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Abstract: Adsorption heat storage is the most feasible technology for heating decarbonization, which
can store large quantities of waste and renewable heat for an exceptionally long time. However,
utilizing adsorption heat storage in geographical locations with sub-zero ambient conditions is
challenging. Therefore, this paper experimentally investigates the use of ethanol as a working
fluid paired with silica gel for adsorption heat storage and utilizes sub-zero ambient as the heat
source. The heat storage characteristics, heat charging/discharging cyclic performance, and energy
conversion performance via exergy analysis were determined under realistic operating conditions and
benchmarked against the widely investigated silica gel/water. Ethanol adsorbate was successfully
utilized as a working fluid to employ the evaporators operating under sub-zero ambient conditions.
Silica gel/ethanol showed the most significant net cyclic uptake, twice that of silica gel/water.
However, the physical characteristics of ethanol molecules led to a degree of non-desorbed fluid,
which hampered such potential to store 18.08 kJ/kgads under a sub-zero evaporator temperature and
24.84 kJ/kgads for an above-zero evaporator temperature compared to silica gel of 155.12 kJ/kgads

operating an above-zero evaporator temperature. On the other hand, silica gel/ethanol showed the
fastest heat charging/discharging rate that can shorten the cycle time by 45%. The major contributor to
exergy destruction was the exergy transferred by charging heat, which was five times the discharging
heat due to the high charging temperature.

Keywords: heat storage; adsorption; silica gel; ethanol; water; heat storage capacity

1. Introduction

Severe environmental impacts from the heavy usage of fossil fuels have led to profound
health issues and climate change [1,2]. Therefore, many strategies have been proposed to
overcome such problems, such as improving the efficiency of the current processes through
waste heat recovery [3,4], applying efficient environmentally friendly devices, such as
fuel cells [5], and utilizing renewable energy sources. Renewable energy sources, such as
solar thermal [6,7], solar PV [8], geothermal [9,10], and wind [11] are the most promising,
as they can provide sustainable and clean energy. However, the rapid growth in the
capacities of the different renewable energy sources requires advances in renewable energy
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storage systems that can accommodate, such growing capabilities. Therefore, thermal
energy storage (TES) is the cornerstone for utilizing waste, and renewable heat sources
to meet the heating decarbonization and net-zero goals [12,13]. This also aligns with the
UN Sustainable Development Goal-11 “Sustainable Cities and Communities” and Goal-13
“Climate Action”. TES is crucial to address the mismatch between the heat sources and
demand and utilize the low-grade heat when it is unfeasible to utilize the conventional
thermodynamic cycles due to the narrow temperature difference between the heat source
and sink [14]. In addition to the energy conversion deficiency due to converting one form
of energy (e.g., heat) to another (e.g., mechanical work for electricity production), utilizing
low-grade heat adds enormous complications to the used thermodynamic cycle, meaning
that it is more advantageous to reuse such renewable heat directly for other purposes [15].

TES technologies are classified primarily into sensible, latent, and thermochemical;
thermochemical TES can be subcategorized into two groups: chemical reaction without
sorption and sorption [16,17]. Sensible TES stores the heat by the temperature difference
potential, and the heat storage density is a strong function of the storage medium’s specific
heat, whether it is a solid or liquid medium. Examples of sensible TES are water, liquid
metals, bricks, soil, and concrete blocks. Despite its high technological readiness level,
simplicity, and the wide range of materials available for sensible TES, it is inefficient due
to the low heat storage density, slow heat charging/discharging processes, heat storage
degradation due to the temperature difference potential, and the disrupting temperature
swing at the end discharging process [18,19]. Therefore, researchers strived to enhance the
heat transfer performance and the magnitude of heat stored in sensible TES by utilizing,
for example, nanofluids as a heat storage medium [20,21].

Latent TES stores the heat in the heat primarily during the material’s phase change, oth-
erwise known as phase change material (PCM) TES. PCMs are categorized into (1) organic
PCMs (e.g., fatty acids, paraffin wax, alkanes) and (2) inorganic (e.g., salts, ice). Although
latent TES density is nearly 40% higher than the sensible TES, it suffers from low thermal
diffusivity (i.e., slow charging/discharging processes), flammability of organic PCMs, and
long-term instability experienced by phase segregation [22,23]. Furthermore, heat storage
degradation becomes challenging if the desired latent heat temperature differs from the
ambient, which is most likely in real-life applications.

Among the TES technologies, sorption TES is the most promising, primarily due to
its heat storage density (nearly 70% more than sensible TES) and its ability to store the
heat in the form of sorption potential; hence, it is the only suitable technology for short-to-
long-term heat storage without degradation [16,24,25]. Generally, the term sorption refers
to either adsorption or absorption. The former is regarded as more practical and stores
the heat over a wide temperature range, making it suitable for space heating or industrial
processes and the most suitable for utilizing low-grade heat sources [26]. Adsorption heat
storage, therefore, utilizes adsorption pairs of porous material and working fluid, such as
silica gel/water, zeolite/water, and MOF/water.

Despite the practicality of porous materials as parent adsorbents, scientists investi-
gated metal salt encapsulation (i.e., impregnation) into porous matrixes to form composites
of intensified heat storage density [27]. Examples of such composite adsorbents are encap-
sulating lithium bromide into silica gel and activated carbon to utilize water as a working
fluid, which intensified the heat storage density by up to 381 kWh/m3 [28]. D’Ans et al. [29]
studied the encapsulation of strontium bromide (SrBr2) into MIL-101(Cr), which intensified
the heat storage density to 381 kWh/m3. Moreover, Clark et al. [30] studied the strontium
chloride (SrCl2) encapsulated in cement, which showed a heat storage density of up to
164 kWh/m3. It is noteworthy that cement is an uncommon host matrix for sorption appli-
cation. Grekova et al. [31] studied the encapsulation of CaCl2, LiCl, and LiBr into multiwall
graphene nanotubes utilizing water and ethanol as working fluids, which achieved heat
storage capacity of up to 445 and 470 Wh/kg for ethanol and water, respectively.

Adsorption heat storage employs an evaporator, condenser, and adsorption beds,
where the evaporator utilizes the heat source via the ambient air or underground heat. De-
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spite the essential need for heat storage in cold climates, far too little attention has been paid
to utilizing sub-zero ambient as a heat source for the adsorption of heat storage. However,
ethanol is an example of an adsorption working fluid that can operate below zero, which
was previously reported for sub-zero adsorption cooling by Rezk et al. [32,33]. Therefore,
the novelty of this work lies in covering such a knowledge gap by studying the heat storage
potential of silica gel/ethanol to meet the heat storage demands in geographical locations
of sub-zero ambient, emphasizing short-term heat storage. Accordingly, the objectives
of this work are (1) to experimentally determine the heat storage characteristics of silica
gel/ethanol; (2) experimentally investigate the heat charging/discharging cyclic perfor-
mance of silica gel/ethanol; (3) undertake the exergy analysis for silica gel/ethanol to under-
stand the energy conversion potential under realistic operating conditions; (4) benchmark
silica gel/ethanol against the widely investigated silica gel/water pair.

2. Material and Methods
2.1. Materials

Fuji RD silica gel adsorbent was supplied by Fuji Silysia Chemical (Japan) of 2.2 mm
bead diameters. The Brunauer–Emmett–Teller (BET) surface area was 820 m2/g, and the
average pore size of the silica gel was 2.2 nm. Ethanol (Ethyl alcohol C2H6O) 99+% and
purified water adsorbates were obtained from Thermo Fisher Scientific UK.

2.2. Materials Characterization

The adsorption characteristics of the silica gel/ethanol and silica gel/water pairs
were characterized using the dynamic vapor sorption (DVS) gravimetric analyzer DVS
Resolution™ by Surface Measurements Systems (SMS) UK. Figure 1 shows the schematic
and pictorial view of the DVS gravimetric analyzer. The apparatus measured the dynamic
change of adsorbent mass every minute using a microbalance (SMS Ultrabalance™) while
adsorbing the selected fluid (i.e., ethanol or water) under a controlled pressure ratio
equivalent to Pevap/Pads. A speed-of-sound sensor measured and controlled the ethanol
(solvent in reservoir 2) dosage via PID mass flow controllers. An RH sensor measured
and controlled the water vapor (solvent in reservoir 1) dosage via the PID mass flow
controllers. The reaction and balance chambers were purged before sample loading using
dry nitrogen to prevent vapor condensation. A 100 mg calibration mass was used to verify
the microbalance accuracy of ±0.05 mg. The key sorption characteristics of interest in this
work are (1) the adsorption heat to determine the magnitude of heat storage potential and
(2) the adsorption kinetics within predefined cyclic conditions to determine the realistic
rate and net heat charge/discharge.

Fresh adsorbent sample (i.e., silica gel) was loaded in the reaction chamber every test
and locally dried at 55 ◦C until reaching no change of the mass condition. The adsorbent’s
dry mass for the following test (i.e., reference mass) was recorded at the end of the drying
process to maintain the consistency of pre-testing sample conditions. Subsequently, adsorp-
tion/desorption tests were performed at various pressure ratios, equivalent to Pevap/Pads during
heat discharging (i.e., adsorption) and Pcond/Pdes during heat discharging (i.e., desorption) and
temperatures to develop characteristic curves. Nitrogen was used as a carrier gas for the adsorbate
vapor dosage during adsorption/desorption tests. Still, the effect of such a carrier gas on the
adsorption kinetics is less than 10%, as reported by Rezk et al. [33].

Figure 2 shows the operating principle of adsorption heat storage in Figure 2a and the
Clapeyron diagram in Figure 2b for the heat charging/discharging cycle. The operating
conditions are usually defined by four temperatures: (1) the regeneration temperature
Tch, (2) the heat sink temperature Tc, (3) the heat discharge temperature Tdis and (4) the
evaporation temperature Te. During the charging mode, the heat at Tch regenerates the
adsorbent material, and the released adsorbate vapor is condensed by releasing the heat to
the heat sink at Tc. During the discharging mode, the dried adsorbent is exposed to the
working fluid, and the adsorption heat at Tdis is used in the intended process, such as space
heating, while the heat source at Te supplies heat to the evaporator.
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Figure 1. Dynamic vapor sorption analyzer (a) schematic diagram and (b) pictorial view [32]. Figure 1. Dynamic vapor sorption analyzer (a) schematic diagram and (b) pictorial view [32].
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This study considered two cycles: above-zero evaporation (AZE) and sub-zero evapo-
ration (SZE) heat storage cycle. In AZE, the ambient temperature of 10 ◦C was considered,
which acts as a heat source for the evaporator at 5 ◦C and heat sink for the condenser at
15 ◦C. Grekova et al. [31] reported the availability of warm climates, such as southwest
and southeast Asia, North Africa, and Central America. It was also reported that such a
temperature is geothermally obtainable in cold climates such as Europe. The SZE cycle
was investigated by utilizing ethanol as an adsorbate, given the simplicity of using the
ambient as a heat source. As such, the ambient temperature of zero was considered, and the
corresponding evaporation heat source and condensation heat sink temperatures are −5 ◦C
and 5 ◦C, respectively. Table 1 shows the operating and equivalent ambient temperatures
for AZE and SZE heat storage cycles.

Table 1. The operating and ambient temperature for the investigated heat storage cycles (AZE and SZE).

Cycle Tch
[◦C]

Tc
[◦C]

Tdis
[◦C]

Te
[◦C]

Tamb
[◦C] Adsorbate

AZE 75 15 35 5 10
Water

Ethanol
SZE 75 5 35 −5 0 Ethanol
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3. Results and Discussion

This section presents the experimental investigation of silica gel as a porous adsorbent
paired with water and ethanol. The key characteristics are the heat of adsorption and the
cyclic adsorbate uptake under predefined heat charging/discharging operating conditions.
Such characteristics enable determining the heat storage potential of silica gel/ethanol
to pair and benchmark it against the widely investigated silica gel/water. In addition,
the exergy analysis was undertaken to understand the energy conversion quality for the
investigated pairs during the entire heat charging/discharging cycle.

3.1. Heat of Adsorption

The heat of adsorption determines the exothermic/endothermic energies developed
during the adsorption/desorption per mole of the up-taken/off-taken adsorbate. Therefore,
by knowing the heat of adsorption, the heat storage potential can be determined using
Equation (1) [31].

qstorage =
∆W × Ea

M
(1)

where ∆W denotes the cyclic water uptake (kgfluid/kgads); Ea is the heat of adsorption
(J/mol); M is the molar mass (kg/mol). The heat of adsorption was determined using the
Clausius–Clapeyron-type equation. The surface coverage was measured by the change in
adsorbent mass due to the adsorbate (i.e., water and ethanol) uptake, as shown in Figure 3.
The Clausius–Clapeyron-type equation was solved by assuming merely exothermic ad-
sorption at 10 points along the isotherms at two temperatures: T1 = 25 ◦C and T2 = 45 ◦C.
The deferential form of the Clausius–Clapeyron-type equation at T1 and T2, and their
corresponding pressure ratios (Pevap/Pads)1 and (Pevap/Pads)2 are shown in Equation (2) [32].

∂ln(P/Pbed)

∂T
= − Ea

RT2 (2)

Ea = −R
ln
(
(P/Pbed)1
(P/Pbed)2

)
1
T1

− 1
T2

(3)

where R denotes the universal gas constant (J/mol·K). The average experimental heat of
adsorption values for silica gel/water, and silica gel ethanol are shown in Table 2. It can be
observed that the heat of adsorption for silica gel/ethanol is 5.3% less than that for silica
gel/water. Moreover, the heat of adsorption for silica gel/ethanol and silica gel/water is
slightly above the corresponding heat of vaporization for ethanol of 42.3 × 103 J/mol and
water of 40.7 × 103 J/mol at 25 ◦C, which to an extent manifest the multilayer condensation
phenomenon where the adsorbate molecules are not all in contact with the pore surfaces.
The heat of adsorption results agrees with those obtained by Rezk et al. [32].

Table 2. The experimentally determined heat of adsorption.

Pair Heat of Adsorption
(J/mol)

Standard Deviation
(J/mol)

Silica gel/water 4.43 × 104 5.70 ×103

Silica gel/ethanol 4.49 × 104 1.92 × 103
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3.2. Heat Storage Capacity

Figure 4 presents the heat storage cycles imposed on the equilibrium isotherm curves
for silica gel/water under AZE, silica gel/ethanol under AZE, and silica gel/ethanol
under SZE; this is to assess the heat storage capacity potential for each pair. It can be
observed that silica gel/ethanol under SZE showed the highest net cyclic uptake potential
of 0.1 kgethanol/kgads followed by silica gel/water under AZE of 0.05 kgw/kgads and silica
gel/ethanol under AZE showed the most minor cyclic water uptake of 0.03 kgethanol/kgads.
Considering the heat of adsorption and molecular weight for water and ethanol adsorbates
yields heat storage potentials of 136.8 kJ/kgads for silica gel/water under AZE, 32.2 kJ/kgads
for silica gel/ethanol under AZE and 94.6 kJ/kgads for silica gel/ethanol under SZE.
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Figure 4. Adsorption isotherms for (a) silica gel/water and (b) silica gel/ethanol.

Despite determining the net cyclic water and ethanol equilibrium uptake potential
enabled estimating the heat storage capacity under AZE and SZE, it did not consider the
kinetics of each adsorbate during the heat charging/discharging processes. Therefore, the
DVS apparatus was utilized to simulate the temporal heat charging/discharging processes
by operating each pair under the realistic pressure ratios corresponding to Pevap/Pads
during the heat discharging and Pcond/Pdes during heat discharging of the predefined
AZE and SZE cycle conditions. The heat charging/discharging cycle time was considered
360 min to benchmark the investigated pairs. As such, Figure 5 shows the adsorbate
dynamic uptake during the heat charging/discharging for silica gel/water operates under
AZE cycle conditions, and silica gel/ethanol operates under AZE and SZE cycle conditions.
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Figure 5. Equilibrium net cyclic adsorbate uptake: water AZE—black, ethanol AZE—blue, and
ethanol SZE—red.

Figures 6 and 7 show the temporal cyclic adsorbate uptake and the corresponding net
cyclic uptake and heat storage capacity for each pair, considering an adsorption/desorption
cycle time of 360 min. Although the molecular–mass-based heat of adsorption difference
between the two pairs was 5.3%, and the equilibrium cyclic uptake analysis showed that
the equilibrium uptake for silica gel/ethanol under SZE outperformed silica gel water, after
considering the kinetic performance under the predefined cyclic operation silica gel/ethanol
showed less net cyclic water uptake of 0.025 kgethanol/kgads and 0.019 kgethanol/kgads in
cases of AZE and SZE cycles, respectively. However, silica gel/water operated under the
AZE cycle showed net cyclic uptake of 0.059 kgw/kgads.

Ethanol is a more complex adsorbate of larger molecular size than water. It has a molar
mass of 46.07 g/mol and approximately 3.6 Å molecular size, while the molar mass of
water is 18.02 g/mol and its molecular size is approximately 2.75 Å. These factors adversely
affected the physical mobility of ethanol molecules to reach the micropores, as reported by
Rezk et al. [32], which led to a degree of non-desorbed ethanol. In this investigation, the
degree of non-desorbed ethanol was more influential in the case of SZE conditions as the
difference between Pv/Pads and Pv/Pdes ratios was greater in the case of AZE that reduced
the net cyclic ethanol uptake and, hence, the heat storage capacity. Such physical properties
resulted in a higher heat storage capacity in the case of silica gel/water of 155 kJ/kgads,
while the heat storage capacity for the case of silica gel/ethanol was 24 kJ/kgads and
18 kJ/kgads under AZE and SZE cycles, respectively. Nevertheless, the benefit of using
ethanol is to utilize a sub-zero ambient heat source for the evaporator.

From the desorption/adsorption kinetics, it can be observed that the rate of water
offtake/uptake during heat charging/discharging for silica gel/water was slower than that
for silica gel/ethanol. This is because water vapor accesses larger microporous sites that
were not actively accessible by ethanol. However, from the application viewpoint silica
gel/ethanol pair responded faster to the heat charging/discharging, leading to about 45%
shorter cycle time potential to capture and release the heat to meet the demand. This led to
a finding that silica gel with other porous structures can benefit from the high affinity of
ethanol and its fast response to store larger quantities of heat.
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Figure 7. Heat charging/discharging cyclic performance.

3.3. Exergy Analysis

The energy conversion quality for silica gel/water and silica gel/ethanol was assessed
via the exergy analysis. During the adsorption process (i.e., heat discharge), saturated water
vapor at evaporator pressure is admitted into the adsorbent container, while saturated
water vapor at condenser pressure leaves the container during the desorption (i.e., heat
charging). As such, Equation (4) was used to undertake the exergy balance over an entire
heat charging/discharging cycle [34]. Considering the ambient temperature of 300 K, the ex-
ergy destruction was constituted from the exergy transfer due to the charging/discharging
heat, as shown in the first term on the right-hand side, and the exergy change of the water
vapor between the inlet and exit conditions. The exergy change is constituted by the en-
thalpy, as shown in the second term on the right-hand side, and entropy changes between
the vapor inlet and exit, as shown in the third term on the right-hand side.

Exdestruction =
t=tcycle

∑
t=0

[(
1 − T0

Tdes

)
· dwchEa

M

]
−
[(

1 − T0
Tads

)
· dwdisEa

M

]
−
(
dwchhg,c − dwdishg,e

)
+T0

(
dwchsg,c − dwdissg,e

) (4)

where Exdestruction denotes the exergy destruction over the heat charging/discharging cycle;
tcycle is the heat charging/discharging time; T0 is the ambient temperature; hg,c is the
specific enthalpy of the saturated vapor leaving the adsorption reactor to the condenser;
hg,e is the specific enthalpy of the saturated vapor entering the adsorption reactor from the
evaporator; sg,c is the specific entropy of the saturated vapor leaving the adsorption reactor
to the condenser; sg,e is the specific entropy of the saturated vapor entering the adsorption
reactor from the evaporator.

Given that the primary focus is on heat charging/discharging, Figure 8 shows the
dynamic exergy transfer during the charging and discharging process for silica gel/water
under AZE conditions and silica gel/ethanol under AZE and SZE conditions. It can
be observed that the exergy transfer levels during the heat charging are higher than
the discharging, primarily due to the higher temperature of charging than discharging
process. The exergy transfer for the silica gel/water under AZE conditions was higher than
that for silica gel/ethanol under AZE and SZE conditions, averagely by 479% and 684%,
respectively. The higher exergy transfer for the silica gel/water per unit mass of silica gel
was due to the higher magnitudes of charging/discharging heat. Moreover, the rate of
exergy transfer was steeper in the case of silica gel/ethanol due to the high affinity of silica
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gel towards it but hampered due to the poor mobility of ethanol molecules in silica gel
pores, as mentioned above.

Energies 2023, 16, x FOR PEER REVIEW 13 of 18 
 

adsorption reactor to the condenser; 𝑠௚,௘ is the specific entropy of the saturated vapor 
entering the adsorption reactor from the evaporator. 

Given that the primary focus is on heat charging/discharging, Figure 8 shows the 
dynamic exergy transfer during the charging and discharging process for silica gel/water 
under AZE conditions and silica gel/ethanol under AZE and SZE conditions. It can be 
observed that the exergy transfer levels during the heat charging are higher than the 
discharging, primarily due to the higher temperature of charging than discharging pro-
cess. The exergy transfer for the silica gel/water under AZE conditions was higher than 
that for silica gel/ethanol under AZE and SZE conditions, averagely by 479% and 684%, 
respectively. The higher exergy transfer for the silica gel/water per unit mass of silica gel 
was due to the higher magnitudes of charging/discharging heat. Moreover, the rate of 
exergy transfer was steeper in the case of silica gel/ethanol due to the high affinity of sil-
ica gel towards it but hampered due to the poor mobility of ethanol molecules in silica gel 
pores, as mentioned above. 

 

 

(a) 

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Ex
er

gy
 tr

an
sf

er
 [ 

kJ
/k

g 
]

Time [ min ]

Silica gel/water AZE
Silica gel/ethanol AZE
Silica gel/ethanol SZE

Energies 2023, 16, x FOR PEER REVIEW 14 of 18 
 

 

(b) 

Figure 8. Exergy transfer during (a) heat charging and (b) heat discharging. 

Figure 9 shows the magnitude of the exergy transfer and exergy change over the 
entire heat charging/discharging cycle and their implication in the exergy destruction. It 
can be observed that the main contributor to the exergy destruction was the charging 
heat due to the relatively high charging temperature of 75 °C. Despite the magnitude of 
charging and discharging heat being equal due to the reversibility of adsorp-
tion/desorption processes for silica gel/water and silica gel/ethanol, the contribution of 
discharging heat was the least, primarily due to the relatively low discharging heat 
temperature of 35 °C. The charging and discharging exergy transfer per unit mass of sil-
ica gel for silica gel/water under AZE was 527% and 540% higher than silica gel/ethanol 
under AZE and 752% and 757% higher than silica gel/ethanol under SZE. The exergy 
change for silica gel/water under AZE was 522% and 696% higher than silica gel/ethanol 
under AZE and SZE due to the greater cyclic water vapor uptake/offtake for the former. 
The effect of exergy transfer and exergy change led to 11.87 kJ/kgads exergy destruction 
for silica gel/water under AZE, which was 528% and 773% higher than silica gel/ethanol 
under AZE and SZE, respectively. 

 

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200

Ex
er

gy
 tr

an
sf

er
 [ 

kJ
/k

g 
]

Time [ min ]

Silica gel/water AZE
Silica gel/ethanol AZE
Silica gel/ethanol SZE

Figure 8. Exergy transfer during (a) heat charging and (b) heat discharging.

Figure 9 shows the magnitude of the exergy transfer and exergy change over the entire
heat charging/discharging cycle and their implication in the exergy destruction. It can be
observed that the main contributor to the exergy destruction was the charging heat due to
the relatively high charging temperature of 75 ◦C. Despite the magnitude of charging and
discharging heat being equal due to the reversibility of adsorption/desorption processes for
silica gel/water and silica gel/ethanol, the contribution of discharging heat was the least,
primarily due to the relatively low discharging heat temperature of 35 ◦C. The charging
and discharging exergy transfer per unit mass of silica gel for silica gel/water under AZE
was 527% and 540% higher than silica gel/ethanol under AZE and 752% and 757% higher
than silica gel/ethanol under SZE. The exergy change for silica gel/water under AZE was
522% and 696% higher than silica gel/ethanol under AZE and SZE due to the greater cyclic
water vapor uptake/offtake for the former. The effect of exergy transfer and exergy change
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led to 11.87 kJ/kgads exergy destruction for silica gel/water under AZE, which was 528%
and 773% higher than silica gel/ethanol under AZE and SZE, respectively.
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Table 3 shows the exergy change breakup for silica gel/water and silica gel/ethanol.
The contribution of exergy change due to the entropy change is higher than that due to the
enthalpy change by 301%, 23%, and 42% for silica gel/water under AZE, silica gel/ethanol
under AZE and silica gel/ethanol under SZE. The exergy changes due to the enthalpy
change for silica gel/water under AZE were greater by 177% than silica gel/ethanol under
AZE and by 286% than silica gel/ethanol under SZE. These changes reflect the changes of
enthalpy of 18.3 kJ/kgwater, 15.3 kJ/kgethanol, and 15.1 kJ/kgethanol for water vapor under
AZE, ethanol vapor under AZE, and ethanol vapor under SZE, respectively. The exergy
changes due to the entropy change for silica gel/water under AZE were bigger by 802%
than silica gel/ethanol under AZE and by 983% than silica gel/ethanol under SZE. These
changes reflect the changes of entropy of 0.24 kJ/kgwater and 0.06 kJ/kgethanol under AZE.
The entropy change for ethanol vapor under SZE was 0.07 kJ/kgethanol. Although the
entropy change for ethanol under SZE was marginally greater than ethanol under AZE
by 17%, the magnitude of ethanol uptake was 38% less than for ethanol vapor under
AZE, which led to a relatively lower exergy change. The percentage contribution for
silica gel/ethanol under SZE of 59% was, however, higher than silica gel/ethanol under
AZE of 55%.

Table 3. Breakup of the exergy change and enthalpy and entropy percentage contributions over the
entire heat charging/discharging cycle.

∑
ch/dis

(
dwchhg,c − dwdishg,e

)
∑

ch/dis
T0
(
dwchsg,c − dwdissg,e

)
[kJ/kgads] [%] [kJ/kgads] [%]

Silica gel/water AZE 1.08 20% 4.33 80%
Silica gel/ethanol AZE 0.39 45% 0.48 55%
Silica gel/ethanol SZE 0.28 41% 0.40 59%

4. Conclusions and Prospects

This study aimed to understand the heat storage potential of silica gel/ethanol to
meet the heat storage demands in geographical locations of sub-zero ambient, emphasizing
short-term heat storage, and benchmark it against the widely investigated silica gel/water.
The heat storage characteristics, heat charging/discharging cyclic performance, and energy
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conversion performance via exergy analysis of both adsorption pairs under realistic cyclic
operating conditions were experimentally determined. Accordingly, the findings of this
study are concluded below.

• Ethanol is a viable working fluid for adsorption heat storage to utilize the sub-zero
ambient conditions without needing an underground heat source for the evaporator.

• Silica, gel/ethanol under SZE, showed the most significant net equilibrium cyclic up-
take of double the equilibrium for silica gel/water and more than three times for silica
gel/ethanol under AZE. On the other hand, a degree of non-desorbed ethanol during
the charging process occurred, which affected the quasi-realistic cyclic uptake hence
the heat storage capacity of the silica gel/ethanol pair. Such an effect stemmed from
the large molecular size of ethanol for the high microporosity level of the investigated
silica gel.

• Ethanol adsorbate has a high affinity towards silica gel, resulting in faster adsorp-
tion/desorption process and hence faster discharging/charging processes, which flags
that utilizing silica gel of other porous structures of more accessible sites for ethanol
molecules can enable faster heat charging/discharging rate along with the magnitude
of heat storage capacity.

• The exergy transfer during the heat charging process was the primary contributor
to the exergy destruction due to the high-temperature level and heat quantities. On
the contrary, the exergy transfer during heat discharging was the minor contributor
to the exergy destruction, albeit the amount of heat discharging was equal to that
for charging. Therefore, it is concluded that the degree of heat (i.e., temperature)
dominates the exergy transfer contribution.

• The entropy change during the charging and discharging processes was the main
contributor to the breakup of exergy change.

• Given the potential of utilizing ethanol as a working fluid for adsorption heat storage,
future work will revolve around pairing ethanol with porous materials of various
structures aiming to fast charging/discharging responses simultaneously with heat
storage quantities.
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