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ABSTRACT
Sentiment analysis is central to the process of mining opinions and
attitudes from online texts. While much attention has been paid to
the sentiment classification problem, much less work has tried to
tackle the problem of predicting the intensity of the sentiment. The
go to method is VADER — an unsupervised lexicon based approach
to scoring sentiment. However, such approaches are limited because
of the vocabulary mismatch problem. In this paper, we present in
detail and evaluate our AWESSOME framework (AWord Embedding
Sentiment Scorer Of Many Emotions) [10] for sentiment intensity
scoring, that capitalizes on pre-existing lexicons, does not require
training and provides fine grained and accurate sentiment intensity
scores of words, phrases and text. In our experiments, we used
seven Sentiment Collections to evaluate the proposed approach,
against lexicon based approaches (e.g., VADER), and supervised
methods such as deep learning based approaches (e.g., SentiBERT).
The results show that despite not surpassing supervised approaches,
the AWESSOME unsupervised approach significantly outperforms
existing lexicon approaches and therefore provides a simple and
effective approach for sentiment analysis. The AWESSOME frame-
work can be flexibly adapted to cater for different seed lexicons
and different neural word embeddings models in order to produce
corpus specific lexicons – without the need for extensive supervised
learning or retraining.

CCS CONCEPTS
• Information systems → Sentiment analysis; • General and
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1 INTRODUCTION
Sentiment analysis is widely used across a variety of domains, such
as sociology, psychology, and marketing to analyze and monitor
people’s opinions, attitudes and emotions towards people, places,
products, etc. [7, 16]. And, with the rise in social media platforms
providing large volumes of posts, tweets, blogs, reviews to mine
and extract meaning from, sentiment analysis has grown in impor-
tance [16]. However, the extremely informal nature of online texts
varies significantly from formal texts creating challenges for tradi-
tional sentiment analysis techniques, which rely mainly on direct
keyword matching and scoring using a highly curated sentiment
lexicon combined with a series of crafted rules (e.g. VADER [7],
LabMT [4], LIWC [27], etc.). While, these dictionary based ap-
proaches required no training and play an essential role in the
fast and scalable analysis of large volumes of online posts, they
are fundamentally limited. This is due to the vocabulary mismatch
problem, as the vocabulary of the target text is different from the
sentiment lexicons, reducing the methods effectiveness in predict-
ing the sentiment of the phrase or sentence. A sentiment score
is generally a polarity (positive or negative) or an intensity (how
positive or negative is sentiment, e.g., the score would be between
-1 and 1 with -1 is very negative and 1 is very positive). In our work,
we focus on sentiment intensity rather then sentiment polarity
by giving the sentence a score that would represent the strength
of the sentiment. A simple classification of a sentence as positive,
negative or neutral would not be enough especially when we need
to compare sentences of same sentiment polarity. For example, “The
movie is amazing” is positively stronger than “The movie is good”,
therefore, has a higher sentiment intensity score.

In this paper, we present and evaluate our configurable frame-
work for scoring the sentiment intensity that combines a seed
lexicon, a neural word embedding, and a score function. The ad-
vantages of this approach are many fold. First, it benefits from the
extensive work performed on lexicon based approaches by directly
using their lexicons. Second, it requires no labelled data for su-
pervised machine learning, and thus can be used directly. Third,
by using neural word embeddings we overcome both the vocabu-
lary mismatch problem, and the semantic gap arising because of
a mismatch between the intended meaning of the sentence com-
pared to the words in the sentence (i.e. “It was a happy accident”
where the word “accident” is negative but the overall sentence
polarity is positive). Forth, the approach can be bootstrapped to
provide a new corpus specific lexicon that can be used with existing
methods (e.g. VADER’s rule based scoring mechanisms). Within
our framework, we draw upon the recent innovations in language
modelling and utilize BERT (Bidirectional Encoder Representations
from Transformers) [3] and related language models to provide the
word embeddings, and capitalise on the human curated sentiment
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lexicons from VADER and LabMT to provide seed words and in-
puts. Our unsupervised approach, AWESSOME (AWord Embedding
Sentiment Scorer Of Many Emotions) [10], is evaluated on seven
sentiment test collections where we compare it to existing unsuper-
vised and supervised methods. The rest of this paper is as follows.
Next we present an overview of sentiment analysis methods, before
describing our framework in detail, and how to configure it. Then
we present our experimental analysis and results. Finally, we wrap
up with a summary of this work.

2 RELATED WORK
Sentiment analysis has receivedmuch attention over the past decades
with the rise of social media streams and its applicability to many
domains to mine opinions, attitudes, and emotions towards differ-
ent entities (see [8, 16, 36] for an extensive review). In this paper,
our focus is on the sentiment intensity scoring, which has received
much less attention – where the challenge is to accurately estimate
the intensity (how strongly or weakly) the sentiment is, as opposed
to trying to classify the text as positive, negative or neutral. Broadly,
there are two main approaches: unsupervised approaches (which
tend to be rule based), and supervised approaches (which tend to
be machine learning based solutions, but which require extensive
training data to be effective). Our goal is to prove that our developed
unsupervised approach outperforms current rule based approaches,
and is competitive or better than supervised approaches. Below,
we provide an overview of relevant works on Sentiment Intensity
Scoring (SIS).

2.1 Unsupervised approaches
One of the most used unsupervised sentiment analysis approaches
is the Lexicon-based (or rule-based) approach [33]. This approach
depends on a set of a sentiment lexicon according to which words
are classified as positive or negative, along with their equivalent
sentiment intensity score. To apply the lexicon-based approach, the
input text is usually tokenized into individual words, stop words
and punctuation are removed, for the pre-processed text to be ran
against the sentiment lexicon which will provide the equivalent
emotion while applying inference rules to obtain a combined polar-
ity score for the sentence [1, 7].

In general, researchers tend to favor supervised approaches over
unsupervised ones due to their recognised out-performance, while
bearing the costly consequences in time, resources and annotating
data. For example, in SemEval 2016 Task 7 workshop1 [14] (Deter-
mining Sentiment Intensity of English and Arabic Phrases), the only
participant team presenting an unsupervised method was the LSIS
team [11]. They suggested a lexicon-based approach, supported by
the web search engines’ ability to find the co-occurrence of words
or short phrases with predefined negative and positive words. As
for SemEval 2018 Task 1 for "Valence Regression" (V-reg) 2 [20], all
participants competed using supervised methods.

One of the few, but widely used, unsupervised models for sen-
timent intensity classification is VADER [7]. VADER is a simple
rule-based model for sentiment analysis, it relies on a sentiment lex-
icon (7500 records) of gold-standard quality with human-validated

1http://alt.qcri.org/semeval2016/task7/
2https://competitions.codalab.org/competitions/17751

valence scores that indicated both the sentiment polarity (posi-
tive/negative), and the sentiment intensity on a scale from –4 to +4.
For example, the word good has a positive valence of 1.9, great is 3.1,
while horrible is –2.5. VADER’s sentiment lexicon was compared
to seven well-known sentiment analysis lexicons and it proved its
well performance, particularly in the social media domain [7].

In a more recent work, [12] presented an unsupervisedmethod to
classify the words in book reviews by their sentiment intensity. The
method relied on the concepts of seed-words 3 andword embedding,
where they considered the sentiment intensity of a word 𝑊 is
equal to the difference between the average of cosine similarities
measure of𝑊 ’s vector with the vectors of positive seed-words and
the average of cosine similarities measure of𝑊 ’s vector with the
vectors of negative seed-words. For that purpose, they manually
created two sets of seed-words (positive and negative) adapted
to book reviews domain, and created a word embedding model
using Word2Vec [19] on 22M Amazon’s book reviews 4 [17]. In our
recently introduced approach [10], we drew upon the approach
proposed in [12], but created a configurable framework where pre-
exisiting validated lexicons can be used as positive and negative
seed words, while state of the art language models provide the
word embeddings for semantic matching. Our approach, which we
present in detail, evaluate and compare to other approaches in this
paper, benefits from the simplicity and speed of a lexicon-based
approach, while achieving greater coverage and higher accuracy
through the pre-trained language model.

2.2 Supervised Approaches
SemEval workshops had an important contribution in increasing
the interest in the intensity aspect of sentiment. SemEval 2016 Task
7 had the objective of evaluating the ability of automatic system
to predict a sentiment intensity score for a word or a short phrase.
Most participants adopted supervised learning techniques, such
as the ECNU team [35] achievers of best results, where they pre-
sented a supervised learning-to-rank system to predict the strength
associated with positive sentiment, and where they used the auto-
matically labelled sentiment lexicon LabMT [4]. In 2018, SemEval
declared a similar task, SemEval-2018 Task 1 (V-reg), where they
evaluated automatic system ability to determine the intensity of
sentiment (or valence) in a tweet. The participants chose super-
vised learning approaches too, based mainly on neural network
architecture. For instance, the TCS Research team [18] used a deep
neural network architecture to generate a robust representation of
the text through parallel attention mechanism, on the top of word
vector representation generated from pre-trained embeddings. The
PlusEmo2Vec team [25] also employed neural network models but
as feature extractors for traditional machine learning models (e.g.,
support vector regression, logistic regression). But the team with
best results, the SeerNet team [5], employed a different supervised
learning method, the Random Forest Regression (a meta-estimator –
by combining the result of several predictions – which aggregates
multiple decision trees), by using the Random Forest Regressor [26].

3Seed-words are words with strong semantic orientation both positive and negative,
which are characterised by a lack of sensitivity to context [34]
4October 2018: http://jmcauley.ucsd.edu/data/amazon/
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A recent breakthrough in the use of machine learning for Natu-
ral Language Processing (NLP) appeared with the generative pre-
training of language representation models with context on a di-
verse corpus of unlabelled text, such as ELMo [28], BERT [3], Ope-
nAI GPT [29], XLM [15]. Such techniques demonstrated large gains
on a variety of NLP tasks including sentiment analysis classifica-
tion [6, 21]. In particular, BERT (Bidirectional Encoder Represen-
tations from Transformers) [2, 3], a neural network architecture
designed by Google researchers, proved to be one of the most pow-
erful tools for text classification [6, 22, 24]. BERT model is a bidirec-
tional transformer pre-trained based on BERT architecture over a
large corpus consisting of the Toronto Book Corpus and Wikipedia.
A number of recent works have shown that BERT based models
work well for the Sentiment Intensity task. In [37], they propose a
transfer learning based approach called SentiBERT, where the BERT
model is coupled with a fully connected neural layer that then feeds
into a final layer that predicts the score (using a mean-square error
loss function). Using the Stanford Sentiment Treebank collection
(SST-5) [32] as the training corpus, they showed that SentiBERT
outperforms other neural models (Tree-LSTMs, GCN, RNNs) on a
Twitter Collection. In [38], they developed an approach similar to
SentiBERT, but trained on the collections provided by SemEval-2018
Task 1 organisers, and their approach outperformed existing base-
lines (such as SeerNet [5], SVM [20], PlusEmo2Vec [25], etc.). These
results suggest that the BERT based regression model, SentiBERT,
provides a state of the art supervised and transfer learning approach.
However, it has not been extensively tested, and so we also provide
a comprehensive evaluation of SentiBERT which serves an upper
bound if supervised learning were to be employed – and to show
how well our unsupervised approach works in comparison.

In summary, current lexicon-based sentiment analysis approaches
do not require any prior training on large annotated datasets, in
addition they are often faster to execute than machine learning ap-
proach, and can be used out-of-the-box. On the other hand, Lexicon-
basedmethods do not take contextual-awareness into consideration,
and ignore terms that are not within the vocabulary. Supervised
sentiment analysis approaches demonstrate high accuracy in senti-
ment intensity, but they require a large annotated dataset which
makes them dependant on the domain of that dataset and have
limited transferability – for example, we show that a model trained
on tweets generalize poorly to movie reviews. However, if trained
on the same collection they offer good performance at the expense
of complexity. Therefore, in this work, we describe in detail and
evaluate our new framework [10] for scoring sentiment intensity
that draws on the benefits from both approaches advantages – be-
ing unsupervised, scalable, contextually and semantically aware,
and works reliable and robustly.

3 A WORD EMBEDDING SENTIMENT
SCORING FRAMEWORK

Our presented framework, that we callAWord Embedding Sentiment
Scorer Of Many Emotions (AWESSOME), is unsupervised and has
the purpose of predicting the sentiment intensity of words, phrases,
sentences, tweets, etc.. The generalised framework is inspired by
the previous work of [12], relying on sentiment seed-words and
word embedding, where the cosine similarity between the vector

representation of two sentences is considered as a reflection of their
sentiment similarity. For example, if we take the sentence 𝑋 (or a
word 𝑋 ) and we calculate its similarity with the word (1)"happy",
and then with the word (2)"miserable". If 𝑋 is more similar to (1)
than to (2), that would increase 𝑋 ’s probability of being positive.
To apply the proposed method, we need lists of words (seed-words)
with strong semantic orientation (both positive and negative lists),
that lack the sensitivity to context [19] (e.g., happy, sad, good, bad),
to use as a reference of sentiment polarity and compare the sen-
tences to them. Pre-existing high quality sentiment lexicons make a
great choice as seed-words, and can be used whole or partially (e.g.,
VADER lexicon, LabMT lexicon). For the similarity calculation, [12]
used a Word2Vec word embedding model which lack the ability to
distinguish between the use of a same word in different contexts
(e.g., 𝑏𝑎𝑛𝑘 as a riverside or as a financial institution). To solve that
problem, we suggest a more general approach employing neural
word embeddings through pre-trained language models (e.g., BERT,
RoBERTa, etc.) which allows the extraction of the whole sentence
embedding which can then be compared to the seed-words in order
to preserve the semantics of the sentence. In addition, pre-trained
language models make it possible for none-existing terms to be
handled during the tokenization process, as presented in the fol-
lowing example: ’I am the walrus.’ → [’I’, ’am’, ’the’, ’wa’, ’##l’,
’##rus’, ’.’], which assure the embeddings generation of such terms.
To predict the sentiment intensity of sentences using seed-words
and neural word embedding, we present a choice of two kernel
functions (average, max) and a weighting technique, presented in
Figure 1:

• Difference between the average similarities of the sentence
with positive Lexicon’s terms and negative Lexicon’s terms
(AWESSOME(AVG,Lexicon,N)): In thismethod, the sentence’s
sentiment intensity score is the difference between the aver-
age of the similarity between the sentence (S) and each of the
N most positive terms in the lexicon (positive seed-words)
and the average of the similarity between the sentence and
each of the N most negative terms in the lexicon (negative
seed-words):

(1)
𝑆𝐼𝑆(𝑆) = [

1
|𝐿𝑝 |

∑
𝑙𝑝 ∈𝐿𝑝

𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑝 )))]

− [
1

|𝐿𝑛 |
∑

𝑙𝑛∈𝐿𝑛
𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑛 )))]

Where |𝐿𝑝 | is the size of the positive seed-words list, 𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑝 ))
is the similarity between the sentence 𝑆 and a positive term 𝑙𝑝 in the
positive seed-words 𝐿𝑝 , |𝐿𝑛 | is the size of the negative seed-words
list, and 𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑛 )) is the similarity between the sentence 𝑆 and
a negative term 𝑙𝑛 in the negative seed-words 𝐿𝑛 .

• Difference between the maximum similarity of the sentence with
positive Lexicon’s terms and negative Lexicon’s terms (AWESSOME(
MAX,Lexicon,N)): The sentence’s sentiment intensity score is ob-
tained by the difference between the maximum of the similarity
between the sentence (S) and each of the N most positive terms in
the lexicon (positive seed-words) and the maximum of the similarity
between the sentence and each of the N most negative terms in the
lexicon (negative seed-words):

𝑆𝐼𝑆(𝑆) = [ max
𝑙𝑝 ∈𝐿𝑝

(𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑝 )))] − [ max
𝑙𝑛∈𝐿𝑛

(𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑛 )))] (2)
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Sentence (S) :
"This is awesome" e(S)

ℓ in L

Sentence SIS :  0.216 (Positive)

Lexicon (L) (e.g. Vader Lex.)

L_POS

L_NEG

[ Max (sim(e(S), e(ℓ_p)) ] - [ Max (sim(e(S), e(ℓ_n)) ]

[ 1    Σ (sim(e(S), e(ℓ_p)) ] - [ 1     Σ (sim(e(S), e(ℓ_n)) ]           
                                                       |L_p| |L_n|

e(ℓ_n)

e(ℓ_p)

ℓ_p in L_p ℓ_n in L_n

Difference of Max Sim to Seeds lexicon in NWE

Difference of Avg Sim to Seeds lexicon in NWE
Weighted?

e(ℓ) = e(ℓ) * W(ℓ)

e(ℓ) = e(ℓ)

Yes

No

W
ES

S

Language Model -
Neural Word Embedding (NWE)

(e.g. BERT)e(S) e(ℓ)

ℓ_p in L_p ℓ_n in L_n

Figure 1: The AWESSOME framework for sentiment intensity scoring consists of three components: a kernel function (Max,
Avg), a neural word embedding (BERT, RoBERTa, etc.) and a seed lexicon (VADER, LabMT, etc.). An AWESSOME method is
then defined by the selection of each component, e.g. AWESSOME(AVG, BERT, LabMT).

• In addition, a weighting can be added to the previously listed meth-
ods by multiplying the value of similarity between the sentence and
each term in the lexicon by the sentiment score of the term specified
within the lexicon. The following equation present an example of
applying weighting on the AWESSOME(AVG,Lexicon,N) method to
be represented by AWESSOME(AVG-W,Lexicon,N), and calculated
as follows:

(3)
𝑆𝐼𝑆(𝑆) = [

1
|𝐿𝑝 |

∑
𝑙𝑝 ∈𝐿𝑝

𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑝 ))) ·𝑊 (𝑙𝑝 ))]

−[ 1
|𝐿𝑛 |

∑
𝑙𝑛∈𝐿𝑛

𝑠𝑖𝑚(𝑒(𝑆), 𝑒(𝑙𝑛 ))) ·𝑊 (𝑙𝑛 ))]

Where𝑊 (𝑙 ) is the sentiment score of the term in the lexicon.

Put all together, we can define a specific AWESSOME instances
by selecting the kernel function and if it is weighted or not (AVG,MAX,
AVG-W,MAX-W), the seed lexicon (VADER, LabMT, etc.), and the
number of seed words to use, e.g. AWESSOME(AVG, VADER-Lex,
600). During our experiments we explore how the different varia-
tions perform in practice. The AWESSOME framework is written
in Python and is downloadable and installable from GitHub 5.

4 RESEARCH QUESTIONS
Given the AWESSOME Framework, we wish to explore the follow-
ing research questions:

• RQ1: How do different AWESSOME configurations (i.e. num-
ber of seed-words, choice of seed-words, kernel functions,
etc.) affect performance ?

• RQ2: How does AWESSOME compare against Lexicon based
approaches (i.e. VADER)?

• RQ3: How does AWESSOME compare against the current
state of the art Supervised Deep Learning approaches (i.e.
SentiBERT with and without Transfer Learning)?

• RQ4: Under what conditions does AWESSOME lead to in-
creases or decreases in performance (i.e. vocab mismatch,
negations, boosting, etc.)?

5https://github.com/cumulative-revelations/awessome

5 EXPERIMENTAL METHOD
The primary goal of our experiments is to evaluate our proposed
sentiment intensity method, and its variant performance, against
unsupervised and supervised approaches which serve as baselines
and upperbounds. In addition, we tackle the impact of different
variants on our suggested approach such as the employed lexicon,
the number of seed-words, the use of an aggregation method. Fur-
thermore, we address the influence of lexicon overlap between the
test datasets and the employed lexicon on the results of the two
main lexicon based method in this work: VADER and AWESSOME,
and the influence of negation (e.g. not), boosters (e.g. very) and
emojis (e.g.,) within the test datasets on the results of the baseline
(VADER), our suggested method (AWESSOME) and the upperbound
(SentiBERT).

5.1 Test Collections
To test the performance of the methods, we used seven data collec-
tions (see Table 1 for an overview of the collection statistics). Each
test collection is composed of a post containing text and a sentiment
intensity score which was manually assigned (see Table 2 for an
example of the posts). The first three collections were from the
SemEval Evaluation forum (with sentiment intensity scores within
[0,1]). The additional four datasets were provided and annotated
by Gilbert and Hutto [7] (with sentiment intensity scores within
[-4,4]). Also, scores for each of the collection were re-normalized
to be between [-1,1]. The collections used were:

• SE16-GE: SemEval-2016 General English Sentiment Modi-
fiers test collection containing 2999 phrases and short sen-
tences [14].

• SE16-MP: SemEval-2016 English Twitter Mixed Polarity test
collection containing 1269 phrases and short sentences [14].

• SE18-Vreg: SemEval-2018 Task1 (Valence regression) test
collection of 937 tweets [20].

• V-Amazon: Amazon reviews snippets, includes 3708 sen-
tence level snippets from 309 customer reviews on five dif-
ferent products [7].
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Table 1: Test Collection Statistics: the total number of items and terms, the percentage of overlap terms in common with the
VADER and LabMT Lexicons, the percentage of records with Negation, with Boosters, and with Emojis.

Dataset #records #terms w/ VADER-Lex w/ LabMT-Lex w/ Negation w/ Boosters w/ Emojis

SE16-GE 2999 1394 45.0% 58.7% 10.6% 18.5% 0.0%
SE16-MP 1269 796 36.8% 86.0% 3.0% 5.0% 0.0%
SE18-Vreg 937 4467 15.3% 48.9% 18.7% 18.4% 19.2%
V-Amazon 3708 5309 12.5% 54.8% 24.5% 25.7% 0.0%
V-Movies 10605 18098 13.5% 33.5% 20.5% 27.5% 0.0%
V-NYT 5190 13723 12.3% 42.6% 12.5% 13.8% 0.0%
V-Tweets 4200 9310 12.6% 50.9% 12.2% 14.8% 0.0%

• V-Movies: Movies reviews snippets, includes 10605 sentence-
level snippets from rotten.tomatoes.com [7].

• V-NYT: New York Times editorial snippets, includes 5190
sentence-level snippets from 500 New York Times opinion
editorials [7].

• V-Tweets: Tweets, includes 4200 tweets pulled from Twit-
ter’s public timeline [7].

Table 2: Sentiment scores from the datasets’ gold rankings.

Dataset Content Score

SE16-GE favor 0.826
increasingly difficult 0.208

SE16-MP best winter break 0.922
breaking 0.250

SE18-Vreg It’s my time to shiiine , 0.919
Shocking and sad! / 0.133

V-Amazon i would recommend buying one 0.134
poor price / performance -0.197

V-Movies Light, cute and forgettable 0.100
Hilarious, acidic Brit comedy. -0.109

V-NYT It is time for us to take action. 0.072
The doors close. -0.134

V-Tweets Hooray for new opportunities! 0.120
bad mood. :’( -0.216

It should be noted that the VADER lexicon was created using
the V-Tweets collection — so its high performance on the V-Tweets
collection is because of “overfitting”. However, its performance on
the other test collections shows how well it generalises. For transfer
learning with the supervised approaches, we used an additional
collection for training the regresssors. For this, we used the test
collection from SemEval 2015 Task10 (1515 short phrases extracted
from tweets) [30], the train collection from SemEval 2016 Task7
(400 short phrases extracted from tweets) [14] and the train collec-
tion from SemEval 2018 Task1(V-reg) (1630 tweets) [20]. The final
training collection (SIS_train_collection) consisted of 3545 items
with sentiment intensity annotations that were normalised between
-1 and 1.

Furthermore, to test the influence of lexicon overlap between the
test datasets and the employed lexicons, we divided each datasets
into three sub-datasets: (1) the sentences with zero percent overlap
with the lexicon, (2) the sentences with a percentage overlap with
the lexicon lower than the median, (3) and the sentences with a

Tokenization

I like this 
fantastic movie

I stopword
like
this stopword

fantastic
movie

Sentiment
I

like
this

fantastic
movie

Pre-processing
I

like 1.5
this

fantastic 2.6
movie 0.0

Max

Avg

2.6

1.4

Sentiment
Lexicon

Figure 2: The lexicon-based scoringmethods of Lexicon_Avg
and Lexicon_Max, where each sentence is tokenized, stop
words removed, remaining words are ran against the senti-
ment lexicon to then select the maximum score or the aver-
age of terms scores.

percentage of overlap with the lexicon higher than the median. As
well, to test the influence of negation, boosters and emojis, the test
datasets were divided into four sub-datasets: (1) the sentences with
Negation, (2) the sentences without Negation, (3) the sentences
with Boosters, and (4) the sentences without Boosters. Also, the
dataset S18-Vreg (the only dataset with emojis, check Table 1) is
divided into two sub-datasets: sentences with emojis and sentences
without emojis.

5.2 Baselines: Unsupervised approaches
To provide the baselines for this work we used two different lexicon-
based sentiment analysis methods that have been shown to perform
well along with VADER (the standard unsupervised approach):

• Lexicon_Avg: An aggregation of the sentence’s terms sen-
timent scores by calculating their average (Figure 2):
𝑆𝐼𝑆(𝑆) = 1

|𝑆 |
∑
𝑡 ∈𝑆 𝑆𝐼𝑆(𝑡, 𝐿𝑒𝑥𝑖𝑐𝑜𝑛).

• Lexicon_Max: A selection of the sentence’s maximum abso-
lute score of the sentence’s terms sentiment scores (Figure 2):
𝑆𝐼𝑆(𝑆) = max𝑡 ∈𝑆 | |𝑆𝐼𝑆(𝑡, 𝐿𝑒𝑥𝑖𝑐𝑜𝑛)| |.

• VADER: The VADER method as described in [7].
For the unsupervised lexicon-based methods, two sentiment lex-

icons were employed: VADER lexicon [7] (7520 records, on a scale
of -4 to 4) and LabMT lexicon, a rated lexicon of 10222 records on a
scale of 1 (sad-negative) to 9 (happy-positive), which we converted
its scores to the same scale as VADER (-4 to 4) by min-max normal-
ization (e.g., 𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛 ). Table 1 shows the number of unique terms
(column #terms), excluding stopwords, in the seven used datasets

Sentiment intensity prediction using neural word embeddings

5



(SE16-GE, SE16-MP, SE18-Vreg, V-Amazon, V-Movie, V-NYT, and
V-Tweets), in addition to the percentage of these terms in each of
the sentiment lexicons (columns w/VADER-Lex and w/LabMT-Lex).

5.3 Upperbounds: Supervised Approaches
While our goal is to develop an unsupervised method for sentiment
intensity prediction, we feel it is important to compare to the su-
pervised state of the art approaches to contextualise our methods
performance. Moreover, the inclusion of these comparisons also
provide a more comprehension analysis of these approaches for this
task (as most prior work has focused on sentiment classification,
and not intensity prediction).

The first supervised method we employed was a Support Vector
Regression (SVR) [31] previously used, and shown to provide a
strong baseline performance [13, 23]. We employed the pre-trained
model in spaCy [9], en_core_web_md library which includes 20k
unique vectors with 300 dimensions, and we created the word
embeddings used as input features for SVR.

The second supervised method we employed was the BERT-
based method: SentiBERT [37, 38] which has been shown to give
state of the art performance on one of the test collections (SE18-
Vreg). SentiBERT is built on the HuggingFace6 library, and the
model parameters are initialized using pre-trained BERT-basemodel.
The fine-tuning of SentiBERT is as follows. (1) The pre-training
language models have a maximum input length of 512 tokens, but
in our work, we defined the input sentences size to 128 tokens since
most posts in our test collections were below 128 tokens in length.
(2) The loss function was set to Mean Square Error and the output
was the score. (3) The train batch size is set to 32. (4) The number
of training epoch is set to 10.

• Supervised (SentiBERT-S): We used 5-fold cross valida-
tion, where 20% of the test collection was held out, while
the fine tuning was performed. The performance on each
collection was reported given the 5 held-out folds.

• Transfer Learning (SentiBERT-TL): Rather than training
on the collection, we employed transfer learning, where we
used the training collection we created (SIS_train_collecti-
on) which was based on completely unseen data.

5.4 Evaluation Measures
The proposed methods were evaluated by their abilities to correctly
rank the sentences compared to their position in the gold rankings.
To evaluate the performance of the sentiment intensity scoring
methods, we use the official SemEval Workshops measures used in
each track, for: Datasets SE16-GE and SE16-MP, Kendall’s rank cor-
relation coefficient is used (Kendall’s 𝜏 ), and for Dataset SE18-Vreg,
Pearson correlation coefficient is used (Pearson’s 𝑟 ). As for Gilbert
and Hutto [7] test collections, Pearson correlation coefficient is used
(Pearson’s 𝑟 ). To determine whether the correlations/predictions are
significantly different between runs we performed significance test-
ing – where we consider a p-value of less than 0.05 as statistically
significant

6https://github.com/huggingface

5.5 Results and Analysis
5.6 RQ1: AWESSOME’s variants implication
The proposed method AWESSOME, of combining lexicons with
pre-trained language models, is applied by obtaining the similarity
between the sentences of the datasets (SE16-GE, SE16-MP, SE18-
Vreg, V_Amazon, V_Movies, V_NYT and V_Tweets) and the lexi-
cons’ terms, of VADER and LabMT lexicons. More specifically, the
method requires obtaining the similarity between the sentences of
the datasets and a selected N highly positive and N highly negative
terms of the lexicons, which we call seed-words. Therefore, we
needed to extract a certain number of words from the lexicons as
seed-word lists. As presented in Figure 3, we test the effect of the
seed-words’ size (between 5 and 1000), the lexicons used (VADER
and LabMT), and the kernel functions employed (Average, Max,
in addition to the weighting option) on the sentiment intensity
prediction performance. And as shown in Figure 3, the methods
AWESSOME(AVG,VADER-lex,N) and AWESSOME(AVG-W,VADER-
lex,N) were able to achieve best results on all test collections, with
a stability in performance toward the variant seed-words number,
and a weak statistical significance after seed-words number higher
than 600. Note that the original Vader lexicons of 7520 terms has a
majority of abbreviations and emoticons, therefore, to extract the
seed-words, we reduced the lexicon to 1244 terms by extracting
only English words from the lexicon and also by using Stemmer7
to get only the root words from the lexicon. From that reduced
lexicon list, the N highly positive and N highly negative terms are
then selected as seed-words lists.

5.7 RQ2: AWESSOME vs. Lexicon Approaches
The different lexicon-based sentiment analysis approaches, applied
with the different sentiment lexicons, are presented in the first two
sections of Table 3 as follows

• First, we applied the Lexicon_Avg and the Lexicon_Max meth-
ods on both lexicons: VADER and LabMT.

• Second, we applied VADER rule-based approach on the origi-
nal VADER lexicon, then on LabMT lexicon, and on a com-
bined lexicon of VADER and LabMT (16363 records).

In the last section of Table 3 (AWESSOME), we present the best
results of our suggested method: AWESSOME(AVG,VADER-lex,600),
AWESSOME(AVG,Lab-MT-lex,600), AWESSOME(AVG-W,VADER-
lex,600), and AWESSOME(AVG-W,Lab-MT-lex,600). Our suggested
method achieved better results than the unsupervised baselines,
particularly when employing VADER lexicon. This positive influ-
ence of VADER lexicon could be caused by its smaller size (after
removing the emoticons) and the nature of the strong semantic
orientation of its words (positive and negative) what makes them
better seed-words. The lexicon-based approaches baseline were
only able to perform better than AWESSOME with the V-Tweets
collection, using VADER’s lexicon, what can be due to the fact that
VADER lexicon was created by means of the V-Tweets collection [7].
The results in Table 3 also indicated a good performance of the Lex-
icon approach where it exceeded VADER’s result in predicting the
sentiment intensity of datasets SE18-Vreg and V-Amazon. Those
datasets differ from the others datasets of being built from full

7https://www.nltk.org/howto/stem.html
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Figure 3: The correlation coefficients (y-axis) for each of the AWESSOME methods as the number of seed-words from Vader
lexicons and LabMT lexicon varies between 5 and 1000 words (x-axis), applied on seven datasets in the following order: SE16-
GE, SE16-MP, SE18-Vreg, V-Amazon, V-Movies, V-NYT and V-Tweets.

tweets. Such results uncover certain weak points within VADER’s
rules with a possible difficulty to process full and complex tweets
other than the ones it was built on (V-Tweets).

Apart from that, in VADER’s results section, the combination of
both lexicons did not improve VADER’s performance but instead it
led to a result in between each of the lexicon’s employment results.
On the other hand, in an additional experiment, we applied an
aggregation of linear combination between the results of lexicon-
based methods and our method (AWESSOME(AVG-M,Lexicon,600))
using VADER and LabMT lexicons. The following equation was
employed for the results aggregation: 𝑆𝐼𝑆(𝑆) = 𝜆 · 𝑆𝐼𝑆(𝑆, 𝐿𝑎𝑏𝑀𝑇 ) +
(1 − 𝜆) · 𝑆𝐼𝑆(𝑆,𝑉𝐴𝐷𝐸𝑅), where best results were achieved with 𝜆

equals to 0.5, after an iteration by 0.1 of 𝜆 in the interval of [0,1].
Table 4 presents the aggregation results, with 𝜆 equals to 0.5, where
an improvement of results is detected for all the suggested methods
on most test collections.

5.8 RQ3: AWESSOME vs. Superv. Approaches
In Table 5, we present the results of predicting sentences’ senti-
ment intensity using supervised approaches. The first row of that
table display the results by AWESSOME(AVG-W,VADER-Lex,600),
exported from Table 3 for comparison purposes. In the second raw
we present the results achieved by SVR, where promising scores
were only reached with the collections of full tweets (SE18-Vreg and
V-Tweets). The selective high performance of SVR could be caused
by spaCy’s pre-trained model which we used for word embeddings
generation – the pre-trained model is trained over a collection
of: telephone conversations, news wire, news groups, broadcast
news, broadcast conversation, weblogs and religious texts 8. There-
fore, being trained over a majority of informal language text, the
model would logically perform better on tweets of similar infor-
mal nature. The third raw of Table 5 indicates an extremely high
efficiency of SentiBERT-S, trained on a dataset of same type and
nature of the test dataset, especially for the datasets SE16-GE, SE16-
MP, V-Amazon, V-Movies, V-Tweets. The fourth row presents the
8https://spacy.io/models/en

results of SentiBERT-TL, and it highlighted SentiBERT-TL’s com-
petence in predicting the sentiment intensity, with all collections
except V-Tweets, where VADER continues to have better results
than SentiBERT-TL. Those results marked again the over-fitting
of the V-Tweets collection to the VADER’s lexicon, since the best
set of results is often connected to VADER or the use of VADER’s
lexicon.

5.9 RQ4: AWESSOME on different conditions
In this subsection, we drill down on comparing: VADER (as a
baseline), our method AWESSOME(AVG-W,VADER-Lex,600), and
SentiBERT-TL (as an upperbound) to see how differences in the test
collections or in the lexicons would effect the performance of the
methods.

First, we tested the influence of lexicon overlap between the test
collections and the employed lexicons by the lexicon dependant
methods: VADER and AWESSOME(AVG-W,VADER-Lex,600). As
shown in Table 6, the performance of VADER, a total lexicon-based
model, is highly dependant on the percentage of overlapped terms
with the lexicons (Table 1), but our proposedmethod is less sensitive
to such impact. Then, we examined the negation, boosters and
emojis effect on the performance of VADER, AWESSOME(AVG-
W,VADER-Lex,600) and SentiBERT-TL. And as reported in Table 7,
the presence of negation and emojis make it more challenging for
all methods to predict correctly the sentiment intensity, but we
can also see that AWESSOME and SentiBERT are much better in
handling such impact than VADER. As for boosters (e.g. very), their
presence improves all methods performance.

Furthermore, for a clearer understanding of the results, we cre-
ated result visualisations, presented in Figure 4, where the distribu-
tion of sentiment intensity prediction by SentiBERT-TL (first row),
AWESSOME(AVG-W,VADER-Lex,600) (second row), and VADER
(third row) are displayed in regards to the gold results (y-axis), or
correct results, in the collections SE16-GE, SE16-MP, SE18-Vreg,
V_Amazon, V_Movies, V_NYT, and V_Tweets (from left to right).
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Table 3: Experiments results of Unsupervised methods, with * denote significant differences with Lexicon(AVG(VADER-
Lexicon)), † denote significant differences with VADER(VADER-Lexicon), and ‡ denote significant differences with
AWESSOME(Avg(W,VADER-Lex-600)), with p-value < 0.01.

Method SE16-GE SE16-MP SE18-Vreg V-Amazon V-Movies V-NYT V-Tweets

Lexicon

AVG(VADER-Lexicon) 0.468 0.342 0.674 0.535 0.390 0.468 0.791
AVG(LabMT-Lexicon) 0.447 0.381∗ 0.604 0.447 0.341 0.393 0.704
MAX(VADER-Lexicon) 0.467 0.341 0.580 0.511 0.346 0.433 0.784
MAX(LabMT-Lexicon) 0.441 0.385∗ 0.562 0.420 0.249 0.366 0.695

VADER
VADER-Lexicon 0.586∗ 0.365∗ 0.517 0.570∗ 0.419∗ 0.489∗ 0.878∗†

LabMT-Lexicon 0.566 0.432† 0.534† 0.372 0.284 0.369 0.656
VADER+LabMT-Lexicon 0.572 0.432† 0.530† 0.388 0.333 0.489 0.697

AWESSOME

(AVG-W,VADER-Lex,600) 0.636∗† 0.570∗† 0.718∗† 0.759∗† 0.650∗† 0.680 0.773
(AVG-W,LabMT-Lex,600) 0.574 0.480 0.633 0.652 0.539 0.491 0.602
(AVG,VADER-Lex,600) 0.631 0.563 0.718 0.737 0.647 0.688∗†‡ 0.783‡
(AVG,LabMT-Lex,600) 0.587 0.479 0.642 0.648 0.552 0.511 0.589

Table 4: Linear aggregation results achieved by VADER and LabMT lexicons, with 𝜆=0.5, and where * denote significant differ-
ences with the results prior the linear combination, with a p-value < 0.05.

Method SE16-GE SE16-MP SE18-Vreg V-Amazon V-Movies V-NYT V-Tweets

AVG(VADER-Lex)
+AVG(LabMT-Lex) 0.487∗ 0.413∗ 0.695∗ 0.552∗ 0.416∗ 0.499∗ 0.809∗

VADER(VADER-Lex)
+VADER(LabMT-Lex) 0.479∗ 0.407∗ 0.622∗ 0.546 0.405 0.485 0.835

AWESSOME(AVG-W,VADER-Lex,600))
+AWESSOME(AVG-W,LabMT-Lex,600)) 0.639∗ 0.580∗ 0.722∗ 0.767∗ 0.652∗ 0.485 0.752

Table 5: Experiments results of Supervised methods, with * denote significant differences with AWESSOME(AVG-W,VADER-
Lex,600)) exported from Table 3, with p-value < 0.01.

Method SE16-GE SE16-MP SE18-Vreg V-Amazon V-Movies V-NYT V-Tweets

AWESSOME(AVG-W,VADER-Lex,600)) 0.636 0.570 0.718 0.759 0.650 0.680 0.773
SVR 0.270 0.405 0.709 0.475 0.457 0.421 0.751
SentiBERT (Train/Test same collection) 0.943∗ 0.999∗ 0.779∗ 0.765∗ 0.945∗ 0.675 0.977∗

SentiBERT (Transfer Learning) 0.717∗ 0.638∗ 0.835∗ 0.749 0.672∗ 0.705∗ 0.797∗

Table 6: Comparing the efficiency of VADER vs AWESSOME (Lexicon dependant methods) in different sub-datasets divided
based on the overlapped of terms with Vader and LabMT lexicons.

Section S16-GE S16-MP S18-Vreg V-Amazon V-Movie V-NYT V-tweet
VADER AWS VADER AWS VADER AWS VADER AWS VADER AWS VADER AWS VADER AWS

V
ad

er Zero 0.083 0.600 0.056 0.403 0.360 0.670 0.119 0.599 0.077 0.564 0.081 0.583 0.804 0.371
> Median 0.628 0.611 0.415 0.583 0.505 0.701 0.579 0.722 0.367 0.596 0.448 0.658 0.852 0.727
< Median 0.676 0.624 0.441 0.608 0.603 0.730 0.629 0.798 0.461 0.663 0.570 0.734 0.897 0.832

La
bM

T Zero 0.013 0.530 0.013 0.413 0.139 0.481 0.124 0.302 0.001 0.739 0.210 0.463 0.022 0.040
> Median 0.437 0.575 0.402 0.426 0.413 0.615 0.248 0.634 0.190 0.527 0.257 0.500 0.625 0.545
< Median 0.661 0.558 - - 0.468 0.686 0.256 0.669 0.211 0.552 0.258 0.533 0.696 0.659

The visualisations indicated VADER’s model tendency to over clas-
sify sentences as positive in the SemEval’s collections (SE16-GE,
SE16-MP, and SE18-Vreg). That behaviour is viewed clearer in the
case of SE18-Vreg, where VADER falsely classified most sentences
as positive (close to 1, on the far right). On the other hand, our
method AWESSOME, maintained a balanced prediction in regards
to the gold results, mostly for the SemEval’s collections, something
also seen in the SentiBERT graphs over all the test collections.

Finally, a comparison between themethods Lexicon_Avg, VADER,
AWESSOME(AVG-W,VADER-lex,600) and SentiBERT-TL, in their
ability to correctly predict the sentiment intensity in complex sen-
tences, is presented with few examples in Table 8. All methods
were able to predict correctly the sentiment intensity in a simple
sentence and its negation (I am happy, I am not happy), but they
were not able to detect a complex negation and considered the
sentence "I am the opposite of happy" as a positive sentence, except
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Figure 4: The distribution of the SentiBERT-TL results (first row), AWESSOME(AVG-W,VADER-lex,600) results (second row),
and VADER model’s results (third row) in comparison to the gold results in the tested datasets: SE16-GE, SE16-MP, SE18-Vreg,
V_Amazon, V_Movies, V_NYT and V_Tweets. Gold Label (y-axis of interval [0,1]) and SIS scores (x-axis of interval [-1,1]).

Table 7: Performance of VADER, AWESSOME(AVG-
W,VADER-lex,600) and SentiBERT-TL in different sub-
datasets divided based on Negation, Boosters and Emojis
occurrence.

Section VADER AWESSOME SentiBERT

SE16-GE

w/ Neg 0.431 0.448 0.454
w/o Neg 0.587 0.642 0.725
w/ Boost 0.659 0.628 0.712
w/o Boost 0.543 0.611 0.703

SE16-MP

w/ Neg 0.118 0.502 0.562
w/o Neg 0.382 0.562 0.641
w/ Boost 0.600 0.666 0.742
w/o Boost 0.360 0.561 0.626

SE18-Vreg

w/ Neg 0.362 0.604 0.675
w/o Neg 0.598 0.729 0.801
w/ Boost 0.628 0.779 0.837
w/o Boost 0.542 0.703 0.756
w/ Emoji 0.670 0.708 0.735
w/o Emoji 0.513 0.717 0.771

V-Amazon

w/ Neg 0.439 0.703 0.676
w/o Neg 0.597 0.751 0.640
w/ Boost 0.540 0.770 0.746
w/o Boost 0.583 0.744 0.721

V-Movies

w/ Neg 0.330 0.606 0.610
w/o Neg 0.439 0.651 0.654
w/ Boost 0.423 0.653 0.672
w/o Boost 0.420 0.645 0.661

V-NYT

w/ Neg 0.349 0.558 0.525
w/o Neg 0.508 0.697 0.720
w/ Boost 0.488 0.675 0.680
w/o Boost 0.490 0.691 0.703

V-Tweets

w/ Neg .831 0.703 0.685
w/o Neg 0.884 0.789 0.780
w/ Boost 0.882 0.848 0.825
w/o Boost 0.878 0.768 0.783

for AWESSOME, it correctly classified it as negative (-0.308). Also,
VADER and Lexicon_Avg were not able to predict the sentiment
of a sentence with a slang word (happytastic = happy + fantastic)

and classified it as neutral (0.0), but AWESSOME and BERT clas-
sified it correctly as positive, since they both employ pre-trained
language models what makes it possible for none-existing terms to
be handled during the tokenization process.

Table 8: Comparison between Lexicon_Avg, VADER,
AWESSOME(AVG-W,VADER-lex,600) and SentiBERT-TL
(SIS scores normalised between [-1,1], with -1 very negative,
1 very positive.

Sentence Lexicon_Avg VADER AWS SentiBERT
I am happy 0.900 0.572 0.412 0.999
I am not happy 0.900 -0.458 -0.350 -0.998
I am opposite of happy 0.900 0.572 -0.308 0.826
I am happytastic 0.000 0.000 0.388 0.998

6 SUMMARY AND CONCLUSION
In this paper, we presented in detail and evaluated a configurable
framework under the name of AWESSOME, for sentiment intensity
scoring. The AWESSOME framework combines together a seed
lexicon, a neural word embedding, and a score function. In our
evaluation, seven sentiment test collections were used to evaluate
our approach, comparing it against typically used lexicon based
approaches, and comparing it against state of the art supervised
methods. Our framework outperformed existing lexicon approaches
but it did not surpass supervised approaches. Clearly, the super-
vised SentiBERT approach provides greater accuracy when properly
trained. However, as we have shown AWESSOME provides a sim-
ple and effective approach over other unsupervised approached by
addressing the short-comings inherent in lexicon based approaches.
In addition, the AWESSOME framework provides the flexibility to
cater for different seed lexicons and different neural word embed-
dings models to further tailor the scoring more specifically to the
corpus, task or domain.
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