK fitness bias and

fitness sharing, across 100 Tartarus instances of size n = 8, for distance k=1

and k=2 respectively. In fitness sharing, individuals close to each other [87] in

the population share fitness scores. In the experiments, the fitness score of an

individual was calculated both by averaging [78] and derating [88].

T.D. Griffiths, Ph.D Thesis, Aston University 2019 93

Aspects of Robustness in Genetic Programming

The k value is calculated using the ternary distance, as illustrated in Section 5.1,

in order to find the surrounding individuals in the AF – AL – AR allele space.

Figure 6.11 illustrates the locations of neighbouring individuals at distance k=1,

for use in fitness sharing.

AF +

AF -

AR -

AL +

AL -

AR +

Invalid Location
Valid Location

Figure 6.11: Valid and Invalid neighbourhood positions

The composition of alleles present in an individual are of a fixed length. Therefore,

not all intersections, and their subsequent alleles, present in the space are valid.

Table 6.2: Observed Average Population Fitness Delta for DK Bias and Fitness Sharing (k=1)
GP Systems.

Averaged Derated

Fitness Sharing k=1 95%CI± DK Bias 95%CI±

C = 10 +1 0.8256 1.0613 0.00145 0.7644 0.00134

+5 0.8747 1.1197 0.00145 0.5722 0.00134

C = 15 +1 0.9444 1.0063 0.00106 1.1956 0.00116

+5 0.8390 0.9731 0.00106 0.9500 0.00116

C = 20 +1 0.9200 1.0032 0.00170 1.2578 0.00154

+5 0.9976 1.0124 0.00170 0.9440 0.00154

C = 50 +1 1.0022 0.9752 0.00074 1.2722 0.00091

+5 0.9901 0.9862 0.00074 1.1733 0.00091

T.D. Griffiths, Ph.D Thesis, Aston University 2019 94

Aspects of Robustness in Genetic Programming

Table 6.3: Observed Average Population Fitness Delta for DK Bias and Fitness Sharing (k=2)
GP Systems.

Averaged Derated

Fitness Sharing k=2 95%CI± DK Bias 95%CI±

C = 10 +1 0.4425 1.1181 0.00145 0.7644 0.00134

+5 1.4240 0.9614 0.00145 0.5722 0.00134

C = 15 +1 1.0269 1.0069 0.00106 1.1956 0.00116

+5 1.1637 1.0440 0.00106 0.9500 0.00116

C = 20 +1 0.9619 0.9950 0.00170 1.2578 0.00154

+5 0.9470 0.9560 0.00170 0.9440 0.00154

C = 50 +1 1.0070 0.9839 0.00074 1.2722 0.00091

+5 1.1046 0.9853 0.00074 1.1733 0.00091

From the results in Tables 6.2 and 6.3 it can be seen that the fitness sharing

approach, both at a distance of k=1 and k=2, has broadly similar performance to

the DK fitness bias. When the instance was updated at a shorter time interval,

C=10 and C=15, the averaged fitness sharing approach appears to outperform the

derated approach. However, when the frequency of change is reduced, C=50, with

a longer time interval between updates, the derated approach returns stronger

performance.

6.6 Conclusion

We proposed and implemented a novel fitness bias, inspired by the cognitive

biases observed in the Dunning–Kruger effect. The use of the reported fitness

values, as a result of utilising the DK fitness bias, lead to an approximate 10%

T.D. Griffiths, Ph.D Thesis, Aston University 2019 95

Chapter 6

increase in the long-term level of population diversity.

Subsequently, when Tartarus instances were changed regularly at varying time

intervals C, an increase in robustness was observed. The GP systems utilising

the proposed DK fitness bias were able to recover performance faster and with a

greater magnitude on average, compared to GP systems utilising canonical fitness

evaluation.

In relation to RQ3, we can conclude that it is possible to influence the diversity

and robustness of a population by utilising a simple fitness bias technique, inspired

by the Dunning–Kruger effect.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 96

Chapter 7

Chapter 7

Conclusion

‘ ’

T.D. Griffiths, Ph.D Thesis, Aston University 2019 97

Conclusion

Chapter Contents

Conclusion .99

Thesis Contributions . 99

Future Directions . 103

T.D. Griffiths, Ph.D Thesis, Aston University 2019 98

Conclusion

7.1 Conclusion

The research presented in this thesis has contributed to the literature and knowl-

edge of genetic programming, by focusing on mechanisms by which to improve

solution performance. Through the establishment of the Tartarus problem as a

benchmark for use in GP (Ch. 4), the introduction of a self-adaptive crossover

operator (Ch. 5) and a Dunning–Kruger inspired fitness bias (Ch. 6).

The results of the research demonstrate that the use of a self-adaptive crossover

operator lead to an increase solution performance when utilised in a GP system,

for the Tartarus problem and the Santa-Fe Trail problem. It was shown that the

introduction of the Dunning-Kruger inspired fitness bias was able to effectively

increase the level of long-term diversity present in a GP population - subsequently,

leading to an increase in robustness for the Tartarus problem.

7.1.1 Thesis Contributions

The thesis has made the following contributions:

In relation to RQ1:

The Tartarus Problem is presented as a genetic programming benchmark,

presenting a new improved instance evaluation mechanism. Guidance is

provided for tuning the difficulty of generated Tartarus instances.

In genetic programming it is important that the structure of the reward mech-

anism matches the evolutionary processes. The rewarding of part-complete and

T.D. Griffiths, Ph.D Thesis, Aston University 2019 99

Conclusion

piecemeal solutions is key, so that better solutions can evolve gradually over

time. In the canonical Tartarus problem, only the agents who completed the

entire movement of a block from its starting position to the environment bound-

ary are successful. This binary success or fail is considered to be too coarse to

be practically useful, when the instance sizes are increased above the canonical

instance of size n=6.

In this thesis we proposed an updated and improved Tartarus instance evalua-

tion mechanism, rewarding states according to how close they are to a desired

final state. This is done by measuring the aggregate distance between the blocks

in the environment and the environment boundary. The improved evaluation

mechanism is therefore able to reward agents who have made significant progress

towards an optimal solution, but who would have scored 0 with the canonical

Tartarus evaluation mechanism.

The increase in the granularity of the evaluation mechanism provided the ability

for a greater degree of analysis to be carried out on Tartarus instances. This

allowed for a set of baseline Tartarus values to be produced, culminating in a

reference guide for creating Tartarus instances of sizes up to n=32. From this

analysis it is possible to predict the difficulty of a given Tartarus instance, a range

of parameter values and their associated difficulty level estimates are provided,

allowing for the difficulty of a Tartarus instance to be tuned. The Tartarus

problem has been established as a suitable benchmark problem by satisfying the

characteristics outlined in Section 3.3.2.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 100

Conclusion

In relation to RQ2:

A novel self-adaptive crossover operator is presented for use in a GP system,

providing a continuous opportunity for parameter modifications to be made

at runtime, and leading to an increase in solution performance.

Self-adaption aims at biasing the distribution of individuals in the population

towards the areas of the search space which are more appropriate, producing

effective solutions. This is achieved by means of setting and adjusting control pa-

rameters present in the GP system. A desired outcome of self-adaptive systems

is to find ways in which to improve performance whilst maintaining the overall

efficiency of the system.

We provided a novel self-adaptive crossover operator for use in GP, capable of

modifying the control parameters at runtime, as-and-when they are deemed nec-

essary. The proposed operator provides a continuous opportunity for modifica-

tions to be made at runtime, rather than sticking to a rigid, deterministic update

schedule. This increase in flexibility allows for more effective modifications to be

made. As the process of optimising a self-adaptive system is a dynamic problem

in itself, the control parameters thought optimal at the start of, or during a run,

may end up being unsuitable later on. Therefore, an operator which is able to

offer a continuous opportunity to trigger modifications is preferable.

The introduction of the proposed self-adaptive crossover operator into the GP

system, lead to an overall average increase in solution performance of approxi-

mately 15% for the Tartarus problem, and 10% for the Santa-Fe problem.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 101

Conclusion

In relation to RQ3:

A novel fitness bias, inspired by the cognitive bias observed in the Dunning–

Kruger effect is implemented in a GP system. As a result, an increase in

population diversity, and subsequently solution robustness, was observed.

Robustness is referred to as a characteristic of a candidate solution whereby the

performance is not diminished despite perturbations in the environmental pa-

rameters or constraints. A solution that is able to conserve utility under these

changes is said to be robust. The diversity of a population has an impact on

the robustness of the population: populations with a low level of diversity, ho-

mogenous populations, are less likely to be able to withstand large changes in the

instance or environment being tested.

The Dunning–Kruger effect outlines cognitive biases observed in real-world psy-

chological experiments, concluding that individuals with a low level of ability

mistakenly over-estimate their performance whilst individuals with a high level

of ability will over-estimate their performance.

In this thesis we proposed and implemented a novel fitness distribution bias,

inspired by the cognitive biases observed in the Dunning–Kruger effect. The sim-

ulated DK bias modified the fitness scores of individuals based on their perfor-

mance relative to the rest of the population, in a manner similar to the observed

real-life DK bias. These updated fitness scores are then used for the selection

of individuals for the next generation in the GP system. An approximate 10%

increase in the level of long-term diversity was observed in the GP population.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 102

Conclusion

When tartarus instances where changed regularly at varying time intervals, an

increase in robustness was observed. The GP systems utilising the DK fitness

bias were able to both recover performance faster and with a greater magnitude

on average, compared to GP systems utilising canonical fitness evaluation.

7.1.2 Future Directions

The contributions presented in this thesis suggest potential avenues for future

research to be conducted:

This thesis has provided understanding as to how the Tartarus problem can be

considered a suitable benchmark problem for use in GP, further work should be

concentrated on assembling a collective suite of benchmark problems. Analysis

would be conducted, determining how performance is measured across multi-

ple different benchmark problems, in order to assess multiple characteristics and

facets of a candidate solution. It should be possible to attain a more detailed

and accurate determination of the true performance of approaches using a suite

of benchmark problems, opposed to a singular benchmark problem.

The Dunning–Kruger inspired fitness bias was shown to be successful at increasing

the diversity present in a GP population, subsequently leading to an increase in

robustness. Following this, a set of experiments comparing the effectiveness of

other diversity management techniques and the proposed DK fitness bias should

be carried out. This would allow for in-depth understanding of methods for

improving the robustness of GP solutions.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 103

Bibliography

[1] W. B. Langdon, Genetic programming and data structures: genetic programming+ data struc-
tures= automatic programming!, vol. 1. Springer Science & Business Media, 2012.

[2] D. R. Barstow, “Domain-specific automatic programming,” IEEE Transactions on Software En-
gineering, no. 11, pp. 1321–1336, 1985.

[3] R. Balzer, “A 15 year perspective on automatic programming,” IEEE Transactions on Software
Engineering, no. 11, pp. 1257–1268, 1985.

[4] C. Darwin, On the origin of species by means of natural selection, or preservation of favoured races
in the struggle for life. London: John Murray, 1859.

[5] T. Griffiths and A. Ekárt, “Improving the tartarus problem as a benchmark in genetic program-
ming.,” in Proceedings of the 20th European Conference on Genetic Programming -EuroGP’17
(J. e. a. McDermott, ed.), pp. 278–293, Springer, 2017.

[6] A. Teller, “The evolution of mental models,” Advances in Genetic Programming, pp. 199–217,
1994.

[7] D. White, J. McDermott, M. Castelli, L. Manzoni, B. Goldman, G. Kronberger, W. Jáskowkski,
U. O’Reilly, and S. Luke, “Better gp benchmarks: Community survey results and proposals.,”
Genetic Programming and Evolvable Machines, vol. 14, no. 1, pp. 3–29, 2013.

[8] T. Bäck., D. Fogel., and Z. Michalewicz, Handbook of Evolutionary Computation, pp. C7.1:1–
C7.1:15. Oxford University Press, 1997.

[9] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza, Genetic programming
IV: Routine human-competitive machine intelligence, vol. 5. Springer Science & Business Media,
2006.

[10] J. Liu and K. C. Tsui, “Toward nature-inspired computing,” Communications of the ACM, vol. 49,
no. 10, pp. 59–64, 2006.

[11] J. R. Koza, D. Andre, M. A. Keane, and F. H. Bennett III, Genetic programming III: Darwinian
invention and problem solving, vol. 3. Morgan Kaufmann, 1999.

[12] J. Koza, Genetic programming: On the programming of computers by means of natural selection.
1992.

[13] J. R. Koza et al., Genetic programming II, vol. 17. MIT press Cambridge, MA, 1994.
[14] E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic programming: An analysis of

measures and correlation with fitness,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 1, pp. 47–62, 2004.

[15] T. Griffiths and A. Ekárt, “Improving the effectiveness of genetic programming using self-
adaptation.,” in Proceedings of The 2nd International Symposium on Artificial Life and Intelligent
Agents - ALIA’16, vol. 732, pp. 97–102, CCIS, Springer, 2016.

[16] N. L. Cramer, “A representation for the adaptive generation of simple sequential programs,” in
Proceedings of the first international conference on genetic algorithms, pp. 183–187, 1985.

[17] A. Ekárt and S. Z. Németh, “A metric for genetic programs and fitness sharing,” in European
Conference on Genetic Programming, pp. 259–270, Springer, 2000.

[18] O. Krauss, H. Mössenböck, and M. Affenzeller, “Dynamic fitness function for genetic improvement
in compilers and interpreters,” 2018.

104

Conclusion

[19] T. Soule, J. A. Foster, and J. Dickinson, “Code growth in genetic programming,” in Proceedings
of the 1st annual conference on genetic programming, pp. 215–223, MIT Press, 1996.

[20] S. Luke, “Modification point depth and genome growth in genetic programming,” Evolutionary
Computation, vol. 11, no. 1, pp. 67–106, 2003.

[21] M. Brameier and W. Banzhaf, Linear Genetic Programming. Springer, 2007.
[22] J. Miller and P. Thomson, “Cartesian genetic programming.,” in Proceedings Genetic Program-

ming: European Conference - EuroGP 2000, pp. ?–?, LNCS, Springer, 2000.
[23] R. Mckay, N. Hoai, P. Whigham, Y. Shan, and M. O’neill, “Grammar-based genetic programming:

a survey.,” Genetic Programming and Evolvable Machines, vol. 11, no. 3-4, pp. 365–396, 2010.
[24] W. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in a

Arbitrary Language. San Francisco: Morgan Kaufmann, 1998.
[25] W. Langdon, R. Poli, N. McPhee, and J. Koza, “Genetic programming: An introduction and

tutorial, with a survey of techniques and applications,” Studies in Computational Intelligence,
vol. 115, pp. 927–1028, 2008.

[26] M. F. Brameier and W. Banzhaf, “A comparison with tree-based genetic programming,” Linear
Genetic Programming, pp. 173–192, 2007.

[27] W. Banzhaf, P. Nordin, R. Keller, and F. Francome, Genetic programming - An introduction.
On the automatic evolution of computer programs and it application. San Francisco: Morgan
Kaufmann, 1998.

[28] S. L. Harding, J. F. Miller, and W. Banzhaf, “Self-modifying cartesian genetic programming,” in
Cartesian Genetic Programming, pp. 101–124, Springer, 2011.

[29] J. Husa and R. Kalkreuth, “A comparative study on crossover in cartesian genetic programming,”
2018.

[30] W. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in a
Arbitrary Language, vol. 4 of Genetic Programming. Springer, 2003.

[31] T. Back, “Selective pressure in evolutionary algorithms: a characterization of selection mecha-
nisms,” in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World
Congress on Computational Intelligence, pp. 57–62, 1994.

[32] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Machine learning,
vol. 3, no. 2, pp. 95–99, 1988.

[33] B. L. Miller, D. E. Goldberg, et al., “Genetic algorithms, tournament selection, and the effects of
noise,” Complex systems, vol. 9, no. 3, pp. 193–212, 1995.

[34] T. Blickle and L. Thiele, “A comparison of selection schemes used in evolutionary algorithms,”
Evolutionary Computation, vol. 4, no. 4, pp. 361–394, 1996.

[35] H. MÃĳhlenbein and D. Schlierkamp-Voosen, “Predictive models for the breeder genetic algorithm
i. continuous parameter optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 25–49, 1993.

[36] J. Page, R. Poli, and W. B. Langdon, “Mutation in genetic programming: A preliminary study,”
in European Conference on Genetic Programming, pp. 39–48, Springer, 1999.

[37] B. Wie and D. S. Bernstein, “Benchmark problems for robust control design,” Journal of Guidance,
Control, and Dynamics, vol. 15, no. 5, pp. 1057–1059, 1992.

[38] J. McDermott, D. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jáskowski,
K. Kraweic, R. Harper, K. DeJong, and U. O’Reilly, “Genetic programming needs better bench-
marks.,” in Proceedings of the 14th International Conference on Genetic and Evolutionary Com-
putation - GECCO ’12. (T. e. a. Soule, ed.), pp. 791–798, Springer, 2012.

[39] O. Mersmann, M. Preuss, M. Trautmann, H. Bischl, and C. Weihs, “Analyzing the bbob results by
means of benchmarking concepts.,” Evolutionary Computation, vol. 23, no. 1, pp. 161–185, 2015.

[40] D. Whitley, S. Rana, J. Dzubera, and E. Mathias, “Evaluating evolutionary algorithms.,” Artificial
Intelligence, vol. 85, pp. 245–276, 1996.

[41] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and subsequent selection bias in
performance evaluation,” Journal of Machine Learning Research, vol. 11, no. Jul, pp. 2079–2107,
2010.

[42] S. Thrun and L. Pratt, Learning to Learn. Springer, 1998.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 105

Conclusion

[43] H. Iba and H. de Garis, “Extending genetic programming with recombinative guidance,” Advances
in genetic programming, vol. 2, pp. 69–88, 1996.

[44] A. Eiben., Z. Michalewicz., M. Schoenauer., and J. Smith., “Parameter control in evolutionary
algorithms.,” in Parameter Setting in Evolutionary Algorithms - SCI (C. L. F.G. Lobo. and
Z. Michalewicz., eds.), vol. 54, pp. 19–46, 2007.

[45] S. Meyer-Nieberg and H.-G. Beyer, Self-Adaptation in Evolutionary Algorithms, vol. 54, pp. 47–75.
04 2007.

[46] R. Rosenberg., Simulation of genetic population with biochemical properties. PhD thesis, Univ.
Michigan, 1967.

[47] J. Bagley., The Behaviour of Adaptive Systems which employ Genetic and Correlation Algorithms.
PhD thesis, Univ. Michigan, 1967.

[48] T. Back, “The interaction of mutation rate, selection, and self-adaptation within a genetic algo-
rithm,” in Proc. 2nd Conference of Parallel Problem Solving from Nature, 1992, Elsevier Science
Publishers, 1992.

[49] J. Schaffer. and A. Morishima, “An adaptive crossover distribution mechanism for genetic algo-
rithms,” in Proceedings of the 2nd International Conference on Genetic Algorithms, pp. 36–40,
1987.

[50] T. Griffiths. and A. Ekárt, “Self-adaptive crossover in genetic programming: The case of the
tartarus problem.,” in Proceedings of the 15th International Conference on Parallel Problem Solving
from Nature - PPSN XV, pp. 236–246, Springer, 2018.

[51] S. Kirkpatrick., C. Gelatt., and M. Vecchi, “Optimisation by simulated annealing.,” Science.,
vol. 220, pp. 671–680, 1983.

[52] A. Qin. and P. Suganthan, “Self-adaptive differential evolution algorithm for numerical optimiza-
tion.,” in Proceedings of the 2005 Congress on Evolutionary Computation, vol. 2, pp. 23–32, IEEE,
2005.

[53] J. Hesser. and R. Manner., “Towards an optimal mutation probablity in genetic algorithms.,” in
Proceedings of the 1st Conference on Parallel Problem Solving from Nature - PPSN I (H. Schwefel
and R. Männer., eds.), pp. 23–32, Springer, 1991.

[54] N. Hansen., A. Ostermeier., and A. Gawelczyk., “On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation.,” in Proceedings of the 6th
International Conference on Genetic Algorithms - ICGA’95 (L. Eshelman., ed.), pp. 57–64, Morgan
Kaufmann, 1995.

[55] R. Hinterding., Z. Michalewicz., and T. Peachey, “Self-adaptive genetic algorithm for numeric
functions,” pp. 420–429, 1996.

[56] T. Bäck, “The interaction of mutation rate, selection and self-adaptation within a genetic algo-
rithm,” in Proceedings of the 2nd Conference on Parallel Problem Solving from Nature - PPSN II,
pp. 85–94, 1992.

[57] D. Dang. and P. Lehre, “Self-adaptation of mutation rates in non-elitist populations,” 2016.
[58] P. Angeline., “Adaptive and self-adaptive computations,” in Computational Intelligence: A Dy-

namic Systems Perspective, pp. 152–163, IEEE Press, 1995.
[59] P. Taylor and R. Lewontin, “The genotype/phenotype distinction,” in The Stanford Encyclopedia

of Philosophy (E. N. Zalta, ed.), Metaphysics Research Lab, Stanford University, summer 2017 ed.,
2017.

[60] Y. Jin and B. Sendhoff, “Trade-off between performance and robustness: an evolutionary mul-
tiobjective approach,” in international conference on Evolutionary Multi-Criterion Optimization,
pp. 237–251, Springer, 2003.

[61] C. Barrico and C. H. Antunes, “Robustness analysis in multi-objective optimization using a degree
of robustness concept,” in 2006 IEEE International Conference on Evolutionary Computation,
pp. 1887–1892, IEEE, 2006.

[62] Y. Jin, J. Branke, et al., “Evolutionary optimization in uncertain environments-a survey,” IEEE
Transactions on evolutionary computation, vol. 9, no. 3, pp. 303–317, 2005.

[63] D. Dunning, “The dunning–kruger effect: On being ignorant of one’s own ignorance,” in Advances
in experimental social psychology, vol. 44, pp. 247–296, Elsevier, 2011.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 106

Conclusion

[64] J. Kruger and D. Dunning, “Unskilled and unaware of it: how difficulties in recognizing one’s
own incompetence lead to inflated self-assessments.,” Journal of personality and social psychology,
vol. 77, no. 6, p. 1121, 1999.

[65] D. Dunning, K. Johnson, J. Ehrlinger, and J. Kruger, “Why people fail to recognize their own
incompetence,” Current directions in psychological science, vol. 12, no. 3, pp. 83–87, 2003.

[66] J. Huxley, Evolution, the Modern Synthesis. G. Allen & Unwin Limited, 1942.
[67] P. Alberch, “From genes to phenotype: Dynamical systems and evolvability.,” Genetica, vol. 84,

pp. 5–11, 1991.
[68] M. Pigliucci, “Genotype-phenotype mapping and the end of the ‘genes as a blueprint’ metaphor.,”

Philosophical Transactions of the Royal Society B, vol. 365, pp. 557–566, 2010.
[69] M. Pigliucci, “Genotype–phenotype mapping and the end of the âĂŸgenes as blueprint-

âĂŹmetaphor,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365,
no. 1540, pp. 557–566, 2010.

[70] “Increasing genetic programming robustness using simulated dunning-kruger effect,”
[71] D. Dunham, “Robustness of genetic algorithm solutions in resource levelling,” in IEEE Systems

and Information Engineering Design Symposium, 2015.
[72] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments–a survey.,” IEEE

Transactions on Evolutionary Computation, vol. 9, no. 3, pp. 303–317, 2005.
[73] S. Yang, Y.-S. Ong, and Y. Jin, Evolutionary computation in dynamic and uncertain environments,

vol. 51. Springer Science & Business Media, 2007.
[74] G. Oster and P. Alberch, “Evolution and bifurcation of developmental programs,” Evolution,

pp. 444–459, 1982.
[75] T. Hu and W. Banzhaf, “Neutrality, robustness, and evolvability in genetic programming,” in

Genetic Programming Theory and Practice XIV, pp. 101–117, Springer, 2018.
[76] A. Wagner, “Robustness and evolvability: a paradox resolved,” Proceedings of the Royal Society

B: Biological Sciences, vol. 275, no. 1630, pp. 91–100, 2007.
[77] N. F. McPhee and N. J. Hopper, “Analysis of genetic diversity through population history,” in

Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 2,
pp. 1112–1120, Morgan Kaufmann Publishers Inc., 1999.

[78] A. Ekárt and S. Z. Németh, “Maintaining the diversity of genetic programs,” in European Confer-
ence on Genetic Programming, pp. 162–171, Springer, 2002.

[79] P. D’haeseleer, “Context preserving crossover in genetic programming,” in Proceedings of the First
IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intel-
ligence, pp. 256–261, IEEE, 1994.

[80] J. P. Rosca, “Genetic programming exploratory power and the discovery of functions.,” in Evolu-
tionary Programming, pp. 719–736, Citeseer, 1995.

[81] D. Jackson, “Phenotypic diversity in initial genetic programming populations,” in European Con-
ference on Genetic Programming, pp. 98–109, Springer, 2010.

[82] S.-Y. Lu, “A tree-to-tree distance and its application to cluster analysis,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, no. 2, pp. 219–224, 1979.

[83] S. M. Selkow, “The tree-to-tree editing problem,” Information processing letters, vol. 6, no. 6,
pp. 184–186, 1977.

[84] K.-C. Tai, “The tree-to-tree correction problem,” Computer Algorithms: String Pattern Matching
Strategies, vol. 55, p. 208, 1994.

[85] O. J. Mengshoel and D. E. Goldberg, “The crowding approach to niching in genetic algorithms,”
Evolutionary computation, vol. 16, no. 3, pp. 315–354, 2008.

[86] J. H. Holland et al., Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press, 1992.

[87] H. Berg, “Fitness sharing based on angular distances,” in 2009 Fifth International Conference on
Natural Computation, vol. 4, pp. 237–243, IEEE, 2009.

[88] P. S. Oliveto, D. Sudholt, and C. Zarges, “On the benefits and risks of using fitness sharing for
multimodal optimisation,” Theoretical Computer Science, vol. 773, pp. 53–70, 2019.

[89] K. Balakrishnan and V. Honavar, “On sensor evolution in robotics,” in Proceedings of the First
International Conference on Genetic Programming, pp. 455–460, Citeseer, 1996.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 107

Appendix

Appendix
Experimental Parameterisation

Outlined below is a summary of the parameter setups utilised in the thesis, with

symbolic and numeric [44] parameters provided.

In Table 7.1 the parameter setups utilised in the Tartarus Baseline and Improved

Tartarus State Evaluation experimentation from Chapter 4 is represented by Tps,

the setup for the Tartarus Case Study from Chapter 5 is represented by TCps

and the setup for the Simulated Dunning-Kruger experimentation in Chapter 6

is represented by DKps.

Table 7.1: Experimental Parameter Setup

Tps TCps DKps

Sy
m
bo

lic

Recombination 1-point 1-point sDK
Parent Selection Truncation Truncation Truncation
Mutation Single Point Single Point Single Point
Survivor Selection (µ, λ) (µ, λ) (µ, λ)

N
um

er
ic

Mutation Rate 0.05 0.05 0.05
Mutation Step Size 0.02 0.02 0.02
Crossover Rate 0.5 0.5 0.5
Population Size px 50 50 100
Offspring Size px px 2px

Proportion Point pp 0.4 0.4 0.4

For Parent Selection a method of truncation is used - whereby all individuals are

ordered according to their fitness scores and a proportion of the fittest individuals

are selected. The proportion of individuals selected from the population is deter-

mined by the Proportion Point, pp value in Table 7.1. The selection pressure can

be altered by selecting a different proportion point.

(in the range 0 < pp ≤ 1,where pp selects at least 2 individuals.)

T.D. Griffiths, Ph.D Thesis, Aston University 2019 108

Appendix

Throughout each generation the total population size is maintained, determined

by Population Size, px in Table 7.1.

Therefore, calculating the (µ, λ) values, using Tps as an example:

µ = px × pp = 20 and,

λ = px = 50,

and for the Dunning-Kruger setting:

µ = px × pp = 40 and,

λ = px = 100.

Example GP Representation

In previous work on the Tartarus problem it was noted that allowing the agent

to alter the placement and number of sensors, could lead to changes in overall

performance [89].

Possible Sensor Locations.

0 1

2

345

6

78 9

14

19

13

18

12

17

11

16

10

15

Sensors Used in Experimentation.

0 1

2

345

6

7

Figure 7.1: Dozer Agent Sensor Locations

T.D. Griffiths, Ph.D Thesis, Aston University 2019 109

Appendix

However, for the experiments outlined throughout the thesis, the environmental

representations (i.e. sensor placement and number) were fixed. Figure 7.1 shows

the difference between the largest possible environmental representation and the

canonical environmental representation utilised in the thesis experimentation.

The smaller environmental representation was used in this thesis as it allowed

for effective comparisons to be made with previous and canonical work on the

Tartarus problem.

Situation 1.

Input 1.

i6=0

.

if

i7=0
. if

.F

Input Processing.

Situation 2.

F
?
?
?

R
R
L
F

Record Move.

Figure 7.2: Example GP Representation

T.D. Griffiths, Ph.D Thesis, Aston University 2019 110

Appendix

Figure 7.2 illustrates excerpts from a canonical GP instance – illustrating how the

structural characteristics of the representation is reflected in the agent interac-

tion and candidate solution. A representative GP agent-environment interaction

is shown with the agent receiving input from the environment surrounding it (us-

ing the environmental representation outlined in Figure 7.1). The sensor inputs

are boolean values, with 0 used for an empty gridsquare and 1 for an occupied

gridsquare - with the edges of the environment treated as occupied gridsquares.

This input is processed and the decision tree corresponding to the agent is tra-

versed. The decision trees are comprised of internal nodes which can contain a

mixture if-else boolean operators relating to the status of the sensors, and leaf

nodes corresponding to the terminal set of moves, chosen from the following ac-

tions: 1) Turn left, 2) Turn right, 3) Move forwards one square

this move is then executed by the agent and recorded.

As shown in Figure 7.2 the agent executed move forwards one square - f , as an

outcome of traversing the decision tree - with the decisions based on whether or

not there is a block present in input 6 and 7 shown.

This process of using the input sensor values in the current situation, executing

the decision tree to find the corresponding action, recording the action and exe-

cuting the action is repeated until the maximum number of allowed moves m is

reached. The run is then completed and the instance score is calculated and the

corresponding resultant fitness score is assigned to the agent. Through the recom-

T.D. Griffiths, Ph.D Thesis, Aston University 2019 111

Appendix

bination process the fitter individuals, and their corresponding decision trees and

variable values, will likely survive leading to an increase in overall performance.

The aforementioned summary of the parameter setups utilised in this thesis,

outlined the process by which the agent-environment interaction occurs and the

inputs are processed to select the next movement operation at runtime.

T.D. Griffiths, Ph.D Thesis, Aston University 2019 112

	 Scenario
	 Overarching Research Questions
	 Thesis Contributions
	 Thesis Overview
	 Genetic Programming
	 Fitness Evaluation
	 Genetic Programming Representations
	 Selection
	 Recombination
	 Mutation

	 Benchmark Problems
	 Symbolic Regression
	 Route-Finding
	 Measuring the `Best' Performance

	 The singular benchmark approach
	 Benchmarks as a Proof of Concept

	 The Benchmark Suite Approach
	 Importance of Benchmarks
	 Desirable Benchmark Characteristics

	 Introduction to the Tartarus Problem
	 The Canonical Tartarus Instance
	 Generating Tartarus Instances
	 Measuring Instance Difficulty
	 State Evaluation

	 Satisfying the Desirable Benchmark Characteristics
	 Conclusion
	 Self-Adaptation
	 When to modify
	 How to modify
	 Parameter Modification Approaches
	 Taxonomy of Approaches

	 Self-Adaptive Crossover Operator
	 Crossover Bias Implementation
	 Self-Adaptive Crossover: Tartarus Case Study
	 Self-Adaptive Crossover: Santa-Fe Case Study
	 Results

	 Conclusion
	 Introduction
	 Modern Synthesis
	 Genotype – Phenotype Map

	 Robustness
	 Phenotypic Robustness
	 Genotypic Robustness
	 Transformational Diagrams

	 Simulated Dunning-Kruger Effect
	 Diversity
	 Phenotypic Diversity
	 Genotypic Diversity
	 Implementing Simulated Dunning-Kruger Bias
	 Results

	 Conclusion
	 Conclusion
	 Thesis Contributions
	 Future Directions

