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 Abstract 

The accurate diagnosis of the compound fault of industrial robots can be highly beneficial to 

maintenance management. In the actual noisy working environment of industrial robots, the 

mixed and feeble failure features are easy to be overwhelmed, which poses a major challenge 

for the industrial robot compound fault diagnosis. Meanwhile, in the existing studies, a large-

size deep learning model is the guarantee of decent denoising and fault diagnosis performance. 

However, this demands expensive computational costs and large data samples, which are not 

always available. In order to address both challenges, in this study, an integrated approach that 

contains two compact Transformer networks is proposed to achieve accurate compound fault 

diagnosis for industrial robots. In this approach, the feedback current signals collected from a 

six-axis industrial robot are first transformed into time-frequency image representation via 

continuous wavelet transformation (CWT). Secondly, a novel deep learning algorithm called 

compact Uformer is proposed to denoise the time-frequency image. Subsequently, the denoised 

time-frequency images are fed into compact convolutional Transformer (CCT) for compound 

fault diagnosis. An experimental study based on a real-world industrial robot compound fault 

dataset was conducted. The experimental results reveal that the proposed method can achieve 

satisfactory compound fault diagnosis accuracy based on the data collected from the noisy 

environment in comparison with the state-of-the-art algorithms. 

 

Keywords: Compound fault diagnosis; Industrial robot; signal denoising; Deep learning; 

Transformer network. 
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1. Introduction 

Industrial robots have long been employed in automated manufacturing processes in order to 

improve productivity, quality, and safety [1]. They have been widely used in various scenarios 

of the industry, including assembling [2] and welding [3]. In the actual industrial application, 

multiple components in an industrial robot may fail at the same time due to overload or 

accidents. The transmission system is the core of an industrial robot. The components such as 

the motor and reducer in the transmission system are tightly coupled, which poses a great 

challenge in compound fault diagnosis. If the compound fault cannot be diagnosed accurately, 

it is likely that the robot with unidentified fault cannot perform its task and would lead to the 

stoppage of the production line [4]. With the accurate diagnosis of compound fault, appropriate 

maintenance can be scheduled so to lower the maintenance cost. Hence, it is worthwhile to 

investigate an accurate robotic compound fault diagnosis approach. 

 

Among numerous research about compound fault diagnosis, most research focuses on rotating 

machinery such as bearings [5-7] and gearboxes [8, 9]. These studies were conducted based on 

the vibration signal collected from the accelerators. Through the modelling using deep learning 

and advanced signal processing approaches, the failure features of compound fault can be 

identified, and therefore achieve accurate diagnosis performance. However, in the actual 

implementation, it is challenging to install the accelerators into a mechanical system. 

Furthermore, there are various machines in the workshop and each of them has multiple 

components. The vibration signal collected by the accelerator is mixed with strong noise 

generated by other coupling components and the machines nearby, which overwhelm the actual 
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failure features. For the industrial robot, the existing studies have barely focused on the 

compound fault diagnosis. Besides conducting single fault diagnosis using vibration data [10], 

researchers have focused on single fault diagnosis based on attitude data [11], simulated joint 

angle and current data [12-14], power consumption data [15] and so on. The choice of the data 

source depends on the specific diagnosis part and the data availability. For instance, To et al. 

[16] proposed a fault diagnosis approach for grit-blasting based on the data collected from 

RGB-D camera, audio and pressure transducers to diagnose grit-blasting spot position and the 

state of blasting. Servo motor, due to its high precision and controllability, has been widely 

deployed in industrial robots. The feedback current of the servo motor can be collected from 

the driver, which is more accessible in comparison with most data types mentioned above. The 

feedback current may record the failure patterns when the failures of the motor or reducer occur. 

However, there are no existing studies that report the fault diagnosis based on the feedback 

current data. 

 

The denoising of the monitoring data is required to achieve compound fault diagnosis based on 

the data collected from the noisy environment. The prevailing approach for the signal denoising 

approach can be classified into two types: signal-processing approaches [17-20] and data-

driven approaches [21, 22]. The signal processing approaches such as CWT, empirical wavelet 

transforms (EWT) and empirical mode decomposition (EMD) tends to separate the noisy 

component from the signal, which requires extra domain knowledge. In contrast, the data-

driven approach mainly focuses on learning the patterns of noisy components and achieved 

automatically denoising via autoencoder structure neural networks. However, most deep 
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learning algorithms proposed in recent years require a large training parameter to achieve 

decent performance, which requests a high computation cost. Transformer network, as a 

prevailing deep learning algorithm, has been widely investigated in natural language processing, 

computational vision and speech recognition [23]. Its powerful parallel computing and global 

patterns learning capability can identify the fault related patterns in the monitoring data. 

Identifying these fault related patterns is the key issue in signal denoising and compound fault 

diagnosis missions, while the technical path for applying the Transformers network towards 

both targets has yet to be studied. Meanwhile, computational efficiency is a major concern in 

deep learning modelling. Hence, it is worthwhile to investigate lightweight Transformer 

networks for the signal denoising and compound fault diagnosis of the industrial robot.  

 

In this paper, an approach that composes of two compact Transformer networks is presented to 

establish an accurate compound fault diagnosis model for industrial robots operating in noisy 

environments. In the proposed approach, the feedback current signals collected from the 

industrial robot are first converted to a time-frequency image via CWT. Among different signal 

processing approaches, CWT is a prevailing tool to reveal the time-frequency patterns of the 

signal [24]. The time-frequency image generated by CWT is partially resilient to environmental 

noise. Subsequently, a powerful and lightweight denoising network called compact Uformer is 

proposed to denoise the time-frequency images. UNet is a powerful structure based on 

convolutional neural networks, which is a prevailing tool in image denoising [25]. Compact 

Uformer takes advantage of both UNet and Transformer networks, and it has higher 

computation efficiency due to its compact structure. Then, the denoised image is then fed into 
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CCT to establish a compound fault diagnosis model. CCT is a novel and compact Vision 

Transformer (ViT) [26] structure that has strong learning capability with fewer trainable 

parameters [27]. The main contribution of this study is three-fold: (1) Different from UNet and 

ViT which require high computational cost, a compact Uformer is proposed to denoise the time-

frequency images; (2) As a lightweight ViT, this is the first time that CCT is introduced for 

robotic compound fault diagnosis modelling; (3) An experimental study based on the real-word 

robotic compound fault dataset is implemented to reveal the effectiveness of the proposed 

approach. The overall structure of the paper is organised as follows: Section 2 reviews the 

related works on recent advances in signal denoising and compound fault diagnosis. Section 3 

details the methodology of this paper. Section 4 introduces the experimental setup and the 

experimental results are demonstrated in Section 5. Finally, Section 6 discusses, and Section 7 

concludes. 

 

2. Literature Review 

2.1. Recent advances of Compound Fault Diagnosis 

Recent advances in data analytics and smart manufacturing demonstrate that data-driven 

approaches are prevailing in fault diagnosis in rotation machinery. As manufacturing equipment 

is increasingly equipped with sensors and communication capabilities, real-time data collection 

is becoming easier and easier for fault diagnosis. The use of data-driven methods, especially 

deep learning approaches, has gained significant attention for compound fault diagnosis in 

recent years.  
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Component level fault diagnosis is the main stream in the existing studies [28, 29]. Among 

different deep learning structures, CNN is widely used in the studies of compound fault 

diagnosis. Huang et al. [30] proposed a decoupling CNN to identify the relationship between 

different faults. In this approach, a deep CNN is first used as the model for learning the features, 

which can effectively learn the discriminative features from raw vibration data. Additionally, 

multi-stack capsules can be used as a decoupling classifier to locate and isolate compound faults. 

Finally, the proposed model is trained and optimized using the routing by agreement algorithm 

and the margin loss cost function. Wang et al. [8] proposed an ensemble extreme learning 

machine model to diagnose the compound fault of rotating machinery. Specifically, the 

proposed model consists of two subnetworks, a clustering network and a multi-label 

classification network. The first network computes the Euclidean distance between each point 

and every centroid using unsupervised clustering, and the latter network identifies potential 

output labels using multiple-output-node multi-label learning. Xu et al. [31] developed a 

method for encoding the fault semantics according to the fault characteristics. The time-

frequency features of the compound fault signal are extracted with a CNN before the semantic 

features of the fault are embedded into the visual space of the fault data. To identify the 

categories of unknown compound faults, Euclidean distance is adopted to measure the distance 

between signal features and semantic features of the compound faults. In order to estimate the 

compound fault severity, Dibaj et al. [32] proposed an end-to-end fault diagnosis method based 

on a fine-tuned variational node decomposition and CNN. To solve the complex mapping 

relationship between vibration signals and bearing faults, Lyu et al. [5] proposed a deep learning 

method that combines residual connection, soft thresholding and global context. The proposed 
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approach integrates the working mechanisms of soft threshold and global context to achieve 

effective noise reduction and feature extraction. By integrating CNN with wavelet transform 

and multi-label classification, Liang et al. [9] proposed a new compound fault diagnosis method 

is proposed for gearbox compound fault diagnosis. Wavelet transform is first adopted to extract 

the 2D-time-frequency image based on the vibration signal before a multi-label CNN model is 

built to diagnose compound gearbox faults based on extracted features. Jin et al. [33] presented 

a novel decoupling attentional residual network for compound fault diagnosis. The original 

signal is processed by the short-time Fourier transform (STFT), and the output is fed into the 

attention-enhanced CNN for feature extraction. Then a multi-label decoupling classifier is used 

to get the compound fault diagnosis results. In order to address the insufficiency of the labelled 

data, active learning is introduced. Besides CNN, Huang et al. [34] adopted a decoupling 

capsule network (DCN) is constructed as the basic model. Then, a DCN model can be pretrained 

using multiple sensor data, which can be used to generate multiple pretrained DCN models. 

Finally, by combining ensemble learning skills with pretrained DCN models, the deep ensemble 

CN model is yielded for intelligent compound fault detection and diagnosis. The compound 

fault diagnosis also can be achieved by other machine learning algorithms. By introducing 

quantum genetic algorithms (QGA) to improve maximum correlated kurtosis deconvolution 

(MCKD), Lyu et al. [35] proposed a QGA-MCKD method that can be used to diagnose gear 

and bearing compound faults. In this approach, QGA adaptively selects the filter length and 

deconvolution period of MCKD, which correspond to each fault. Based on the key parameters 

obtained, MCKD processes the compound fault signal, and each individual fault feature related 

to the individual failed part can be extracted. Li et al. [36] proposed a multiple enhanced sparse 
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decomposition algorithm to simultaneously isolate and extract the harmonic components and 

transient features from the raw signals.  

 

2.2. The Studies of Signal Denoising 

Recently, the integration of deep learning and advanced signal processing techniques has 

become mainstream in signal denoising. Wang et al. [21] presented an attention-guided joint 

learning convolutional neural network for the denoising and fault diagnosis of mechanical 

equipment. The fault diagnosis task and signal denoising task are integrated into an end-to-end 

CNN architecture, which can achieve decent noise robustness through dual-task joint learning. 

Zhang et al. [17] proposed an ensemble empirical model decomposition-convolutional deep 

belief network to denoise the signal collected from reciprocating compressors and extract more 

robust features for fault diagnosis. Jiang et al. [37] presented a stacked multi-level-denoising 

autoencoder for denoising and fault diagnosis. In the training stage of autoencoders, multiple 

levels of denoising schemes were adopted. Zou et al. [22] proposed an adversarial denoising 

CNN to denoise the signal and get accurate fault diagnosis results. In order to boost the anti-

noise performance of training samples, maximum moving is applied to the frequency spectrum 

of the vibration signal. Zhao et al. [38] developed an interpretable denoising layer for neural 

networks based on reproducing kernel Hilbert space, which can integrate traditional signal 

processing technology with physical interpretation into network training. Other prevailing 

signal processing methods also can be used for signal denoising. Chegini and Najafi [18] 

reported an approach that uses empirical wavelet transform to isolate the noisy component and 

utilise a thresholding function to remove the noise. Similarly, Guo et al. [19] adopted a wavelet 
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scattering transform and an improved soft threshold denoising algorithm for noise reduction of 

the vibration signal. Meng et al. [39] adopted adaptive sparse denoising to determine 

regularization parameters adaptively, which can denoise the raw vibration signal and reveal 

fault types. 

 

In the research of compound fault diagnosis, signal processing approaches such as CWT [9] or 

STFT [33] have been adopted to get the time-frequency image which can reveal the failure 

pattern of the signal. Recent advances in deep learning have shown decent performance in 

image denoising [40]. The signal noise in image representation can be removed using the image 

denoising approach. With the development of CNN, the structure of UNet was proposed. UNet 

is a powerful deep learning structure that has been widely explored in image segmentation [25], 

restoration [41] and denoising [42]. In order to address the issue that UNET is not robust to 

noise in the training process, Thesia et al. [43] modified UNet approach by using a special 

neural network called Valve, which uses latent features of different UNets as control signals to 

analyse noise distribution. In recent years, since the Transformer network has become 

prevailing in computer vision, innovative algorithms that take the advantage of UNet and the 

Transformer network have emerged. Fan et al. [42] proposed an algorithm called SUNet which 

combines Swin Transformer and UNet for image denoising. In this structure, three Swin 

Transformer blocks were adopted, which enables the network the learn the hidden patterns 

effectively. Yao et al. [44] investigated a dense residual Transformer for image denoising. In 

this approach, a depth-wise convolutional layer is added to a Transformer block to enhance the 

local information learning. Then the dense connection is introduced to multiple modified 
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Transformer blocks to get a comprehensive feature representation. 

 

2.3. A Brief Summary 

From the existing studies, it can be seen that the recent advances in compound fault basically 

focus on the rotation machinery based on the vibration data. Several studies regarding robotic 

single fault diagnosis were conducted, while there is no research that concerns the compound 

fault diagnosis for industrial robots. Meanwhile, signal denoising is a key issue in fault 

diagnosis. The signal processing-based approach heavily relies on expert knowledge, while the 

deep learning-based approach is complex in modelling. The integration of advanced signal 

processing and deep learning techniques has shown merits in signal denoising. Transformers 

network, as a powerful deep learning structure, has shown its merits in denoising and fault 

diagnosis. However, the existing Transformer networks-based approaches are high in model 

size, which requires large computational costs. Hence, it is worthwhile to explore an integrated 

approach that can achieve both high computational efficiency as well as satisfactory denoising 

and compound fault diagnosis performance.  

 

3. Methodology 

In this study, an integrated approach for the robotic compound fault diagnosis is proposed. As 

illustrated in Figure 1, there are three stages in the proposed approach. Taking a six-axis 

industrial robot as an example of this study. Firstly, in the data collection and transformation 

stage, the feedback current signals are collected from the motors of the industrial robot. The 

sliding window approach is adopted to segment the dataset. Then the collected signals within 
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each time window are transformed into time-frequency images via CWT, which can lower the 

noise impact and reveal the fault-related features. The time-frequency images generated by 

CWT contain rich information on both the time domain and frequency domain, which is helpful 

for compound fault diagnosis. In the second stage, the image mixup [45] is first implemented 

to increase the number of training samples. It is well known that Transformer models tend to 

be data-hungry, which requires a large dataset to yield better performance. Mixup is a simple 

but effective approach that can generate fake samples based on the linear combination of the 

existing samples. In order to ease the data-hungry issue, mixup strategy is adopted in this study 

to boost the algorithm performance of both compact Transformer networks. Subsequently, the 

time-frequency images are used to train a denoising model via compact Uformer. The noisy 

component in the time-frequency images can be identified and removed by the compact 

Uformer. The details of Compact Unformer are introduced in Section 3.1. After the time-

frequency images are denoised, CCT is adopted to train a compound fault diagnosis model. The 

diagnosis results are then used to provide decision support for maintenance. The details of CCT 

are elaborated in Section 3.2.  
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Figure 1. The overall architecture of the proposed approach 

 

3.1.Compact Uformers for Time-frequency Image Denoising 

Data denoising is an essential task in signal processing. With the deployment of CWT, the fault-

related features can be partially revealed. However, the noise in time-frequency images needs 

to be further identified and removed. As a prevailing denoising algorithm, the vanilla UNet is 

composed of four convolutional blocks as an encoder to compress and extract the key features 

within the images, and another four convolutional blocks as a decoder for image restoration. 

Moreover, the skip connection between encoders and decoders is used to improve the 
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reconstruction of images. The proposed network architecture is illustrated in the lower part of 

Figure 2. 

 

The proposed network consists of a feature contracting part, a feature expansive part, and two 

Transformer blocks. In order to achieve high cost-effectiveness, only two levels of transformers 

are designed in the proposed compact Uformer. Similar to the Vanilla UNet, the feature 

contracting part contains two convolutional blocks, which are composed of two 3x3 

convolutions, a rectified linear unit (ReLU), and a 2x2 max pooling operation. In contrast, each 

convolutional block in the expansive part consists of an upsampling of the feature map followed 

by a 2x2 up-convolution. After that, a concatenation with the correspondingly cropped feature 

map from the contracting path is applied, followed by two 3x3 convolutions, before the outputs 

are sent to a ReLU. Different from the Vanilla UNet that establishes a skip connection between 

the same level convolutional down block and up block, we introduce Transformer block to 

replace the skip connection so to enhance the global feature extraction capability of the compact 

Uformer. It can be seen that the feature map size yielded in the second convolutional down 

block is a quarter of that in the second convolutional down block. Because of that, both 

Transformer blocks can learn the global patterns in different scales, which can provide more 

useful information for noise removal. The image datasets such as Urban100 and SIDD datasets 

that are applied in the existing image restoration or denoising task are the picture collected from 

the real world, which are rich in detail. In contrast, the time-frequency image generated by 

CWT only contains limited information. Hence, only two levels of feature down and up blocks 

are adopted in the proposed network to keep the model compact and efficient in computation.  



13 

 

 

Figure 2. The comparison between vanilla UNet and the proposed compact Uformer 

 

The Transformer network is a powerful deep learning architecture that is expertise in learning 

the global patterns within the data. The key component of the Transformer network is the multi-

head self-attention layer. To learn the important features from different perspectives, the 

extracted information is first sent to the multi-head self-attention (MSA) layer, which adopts 

multiple self-attention layers. The output of the attention is obtained by determining the 

relationship between a query and a set of key-value pairs to output. In the attention output, the 
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values are weighted and combined to indicate the location of the important features. The 

weights are obtained via the computation of a compatibility function of the query with the 

corresponding key. By computing the query vector 𝑞, key vector 𝑘 and value vector 𝑣, the 

attention score of the standard self-attention layer can be obtained. When an input 𝑖 is sent into 

a self-attention attention layer, the attention score is calculated as: 

𝑆𝑐𝑜𝑟𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑖 ∗ 𝑘𝑖) ∗ 𝑣𝑖                              (1) 

In the MSA, three matrices which are 𝑄, 𝐾 and 𝑉 are adopted to replace the vectors 𝑞, 𝑘 and 

𝑣. By combining rich information from different perspectives of the matrix, the importance of 

various features can be determined comprehensively. Denoting an input data as: 

 𝑋 = [𝑥1,  𝑥2, … , 𝑥𝑛]                             (2)  

the matrices 𝑄, 𝐾 and 𝑉 are obtained via a linear transformation of the input data, which can 

be expressed as: 

𝑄 = 𝑋𝑊𝑞                                       (3) 

𝐾 = 𝑋𝑊𝑘                                       (4) 

𝑉 = 𝑋𝑊𝑣                                       (5) 

, where 𝑊𝑞, 𝑊𝑘and 𝑊𝑣 are trainable projection matrices. 

Then the obtained matrices are further fed into scaled dot-product attention to get the attention 

score, which can be expressed as：  

𝐻𝑒𝑎𝑑_𝑆𝑐𝑜𝑟𝑒1 =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥（Q×𝐾𝑇）×V

√𝑑
                      (6) 

, where 𝑑 is a scalable factor. 

 

Besides using the features captured from the convolutional blocks, positional encoding is also 
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adopted to provide sequential information to the Transformer blocks. The global features 

captured by Transformer block 2 are then sent into the convolutional up block 2 for image 

restoration. Then the up-convolutional feature maps and the output of Transformer block 1 are 

jointly fed into convolutional up block 1 to get the denoised image. 

 

3.2. Compact Convolutional Transformer for Compound Fault Diagnosis 

Compound fault diagnosis is a challenging task for industrial robots. In this section, a 

compound fault approach that adopts CCT as the backbone is elaborated. The details of CCT 

compound fault diagnosis modelling are illustrated in Figure 3. The denoised images are fed 

into CCT. The standard CCT adopts convolution blocks for feature extraction. The extracted 

features are then sent into Transformer blocks for global patterns mining. Finally, the output of 

the Transformer block is then fed into a sequence pooling layer to further locate the essential 

information. Meanwhile, the high computation cost of the Transformer block is caused by the 

large size of the feature map. The convolutional block is effective in the reduction of feature 

map size, which can lower the computation cost of the Transformer block. Because of the 

combination of the convolutional block and the Transformer block, both local and global 

patterns can be extracted with lower model sizes in comparison with the prevailing deep 

learning algorithms. 
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Figure 3. The flow chart of Compact convolutional Transformer for compound fault diagnosis 

 

In CCT, the convolution block is composed of convolutional layers with small strides allowing 

efficient tokenization and the extraction of local spatial relationships. Meanwhile, because of 

the downsampling of the feature maps, the computation cost of the subsequent Transformer 

block is reduced due to the size of the feature maps being decreased. Different from ViT, CCT 

replaces the "image patching" and "encoding" layers in ViT with simple convolutional blocks 

to introduce the inductive bias. A convolution block consists of a convolution layer, a ReLU 

activation and a max-pooling layer. The process can be expressed as: 

    𝐹 =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣2𝑑(𝑥))                 (7) 

where 𝑥 and 𝐹 are the input and output of the convolution block.  

 

Then the features extracted by the convolutional block and the positional encoding are jointly 

fed into a Transformer block for global pattern learning. The details of the Transformer block 
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are demonstrated in Section 3.1. Subsequently, the global features yielded by the Transformer 

block are then processed by the sequence pooling layer. The sequence pooling can process the 

sequential-based information yielded by the Transformer block, which eliminates the 

requirement for the extra class token. Due to the fact that the sequence of data contains relevant 

information across various parts of the input image, the entire sequence of data is pooled to get 

the essential features. The output of a Transformer block is expressed as: 

 𝑥𝑇 = 𝑓(𝑥0) ∈ R𝑏×𝑛×𝑑                               (8) 

 

where the dimension of 𝑥𝑇 is 𝑏 × 𝑛 × 𝑑, 𝑏 is the mini-batch size, 𝑛 is the sequence length 

and 𝑑 is the embedding dimension. Subsequently, a linear layer with SoftMax activation is 

used to further process 𝑥𝑇, which can be expressed as: 

𝑥𝑃 = 𝑥0 × 𝑥𝑇 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐿𝑖𝑛𝑒𝑎𝑟(𝑥𝑇)) × 𝑥𝑇 ∈ R𝑏×1×𝑑             (9) 

 

The second dimension of 𝑥𝑇 is the sequence length. By pooling the data in this dimension, the 

importance of the sequence can be revealed and the dimension of 𝑥𝑃 becomes 𝑏 × 1 × 𝑑. By 

utilizing the sequence pooling strategy and convolution, CCT can eliminate the requirement for 

class tokens.  

 

After the output of sequence pooling is obtained. It is further used to get the compound fault 

diagnosis result. By directly sending 𝑥𝑃 into two linear layers, the classification result can be 

obtained.  
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4. Experimental Setup 

4.1.Data Collection 

It is well known that Industrial robot is high in reliability. The overload or accident issues in 

manufacturing can cause compound faults in the industrial robot. Collecting the compound fault 

data in a run-to-failure manner is time-consuming. In order to address this issue, a fault injection 

experiment was implemented for the data collection. The faulty motors and reducers were 

collected from actual industrial robots from manufacturing works. The faulty parts used in this 

experiment can continue to operate despite minor abnormal sounds or oil leakage. This type of 

fault is in its infancy stage which is hard to diagnose. In the experiment, the faulty parts were 

used to replace the normal parts in a healthy six-axes robot. The robot with a faulty part was 

then used to perform different tasks. The structure of the six-axes robot is demonstrated in 

Figure 4. The three-phase currents in a motor are monitored by the Hall element in the driver. 

The collected signals are the currents of q-axis, which frequency is 1Hz.  

 

Figure 4. The structure of the six-axis industrial robot adopted in the experiment 
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In the fault injection experiment, there are three types of single faults and three types of 

compound faults were performed, and the relevant data was collected. The details of the 

collected data are shown in Table 1. In the era of Industry 4.0, collecting the monitoring data of 

all the axis requires a large transmission cost, which may not be affordable for a company that 

possess a large number of industrial robots. Meanwhile, industrial robot is a type of closed 

coupled asset, which the faulty parts may affect the operation of the coupled components. 

Hence, faulty patterns also can be found in the monitoring signals of other components. Based 

on this consideration, only the feedback current of motor 3 was used in the experiment for 

modelling to realise compound fault diagnosis with lower resources. Each category contains 

300,000 data entries. In the data pre-processing stage, the data was segmented by the length of 

100. Then the data in each window is transformed to time-frequency images via CWT. The size 

of the time-frequency image is 32×32. 

Table 1. The details of the collected dataset. 

No Fault type Faulty parts 

1  Normal 

2 

Compound fault 

Reducer 1 and Motor 2 

3 Reducer 1 and Reducer 3 
4 Reducer 3 and Reducer 4 

5 

Single fault 

Reducer 3 

6 Motor 2 

7 Reducer 4 

 

After CWT, each data category contains 3,000 time-frequency images, for a total of 21,000 data 

samples. Examples of time-frequency images for each fault category are shown in Figure 5. 

Since deep learning is a type of data-hungry algorithm, the number of data samples is essential 

to the performance of deep learning. In order to ease the effect of data insufficiency, an image 

mixup [45] was adopted to augment the training dataset. In this study, the mixup ratio of two 
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images was set as 0.5, which indicates that 50% of the two images are adopted to generate a 

pseudo image. The number of newly generated images for each category is 3,000. After the 

mixup, the training data is increased by 21,000.  

 

Figure 5. The time-frequency images generated by motor 3’s feedback current signals of 

different fault categories 

 

4.2. Benchmarking Experiments 

In this study, the denoising performance of compact Uformer is firstly explored. Different 

noises from the environment, assets, and rotating components can be regarded as following a 

Gaussian distribution. In order to get the noisy data for benchmarking experiments, different 

levels of Gaussian white noise were separately added to the raw feedback current signals to 

generate a time-frequency image. Figure 6 illustrated three examples of adding noises and time-
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frequency image generation. It can be seen that when the noise level is 30dB or lower, the noise 

in the time-frequency image is weak. When the noise level is up to 2dB, the key patterns in the 

time-frequency image are partially overwhelmed. When the noise level becomes -10dB, it is 

challenging to identify useful patterns. In this study, there are 10 different levels of noise, which 

range from -10dB to 30dB, were added to the feedback current signals to evaluate the denoising 

performance of the proposed compact Uformer. 

 

Figure 6. The time-frequency images of feedback current signal under different levels of 

Gaussian white noise  

 

The parameters setting is important to the model training. In this study, Adam is adopted as the 

optimiser with the learning rate set as 0.001. Mean square loss is used as the loss function and 

the training loss is set as 300 epochs. The number of heads in both Transformer block’s MSA 

layers was set as 6. The number of nodes in the linear layer of Transformer block 1 was set as 

256 and the number of nodes in the linear layer of Transformer block 2 was set as 64. In order 

to reveal the effeteness of the compact Uformer, three benchmarking algorithms were adopted. 

The key parameters setting such as learning rate and training epoch is the same as the compact 

Uformer. The details of these benchmarking algorithms are demonstrated as follows: 

1. UNet [25]: proposed in 2015, it is the classical algorithm based on CNN, which contains 
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four convolutional down sampling blocks and four convolutional up sampling blocks. 

2. SwinIR [46]: proposed in 2021, it is a novel image restoration algorithm that uses CNN 

for shallow feature extraction and image reconstruction and Swin Transformer blocks for 

deep features extraction. 

3. MPRNet [47]: proposed in 2021, it is a multi-stage architecture that progressively learns 

the hidden patterns for the degraded inputs, which are then used to restore the image. In 

this algorithm, three UNets are adopted as the backbone of each stage. 

 

In the image-denoising experiment, the image denoising of all the data samples was performed. 

The data from seven categories were mixed together for model training. The images denoised 

by Compact Uformer were then fed into CCT for compound fault modelling. CCT adopted 

convolutional blocks with 3×3 convolutions for feature extraction. Then the extracted features 

with the shape of 64×256 were sent into stacked Transformer blocks. The number of heads in 

MSA layers was set as 6 and the number of nodes of the linear layer in Transformer blocks was 

set as 64. Adam and mean square error were adopted as the optimiser and loss function. The 

learning rate and training epoch were set as 0.001 and 300, respectively. The key parameters of 

CCT are the number of convolutional layers and Transformer layers, which is investigated in 

the experiment. 

 

In order to reveal the merits of CCT, several prevailing deep learning algorithms were adopted. 

The benchmarking algorithms include two large and powerful networks which are Swin 

Transformer and ResNet50. Meanwhile, two lightweight networks which are DeIT and 
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MobileNet V2, were adopted in this experiment. The details of the benchmarking algorithms 

are presented below: 

1. Swin Transformer [48]: is a modified version of VIT. It adopts shifted windows self-

attention and patch merging to achieve lower computation complexity and higher image 

classification accuracy. 

2. DeIT [49]: is a data-efficient image Transformer network. The distillation strategy is 

deployed in this model to reduce the network size and keep satisfactory performance. In 

this experiment, the tiny version DeIT, which the number of parameters is 5M, was adopted. 

3. MobileNet V2 [50]: is a lightweight version of ResNet. In this algorithm, the depth 

separable convolution and inverted residual connections are used to lower the 

computational cost and improve the effeteness of feature extraction.  

The 5-fold cross-validation was implemented to get comprehensive results. All tests were 

conducted on an Intel i9-10920X 3.50Ghz CPU with Nvidia GeForce RTX 3090 graphics card. 

Besides, the t-SNE technique was adopted in this experiment to further study the insights of the 

modelling results. 

 

4.3.Evaluation Metrics 

In this study, two prevailing metrics, which are peak signal-to-noise ratio (PSNR) and structure 

similarity index measure (SSIM), were used to evaluate the image denoising performance. The 

PSNR can be calculated as follows: 

𝑃𝑆𝑁𝑅 = 10log10 (
(2𝑛−1)2

1

𝐻×𝑊
∑  𝐻

𝑖=1 ∑  𝑊
𝑗=1 (𝑥(𝑖,𝑗)−𝑦(𝑖,𝑗))2

)            (10) 

, where 𝐻 × 𝑊 is the size of the image. 𝑥(𝑖, 𝑗) and 𝑦(𝑖, 𝑗) are the pixels in both images. 𝑛 
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is the bit number. 

 

The expression of SSIM is shown as follows: 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                  (11) 

 

, where 𝜇𝑥 and 𝜇𝑦 are the mean value of 𝑥 and 𝑦. 𝜎𝑥 and 𝜎𝑦 are the variance of 𝑥 and 

𝑦. 𝐶1 and 𝐶2 are two constants. 

 

For the evaluation of compound fault diagnosis, classification accuracy was adopted since the 

compound fault diagnosis modelling is a multi-classes classification task. 

 

5. Experimental Results 

5.1. Experiment on Time-Frequency Image Denoising 

The denoising performance of the proposed compact Uformer is revealed in this experiment. 

The model parameters and the training time of all four algorithms are listed in Table 2. It can 

be seen that the number of parameters of the proposed compact Uformer is far less than the 

benchmarking algorithms. In the experiment, the denoising experiment that used the data of all 

seven categories is performed.  

 

Table 2. The comparison of model computation cost. 

 Compact Uformer UNet SwinIR MPRNet 

#Params (M) 0.81 4.1 3.2 5.6 
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It can be seen from Figures 7 and 8 that compact Uformer shows better PSNR in all the 

experiments under different noise levels, while compact Uformer achieves the best SSIM when 

the noise level is lower than 10dB. All the algorithms show better PSNR and SSIM when the 

noise level increases from -10dB to 30dB. In the extremely heavy noise scenario, which the 

noise level is lower than 5dB, the merit of compact Uformer in terms of PSNR and SSIM is 

obvious. However, when the noise level is above 5dB, SwinIR and MPRNet also can get decent 

denoising performance. The advantage of the proposed compact Uformer is mere. When the 

noise level is 30dB, the PSNR of the proposed compact Uformer is slightly better than that of 

MPRNet. When the noise level arrives at 30dB, SwinIR and MPRNet outperform the compact 

Uformer in SSIM. 

 

Figure 7. The denoising performance in terms of PSNR of algorithms based on data from 

all categories in different noise levels 
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Figure 8. The denoising performance in terms of SSIM of algorithms based on data from 

all categories in different noise levels 

 

After the denoising experiment using all the data from each category, it is worthwhile to study 

the denoising performance of algorithms of each category separately. It can be seen from Tables 

3 and 4 that the denoising performance of all the algorithms in terms of PSNR and SSIM 

decreases with the enhancement of noise. When the noise level becomes -10dB, the PSNR 

obtained by all the algorithms is lower than 20dB. Among all the seven categories, the denoising 

of the Normal category achieved the best performance in most scenarios, while three single 

fault categories show moderate performances. The denoising performance in the compound 

fault categories is worse than that of the normal and the single fault categories. The results of 

denoising of Reducer1and Motor2 are the worst in all experiments. When the noise level is 

30dB, the best denoising of Reducer1and Motor2 in terms of PSNR and SSIM are only 19.65dB 
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and 0.3477. Similar to the results derived from the data of all the categories, when the added 

noise is at a low level such as 20dB or 30dB, the results of Compact Uformer in terms of PSNR 

and SSIM are not advantageous when compared to SwinIR and NPRnet. In contrast, when the 

noise level is -5dB or -10dB, the algorithm performance of SwinIR and NPRnet deteriorates 

rapidly in terms of PSNR and SSIM. 

 

Table 3. The denoising performance in terms of PSNR of algorithms based on data from 

different categories. 

Noise 

(dB) 
Algorithms Normal 

Reducer1 

and Motor2 

Reducer1 and 

Reducer3 

Reducer3 and 

Reducer4 
Reducer3 Motor2 Reducer4 

-10 

Compact Uformer 19.47 18.56 19.63 19.69 19.27 19.26 19.31 

UNet 18.54 17.32 17.39 17.94 17.42 17.45 17.48 

SwinIR 17.63 17.16 17.39 17.21 17.40 17.41 17.37 

NPRnet 18.82 17.91 19.51 18.30 17.89 18.32 18.70 

-5 

Compact Uformer 20.47 19.07 19.82 20.34 19.67 19.59 19.65 

UNet 19.87 18.48 19.48 19.68 18.52 18.84 18.95 

SwinIR 18.41 17.56 17.41 18.26 17.65 17.70 17.78 

NPRnet 19.87 18.48 19.48 19.68 18.52 18.84 18.95 

-2 

Compact Uformer 21.56 19.21 20.10 21.79 19.96 20.24 20.43 

UNet 19.45 17.63 17.46 18.63 17.98 18.21 18.36 

SwinIR 19.40 17.48 17.44 18.08 17.84 18.03 18.28 

NPRnet 20.71 18.54 18.95 17.97 18.79 19.44 19.75 

2 

Compact Uformer 22.93 19.70 20.71 21.25 20.84 21.41 21.94 

UNet 21.25 18.68 19.68 20.32 20.14 20.99 21.55 

SwinIR 23.06 17.44 17.57 19.21 18.70 19.06 19.43 

NPRnet 21.02 17.78 18.86 18.74 18.33 19.77 20.74 

5 

Compact Uformer 24.12 19.44 20.34 23.96 21.77 22.33 22.93 

UNet 22.11 18.22 18.68 22.52 19.87 20.69 20.10 

SwinIR 22.06 17.75 17.49 19.59 19.64 19.96 20.28 

NPRnet 24.32 19.18 19.66 18.53 21.02 21.88 22.64 

10 

Compact Uformer 25.79 19.65 20.06 24.52 22.83 23.50 24.46 

UNet 23.41 18.32 18.97 22.46 20.69 22.24 23.32 

SwinIR 23.14 17.88 17.45 19.84 20.79 21.07 21.19 

NPRnet 25.70 19.29 19.96 23.64 22.46 23.41 24.55 

20 

Compact Uformer 26.95 19.53 19.96 22.58 23.83 24.64 25.99 

UNet 23.68 18.58 19.12 22.48 21.63 21.78 21.21 

SwinIR 24.30 17.87 17.68 20.25 22.10 21.85 22.44 

NPRnet 27.03 19.55 20.13 23.26 23.82 25.03 26.53 

30 

Compact Uformer 26.97 19.65 19.63 22.93 24.03 24.98 26.81 

UNet 23.14 18.55 19.01 21.75 22.30 21.41 21.97 

SwinIR 24.19 18.25 17.79 20.37 22.35 22.71 23.51 

NPRnet 27.51 19.52 20.02 22.89 24.53 25.70 27.34 
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Table 4. The denoising performance in terms of SSIM of algorithms based on data from 

different categories. 

 

The denoised examples when the noise level is -2dB are demonstrated in Figure 9. These 

examples were randomly selected from the testing set. It can be seen that the information in the 

CWT image of the normal category is less than the single fault and the compound fault 

categories. Hence, the denoising performance of the normal category is obviously better than 

Noise 

(dB) 
Algorithms Normal 

Reducer1 

and Motor2 

Reducer1 and 

Reducer3 

Reducer3 and 

Reducer4 
Reducer3 Motor2 Reducer4 

-10 

Compact Uformer 0.4173  0.2238  0.4798  0.4047  0.4150  0.4080  0.4291  

UNet 0.1641  0.1330  0.1378  0.2524  0.1941  0.2045  0.2553  

SwinIR 0.0540  0.0327  0.0335  0.4060  0.1356  0.1482  0.1432  

 0.2593  0.0479  0.4435  0.3918  0.0564  0.1518  0.2712  

NPRnet 0.3766  0.0877  0.3162  0.3276  0.2654  0.3943  0.4357  

-5 

Compact Uformer 0.4940  0.3156  0.5130  0.4341  0.4940  0.4681  0.4742  

UNet 0.1761  0.1871  0.2422  0.3306  0.1079  0.1901  0.2398  

SwinIR 0.1630  0.1313  0.2345  0.3117  0.1893  0.2111  0.2269  

NPRnet 0.3530  0.1568  0.4399  0.2612  0.2065  0.2880  0.3063  

-2 

Compact Uformer 0.5214  0.3340  0.5537  0.4754  0.5148  0.5294  0.5477  

UNet 0.2708  0.2384  0.2543  0.2866  0.1911  0.2218  0.2460  

SwinIR 0.2589  02317  0.2398  0.2108  0.1805  0.2046  0.2285  

NPRnet 0.3766  0.0877  0.3162  0.3276  0.2654  0.3943  0.4357  

2 

Compact Uformer 0.5830  0.4350  0.6083  0.4842  0.5930  0.6276  0.6567  

UNet 0.5796  0.1514  0.4178  0.2065  0.4716  0.5670  0.6087  

SwinIR 0.3890  0.0363  0.0443  0.3411  0.3129  0.3272  0.3747  

NPRnet 0.5835  0.3487  0.4969  0.3995  0.3253  0.6307  0.6317  

5 

Compact Uformer 0.6685  0.3483  0.5656  0.5278  0.6839  0.7018  0.7227  

UNet 0.6492  0.2247  0.4440  0.2773  0.6005  0.6536  0.5940  

SwinIR 0.4796  0.3436  0.0567  0.4374  0.4222  0.4330  0.4670  

NPRnet 0.5797  0.3388  0.0000  0.4630  0.5283  0.6166  0.7044  

10 

Compact Uformer 0.7330  0.3567  0.5274  0.5735  0.7597  0.7746  0.8004  

UNet 0.7228  0.2922  0.5006  0.4407  0.7356  0.7663  0.8000  

SwinIR 0.5566  0.2618  0.3838  0.5016  0.5675  0.5616  0.5616  

NPRnet 0.6971  0.2754  0.4259  0.6252  0.5961  0.6929  0.7303  

20 

Compact Uformer 0.7330  0.3567  0.5274  0.5735  0.7597  0.7746  0.8004  

UNet 0.7228  0.2922  0.5006  0.4407  0.7356  0.7663  0.8000  

SwinIR 0.5566  0.2618  0.3838  0.5016  0.5675  0.5616  0.5616  

NPRnet 0.6971  0.2754  0.4259  0.6252  0.5961  0.6929  0.7303  

30 

Compact Uformer 0.7899  0.3460  0.4625  0.6200  0.8265  0.8483  0.8818  

UNet 0.7243  0.3372  0.4110  0.5473  0.8414  0.8665  0.6991  

SwinIR 0.6290  02315  0.1421  0.5140  0.6947  0.7252  0.7620  

NPRnet 0.8193  0.3477  0.4900  0.6056  0.7599  0.8476 0.8680  
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all fault categories. The contour of the key features in the denoised images of the single faults 

categories is still obvious. For the CWT images of the compound fault, it can be seen that the 

patterns are more complex, which poses a challenge of denoising. The details of the features 

were not fully restored in the denoising process. 

 

Figure 9. The denoised results of compact Uformer when the noise level is -2dB 
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5.2. Experiment on Compound Fault Diagnosis for Industrial Robot 

In this experiment. The impact of the key parameters of CCT on the compound fault diagnosis 

modelling performance is firstly revealed. The number of Transformer layers and the 

convolutional layers are the key parameters in CCT, which can affect the model size and the 

performance. Table 6 demonstrated the compound fault diagnosis results in different parameter 

settings. The overuse of convolutional layers leads to extremely small feature maps, which is 

challenging for the Transformer layers to further learn the hidden patterns. Hence, the 

maximum of two convolutional layers was adopted. It can be seen from the results that when 

the Transformer layers were set at six and two convolutional layers were adopted, CCT can 

achieve the best accuracy which is 86.29%. When the number of Transformer layers increased 

to 8, the classification accuracy was compromised while the model size increase rapidly. Hence, 

this setting of six Transformer layers and two convolutional layers was adopted in the following 

experiments. 

 

Table 6. The compound fault diagnosis results of CCT under different parameters settings 

#Transformer layers # Convolutional layers Accuracy (%) #Pramas (M) 

2 1 76.15±2.97 0.20 

2 2 81.13±2.35 0.28 

4 1 83.73±2.87 0.40 

4 2 84.12±2.65 0.48 

6 1 85.72±3.26 3.1 

6 2 86.29±2.95 3.3 

8 1 86.18±2.83 4.2 

8 2 86.07±2.77 4.4 

 

For the benchmarking experiment, three benchmarking algorithms which are Swin Transformer, 

DeIT and MobileNet V2, were adopted to reveal the algorithm performance of CCT. The CWT 
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images without noise were for modelling and the results can be seen in table 6. It can be seen 

that Swin Transformer get the best classification accuracy which is 88.61%. The classification 

accuracy of CCT is 86.29%, which is slightly lower than that of Swin Transformer. The 

compound fault classification accuracy of DeIT and MobileNet V2 is 80.15% and 75.94% 

respectively. Though Swin Transformer achieved the highest accuracy, its number of 

parameters is the largest, which is up to 139.71M. In striking contrast, the number of parameters 

is far less than all the benchmarking algorithms, which is 3.3M. 

 

Table 6. The comparison between the model size and the Compound fault diagnosis accuracy 

 CCT Swin Transformer DeIT MobileNet V2 

#Params (M) 3.3 139.71 20.93 8.52 

Accuracy (%) 86.29±2.95 88.61±1.27 80.15±2.74 75.94±2.52 

 

Subsequently, the denoised images generated by compact Uformer based on data from all 

categories were adopted for modelling. From Figure 10 (a), it is obvious that when the added 

noise is lower than 2dB, the accuracy improvement with the help of image denoising is not 

obvious, which is approximately 5%. The classification accuracy based on denoised data is 

higher than that based on noisy data when the noise level is 2dB to 10dB. When the noise level 

exceeds 10dB, the classification accuracy based on the denoised is worse than that based on the 

noisy data. What is evident in Figure 10 (b) is that the classification result based on the denoised 

data is advantageous when the noise level locates at -5dB or 2dB. The classification accuracy 

of Swin Transformer is higher than that of CCT when the noise level is above 10dB. Figures 

10 (c) and (d) show a similar trend to CCT and Swin Transformer, while the accuracy is lower 

than CCT and Swin Transformer in all the stages. It also can be seen from both figures that the 
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difference between the accuracy obtained based on the denoised data and noisy data is not 

significant when the noise level surpasses 10dB. 

 

Figure 10. The compound fault diagnosis accuracy of all algorithms based on the 

denoised and noised images 

 

For the purpose of better understanding the performance of the algorithms in this experiment, 

the t-SNE technique was employed to visualize the distribution of learned features. One of the 

five-fold results of t-SNE were illustrated in Figure 11. In Figure 11, the coordinates of each 

data sample are computed via t-SNE and then plotted as a scatter. In all sub-figures, it is evident 

that the single faulty categories are easy to be classified, while the samples in 

Reducer1_and_Reducer3_faulty and Reducer3_and_Reducer4_faulty are challenging to be 

separated. CCT and Swin Transformer shows good performance in the classification of 

Reducer1_and_Motor2_faulty. Figure 11 (b) demonstrates a better classification boundary of 
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different groups. For the result of DiIT and MobileNet V2, the boundaries of all three compound 

fault categories are vague and the classification performance between the normal class and 

faulty classes is relatively poor. 

 

Figure 11. The results of t-SNE for compound fault diagnosis using different algorithms 

 

The corresponding confusion matrixes to the results of Figure 11 are illustrated in Figure 12. 

The confusion matrixes (a) and (b) reveal that the CCT and Swin Transformer can correctly 

identify the normal class and show excellent performance in the classification of single fault. 

For the compound fault classification, CCT shows worse performance in the classification of 

Reducer1 and Reducer3 faulty, while Swin Transformer performs badly in the classification of 

Reducer3 and Reducer4 faulty. The result of DeIT indicates that its performance is slightly 

lower than that of CCT. Finally, the result of MobileNet V2 indicates that it only has the 
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capability to accurately identify a single fault, while its performance in compound fault and 

Normal classification is not acceptable. 

 

Figure 12. The confusion matrix for compound fault diagnosis using different algorithms 

 

In order to reveal the relationship between training data size and the algorithm performance, a 

data amount test was performed. The results were illustrated in Figure 13. The total number of 

training data is 37800. When 50% or lower of the training data was adopted for model training, 

the fault diagnosis accuracy of all the algorithms is lower than 60%. When the training data 

percentage locates in the range of 50% to 90%, it can be seen that the performance of CCT is 
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better than the benchmarking algorithms. When 100% of the training data is adopted, the fault 

diagnosis accuracy of Swin Transformer is better than that of CCT. Meanwhile, the increment 

of the accuracy of Swin Transformers in the second half is larger than the rest algorithms. 

 

 

Figure 13. The relation between training data size and fault diagnosis accuracy 

 

6. Discussions 

Due to the high reliability of industrial robots, a large volume of failure data is hard to collect. 

When the failure data samples are limited, it is challenging to apply those large and powerful 

deep learning algorithms to train a compound fault diagnosis model with superior performance, 

especially when the data is collected from a noisy environment. Under this limitation, the 
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lightweight efficient neural networks are easier to be trained and achieve better data efficiency. 

In our experiments, both compact Uformer and compact Transformer shows better performance 

in comparison with the state-of-the-art algorithms. When the noise level is low, state-of-the-art 

algorithms may yield better performance. From the experimental results of section 5.1, it is 

obvious that the compact Uformer can achieve better denoising performance in terms of PSNR 

and SSIM with higher computational efficiency in comparison with other state-of-the-art 

algorithms. When the data from all the categories were used for modelling, the compact 

Uformer shows merits when the noise level is lower than 5dB. When the noise level surpasses 

this threshold, the low-level noise is easy to be identified and removed by state-of-the-art 

algorithms. The results indicate that the proposed compact Uformer is suitable for the denoising 

of middle- and high-level noise. Furthermore, our experiments also evaluated the denoising 

performance of different algorithms based on the data from different categories. The results 

demonstrated that the noises in all three compound faults are challenging to remove in 

comparison with the results of the normal class and single fault class. The main reason is the 

time-frequency image of compound faults is rich in information. In a noisy environment, the 

boundary between the original time-frequency information and the noise becomes unclear, 

which obstacles the algorithms to identifying the noise.  

 

The data used in this study were collected at the asset level. Deep learning modelling based on 

vibration data is the mainstream in fault diagnosis. At the asset level, the vibration signal is hard 

to be collected. In contrast, the feedback current data can be easily collected from the motor 

driver. Hence, the fault diagnosis approach based on feedback current data is easier to be 
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deployed in the actual manufacturing scenario. The data was collected when an industrial robot 

perform the assigned task. In comparison with the data collected from the component level such 

as bearing or gearbox testing platform, the existing noise in the collected data of industrial 

robots is larger. When the extra Gaussian white noise was added, the fault-related features 

within the data were further overwhelmed. The results of compound fault diagnosis indicate 

that the denoise of time-frequency images can promote the algorithm performance when the 

noise level is lower than 10dB. When it is over this threshold, the denoise process is not 

necessary. The main reason is that the time-frequency images were obtained via CWT, which 

is able to restrain the noise to some degree. For the time-frequency images with 20 or 30dB 

noise, the fault patterns are still obvious so that deep learning algorithms are able to establish 

an accurate classification model based on these images with low-level noise. Meanwhile, when 

the noise level is lower than 2dB, the classification accuracy of all the algorithms is decreased 

dramatically. Hence, the suitable range of noise level for the compact Uformer denoising 

algorithm is 2dB to 10dB.  

 

When only 50% of training data is available, the diagnosis accuracy of all the algorithms is 

lower than 60%, which is hard to be applied in the actual industrial scenario. However, when 

60% to 90% of the training dataset is available, the performance of CCT is obviously better 

than the benchmarking algorithms. Even though Swin Transformer achieved better diagnosis 

accuracy in comparison with CCT when 100% training data is available, it requires a far larger 

computational cost. In the existing studies, it is well known that the larger network parameters 

are the guarantee of extraordinary performance. The classification accuracy of the Swin 



38 

 

Transformer is likely to be further promoted when a large dataset and more training epoch is 

available. However, such a large dataset and extremely high computational costs are not always 

affordable. In contrast, CCT as a lightweight neural network is easier to be trained and deployed. 

The compound fault diagnosis accuracy of CCT is only 2.32% lower than that of Swin 

Transformer, while its model parameters are 97.64% less than that of Swin Transformer. This 

promising performance enables CCT to be quickly deployed and transferred in the actual 

maintenance management of industrial robots. 

 

In the current stage, we have collected the data from the fault injection experiment, in which 

faulty parts have incipient faults. However, the root causes of the faulty parts have not been 

identified due to the challenges in disassembling the faulty parts. In future works, it is 

worthwhile to investigate the root causes of the compound fault, which can provide the fault 

diagnosis task. Meanwhile, the proposed compact Uformer and CCT are only used in 

supervised modelling based on noisy data. The denoising and fault diagnosis performance of 

the compact Uformer and CCT can be further improved if the denoising and fault diagnosis 

knowledge can be obtained in advance. The denoising and fault diagnosis knowledge can be 

obtained via transfer learning and knowledge distillation techniques, which will be investigated 

in our future works. Meanwhile, only three types of compound faults were investigated in this 

study. When unseen compound faults happen, the well-trained fault diagnosis model may not 

be able to diagnose it accurately. Hence, it is worthwhile to investigate how to achieve the 

unseen compound fault diagnosis approach in our future works. 

 



39 

 

7. Conclusions 

The maintenance management of industrial robots can gain considerable benefits from an 

accurate compound fault diagnosis. In order to achieve decent denoising and compound fault 

diagnosis performance without large computational cost, an integrated approach composed of 

two lightweight Transformer networks was proposed. An experimental study based on a real-

world industrial robot dataset demonstrated the effectiveness of the proposed approach. The 

key findings of this study are: (1) Compact Uformer shows merits in the time-frequency images 

denoising in comparison with the prevailing benchmarking algorithms, especially in the middle 

and strong level noise; (2) When limited training data (60% -90% in this case) is available, CCT 

shows better fault diagnosis performance; (3) Both models are lightweight, which are 

computational efficient compared with those prevailing Transformer networks; (4) The 

proposed approach is able to achieve satisfactory compound fault diagnosis accuracy when the 

noise level in the range from 2dB to 10dB. In the future, the knowledge-informed neural 

networks and the unseen fault diagnosis approach will be further investigated to achieve better 

compound fault diagnosis accuracy for the industrial robot. 
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