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We examine a possibility to exploit the nonlinear lens effect - the initial stage of self-focusing to
localise initially broad field distribution into the small central area where wave collapse is arrested -
the nonlinear beam tapering. We describe two-dimensional localised solitary waves (ring solitons) in
a physical system that presents a linear medium in the central core, surrounded by the cladding with
the focusing Kerr nonlinearity. The standard variational analysis demonstrates that such solitons
correspond to the minimum of the Hamiltonian.

I. INTRODUCTION

Spatial or temporal localisation of energy is a com-
mon feature of many physical systems. Confinement of
the field can arise from the extrinsic disorder, as in the
Anderson localisation, or from the nonlinear phenomena
as in the soliton theory. In the soliton systems locali-
sation is often provided by the balance between disper-
sion/diffraction (leading to temporal/spatial spreading of
linear waves) and the nonlinear effects inducing to self-
focusing type wave dynamics. We would like to point
our from the start, that the problem we consider is dif-
ferent both from: (i) the light trapping in the centre of
the hollow core fibers that is implemented by the lin-
ear wave-guiding, and (ii) the existing mechanism of the
field localisation in the hollow core fiber that, again, has
nothing to do with the nonlinear self-focusing considered
here.

The process of the energy transfer from large spatial
scales to small ones can either keep coherence of the field
during squeezing (as e.g. in a tailored taper) or be of
a turbulent-like nature, involving interactions of many
uncorrelated degrees of freedom [1]. Mechanisms of the
transition from the extended fields to the states with the
spatially localised energy are important both in the fun-
damental science (e.g. pattern formation, generation of
the coherent structures, localisation by disorder and so
on) and in various practical applications (e.g. capturing
light, sound or other waves in a waveguide).

There are two typical problems related to the energy
localisation: how confined waves are stabilised and how
initially broad - extended field distributions can be ag-
gregated into a small area. In this work we examine
both problems considering specific modification of the
classical nonlinear model - two-dimensional Non-Linear
Schrödinger Equation (NLSE) with an insertion of the
linear medium near the centre.

It is well-known that in the two-dimensional NLSE the
field (e.g. light beam) with power above critical expe-
riences self-focusing (wave collapse) (see, e.g. [2–5] and
references therein). Wave collapse can be stopped by var-
ious physical effects neglected in the main order master

model (for a comprehensive review of the collapse arrest
see, [2, 3, 6–10] and numerous references there in).

Consider the medium with the Kerr nonlinearity with
the nonlinear coefficient n2 to be higher in the outer area
compared to the central hole/core. We do not specify
the geometry of the outer region, considering it here to
be much larger than the central area, that we for simplic-
ity assume to be a circle. However, the proposed concept
can be easily adjusted to the design of the particular non-
linear system. For instance, in the optical applications
context, this can be the hollow core embedded in the
medium with the higher nonlinearity material.

We consider a possibility of exploiting initial self-
focusing mechanism to transfer the energy from the broad
spatial area to the small region with the reduced nonlin-
earity (e.g. air hole, or hollow core, depending on the
specific implementation) where collapse is arrested. Non-
linearity in the area outside the hole acts as an optical
lens for the power localization. This system acts as a
funnel, or an effective nonlinear taper, transferring en-
ergy from the broad area harvesting incoming power to
the small central core.

II. MATHEMATICAL MODEL

Without loss of generality we will use optical termi-
nology when discussing the master model, though its
applications are much broader and can be found in a
large number of physical systems (see e.g. [11] and ref-
erences there in). Evolution of an envelope of a quasi-
monochromatic optical beam with a single polarization
is governed by the nonlinear partial differential equation
- the NLSE (see, e.g., [2, 11] and references therein), that
accounts for the major propagation effects such as diffrac-
tion (for the sake of clarity we assume that linear char-
acteristics are the same in the core and the surrounding
area) and Kerr nonlinearity.
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Ψ(x′, y′, Z) is the envelope of the electric field, the beam
is propagating along the Z axis, ∆′⊥ is a two-dimensional

transverse Laplacian operator, ~r′⊥ = (x′, y′) are the

transverse coordinates, r′
2
⊥ = x′

2
+ y′

2
, k0 = 2π/λ0 is

the wavenumber in the medium, λ0 is the vacuum wave-
length, n0 is the linear index of refraction, and n2 is
the nonlinear Kerr index. The index of refraction is
n = n0 + δn0(r′⊥) + n2(r′⊥)I. It is assumed here that
the temporal duration of the field is long enough to ne-
glect time-dependent effects (dispersion). It is conve-
nient to re-write the NLSE in the dimensionless Hamilto-
nian form, by the straightforward scaling transformation
|A(x, y, z)|2 = (k20n0 max(n2))|Ψ(x′, y′, Z|2), z = n0k0Z,
r = n0k0r

′
⊥ .

i
∂A

∂z
= −1

2
~∇2
⊥A− V (r)|A|2A− U(r)A =

δH

δA∗
(2)

here Hamiltonian H is defined as:

2H =

∫
|~∇⊥A|2d~r −

∫
V |A|4d~r − 2

∫
U |A|2d~r.

We present below all the results in the general normalised
form. Apparently, the Eq.(2) conserves the total power
N =

∫
|A|2d~r along with the Hamiltonian H. It is well-

known that the conventional NLSE – Eq.(2) (U and V
are constants) describes the catastrophic collapse of the
average radius of the beam R =

∫
r2|A|2d~r [12], pro-

vided that H < 0. Condition H < 0 is satisfied when
a beam power exceeds the critical value N of the self-
focusing Ncr ≈ 5.85. The impact of the linear potential
on the self-focusing has been studied in [13]. The main
conclusion was that the wave collapse can be delayed (in
z) by the external linear potential. To stress that the
linear waveguiding is not required in the central part,
in what follows we drop a linear potential U = 0 and
consider the situation when the central area differs from
the outside medium only by the nonlinear properties (no
nonlinearity, or in the more practical terms, much higher
nonlinear threshold). This point illustrates the difference
between the problem we consider here and light localisa-
tion in the hollow core fiber, where nonlinear effects are
not important at all for both collecting light in the small
core area and keeping energy in this core. In the hol-
low core fiber light localisation is defined by the (linear)
wave-guide that is opposite to nonlinear-based localised
considered here.

III. CONTRACTION DYNAMICS

It is evident that if the central area has no nonlin-
earity (V = 0), the wave collapse is arrested. In the
case of a non-uniform distribution of nonlinearity us-
ing the chain of inequalities following [14] we can prove
for V (x, y) satisfying certain conditions that the inte-
gral R =

∫
r2|A|2d~r is bounded from below. This also

gives an estimate on the possible compression of the av-
erage radius of the beam. Let us define Id =

∫
|∇A|2d~r,

Ik =
∫
|A|kd~r and use the inequalities [14–16]:

(i)
∫
V |A|4d~r ≤ I1/26 (

∫
V 2|A|2d~r)1/2,

(ii) I6 ≤ 9 I4 Id ≤ 9N I2d/Ncr.
Assuming that we deal with the function V (x, y) sat-

isfying condition: max
(x,y)

(V 2/r2) = B0 <∞, it is straight-

forward to derive:

2H = Id −
∫
V |A|4d~r ≥ Id

[
1−

(
R

Rl

)1/2
]

Here Rl = Ncr/(9B0N) > 0. Straightforward manipu-
lations show that when H < 0 (that is the condition of
collapse in the standard NLSE) we get a lower bound on
R for any z:

R ≥ Rl (1− 2H/Id)
2 ≥ Rl

Figure 1. Evolution of the intensity profile I(r, z) (upper fig-
ures - contourplots, bottom - 3d dynamics) for a Gaussian
input signal with a = 10, N = 12π. Left: the initial stage of
the compression from z = 0 to 30.

Figure 1 depicts (contourplots and 3d) evolution of
the intensity profile I(r, z) for a Gaussian input beam

A(r, 0) =
√
N/(a2π) × exp[−r2/(2a2)], with a radius

a = 10 and power N = 12π. Figure 1 shows results of a
numerical solution of the NLSE (2) with a central circle
area of a radius R0 = 1, where the nonlinear parame-
ter V = 0, while outside the hole V = 1. At the initial
stage shown at Fig. 1 (left), the beam is compressed from
the initially broad distribution towards the centre. Af-
ter that initial compression a typical dynamics presents a
breathing type oscillatory evolution characteristic to the
conservative system. The oscillating dynamics features
periodic increases and decreases of the intensity with the
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Figure 2. Evolution of the power trapped inside the small
region around the hole. Rtrapped = 2 – solid line,
Rtrapped = 3 – dashed line, Rtrapped = 5 – dotted line,

corresponding compression or broadening of the beam
width. Note that these oscillations of the beam width
occur at the scales much smaller than the initial beam
radius.

Figure 2 shows corresponding evolution of the fraction
of the total power Ntrapped/N trapped after initial com-
pression inside the small region around the hole in the
region of r ∈ [0 Rtrapped]:

Ntrapped =

Rtrapped∫
0

|A|2d~r .

Different lines correspond to the radii of the observed re-
gions. It is seen that in the central area with the radius of
2 the confined power is changing between approximately
20% and 50% of the total power and for the area with
the radius of 5 it is above 50% of the power of the initial
Gaussian beam with a = 10.

This ”nonlinear tapering” effect can potentially be use-
ful in different applications. For instance, it can be used
for a spatial transfer of light power from a broad area
(defined by the high power pumping sources) to a nar-
row core. Some classes of high-power fiber lasers exploit
cladding pumping within a double-clad fiber structure.
The first cladding has a substantially larger area (diam-
eter > 100µm) compared with that the core, allowing
the efficient launch of the output from the multi-mode
pump sources with poor beam quality, such as e.g. high-
power laser diodes. The pump light is then partly prop-
agates in the single-mode core, where it is absorbed by
the laser-active ions. The nonlinear lens potentially can
provide a new design option for an efficient spatial com-
pressor of the low-brightness, high-power radiation of the
laser diodes into a high brightness, high-power laser beam
coming out of the small active fiber core.

IV. SOLITON SOLUTIONS

Arrest of a wave collapse typically corresponds to
the existence of stable solitons that provide a bal-
ance between diffraction/dispersion and nonlinearity

[17]. Therefore, next we examine localized steady state
solutions in the considered medium. Note that nonlinear
waves in the layered structures in the one-dimensional
case have been studied (see e.g. [18, 19]. In one di-
mensional geometry an interplay between linear wave
guiding and nonlinearity can lead to nonlinear surface
waves. There are two major different features from that
works in the problem we consider here. First, in the two
dimensional case nonlinear dynamics can lead to self-
focusing/wave collapse, that is different from the one-
dimensional systems considered in [18, 19]. Second, as
wit was mentioned before, there is no need for a linear
wave guiding in the system we study.

It is well-known that in the framework of the pure NLS
equation, two-dimensional solitons, the so-called Townes
modes [20] are unstable. In the considered here case of
the 2d NLSE with a non-uniform distribution of non-
linearity, we observe stable 2d soliton structures with
ring-type intensity distribution and similar breathing so-
lutions. Their properties are illustrated in Figs. 3,4.
Consider steady-state solutions of Eqs. (2) having the
form of nonlinear localized solitary waves propagating in
the z-direction, A(x, y, z) = exp(iλz)G(x, y). The wave-
form of such 2d solitons is described by the following
equation [17]:

δ

δG∗
(H + λN) = λG− 1

2
∇2
⊥G− V (x, y)|G|2G = 0. (3)

This means, in particular, that such solutions should cor-
respond to stationary points of Hamiltonian H for a fixed
power N . This equation can be seen as a stationary so-
lution of some auxiliary relaxation process M(G)G = 0,
with the nonlinear operator M given as

M(G) = λ− 1

2
∇2
⊥ − V (x, y)|G|2

We have used a specific relaxation method in order
to find stationary solutions described by the Eq.(3). A
nave relaxation method would utilize ∂G/∂τ = M(G)G,
which would relax to a stationary solution M(G)G = 0 if
it was stable which is rarely the case. In order to enforce
convergence, we modify the relaxation problem to

∂

∂τ
M(G)G = −M(G)G (4)

A formal solution of such a relaxation process would be
schematically expressed as M(G)G = M(G)G|τ=0 e

−τ

which ultimately decays to zero to yield the target of
M(G)G = 0.

One can arrange the iterative relaxation process by
performing a differentiation in Eq.(4) in τ and introduc-
ing a new field variable Q = ∂G/∂τ .

λQ+
1

2
∆Q+ 3V (r)G2Q =

λG+
1

2
∆G+ V (r)G2G
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Figure 3. Intensity distribution |G(r)|2 for steady state so-
lutions in linear (top) and logarithmic (bottom) scales for
different values of parameter λ (λ = 1 – dashed line, λ = 4 –
solid line, λ = 8 – dotted line)

Note that this equation is now linear in Q which allows
to construct an recurrent iteration process

λQm+
1

2
∆Qm + 3V (r)G2

mQ Qm =

λGm +
1

2
∆Gm + V (r)G2

mGm ;

Gm+1 =Gm + ∆τQm .

A reduction to algebraic iteration problem is achieved by
approximation of Laplacian operator with a finite differ-
ence stencil, e.g. three point central difference stencil.
Then the procedure is reduced to
1) start with a starting guess G0;
2) find Q0;
3) update G;
4) break and stop when the residue error is small enough;
5) repeat the cycle.

The resulting steady-state solutions are the functions
of the coordinates (x, y) as well as parameters λ. Families
of such multidimensional solutions are shown in Fig. 3.

Figure 4. Family of the soliton solutions for different param-
eter λ

Figure 3, illustrates intensity distribution in the steady
state ring-solitons. Non-uniform distribution of nonlin-
earity creates the effective potential with power localised
at the ring as opposite to the monotonic 2d solitons in
the uniform NLSE - Townes modes. Figure 4 explicitly
shows dependence of ring soliton shape on the parameter
λ.

The observed solitons have sign-definite negative
derivative dH/dN as illustrated in Fig.(5), that is a
typical signature of the stable solitons in line with the
Kolokolov-Vakhitov stability criterion [21].

Figure 5. Hamiltonian H of the soliton solutions of Eq.(3
versus power N

V. VARIATIONAL APPROACH

Consider a standard variational [17] approach to
demonstrate that a linear core leads to the appearance of
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a minimum in the Hamiltonian as opposite to the clas-
sical 2d NLS equation. Re-writing Eq. (2) in the La-
grangian form ∂L/∂A∗ = 0 with the Lagrangian L:

L = π

∞∫
0

rdr(iA∗Az −AA∗z)−H . (5)

Examples of the contraction dynamics and the soliton
solutions presented above suggest the double scale ring
shape beam profile hence the two parameter trial func-
tion is needed. Let’s consider the trial profile as Gaus-
sian with the width a(z) multiplied by cosh(b(z)r/a(z))
so that for b(z) > 1 the beam maximum is off-centre

A(r) =

√
N exp(− r2

2a2 ) cosh( bra )

a
√
J(b)π

exp(iµr2/2− iνr+ ikz),

(6)

J(b) = 2

∞∫
0

xdx exp(−x2) cosh2(bx) =

= 1 + b exp(b2)

b∫
0

dt exp(−t2) ; (7)

where µ, ν, a, b are functions of z.
We demonstrate below that is convenient to make a

transform from the variables (a; b) to mean radius s = r̄

and mean square deviation w =
√
r̄2 − r̄2/a because

the substitution of the exact solution A(x, y, z) with a
two-scale trial function in the form of Eq(6) yields re-
duced equations on the parameters of the trial function
in the form of Newton equations for the motion in the
two-dimensional potential W (s, w):

d2s

dz2
= −∂W

∂s
,

d2w

dz2
= −∂W

∂w
. (8)

Here w = a
√

3/2 + b2 − C2(b)− (1 + b2)/(2J(b)) and
s = aC(b), where C(b) =

√
π [1+(1+b2) exp(b2)]/(4J(b)).

The potential W (s, w) is obtained from W (a, b), as intro-
duced below in Eq(13) by the transform (a, b)→ (s, w).

Straightforward calculation of the mean values s and
w leads to the explicit transform from the pair (a; b) to
(s;w)

s

a
=
r̄

a
=

1

J(b)

∞∫
0

x2dx exp(−x2)(1 + cosh(2bx)) =

=

√
π

4J(b)
(1 + (b2 + 1)eb

2

) = C(b), (9)

r̄2

a2
=

1

J(b)

∞∫
0

x3dx exp(−x2)(1 + cosh(2bx)) =

= 3/2 + b2 − 1 + b2

2J(b)
, (10)

1 2 3 4
0

1

2

3

4

5

a

b

Figure 6. Potential W (a, b). Mininum at as ≈ 0.673256 and
bs ≈ 1.83993 corresponds to a stationary point (soliton)

w

a
=

√
r̄2 − (r̄)2

a2
=

√
3/2 + b2 − 1 + b2

2J(b)
− C2(b) = D(b)

(11)

Finally, the substitution of the trial profile into the La-
grangian yields

L = π

∞∫
0

rdr(iA∗Az −AA∗z)−H =

−k +
d(µ(r̄)2)

2dz
− dµ

dz
σ2/2 +

d(ν − µr̄)
dz

r̄ −H(µ, ν; a, b),

H(µ, ν; a, b) = π

∞∫
0

rdr|dA
d~r
|2 − π

∞∫
1

rdr|A|4

= N
µ2σ2 + (µr̄ − ν)2

2
+NW (a, b), (12)
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Figure 7. Potential W (s, w).

W (a, b) = W1 −NW2 , (13)

W1 =
1

4a2

(
1 +

1− b2

J(b)

)
,

W2 =
1

4a2J2(b)π
(exp(−2/a2) cosh4(b/a)+

b

∞∫
1/a

dx exp(−2x2)(sinh(2bx) + sinh(4bx)/2)

Figures (6) and (7) illustrate the landscape of the po-
tential W in variables (a, b) and (s, w) correspondingly.
It is seen that both surfaces have the local minima cor-
responding to the stationary solutions (solitons).

This choice of the trial function reflects the two scale
field distribution observed in the exact solution obtained
numerically. Figure (8) shows comparison of the numer-
ically found soliton solution with the trial function with
the same value of power N .

Evidently, Eq. 8 conserves a Hamiltonian H defined
as 2H = (ds/dz)2 + (dw/dz)2 + 2WU(s, w) = const The
potential U(s, w) has the minimum corresponding to the
ring soliton.

VI. CONCLUSION

In general, formation of spatially localised states (soli-
tons or breathers) from plane waves is of interest in var-
ious areas of science and practical applications [2, 3, 5,
16, 22–25]. Nonlinear instabilities and a wave collapse
are examples of the energy localisation mechanisms in
nonlinear systems. For instance, a possibility of strong

spatial localization of electromagnetic fields beyond the

Figure 8. Comparisonew of intensity profiles |G(r)|2 for nu-
merically found steady state solutions and the correspond-
ing trial function for λ = 1 in linear (top) and logarithmic
(bottom) scales. Trial function corresponds to the stationary
point of potential U(a, b) with a ≈ 0.788213 and b = 1.5833

classical diffraction limit is related to the spatial resolu-
tion problem in optics. Controlled spatial (or temporal)
localization of the the field at certain distance (or at some
moment of time) is important for energy transfer, laser
processing of materials and various other applications.

In conclusion, we proposed to use a medium with the
non-uniform distribution of the nonlinear refraction pa-
rameter n2(x, y) in a way that the self-focusing of a
broad initial distribution of the field (e.g. pumping wave)
starts because the condition of self-focusing is satisfied
in the outer region. However, the nonlinear beam nar-
rowing is stopped by the dramatic decrease of n2 in the
central hole/core where power is focused. We demon-
strate through numerical modeling that in contrast to
two-dimensional NLS equation, in the considered model,
stable ring solitons can be formed.
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